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Abstract Differential evolution has become one of the

most widely used evolutionary algorithms in multiobjec-

tive optimization. Its linear mutation operator is a simple

and powerful mechanism to generate trial vectors. How-

ever, the performance of the mutation operator can be

improved by including a nonlinear part. In this paper, we

propose a new hybrid mutation operator consisting of a

polynomial-based operator with nonlinear curve tracking

capabilities and the differential evolution’s original muta-

tion operator, for the efficient handling of various inter-

dependencies between decision variables. The resulting

hybrid operator is straightforward to implement and can be

used within most evolutionary algorithms. Particularly, it

can be used as a replacement in all algorithms utilizing the

original mutation operator of differential evolution. We

demonstrate how the new hybrid operator can be used by

incorporating it into MOEA/D, a winning evolutionary

multiobjective algorithm in a recent competition. The

usefulness of the hybrid operator is demonstrated with

extensive numerical experiments showing improvements in

performance compared with the previous state of the art.

Keywords Evolutionary algorithms � DE � Nonlinear �
Multi-criteria optimization � Polynomial �
Pareto optimality � MOEA/D

1 Introduction

In evolutionary multiobjective optimization (EMO), nature-

inspired numerical methods known as evolutionary algo-

rithms (EAs) are applied to solve optimization problems with

multiple, conflicting objectives. Unlike a single-objective

optimization problem, a multiobjective optimization prob-

lem (MOP) does not, in general, have a unique optimal

solution. Instead, the optimal solutions to a MOP constitute a

possibly infinite set of compromise solutions, known as

Pareto optimal solutions, which can be ordered only by

subjective preferences. Intuitively, the aim in EMO is to

represent the range of tradeoffs within the Pareto optimal

solutions using a fixed-size population of nondominated

solutions.

The two main concerns in designing an EMO method

are the optimality of obtained solutions (convergence), and

the representativeness of the solutions (diversity). Thus, an

EMO method must maintain diversity in the population not

only to prevent premature convergence, but also because

the final population should represent a wide range of dif-

ferent nondominated solutions. Ensuring diversity in the

objective space is a nontrivial task and perhaps for this

reason there has been an emphasis on research towards

selection operators—which operate in the objective

space—instead of the mutation and crossover operators.

In many cases, the mutation and crossover operators used

in an EMO method have been developed for single-

objective optimization (see, for example, Coello et al.

2007; Deb 2001). This fact has already been pointed out in
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Jin and Sendhoff (2003), Zhang et al. (2008). In Zhang

et al. (2008), it is used, together with an assumed regularity

of the solution set in the decision space, to motivate a

multiobjective optimization method modelling explicitly

the interdependencies between decision variables.

In single-objective optimization, differential evolution

(DE) has become a widely used method (Price et al. 2005;

Storn and Price 1996). An appealing feature of DE is its

extremely uncomplicated, self-adapting mutation operator

which is based on random perturbations obtained by sam-

pling difference vectors from the population of decision

vectors maintained by the algorithm. The mutation opera-

tor of DE is capable of implicitly detecting and exploiting

linear interdependencies between decision variables, but

does not cope as well with more complicated, nonlinear

interdependencies (Ruuska and Aittokoski 2008). We say

that a MOP involves nonlinear interdependencies between

decision variables if the Pareto-optimal solutions in the

decision space do not fall on a plane of lower dimension

than the space itself.

Several variants of DE have been proposed in the

literature also for multiobjective optimization, by many

authors including Abbass (2002), Babu and Jehan (2003),

Kukkonen and Lampinen (2005), Robic and Filipic (2005),

Santana-Quintero and Coello (2005). For a review, see, for

example, Price et al. (2005), Santana-Quintero and Coello

(2005). The existing multiobjective variants of DE have

also proven successful in solving many of the multiobjec-

tive test problems available (Kukkonen and Lampinen

2006; Zhang et al. 2009a). However, as pointed out in Jin

and Sendhoff (2003), Okabe et al. (2004), in many widely

used multiobjective test problems, the solution set in the

decision space can be defined by piecewise linear functions

even though the objective functions as such are nonlinear.

This raises the question whether part of the success of the

DE-based EMO methods could be due to the capability of

their mutation operator to exploit linear interdependencies

between decision variables in a problem, and whether the

efficiency of these methods in solving problems with

nonlinear interdependencies could be improved by changes

in the mutation operator only.

Different mutation operators have been proposed in the

literature. Among others, a trigonometric mutation operator

was proposed by Fan and Lampinen (2003). Here, a

hypertriangle formed by three vectors is used to bias the

perturbation of a target vector towards the vector providing

the lowest function value. In Cauchy mutation (Ali and Pant

2010), a decision vector is perturbed by using a Cauchy

distributed random variable, with the hope of pulling them

from a local basis of attraction. Liu and Lampinen (2005)

proposed a fuzzy adaptive differential evolution algorithm,

which uses fuzzy logic controllers to adapt search param-

eters (scaling factor, crossover ratio and population size).

In PDE-PEDA proposed by Wang et al. (2009) an estima-

tion of distribution algorithm (global operator) and a linear

DE crossover (local operator) is used with a self-adaptive

probability. The self-adaptive probability is used here to

balance the global and local information. Lara et al. (2010)

proposed a local search strategy (HCS) using the geometry

of the directional cones to generate solutions both towards

and along the Pareto set. Finally, let us mention a hybrid DE

operator proposed by Kaelo and Ali (2007). This mutation

operator using both the linear mutation operator of DE and

an electromagnetism-like algorithm (using an attraction-

repulsion technique to move closer to global minima) is

used with a pre-fixed probability. Overall, one can say that

not much attention has been paid in the DE literature on

handling both linear and nonlinear interdependencies

between decision variables.

In this paper, our motivation was to propose a new

hybrid mutation operator which can robustly handle both

linear and nonlinear interdependencies between decision

variables, simultaneously retaining the simplicity of the

linear differential evolution mutation operator. In practice,

no a priori knowledge exists about the interdependencies

between decision variables. Hence, the proposed operator

is a combination of the DE’s linear mutation operator and a

new polynomial part to handle nonlinear interdependencies

between decision variables, which can be used as a drop-in

replacement for DE’s mutation operator.

The so-called curvature detection in the polynomial part

is based on polynomial approximation which is used to

guide the generation of new trial vectors. One can say that

there is nothing new in using polynomials in optimization;

especially quadratic polynomials are frequently used for

line search and other purposes (see e.g., Bazaraa et al.

2006; Nocedal and Wright 1999). Polynomials have also

been used for trial vector generation in population-based

algorithms before (see e.g., Ali et al. 1997; Schütze et al.

2007). Our use of polynomials, however, differs from the

current practice in that we do not use polynomials to model

objective functions, but the interdependencies between

decision variables of the problem. In particular, new trial

points are not determined by the extreme points of the

approximations as is common in line search procedures.

The rest of the paper is structured as follows: In Sect. 2,

we discuss the basics of multiobjective optimization and

DE as well as introduce the notation used in this paper.

Then, in Sect. 3 we propose a new polynomial part and,

finally, a new hybrid operator which utilizes both the ori-

ginal operator of DE as well as the new polynomial part. In

Sect. 4 we demonstrate the potential and usefulness of the

new hybrid operator when solving multiobjective optimi-

zation problems. With a versatile set of test problems we

show how the performance of a linear mutation based

MOEA/D algorithm can be improved with our hybrid
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operator. This should encourage further research in this

direction. Finally, the paper is concluded in Sect. 5.

2 Notation and background

In this section, we present the notation and background

necessary for the rest of the paper. First, we formulate a

MOP with the relevant definitions. Then, we provide a

brief review of the functioning and properties of the DE.

2.1 Basics of multiobjective optimization

We consider a MOP

minimize fðxÞ ¼ ðf1ðxÞ; f2ðxÞ; . . .; fkðxÞÞ
subject to x 2 S

ð1Þ

with a feasible set S � R
n and k C 2 conflicting objective

functions fi : S! R. The n-dimensional vectors x 2 S are

called decision vectors and their images z ¼ fðxÞ objective

vectors. The set of attainable objective vectors is denoted

by Z, Z ¼ fðSÞ.
An objective vector z 2 Z is called Pareto optimal if

there does not exist a vector �z 2 Z such that �zi� zi

(i ¼ 1; 2; . . .; k) with at least one strict inequality. Natu-

rally, a decision vector x 2 S is Pareto optimal if its image

fðxÞ is Pareto optimal. In what follows, the set of Pareto-

optimal decision vectors is called the Pareto set, and the set

of Pareto-optimal objective vectors the Pareto front. For

two decision vectors x1; x2 2 S; x1 is said to dominate x2 if

fiðx1Þ� fiðx2Þ V i ¼ 1; . . .; n and fjðx1Þ\fjðx2Þ for at least

one index j. In the context of EMO methods, the subset of

vectors in a population not dominated by any other vector

in the population is called the nondominated set. Typically,

EMO algorithms aim at generating nondominated solutions

representing the Pareto front as well as possible (i.e., both

being close to the Pareto front and reflecting different

tradeoffs).

2.2 Basics of differential evolution

DE is a stochastic, population-based direct search method

introduced by Storn and Price for optimizing a real-valued

function of continuous variables (Price 2005; Storn and

Price 1996). It is distinguished from other EAs mostly by

its remarkably simple trial vector generation scheme in

which a scaled difference of vectors originating from a

fixed-size population of decision vectors is used. In spite of

its simplicity, DE has demonstrated its capability to find

good solutions to a wide variety of different benchmark

problems as well as practical optimization problems while

comparing favourably to other EAs in terms of conver-

gence speed (Price et al. 2005).

The basic step of DE consists of updating a population

of P ? 1 decision vectors P ¼ fx0; x1; . . .; xpg: For each

vector xt 2 P in turn, a trial vector x̂t is generated. The

vector xt is called a target vector because it will be

replaced in P by the trial vector x̂t for the next iteration if x̂t

yields a better objective function value than xt: First, a

subset of three decision vectors Q ¼ fxr1 ; xr2 ; xr3g � P is

selected using three distinct random indices ri, 0 B ri B p,

i = 1, 2, 3. In the original DE mutation, a trial vector x̂t is

obtained as a crossover of xt and a mutated vector

�xt ¼ xr1 þ Fðxr3 � xr2Þ, where F [ 0 is a scaling factor. In

what follows, we refer to this mutation operator as LIMO

(linear mutation operator). For different crossover opera-

tors and many variants of DE, see, for example, Price et al.

(2005).

The use of perturbations, the difference vectors in this

case, derived from the current population instead of

utilizing an external probability distribution makes the

mutation operator of DE self-adaptive (Price et al. 2005).

That is, both the scale and orientation of the search are

adapted to the extent of the current population. The self-

adaptation in DE works especially well if all the interde-

pendencies between decision variables in the problem are

linear, but can fail to extract information of any nonlinear

interdependencies between decision variables based on the

relative positioning of the points in the population (Ruuska

and Aittokoski 2008).

3 New hybrid operator and its elements

In this section, we first introduce a polynomial-based

operator and then a new hybrid operator which utilizes both

the polynomial-based operator and the original LIMO

operator of DE. We begin by a brief introduction to

interpolation with polynomials.

3.1 Brief background of interpolation with polynomials

In general, a polynomial

pðxÞ ¼ cdxd þ cd�1xd�1 þ � � � þ c1xþ c0 ð2Þ

can be fitted to data consisting of pairs ðxi; yiÞ 2 R� R i ¼
1; . . .; d þ 1; so that it interpolates the pairs, that is,

P(xi) = yi for each i. As commonly known, the polyno-

mial, which interpolates the given pairs and the degree of

which is smaller or equal to the number of pairs plus one, is

always unique (see for example Kincaid and Cheney 2002).

Here, for deriving an integral element, polynomial opera-

tor, for our hybrid operator, we use the Vandermonde

matrix (Kincaid and Cheney 2002) to define coefficients cj.

This decision has been made because of its simplicity.
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However, the Vandermonde matrix may be ill-conditioned

and therefore coefficients cj may be inaccurate (Kincaid

and Cheney 2002). In what follows, we only consider

second-degree polynomials (d = 2 in Eq. 2 to avoid ill-

conditioned Vandermonde matrices. Another benefit of

second-degree polynomials is that we can express the

formulas of coefficients cj by using values xi and yi,

i = 1, 2, 3, only.

For given pairs (x1, y1), (x2, y2) and (x3, y3), the coeffi-

cients c2, c1 and c0, for a second-degree polynomial p in

Eq. 2, using the Vandermonde matrix are the following:

c2 ¼
x3ðy2 � y1Þ þ x2ðy1 � y3Þ þ x1ðy3 � y2Þ

ðx1 � x2Þðx1 � x3Þðx2 � x3Þ
;

c1 ¼
x2

3ðy1 � y2Þ þ x2
1ðy2 � y3Þ þ x2

2ðy3 � y1Þ
ðx1 � x2Þðx1 � x3Þðx2 � x3Þ

and

c0 ¼
x2x3ðx2 � x3Þy1 þ x1x3ðx3 � x1Þy2 þ x1x2ðx1 � x2Þy3

ðx1 � x2Þðx1 � x3Þðx2 � x3Þ
:

Note that the degree of the polynomial p can be smaller

than the number of the given pairs. For example, if

y1 = y2 = y3, then we get c2 = c1 = 0 and c0 = y1

(generally, this holds also for any d [ 2 in Eq. 2, see

Kincaid and Cheney 2002).

It is well known that interpolation methods based on

polynomials are not restricted to the above type of inter-

polation. However, here we consider this simple approach,

because we want to use a small number of data pairs. Other

types of polynomial-based interpolations like splines can

be found, for example, in Kincaid and Cheney (2002) with

further discussions.

3.2 Polynomial-based point tracking in a higher

dimension

In this subsection, we fit a polynomial-based curve to three

randomly selected decision vectors x0; x1; x2 2 P so that

the curve interpolates the vectors. In the previous subsec-

tion, polynomial p in Eq. 2 is constructed only for real

values y1, y2 and y3. To fit a curve to n-dimensional vectors

x0; x1 and x2; we use n second-degree polynomials.

A curve p created for Q ¼ fx0; x1; x2g is a function from

R into R
n;

pðtÞ ¼ ðp1ðtÞ; p2ðtÞ; . . .; pnðtÞÞT ; ð3Þ

where pi is a polynomial from R into R for each

i ¼ 1; . . .; n: Polynomials pi, stated as

piðtÞ ¼ ci
2t2 þ ci

1t1 þ ci
0; ð4Þ

are selected so that polynomial pi interpolates pairs (0, xi
0),

(1, xi
1) and (2, xi

2) for all i ¼ 1; . . .; n. In this case,

coefficients c2, c1 and c0 are the following:

ci
2 ¼

x0
i � 2x1

i þ x2
i

2
;

ci
1 ¼

4x1
i � 3x0

i � x2
i

2
and

ci
0 ¼ x0

i :

ð5Þ

3.3 A polynomial part for the new operator

In the previous subsection, we have constructed a curve p

to trace the path of x0; x1; x2 2 Q and next we propose to

use this ‘‘path’’-information to generate new trial vectors.

Once the polynomials p1; p2; . . .; pn have been found based

on Q, we get a trial vector as pðtÞ with an appropriate t

value. In the context of DE, we use p defined in Eqs. 3–5 as

a new POlynomial based Mutation Operator, POMO,

which will be used in our hybrid operator.

As said, the POMO operator uses t as a parameter to

generate new trial vectors and depending on the t value

POMO generates new trial vectors in different ways.

According to the previous subsection, polynomials pi are

fitted to Q with t values 0, 1 and 2. Once the formula for p

as a function of t has been obtained, it can be used to

generate a new trial vector with any value of t. Now, with a

t value between 0 and 2, the curve p interpolates and with a

t value higher than 2, the tracking curve p extrapolates. We

limit our consideration to values between 2 and 3 because

we do not want to get too far from the original vectors. In

the case of interpolation, POMO produces a new trial

vector between x0 and x1 or x1 and x2 depending on the

selected interval. In this way, POMO tries to increase the

uniform distribution of trial vectors between x0; x1 and x2:

To generate a new trial vector outside x0; x1 and x2; one

can use the extrapolation version of POMO.

Let us consider three decision vectors x0; x1 and x2 in

the decision space as shown in Fig. 1. Now, if we use

LIMO at x0; we generate a new trial vector, denoted as xL

based on vectors x1 and x2: Whereas using POMO instead

of LIMO, we can use the point tracking property of p and

extract the curvature information between the decision

vectors x0; x1 and x2 to get vector xi or xe: In Fig. 1, vector

xi is produced by POMO with a t value 1.5. In this case,

vector xi is between x1 and x2 as a result of the interpo-

lation property of POMO. On the other hand, vector xe has

been generated with a t value 2.5 and it aims at expanding

the search area, guided by the vectors x0; x1 and x2:

As seen in the fitting phase of polynomials pi, coeffi-

cients cj require an order for the vectors x0; x1 and x2: Note

that vectors x0; x1 and x2 are randomly selected and

superscripts are here used to denote and identify the ran-

dom vectors. As known, three randomly selected vectors

can be ordered in six different ways and no matter what the

order is, coefficients cj can be calculated. However, it is
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very difficult to say beforehand which order is the best one

for the polynomials pi. For simplicity, we propose to use

the order of randomly selected vectors x0; x1 and x2: In

other words, x0 is the first randomly selected vector for the

fitting t value 0 and vectors x1 and x2 for t values 1 and 2,

respectively.

3.4 New hybrid mutation operator

The variable dependencies in any practical problem are

a priori unknown. Here, we propose a hybrid mutation

operator comprising of both POMO and LIMO parts. For

any DE-based EMO algorithm, we suggest to use HOP so

that LIMO is used with a probability Pc and POMO

otherwise. Henceforth, we refer to such an operator as a

Hybrid OPerator (HOP). HOP is a versatile operator for an

EMO algorithm because it generates trial vectors in dif-

ferent, yet simple ways.

As mentioned earlier, POMO can act as an extrapolation

or an interpolation operator depending on the value of

t. We suggest to use both extrapolation and interpolation

with a prefixed probability in POMO. In what follows, the

extrapolation probability is denoted by Pextra and the

interpolation probability by Pinter. Naturally, we need only

one of them because Pextra ? Pinter = 1. The extrapolation

operator behaves like an exploration operator and has a

similar role as LIMO. The interpolation operator, on the

other hand, exploits locally nonlinear interdependencies.

A balance of extrapolation and interpolation is essential.

This can be explained with the concepts of exploration and

exploitation. Although these concepts are often utilized in

the literature to describe a good optimization method, the

same can be extended to POMO. In this paper, we aimed at

striking a balance between exploration of the decision

space and exploitation of the curvature information from

the sample in the decision space. POMO is constructed

based on the principle of interpolation and hence it may not

necessarily capture the exact nonlinear behaviour when

trial vectors are generated by extrapolation. In other words,

if POMO is used in HOP with a probability Pextra = 1.0,

then it shows exploration behaviour. On the other hand, if

POMO is used in HOP with a probability Pextra = 0, that is,

Pinter = 1.0 meaning only interpolation, then it exploits the

curvature information between chosen decision variables

for trial vector generation. Using only extrapolation

(exploration) can lead to slow convergence, whereas per-

forming only interpolation (exploitation) can lead to pre-

mature convergence. As a result, POMO can be trapped in

locally Pareto optimal fronts. Thus, instead of having either

extrapolation or interpolation, one may recommend using

them both. A detailed parametric study is performed in the

next section for the MOEA/D algorithm to suggest a range

for choosing Pinter (and Pextra).

We propose to replace the trial point generation of the

LIMO operator by the hybrid operator HOP which can be

described as follows:

• Generate a random number r between 0 and 1.

• If r B 0.75, set x̂t ¼ x0 þ Fðx2 � x1Þ
• Else set x̂t ¼ pðtÞ, where t is randomly selected

– between 0 and 2 if random number for the

probability of interpolation is below Pinter and

– between 2 and 3 otherwise.

Because of its simple structure, LIMO can be easily

replaced with HOP in any appropriate EMO algorithm.

4 Numerical experiments

We have proposed a new hybrid operator HOP, and in this

section we demonstrate how it can be used with the

MOEA/D algorithm (Zhang et al. 2009a) and what

advantage can be obtained with the new operator when

compared with the original algorithm. We have selected

MOEA/D to be used in the tests because of its superior

performance in the CEC 2009 competition. However,

MOEA/D is a high-performance algorithm and one cannot

expect drastic improvements in the performance. If we

show significant statistical improvement in the perfor-

mance of the MOEA/D algorithm, the strength of the new

operator is supported. We first present a brief summary of

the EMO algorithm used, that is, MOEA/D and subse-

quently present the results of the parameter study and

suggestions to choose the parameter values. Finally, we

present the results of numerical tests comparing HOP and

the original LIMO-based MOEA/D. Here, we consider all

x0
x1

x2

p

xi

xexL

2 4 6 8
x1

2

4

6

8

10

12

x2 DECISION SPACE

Fig. 1 Trial vector generation in the decision space using POMO and

LIMO
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the test problems of the CEC 2007 (Huang et al. 2007;

Zhang et al. 2009a, b) EMO competitions as these test

problems were designed to represent various complicated

problems and accepted for comparing different EMO

algorithms. These sets contain 14 bi-objective problems,

9 problems with three and 8 problems with five objectives.

In Table 1, we present the test problems with their corre-

sponding numbers of variables and objectives and the type

of dependency in their Pareto sets.

Zhang and Li (2007) proposed MOEA/D, a high-per-

formance EMO algorithm based on scalarizing functions.

Subsequently, a new version of the MOEA/D algorithm

was proposed in Zhang et al. (2009a). The fundamental

principle behind MOEA/D is that a multiobjective problem

is scalarized into a number of single objective problems

with distinct weight vectors and solved simultaneously.

This is because any Pareto optimal solution can be obtained

by solving an appropriate scalarizing function (Miettinen

1999). A weighted Chebyshev approach (Miettinen 1999)

is used in the MOEA/D algorithm for scalarization.

MOEA/D employs a set of N individuals and uniformly

distributed weight vectors, where N is the population size.

Each of these weight vectors are used to formulate a single

objective problem, that is, a subproblem. A neighbourhood

is defined for each individual in the population based on the

distances between the weight vectors. Genetic operations

(i.e., selection, crossover and mutation) are performed in

each of the neighbourhoods. An offspring is generated by

crossover and mutation with randomly selected parents in

the neighbourhood. This offspring is then compared with

the parents and each of the neighbours based on the value

of the scalarizing function. If the offspring is better than

any of the individuals used in the comparison, it replaces

them. The algorithm finally terminates when a suitable

termination criterion is met. MOEA/D used in this paper

uses dynamic resource allocation to assign different

amounts of computational effort to different subproblems.

A complete description of the algorithm is provided in

Zhang et al. (2009a).

The MOEA/D algorithm employs a linear DE mutation

operator LIMO as a crossover operator. The offspring

generated by crossover is subsequently mutated using a

mutation operator (Zhang et al. 2009a) with a probability

to produce a new offspring. For our comparisons we

change the crossover operator of MOEA/D and, instead,

employ HOP and the rest of the algorithm remains

unchanged. In this paper, we refer to the modified MOEA/

D algorithm with HOP as MOEA/D-HOP. As described in

the previous section, inside MOEA/D-HOP, we have a

probability for using either POMO or LIMO.

4.1 Test setting

The MOEA/D algorithm as suggested in Zhang et al.

(2009a) is used as the EMO algorithm in the comparisons

with MOEA/D-HOP. The program for the MOEA/D

algorithm provided in http://dces.essex.ac.uk/staff/qzhang/

moeacompetition09.htm is used for tests. The test problems

include all the 31 box-constrained test problems of the

CEC 2007/2009 competitions. To have a fair comparison

with the competition results, we borrow the performance

metric and parameter settings of the CEC 2009 competi-

tion. Next, we summarize the parameter setting used for all

subsequent tests:

1. Performance metric: Inverted generational distance

(IGD) is used as the performance metric. If P* is the

set of uniformly distributed Pareto optimal solutions in

Table 1 Test problem instances

Name Number of

variables

Number of

objectives

Intervariable

dependencies

OKA2 3 2 Nonlinear

SYMPART 30 2 Linear

S_ZDT1 30 2 Linear

S_ZDT2 30 2 Linear

S_ZDT4 30 2 Linear

S_ZDT6 30 2 Linear

R_ZDT4 10 2 Linear

S_DTLZ2_M3 30 3 Linear

S_DTLZ2_M5 30 5 Linear

S_DTLZ3_M3 30 3 Linear

S_DTLZ3_M5 30 5 Linear

R_DTLZ2_M3 30 3 Linear

R_DTLZ2_M5 30 5 Linear

WFG1_M3 24 3 Linear

WFG1_M5 28 5 Linear

WFG8_M3 24 3 Nonlinear

WFG8_M5 28 5 Nonlinear

WFG9_M3 24 3 Nonlinear

WFG9_M5 28 5 Nonlinear

UF1 30 2 Nonlinear

UF2 30 2 Nonlinear

UF3 30 2 Nonlinear

UF4 30 2 Nonlinear

UF5 30 2 Nonlinear

UF6 30 2 Nonlinear

UF7 30 2 Nonlinear

UF8 30 3 Nonlinear

UF9 30 3 Nonlinear

UF10 30 3 Nonlinear

R2_DTLZ2_M5 30 5 Linear

R2_DTLZ3_M5 30 5 Linear
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the objective space and P the obtained approximation

set of non-dominated solutions in the objective space

from the EMO algorithm, the IGD value for the

approximation set is defined by

IGDðP;P�Þ ¼
P

v2P� dðv;PÞ
jP�j ð6Þ

where dðv;PÞ is the minimum Euclidean distance

between v and points in P and |P*| is the number of

points in P*.

2. The maximal number of approximate solutions (|P|) for

the IGD value calculation: 100 for bi-objective prob-

lems, 150 for three objectives, and 800 for five

objectives.

3. Algorithm stopping criterion is the maximal number of

function evaluations = 300,000.

4. The number of independent runs for statistical tests = 30.

In what follows, we present the parameter settings

specific to the MOEA/D algorithm. We want to point out

that the parameter settings for both MOEA/D and MOEA/

D-HOP are the same as in Zhang et al. (2009a).

1. Population size (N): 600 for bi-objective problems,

1000 for three objectives, and 1500 for five objectives.

2. Number of weight vectors in the neighbourhood of

each weight vector (T) = 0.1N and nr = 0.01N.

3. Probability for selection of mating/update range

d = 0.9.

Table 2 MOEA/D-HOP with 0% interpolation and 100% extrapolation

Problem MOEA/D MOEA/D-HOP p-value

Best Median Worst Best Median Worst

OKA2 0.0295 0.0295 0.0295 0.0295 0.0295 0.0295 0.5325

SYMPART 0.0208 0.0220 0.0230 0.0214 0.0222 0.0238 0.08503

S_ZDT1 0.0051 0.0058 0.0066 0.0060 0.0068 0.0080 1.572e–13

S_ZDT2 0.0059 0.0067 0.0081 0.0061 0.0080 0.0097 5.868e-09

S_ZDT4 0.0041 0.0059 0.0082 0.0053 0.0099 0.0286 1.086e–10

S_ZDT6 0.8429 0.9343 1.0557 0.9107 1.0249 1.1463 1.537e–08

R_ZDT4 0.2554 0.6674 2.8821 0.1254 1.2737 3.0742 0.2359

S_DTLZ2_M3 0.0414 0.0424 0.0434 0.0416 0.0426 0.0437 0.1774

S_DTLZ2_M5 0.1047 0.1076 0.1099 0.1042 0.1069 0.1096 0.1026

S_DTLZ3_M3 14.3940 50.2210 121.6451 12.8652 51.2645 135.5391 0.6973

S_DTLZ3_M5 39.6762 120.7275 214.8927 45.7423 121.1439 257.6923 0.7747

R_DTLZ2_M3 37.4759 73.8879 157.8043 34.5266 84.4257 163.8599 0.2996

R_DTLZ2_M5 40.9777 94.2054 190.5095 44.4605 105.5567 162.8698 0.4853

WFG1_M3 1.3605 1.3691 1.3798 1.3285 1.3495 1.3664 3.298e–15

WFG1_M5 1.8004 1.8235 1.8989 1.7949 1.8035 1.8142 1.25e–09

WFG8_M3 0.2140 0.2194 0.2301 0.2166 0.2256 0.2351 1.714e–06

WFG8_M5 0.8839 0.9475 0.9936 0.8986 0.9639 1.0050 0.006969

WFG9_M3 0.1633 0.1721 0.2447 0.1628 0.1787 0.2296 0.1194

WFG9_M5 0.8734 0.9202 1.0489 0.8775 0.9215 1.0123 0.4063

UF1 0.0043 0.0046 0.0054 0.0047 0.0051 0.0098 3.632e–12

UF2 0.0053 0.0068 0.0109 0.0055 0.0059 0.0066 0.001092

UF3 0.0040 0.0050 0.0737 0.0042 0.0047 0.0112 0.3504

UF4 0.0522 0.0601 0.0721 0.0506 0.0560 0.0662 3.775e–05

UF5 0.0643 0.1704 0.3501 0.0870 0.1385 0.3369 0.02738

UF6 0.0037 0.0061 0.0113 0.0029 0.0062 0.0102 0.3354

UF7 0.0040 0.0042 0.0236 0.0053 0.0071 0.0102 5.959e–08

UF8 0.0510 0.0581 0.0629 0.0497 0.0551 0.0641 0.0199

UF9 0.0354 0.0399 0.1514 0.0387 0.0442 0.1514 0.0055

UF10 0.3531 0.4449 0.6221 0.3814 0.4485 0.5978 0.6865

R2_DTLZ2_M5 0.1093 0.1117 0.1143 0.1087 0.1143 0.1218 0.001366

R2_DTLZ3_M5 78.9882 140.9533 246.1105 66.3643 130.9731 207.3482 0.398
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4. Crossover ratio (CR) = 1.0 and scale factor (F) = 0.5.

Mutation probability Pm = 1/n and mutation distribu-

tion index g = 20.

The parameters for HOP are the following.

1. Probability of LIMO operator Pc = 0.75 (heuristically

set based on experiments).

2. Probability of interpolation Pinter and extrapolation

(Pextra = 1 - Pinter) set based on an experimental

study, which is described later in this section.

3. Parameter t chosen randomly in the interval 0–2 for

interpolation and 2–3 for extrapolation.

It can be seen from the above parameter setting that we

may have a larger number of individuals in the final

population (P) than allowed for the calculation of IGD val-

ues. Hence, we prune the population P to match the com-

petition specifications using the procedure proposed in Zhang

et al. (2009a) and obtain the final approximation set P.

For each test problem, when comparing the MOEA/D and

the MOEA/D-HOP algorithms, we record the best, median

and worst IGD values from 30 independent runs (note that

the smaller the IGD value the better). The IGD values of both

algorithms are subsequently used to perform the Wilcoxon

rank sum test (Gibbons and Chakraborti 2003), a non-para-

metric statistical test at 5% significance level. The median

IGD value of the MOEA/D algorithm is used as the reference

value for the final conclusion to be significant success or

significant failure of MOEA/D-HOP against MOEA/D. The

Table 3 MOEA/D-HOP with 25% interpolation and 75% extrapolation

Problem MOEA/D MOEA/D-HOP p-value

Best Median Worst Best Median Worst

OKA2 0.0295 0.0295 0.0295 0.0295 0.0295 0.0295 0.1681

SYMPART 0.0208 0.0220 0.0230 0.0211 0.0220 0.0243 0.959

S_ZDT1 0.0051 0.0058 0.0066 0.0055 0.0060 0.0068 0.002738

S_ZDT2 0.0059 0.0067 0.0081 0.0057 0.0068 0.0078 0.2188

S_ZDT4 0.0041 0.0059 0.0082 0.0052 0.0080 0.0154 4.473e–06

S_ZDT6 0.8429 0.9343 1.0557 0.8111 1.0247 1.1138 7.739e–05

R_ZDT4 0.2554 0.6674 2.8821 0.0039 0.8859 1.9510 0.6333

S_DTLZ2_M3 0.0414 0.0424 0.0434 0.0414 0.0422 0.0431 0.06112

S_DTLZ2_M5 0.1047 0.1076 0.1099 0.1028 0.1055 0.1090 7.398e–08

S_DTLZ3_M3 14.3940 50.2210 121.6451 13.0816 39.1385 107.9345 0.1229

S_DTLZ3_M5 39.6762 120.7275 214.8927 54.8694 103.1090 189.4424 0.2665

R_DTLZ2_M3 37.4759 73.8879 157.8043 23.3622 81.1145 140.1990 0.6865

R_DTLZ2_M5 40.9777 94.2054 190.5095 40.4856 93.7841 158.6842 0.8545

WFG1_M3 1.3605 1.3691 1.3798 1.3212 1.3364 1.3521 1.691e–17

WFG1_M5 1.8004 1.8235 1.8989 1.7916 1.8048 1.8448 6.198e–07

WFG8_M3 0.2140 0.2194 0.2301 0.2039 0.2217 0.2308 0.2244

WFG8_M5 0.8839 0.9475 0.9936 0.8960 0.9424 1.0070 0.7191

WFG9_M3 0.1633 0.1721 0.2447 0.1634 0.1752 0.2344 0.1421

WFG9_M5 0.8734 0.9202 1.0489 0.8701 0.9410 1.0494 0.5325

UF1 0.0043 0.0046 0.0054 0.0045 0.0052 0.0100 3.556e–09

UF2 0.0053 0.0068 0.0109 0.0051 0.0058 0.0067 4.7e–05

UF3 0.0040 0.0050 0.0737 0.0041 0.0074 0.0256 0.8315

UF4 0.0522 0.0601 0.0721 0.0504 0.0559 0.0633 0.0001252

UF5 0.0643 0.1704 0.3501 0.0864 0.1269 0.3976 0.0105

UF6 0.0037 0.0061 0.0113 0.0032 0.0063 0.0089 0.4946

UF7 0.0040 0.0042 0.0236 0.0049 0.0059 0.0083 2.571e–07

UF8 0.0510 0.0581 0.0629 0.0497 0.0547 0.0641 0.0001433

UF9 0.0354 0.0399 0.1514 0.0353 0.0937 0.1566 0.3208

UF10 0.3531 0.4449 0.6221 0.3725 0.4420 0.5943 0.7747

R2_DTLZ2_M5 0.1093 0.1117 0.1143 0.1070 0.1112 0.1211 0.552

R2_DTLZ3_M5 78.9882 140.9533 246.1105 37.6952 127.3110 231.3682 0.4404
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p-value is the probability of observing the given sample

result under the assumption that the null hypothesis is true.

The null hypothesis here is defined as Ho:A = B, where A

and B are the median IGD values of the MOEA/D and

MOEA/D-HOP algorithms, respectively. The Wilcoxon

rank sum test is used separately for each test problem to

determine whether the perceived difference in the perfor-

mance levels is statistically significant. A significant test

result is declared a significant success if the median IGD

value is less than the reference value, and a significant fail-

ure, if the median IGD value is greater than the reference

value. The overall performance of the MOEA/D-HOP

algorithm is judged based on the total number of significant

successes achieved over the MOEA/D algorithm.

4.2 Test results

The POMO part in the HOP is used for interpolation

with a fixed probability (Pinter) and extrapolation other-

wise. Statistical tests were performed with MOEA/

D-HOP and Pinter equal to 0.00, 0.25, 0.50, 0.75 and 1.00

for all test problems. For each value of Pinter, we count

the number of significant successes Nwin. The particular

Pinter for which Nwin is maximum, is considered as an

ideal setting for Pinter. In Tables 2, 3, 4, 5 and 6 we

summarize the test results obtained for different values of

Pinter. They contain best, median and worst IGD values

for both MOEA/D and MOEA/D-HOP and the p-values

for all 31 test problems. The significant success of any

Table 4 MOEA/D-HOP with 50% interpolation and 50% extrapolation

Problem MOEA/D MOEA/D-HOP p-value

Best Median Worst Best Median Worst

OKA2 0.0295 0.0295 0.0295 0.0295 0.0295 0.0295 0.1342

SYMPART 0.0208 0.0220 0.0230 0.0214 0.0219 0.0227 0.2418

S_ZDT1 0.0051 0.0058 0.0066 0.0048 0.0055 0.0063 0.0008203

S_ZDT2 0.0059 0.0067 0.0081 0.0054 0.0062 0.0074 0.0008203

S_ZDT4 0.0041 0.0059 0.0082 0.0054 0.0082 0.0253 1.517e–05

S_ZDT6 0.8429 0.9343 1.0557 0.8487 0.9728 1.1046 0.01425

R_ZDT4 0.2554 0.6674 2.8821 0.1253 0.7395 2.3153 0.4063

S_DTLZ2_M3 0.0414 0.0424 0.0434 0.0415 0.0422 0.0435 0.2359

S_DTLZ2_M5 0.1047 0.1076 0.1099 0.1013 0.1042 0.1076 7.957e–11

S_DTLZ3_M3 14.3940 50.2210 121.6451 7.9545 33.0329 82.1285 0.001525

S_DTLZ3_M5 39.6762 120.7275 214.8927 38.4916 108.2110 196.5416 0.1973

R_DTLZ2_M3 37.4759 73.8879 157.8043 35.4879 80.3239 174.2425 0.4492

R_DTLZ2_M5 40.9777 94.2054 190.5095 36.9194 88.6641 152.4668 0.5039

WFG1_M3 1.3605 1.3691 1.3798 1.3144 1.3291 1.3518 1.691e–17

WFG1_M5 1.8004 1.8235 1.8989 1.7952 1.8085 1.8394 1.641e–05

WFG8_M3 0.2140 0.2194 0.2301 0.2106 0.2209 0.2365 0.398

WFG8_M5 0.8839 0.9475 0.9936 0.8846 0.9278 0.9728 0.02434

WFG9_M3 0.1633 0.1721 0.2447 0.1643 0.1749 0.1860 0.3504

WFG9_M5 0.8734 0.9202 1.0489 0.8884 0.9726 1.0782 0.008008

UF1 0.0043 0.0046 0.0054 0.0045 0.0050 0.0084 2.736e–08

UF2 0.0053 0.0068 0.0109 0.0051 0.0060 0.0069 0.001525

UF3 0.0040 0.0050 0.0737 0.0041 0.0084 0.0220 0.6865

UF4 0.0522 0.0601 0.0721 0.0508 0.0564 0.0632 0.0004003

UF5 0.0643 0.1704 0.3501 0.0739 0.1207 0.2220 0.001795

UF6 0.0037 0.0061 0.0113 0.0031 0.0062 0.0095 0.5422

UF7 0.0040 0.0042 0.0236 0.0049 0.0060 0.0082 3.139e–07

UF8 0.0510 0.0581 0.0629 0.0489 0.0549 0.0614 1.403e–05

UF9 0.0354 0.0399 0.1514 0.0361 0.0414 0.1529 0.3738

UF10 0.3531 0.4449 0.6221 0.3574 0.4349 0.5391 0.7524

R2_DTLZ2_M5 0.1093 0.1117 0.1143 0.1065 0.1092 0.1162 0.0006116

R2_DTLZ3_M5 78.9882 140.9533 246.1105 59.5222 131.0013 251.4273 0.07228
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algorithm by the Wilcoxon rank sum test is marked in

bold face.

In Table 2, the Pinter value is 0.00; in other words, we

only extrapolate to generate trial vectors in the POMO part.

It can be observed that the numbers of significant successes

of MOEA/D and MOEA/D-HOP are 10 and 6, respectively

(denoted in bold face). The IGD value difference between

the algorithms is insignificant for 15 test problems.

In what follows, we consider using interpolation in

POMO as well. The results for Pinter = 0.25 are shown in

Table 3. A p-value greater than 5% significance level

indicating insignificance is observed in 19 test problems

and the number of significant failures of the MOEA/

D-HOP reduces to 5 as against 10 in Table 2. This shows

the importance of interpolation in POMO. However, the

IGD values using this parameter setting do not yet show

any significant performance enhancement for MOEA/D-

HOP algorithm. Next, we further increase the value of

Pinter to 0.5. In this setting, the extrapolation and interpo-

lation in POMO is used with equal probability. The results

in Table 4 show further increase in the number of signifi-

cant successes for the MOEA/D-HOP algorithm to be 12

and insignificant performance improvements can be seen in

14 test problems.

Next, Pinter is increased to 0.75 and now we have a

higher probability of performing interpolation in POMO. In

such a test setting, the number of significant successes of

the MOEA/D-HOP increases to 14 and the number of

Table 5 MOEA/D-HOP with 75% interpolation and 25% extrapolation

Problem MOEA/D MOEA/D-HOP p-value

Best Median Worst Best Median Worst

OKA2 0.0295 0.0295 0.0295 0.0295 0.0295 0.0295 0.02158

SYMPART 0.0208 0.0220 0.0230 0.0211 0.0218 0.0235 0.3898

S_ZDT1 0.0051 0.0058 0.0066 0.0048 0.0052 0.0057 4.757e–10

S_ZDT2 0.0059 0.0067 0.0081 0.0055 0.0061 0.0069 1.193e–06

S_ZDT4 0.0041 0.0059 0.0082 0.0050 0.0070 0.0147 0.0055

S_ZDT6 0.8429 0.9343 1.0557 0.8608 0.9574 1.0287 0.4492

R_ZDT4 0.2554 0.6674 2.8821 0.1253 0.5265 2.3153 0.08778

S_DTLZ2_M3 0.0414 0.0424 0.0434 0.0411 0.0418 0.0432 0.005242

S_DTLZ2_M5 0.1047 0.1076 0.1099 0.1017 0.1038 0.1058 2.029e–16

S_DTLZ3_M3 14.3940 50.2210 121.6451 3.3976 30.4582 50.0858 3.773e–06

S_DTLZ3_M5 39.6762 120.7275 214.8927 30.7891 96.5393 149.8983 0.008774

R_DTLZ2_M3 37.4759 73.8879 157.8043 23.5514 60.8510 179.0502 0.1421

R_DTLZ2_M5 40.9777 94.2054 190.5095 39.4594 77.5597 167.7533 0.06763

WFG1_M3 1.3605 1.3691 1.3798 1.3041 1.3254 1.3591 1.691e–17

WFG1_M5 1.8004 1.8235 1.8989 1.7982 1.8108 1.8724 0.00577

WFG8_M3 0.2140 0.2194 0.2301 0.2093 0.2175 0.2322 0.07718

WFG8_M5 0.8839 0.9475 0.9936 0.8677 0.9156 0.9797 0.0004525

WFG9_M3 0.1633 0.1721 0.2447 0.1612 0.1762 0.1889 0.1591

WFG9_M5 0.8734 0.9202 1.0489 0.8662 0.9585 1.1233 0.08778

UF1 0.0043 0.0046 0.0054 0.0045 0.0053 0.0088 3.835e–08

UF2 0.0053 0.0068 0.0109 0.0049 0.0060 0.0078 0.0105

UF3 0.0040 0.0050 0.0737 0.0042 0.0103 0.0273 0.03445

UF4 0.0522 0.0601 0.0721 0.0524 0.0582 0.0646 0.004313

UF5 0.0643 0.1704 0.3501 0.0841 0.1140 0.2188 0.0009748

UF6 0.0037 0.0061 0.0113 0.0032 0.0055 0.0086 0.2301

UF7 0.0040 0.0042 0.0236 0.0046 0.0060 0.0111 3.465e–07

UF8 0.0510 0.0581 0.0629 0.0498 0.0551 0.0611 0.001998

UF9 0.0354 0.0399 0.1514 0.0351 0.0397 0.1577 0.9707

UF10 0.3531 0.4449 0.6221 0.3343 0.4214 0.5734 0.1922

R2_DTLZ2_M5 0.1093 0.1117 0.1143 0.1055 0.1104 0.1191 0.03445

R2_DTLZ3_M5 78.9882 140.9533 246.1105 51.8876 121.9305 205.0172 0.1462
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insignificant performance improvements reduces to 12, as

shown in Table 5. One can also see that when Pinter values

are 0.25, 0.50 and 0.75, the number of significant failures

for MOEA/D-HOP remains 5. Hence, with the increase in

interpolation, the number of significant successes increa-

ses. Finally, when the Pinter value is 1.00, in other words,

when we only interpolate to generate trial vectors in the

POMO part, the number of significant successes of

MOEA/D-HOP decreases to 9 as can be seen in Table 6.

Also the number of significant failures in MOEA/D-HOP

increases to 7. Thus, it can be concluded from the studies

that the extremes of only extrapolation or interpolation in

POMO degrade the performance of the MOEA/D-HOP

algorithm and both extrapolation and interpolation are

necessary for the best performance of MOEA/D-HOP.

Based on the experiments, we can suggest the value of

Pinter to be 0.75.

Furthermore, for curiosity we repeat the tests with

Pinter = 0.67. From Table 7 we can observe that the

number of significant successes for the MOEA/D-HOP

algorithm is 13. Thus, the performance of MOEA/D-HOP

has not much deteriorated. Hence, the algorithm is rather

stable for any value of Pinter between 0.50 and 0.75.

Henceforth, for further discussions and conclusions we

consider only Table 5 (with Pinter = 0.75).

It can be seen from Table 5 that MOEA/D-HOP per-

forms equally well on problems with linear and nonlinear

interdependencies between decision variables. Typically,

MOEA/D-HOP either performs better than or on par with

the LIMO based MOEA/D algorithm, which provides us

Table 6 MOEA/D-HOP with 100% interpolation and 0% extrapolation

Problem MOEA/D MOEA/D-HOP p-value

Best Median Worst Best Median Worst

OKA2 0.0295 0.0295 0.0295 0.0295 0.0295 0.0295 0.1727

SYMPART 0.0208 0.0220 0.0230 0.0212 0.0218 0.0227 0.1681

S_ZDT1 0.0051 0.0058 0.0066 0.0046 0.0050 0.0053 4.6e–15

S_ZDT2 0.0059 0.0067 0.0081 0.0050 0.0059 0.0067 9.536e–10

S_ZDT4 0.0041 0.0059 0.0082 0.0051 0.0084 0.0126 4.215e–07

S_ZDT6 0.8429 0.9343 1.0557 0.8227 0.9935 1.0938 0.002468

R_ZDT4 0.2554 0.6674 2.8821 0.1253 0.6692 3.8605 0.2478

S_DTLZ2_M3 0.0414 0.0424 0.0434 0.0410 0.0419 0.0426 0.0002269

S_DTLZ2_M5 0.1047 0.1076 0.1099 0.1012 0.1036 0.1063 1.133e–15

S_DTLZ3_M3 14.3940 50.2210 121.6451 12.6367 29.3421 67.2494 0.000117

S_DTLZ3_M5 39.6762 120.7275 214.8927 39.6001 77.6292 140.6771 2.6e–05

R_DTLZ2_M3 37.4759 73.8879 157.8043 28.7169 65.7904 150.3852 0.6022

R_DTLZ2_M5 40.9777 94.2054 190.5095 37.1947 90.3441 145.6121 0.3429

WFG1_M3 1.3605 1.3691 1.3798 1.3030 1.3247 1.3428 1.691e–17

WFG1_M5 1.8004 1.8235 1.8989 1.7913 1.8220 1.8954 0.5819

WFG8_M3 0.2140 0.2194 0.2301 0.2091 0.2198 0.2313 0.592

WFG8_M5 0.8839 0.9475 0.9936 0.8354 0.9122 1.0168 0.0001993

WFG9_M3 0.1633 0.1721 0.2447 0.1655 0.1741 0.1872 0.6865

WFG9_M5 0.8734 0.9202 1.0489 0.8948 1.0156 1.1393 7.739e–05

UF1 0.0043 0.0046 0.0054 0.0045 0.0073 0.0998 5.273e–12

UF2 0.0053 0.0068 0.0109 0.0074 0.0355 0.0722 6.334e–12

UF3 0.0040 0.0050 0.0737 0.0048 0.0147 0.0289 0.001092

UF4 0.0522 0.0601 0.0721 0.0577 0.0609 0.0699 0.9124

UF5 0.0643 0.1704 0.3501 0.0938 0.1816 0.3214 0.4946

UF6 0.0037 0.0061 0.0113 0.0033 0.0061 0.1234 0.4063

UF7 0.0040 0.0042 0.0236 0.0042 0.0058 0.0120 6.198e–07

UF8 0.0510 0.0581 0.0629 0.0509 0.0578 0.0772 0.3898

UF9 0.0354 0.0399 0.1514 0.0344 0.0918 0.1551 0.9357

UF10 0.3531 0.4449 0.6221 0.3447 0.4358 0.5609 0.4581

R2_DTLZ2_M5 0.1093 0.1117 0.1143 0.1053 0.1087 0.1149 6.724e–05

R2_DTLZ3_M5 78.9882 140.9533 246.1105 63.8735 128.7742 254.2617 0.1591
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confidence for using the hybrid based operator HOP. One

can say that by employing HOP, the solutions typically do

not get worse than the original ones. In the case of more

than two objectives, it can be observed from Table 5 that

MOEA/D-HOP portrays a better performance when com-

pared with MOEA/D. Even in the case of the worst IGD

values of 30 runs, the IGD values of the MOEA/D-HOP

algorithm are better in 22 of 31 test problems when com-

pared with the MOEA/D algorithm. This shows that the

HOP-based algorithm can be a safe and more reliable

choice for solving multiobjective optimization problems.

The MOEA/D algorithm with the LIMO operator

showed a bad performance in the UF2, UF4, UF5, UF9 and

UF10 test problems against some of its competitors in the

CEC 2009 competition. Incidentally, the MOEA/D-HOP

algorithm shows significantly improved performance in the

UF2, UF4 and UF5 test problems and insignificant

improvement in the UF9 and UF10 test problems. On the

other hand, with the MOEA/D-HOP algorithm, the median

IGD value of the UF2 test problem is 0.0060, which is even

better than the best in the competition (0.00615). It must be

noted that UF2 has a nonlinear Pareto set and for this

reason it may be very difficult for any linear operator to

generate trial vectors so that the entire Pareto set could be

covered. This observation supports our idea of the impor-

tance of having operators that are robust and not linear.

In Fig. 2, we show the nondominated sets of the UF2

test problem representing the median IGD values for both

the MOEA/D-HOP and MOEA/D algorithms. Both algo-

rithms seem to provide a good spread of solutions on the

Table 7 MOEA/D-HOP with 67% interpolation and 33% extrapolation

Problem MOEAD MOEAD ? POMO p-value

Best Median Worst Best Median Worst

OKA2 0.0295 0.0295 0.0295 0.0295 0.0295 0.0295 0.03853

SYMPART 0.0208 0.0220 0.0230 0.0212 0.0220 0.0227 0.6125

S_ZDT1 0.0051 0.0058 0.0066 0.0047 0.0053 0.0058 2.736e–08

S_ZDT2 0.0059 0.0067 0.0081 0.0054 0.0062 0.0072 0.0002269

S_ZDT4 0.0041 0.0059 0.0082 0.0056 0.0085 0.0202 1.214e–08

S_ZDT6 0.8429 0.9343 1.0557 0.8714 0.9718 1.0694 0.0191

R_ZDT4 0.2554 0.6674 2.8821 0.1253 0.5266 2.3153 0.08778

S_DTLZ2_M3 0.0414 0.0424 0.0434 0.0411 0.0422 0.0429 0.0995

S_DTLZ2_M5 0.1047 0.1076 0.1099 0.1010 0.1038 0.1075 4.842e–13

S_DTLZ3_M3 14.3940 50.2210 121.6451 6.3860 33.4231 66.7001 0.0001252

S_DTLZ3_M5 39.6762 120.7275 214.8927 22.7876 89.9467 150.9804 0.00336

R_DTLZ2_M3 37.4759 73.8879 157.8043 28.5754 76.8656 142.8227 0.7635

R_DTLZ2_M5 40.9777 94.2054 190.5095 40.0495 79.7125 125.1337 0.1159

WFG1_M3 1.3605 1.3691 1.3798 1.3006 1.3237 1.3555 1.691e–17

WFG1_M5 1.8004 1.8235 1.8989 1.7935 1.8113 1.8457 0.001222

WFG8_M3 0.2140 0.2194 0.2301 0.2094 0.2216 0.2347 0.3659

WFG8_M5 0.8839 0.9475 0.9936 0.8560 0.9293 0.9994 0.04146

WFG9_M3 0.1633 0.1721 0.2447 0.1602 0.1752 0.1872 0.1091

WFG9_M5 0.8734 0.9202 1.0489 0.8700 0.9794 1.0348 0.01004

UF1 0.0043 0.0046 0.0054 0.0045 0.0055 0.0089 6.798e–11

UF2 0.0053 0.0068 0.0109 0.0050 0.0060 0.0092 0.01618

UF3 0.0040 0.0050 0.0737 0.0041 0.0051 0.0236 0.7191

UF4 0.0522 0.0601 0.0721 0.0509 0.0564 0.0633 2.233e–05

UF5 0.0643 0.1704 0.3501 0.0599 0.1174 0.2931 0.000258

UF6 0.0037 0.0061 0.0113 0.0030 0.0060 0.0091 0.9707

UF7 0.0040 0.0042 0.0236 0.0049 0.0056 0.0070 2.842e–07

UF8 0.0510 0.0581 0.0629 0.0484 0.0540 0.0655 9.532e–05

UF9 0.0354 0.0399 0.1514 0.0369 0.1453 0.1497 0.2244

UF10 0.3531 0.4449 0.6221 0.3471 0.4500 0.6157 0.8087

R2_DTLZ2_M5 0.1093 0.1117 0.1143 0.1063 0.1092 0.1187 0.002342

R2_DTLZ3_M5 78.9882 140.9533 246.1105 64.3364 145.2939 194.5608 0.4853
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Pareto front. However, on a close inspection one can spot a

hole in the nondominated set produced by the MOEA/D

algorithm. The LIMO operator has failed to generate any

trial vectors in that region. A magnified illustration of this

hole is also shown in Fig. 2. It can be seen that the non-

dominated set of the MOEA/D-HOP algorithm has no

holes and the HOP operator has generated trial vectors in

the whole region.

In addition, we also depict the nondominated sets corre-

sponding to the worst IGD values for both the MOEA/D and

MOEA/D-HOP algorithms for the UF2 test problem in Fig. 3.

The plot shows a much smaller discontinuity in the non-

dominated set of the MOEA/D-HOP algorithm when com-

pared with the MOEA/D algorithm. Figures 2 and 3

demonstrate the reliability of the MOEA/D-HOP algorithm in

handling Pareto sets as compared to the MOEA/D algorithm.
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5 Conclusions and future research directions

In this paper, we have developed a new hybrid operator

HOP consisting of a standard mutation operator LIMO of

DE and a polynomial mutation operator POMO. With these

two elements included, we have constructed a mechanism

which uses the curvature information based on presently

known vectors in the calculations of new trial vectors and

the resulting operator is robust for different types of

problems. Yet, the operator proposed is simple to

implement.

In HOP, we have proposed to use both POMO and

LIMO operators and both interpolation and extrapolation

inside POMO for trial vector generation. We demonstrated

the efficacy of the new operator with comparisons to

MOEA/D, a winning algorithm of a recent CEC competi-

tion, which uses the linear operator LIMO. We have

observed significant improvement with the new operator in

the performance of the MOEA/D algorithm in various

types of problems as against the original MOEA/D algo-

rithm. In spite of the fact that one could not expect drastic

improvements in the performance of MOEA/D, because it

is a high-performance algorithm, the new operator pro-

vided robust performance and better results for many test

problems.

In the future research, the choice of a proper t value can

be further considered including a possibility of ordering the

vectors used in the construction phase of the polynomial. In

addition, a self-adaptive way of using both LIMO and

POMO operators for multiobjective optimization may be

formulated instead of a pre-fixed probability. By adaptively

using different operators we can better handle demanding

real-life multiobjective optimization problems for which

we typically do not know the properties of the Pareto

optimal set in advance. The performance of the operator

with different EMO algorithms is also in our future scopes

of study.
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