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Abstract Interpretability of Mamdani fuzzy rule-based

systems (MFRBSs) has been widely discussed in the last

years, especially in the framework of multi-objective

evolutionary fuzzy systems (MOEFSs). Here, multi-

objective evolutionary algorithms (MOEAs) are applied to

generate a set of MFRBSs with different trade-offs between

interpretability and accuracy. In MOEFSs interpretability

has often been measured in terms of complexity of the rule

base and only recently partition integrity has also been

considered. In this paper, we introduce a novel index for

evaluating the interpretability of MFRBSs, which takes

both the rule base complexity and the data base integrity

into account. We discuss the use of this index in MOEFSs,

which generate MFRBSs by concurrently learning the rule

base, the linguistic partition granularities and the mem-

bership function parameters during the evolutionary pro-

cess. The proposed approach has been experimented on six

real world regression problems and the results have been

compared with those obtained by applying the same

MOEA, with only accuracy and complexity of the rule base

as objectives. We show that our approach achieves the best

trade-offs between interpretability and accuracy.

Keywords Accuracy-interpretability trade-off �
Granularity learning � Interpretability index �
Multi-objective evolutionary fuzzy systems �
Piecewise linear transformation

1 Introduction

In the last years, multi-objective evolutionary fuzzy sys-

tems (MOEFSs) have captured a growing interest in

the fuzzy community (Herrera 2008; Ishibuchi 2007).

MOEFSs exploit multi-objective evolutionary algorithms

(MOEAs) (Coello Coello and Lamont 2004; Deb 2001) to

generate fuzzy rule-based systems (FRBSs) with good

trade-offs between interpretability and accuracy. MOAEs

are particularly suitable in this context since interpretability

and accuracy are conflicting objectives: an increase in

accuracy usually leads to a decrease in interpretability.

Among the different types of FRBSs, Mamdani fuzzy

rule-based systems (MFRBSs) (Mamdani and Assilian

1975) have had a predominant role in MOEFSs, thanks to

their feature of being completely defined in linguistic form

and therefore particularly comprehensible to the users.

MFRBSs consist of a completely linguistic rule base (RB),

a data base (DB) containing the fuzzy sets associated with

the linguistic terms used in the RB and a fuzzy logic

inference engine.

As discussed in Alonso et al. (2008, 2009), Botta et al.

(2009), Mencar et al. (2007) and Mencar and Fanelli

(2008), since interpretability is a subjective concept, there

is no general agreement on its formal definition and

therefore there exists a real difficulty in formulating a

measure of interpretability shared within the fuzzy com-

munity. Thus, researchers have focused their attention on

discussing some factors which characterize interpretability
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and on proposing some constraints which have to be

satisfied for these factors (de Oliveira 1999; Guillaume

2001). An interesting survey on interpretability constraints

has been recently published in Mencar and Fanelli (2008)

with the objective of giving a homogeneous description of

semantic and syntactic interpretability issues regarding

both the RB and the DB. In Zhou and Gan (2008), a tax-

onomy of fuzzy model interpretability has been proposed

by considering both low- and high-levels interpretability.

Low-level interpretability is related to the semantic con-

straints that ensure fuzzy partition interpretability while

high-level interpretability is associated with a set of criteria

defined on the RB. Finally, in Alonso et al. (2009), the

authors describe a conceptual framework for characterizing

interpretability of fuzzy systems: the framework includes a

global description of the FRBS structure, on the basis of the

taxonomy and constraints discussed in Zhou and Gan

(2008) and Mencar and Fanelli (2008), respectively, and a

local explanation for understanding the FRBS behaviour.

The local explanation considers a number of factors such as

inference mechanisms, aggregation, conjunction and dis-

junction operators, defuzzification and rule type, which

affect the FRBS behaviour.

Although a large amount of factors and constraints

should be considered to assess the FRBS interpretability, a

common approach has been to distinguish between inter-

pretability of the RB, also known as complexity, and

interpretability of fuzzy partitions, also known as integrity

of the DB (de Oliveira 1999).

Complexity is usually defined in terms of simple mea-

sures, such as number of rules in the RB (RB simplicity)

(Gacto et al. 2009, 2010) and number of linguistic terms in

the antecedent of rules (simplicity of fuzzy rules) (Alcalá

et al. 2009; Cococcioni et al. 2007; Ishibuchi 2007).

Integrity depends on some properties, such as coverage,

distinguishability and normality, which are fully satisfied

by strong partitions and in particular by uniform partitions.

In this paper, we introduce a novel and simple inter-

pretability index, which takes both the partition integrity

and the RB complexity into consideration. First of all, we

introduce a partition dissimilarity measure which computes

how much the partitions generated in the evolutionary

process are different from the uniform partition. Since

uniform partitions are universally considered partitions

with a high level of integrity, the more the measure is low,

the more the partition is interpretable. Then, for each rule,

we sum the dissimilarity measures of all the variables

involved in the antecedent of the rule and of the output

variable in the consequent. Finally, we define the index as

the complement to 1 of the normalized average of these

sums computed on all the rules in the RB. We use this

index as one of the two objectives of an MOEA which

generates a set of MFRBSs by concurrently learning the

rule base, the linguistic partition granularities and the

membership function parameters during the evolutionary

process.

In the first papers about MOEFSs, the optimization of

the RB (rule learning or selection) has been performed

considering a prefixed DB (Cococcioni et al. 2007;

Ishibuchi and Nojima 2007; Ishibuchi and Yamamoto

2004) and, vice versa, the tuning or learning of the DB

have been carried out using a prefixed RB (Botta et al.

2009). On the other hand, the ideal approach to MFRBS

generation would be to learn concurrently DB and RB

because they are strictly correlated. Some examples in the

single-objective framework can be found in Cordon et al.

(2001a, b) and Teng and Wang (2004). Some recent

works discussed in Gacto et al. (2009, 2010), and in

Alcalá et al. (2009) have proposed to exploit MOEAs to

perform the learning of MF parameters concurrently with

rule selection and rule learning, respectively. Further, in

Antonelli et al. (2009), we have carried out the learning

of the RB together with the learning of the partition

granularities. Finally, in Antonelli et al. (2009) and Pul-

kkinen and Koivisto (2010) authors discuss two different

multi-objective evolutionary approaches to learn concur-

rently the granularities of the fuzzy partitions, the MF

parameters and a compact RB.

In this paper, we extend the approach discussed in

Antonelli et al. (2009) by using the purposely defined

interpretability index, thus generating a set of MFRBSs

with different tradeoffs between accuracy and interpret-

ability index. In particular, RB learning is achieved by

exploiting the chromosome coding and mating operators

introduced in Cococcioni et al. (2007). MF parameter

learning is performed by using the piecewise linear trans-

formation discussed in Klawonn (2006) and Pedrycz and

Gomide (2007), which has already allowed to us to obtain a

high modelling capability with a limited number of

parameters in the MOEFS framework (Antonelli et al.

2009). Granularity learning is obtained by exploiting the

concept of virtual RB and the appropriate mapping strategy

discussed in Antonelli et al. (2009).

The proposed approach has been experimented on six

real world regression problems and the results have been

compared with those obtained by applying the same

MOEA, with accuracy and complexity of the rule base as

objectives. Pareto fronts obtained with the two approa-

ches are almost similar in terms of accuracy, but solu-

tions generated by using the interpretability index in

place of the complexity measure are characterized on

average by a higher partition integrity and generally a

lower complexity.

The paper is organized as follows: in Sect. 2, we briefly

describe the granularity and MF parameters learning.

Section 3 discusses some interpretability issues and
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introduces the interpretability index. In Sect. 4, we

describe the two-objective evolutionary approach, includ-

ing the chromosome coding, the fitness function and the

genetic operators, used to generate the MFRBSs. Finally,

Sect. 5 shows the experimental results and Sect. 6 draws

some final conclusions.

2 Learning Mamdani fuzzy rule-based systems

2.1 Mamdani fuzzy rule-based systems

Let X ¼ X1; . . .;Xf ; . . .;XF

� �
be the set of input vari-

ables and XFþ1 be the output variable. Let Uf ; with

f ¼ 1; . . .;F þ 1; be the universe of the fth variable. Let

Pf ¼ Af ;1; . . .;Af ;Tf

� �
be a strong fuzzy partition (Ruspini

1969) of Tf fuzzy sets on variable Xf : The DB and the RB

of an MRFBS are composed, respectively, of F ? 1 par-

titions Pf and of M rules expressed as:

Rm : IF X1 is A1;jm;1 and . . . and XF is AF;jm;F

THEN XFþ1 is AFþ1;jm;Fþ1
m ¼ 1; . . .;Mð Þ ð1Þ

where jm;f 2 1; Tf

� �
identifies the index of the fuzzy set

(among the Tf fuzzy sets of partition Pf

�
, which has been

selected for Xf in rule Rm:

We adopt triangular fuzzy sets Af ;j defined by the tuple

af ;j; bf ;j; cf ;j

� �
; where af ;j and cf ;j correspond to the left and

right extremes of the support of Af ;j; and bf ;j to the core.

Further, since we use fuzzy strong partitions (Ruspini

1969), for j = 2,…, Tf � 1; bf ;j ¼ cf ;j�1 and bf ;j ¼ af ;jþ1:

Finally, we assume that af ;1 ¼ bf ;1 and bf ;Tf
¼ cf ;Tf

:

To take the ‘‘don’t care’’ condition into account, a new

fuzzy set Af ;0 f ¼ 1; . . .;Fð Þ is added to all the F input

partitions Pf : This fuzzy set is characterized by a mem-

bership function equal to 1 on the overall universe

(Ishibuchi et al. 1997).

The terms Af ;0 allow generating rules which contain

only a subset of the input variables. It follows that

jm;f 2 0;Tf

� �
, f ¼ 1; . . .;F, and jm;Fþ1 2 1; TFþ1½ �: Thus, an

MFRBS can be completely described by a matrix J 2
N

M�ðFþ1Þ (Cococcioni et al. 2007), where the generic ele-

ment ðm; f Þ indicates that fuzzy set Af ;jm;f has been selected

for variable Xf in rule Rm: We adopt the product and the

center of gravity method as AND logical operator and

defuzzification method, respectively. Since we search for

compact rule bases with a reduced number of rules and of

conditions in the antecedents, it is possible that the number

of distinct labels used for one variable in the rule base is

lower than its granularity. Thus, it might occur that some

input activates no rule and therefore results to be ‘‘cov-

ered’’ by no rule. In these cases, we adopt the inference

strategy proposed in Alcalá et al. (2007), which determines

an output for a non-covered input based on the two closest

rules to the input. The distance between the point and the

rules is calculated considering the cores of the labels used

in the rules.

Given a set of N input observations xn ¼ xn;1; . . .; xn;F

� �
;

with xn;f 2 <; and the set of the corresponding outputs

xn;Fþ1 2 <; n = 1,…,N, we apply a specific MOEA,

namely (2 ? 2)M-PAES (Cococcioni et al. 2007), which

produces a set of MFRBSs with different trade-offs

between accuracy and interpretability by learning simul-

taneously the RB and the partition granularities and the MF

parameters, which define the DB. To this aim, we employ

the notion of virtual partitions we introduced in Antonelli

et al. (2009). This notion derives from the following con-

sideration: according to psychologists, to preserve inter-

pretability, the number of linguistic terms per variable

should be small (7 ± 2) due to a limit of human infor-

mation processing capability (Alonso et al. 2008, 2009).

Thus, we fix an upper bound TMAX for the number of fuzzy

sets. The virtual partitions are generated by uniformly

partitioning each variable with TMAX fuzzy sets.

During the evolutionary process, rule generation and MF

parameter tuning are performed on these virtual partitions.

The actual granularity is used only in the computation of

the fitness. In practice, we generate RBs (virtual RBs) and

tune MF parameters by using virtual partitions, but assess

their quality using each time different ‘‘lens’’ depending on

the actual number of fuzzy sets used to partition the single

variables. Thus, we do not worry about the actual granu-

larity in applying crossover and mutation operators.

Obviously, to compute the fitness we have to transform the

virtual MFRBS into the actual MFRBS and this process

requires to define appropriate mapping strategies, both for

the RB and for the MF parameters. In the following, we

will describe these two strategies in detail.

2.2 Granularity learning

To map the virtual RB defined on virtual partitions into a

concrete RB defined on variables partitioned with Tf

fuzzy sets, we adopt the following mapping strategy. Let
~Pf ¼ ~Af ;1; . . .; ~Af ;TMAX

� �
be a virtual partition for a generic

variable Xf and ‘‘Xf is ~Af ;h’’, h 2 ½0; TMAX�; be a generic

fuzzy proposition defined in a rule of the virtual RB. Then,

the proposition will be mapped to ‘‘Xf is Âf ;s’’, with s 2
½0; Tf �;where Âf ;s is the fuzzy set more similar to ~Af ;h among

the fuzzy sets in the uniform partition P̂f ¼ Âf ;1; . . .; Âf ;Tf

� �

defined on Xf with the actual granularity Tf : For the sake of

simplicity, we have trivially considered as similarity mea-

sure the distance between the centroids of the two fuzzy

sets. If there are two fuzzy sets in P̂f ¼ Âf ;1; . . .; Âf ;Tf

� �

with centroids at the same distance from the centroid of ~Af ;h;

we choose randomly one of the two fuzzy sets.

Learning concurrently data and rule bases of MFRBSs 1983
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Note that different rules of the virtual RB can be map-

ped to equal rules in the concrete RB. This occurs because

distinct fuzzy sets defined on the partitions used in the

virtual RB can be mapped to the same fuzzy set defined on

the partitions used in the concrete RB. In the case of equal

rules, only one of these rules is considered in the concrete

RB. The original different rules are, however, maintained

in the virtual RB. In the following, we denote with Mv and

Mc the number of rules in the virtual and concrete RBs,

respectively.

2.3 MF parameters learning

We approach the problem of learning the MF parameters by

using a piecewise linear transformation (Klawonn 2006;

Pedrycz and Gomide 2007). We define the transformation on

the virtual partitions. Then, we exploit this transformation to

tune the MFs defined on the actual granularity. The trans-

formation is described in Fig. 1 for a generic variable Xf :

Here, ~Pf ¼ ~Af ;1; . . .; ~Af ;TMAX

� �
and P

^

f ¼ A
^

f ;1; . . .;A
^

f ;TMAX

n o

denote the initial and the transformed virtual strong parti-

tions, respectively. In the following, we assume that the

interval ranges of the two partitions are identical. Further, we

consider each variable normalized in [0, 1]. Finally, we adopt

triangular MFs where ~bf ;1; . . .; ~bf ;TMAX
and b

^

f ;1; . . .; b
^

f ;TMAX
are

the cores of ~Af ;1; . . .; ~Af ;TMAX
and A

^

f ;1; . . .;A
^

f ;TMAX
; respec-

tively. Piecewise linear transformation t xf

� �
is defined for

j = 2, …, Tf as:

t xf

� �
¼

~bf ;j � ~bf ;j�1

b
^

f ;j � b
^

f ;j�1

xf � b
^

f ;j�1

� 	
þ ~bf ;j�1; ð2Þ

with b
^

f ;j�1� xf \b
^

f ;j; j = 2,…, TMAX:

Once fixed TMAX; ~bf ;1; . . .; ~bf ;TMAX
are fixed and therefore

known. Further, b
^

f ;1 and b
^

f ;TMAX
coincide with the extremes

of the universe Uf of Xf : Thus, t xf

� �
depends on TMAX - 2

parameters, that is, t xf ; b
^

f ;2; . . .; b
^

f ;TMAX�1

� 	
: Once fixed

b
^

f ;2; . . .; b
^

f ;TMAX�1; the partition P
^

f ¼ A
^

f ;1; . . .;A
^

f ;TMAX

n o

can be obtained simply by transforming the three points

~af ;j; ~bf ;j; ~cf ;j

� �
; which describe the generic fuzzy set ~Af ;h;

into a
^

f ;j; b
^

f ;j; c
^

f ;j

� 	
applying t�1 xf

� �
(Fig. 1). We observe

that the piecewise linear transformation ensures that also P
^

f

is a strong partition.

Once a granularity, say Tf ; is computed by the

evolutionary process, we generate the uniform partition

P̂f ¼ Âf ;1; . . .; Âf ;Tf

� �
on Xf by using Tf fuzzy sets. Then,

we transform this partition by exploiting the piecewise

linear transformation defined on the virtual partitions. In

practice, in order to maintain the original shape of the MFs,

for j = 2,…, Tf � 1; we apply t�1 to xf ¼ âf ;j; xf ¼ b̂f ;j and

xf ¼ ĉf ;j; where the three points âf ;j; b̂f ;j; ĉf ;j

� �
describe the

generic fuzzy set Âf ;j in the uniform partition of Tf fuzzy

sets. We recall that also the actual transformed partition

Pf ¼ Af ;1; . . .;Af ;Tf

� �
is a strong partition.

Figure 2 shows an example of this transformation for

granularity Tf ¼ 5 by using the piecewise linear transfor-

mation in Fig. 1.

t(xf ) 

,4fc  ,4fb  ,4fa  

,1fA  ,2fA  ,3fA  ,4fA  ,5fA  ,6fA  

,1f

,2f  

,3f  

,4f  

,5f  

,6fA  

,7fA  

,7fA  

,4fc  

,4fb  

,4fa

xf

Fig. 1 An example of piecewise linear transformation with TMAX ¼ 7

xf

t(xf) 

,3fa ,3fb ,3fc

,3fc  

,3fb  

,3fa  

,1fA  ,2fA  ,3fA  ,4fA  ,5fA  

,1fA  

,2fA  

,3fA  

,4fA  

,5
ˆ

fA  

Fig. 2 An example of piecewise linear transformation with Tf ¼ 5
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3 The problem of the interpretability

3.1 Interpretability: accuracy trade-off

Several methods have been proposed in the literature to

generate KBs of MFRBSs from available information

(typically, input–output samples) (Casillas et al. 2002;

González and Pérez 1999; Wang and Mendel 1992).

Generally, these methods aim to maximize the accuracy.

Thus, the resulting KBs are usually characterized by a high

number of rules and by linguistic fuzzy partitions with a

low level of comprehensibility, thus loosing that feature

which has made MFRBSs preferable to other approaches in

real applications, namely interpretability. Only in the last

decade, researchers have begun to propose methods to

generate MFRBSs taking not only accuracy, but also

interpretability into consideration (Casillas et al. 2003).

The interpretability of an MFRBS relies mainly on the

simplicity of the fuzzy RB and on the integrity of the fuzzy

partitions (Ishibuchi and Yamamoto 2004). To ensure the

RB simplicity, both the number of fuzzy rules and the

number of antecedent conditions should be maintained low.

To this aim, in several works authors have introduced a

complexity measure which is optimized together with the

accuracy during the evolutionary process. The most popular

measures adopted to this aim have been the total number of

rules (Alcalá et al. 2007; Gacto et al. 2009, 2010) and the

total sum of the conditions in the antecedents of the rules

(Alcalá et al. 2009; Antonelli et al. 2009a, b; Cococcioni et al.

2007; Ducange et al. 2009; Ishibuchi and Nojima 2007;

Ishibuchi and Yamamoto 2004; Pulkkinen and Koivisto

2010). These measures have been also adopted as two

different objectives of the evolutionary process in Ishibuchi

and Nojima (2007) and Ishibuchi and Yamamoto (2004).

Integrity of the partitions can be defined in several ways.

Here, on the basis of the considerations and discus-

sions made in Alonso et al. (2009), de Oliveira (1999),

Guillaume (2001), Mencar and Fanelli (2008) and Zhou and

Gan (2008), we state that a fuzzy partition is characterized

by a high integrity if it satisfies the following properties:

1. The partition should have a reasonable number of

fuzzy sets;

2. The fuzzy sets in the partition should all be normal,

i.e., for each fuzzy set there exists at least one point

with membership degree equal to 1;

3. Each couple of fuzzy sets should be distinguishable

enough, so that there are no two fuzzy sets that

represent pretty much the same concept;

4. The overall universe of discourse should be strictly

covered, i.e., each point of the universe should belong

to at least a fuzzy set with a membership degree over a

given reasonable threshold.

As regards property 1, as already discussed in Sect. 2.1,

we limit the maximum number of linguistic terms per

variable to 7 following psychologists’ suggestions derived

from considerations on limits of human information pro-

cessing capability (Alonso et al. 2008). Further, during the

evolutionary process the granularity may decrease thanks

to the granularity learning.

As regards properties 2, 3 and 4, these properties are

fully satisfied by strong partitions and in particular by

uniform partitions. On the other hand, uniform partitions

are considered to be the most intuitive interpretable parti-

tions. Indeed, each book on fuzzy logic introduces fuzzy

partitions by adopting uniform partitions. Thus, we decided

to adopt uniform partitions as initial partitions. Obviously,

we generate these uniform partitions by using the number

of fuzzy sets determined by the granularity.

Often, the MF adaptation process generates partitions

which are quite far from the uniform partitions and con-

sequently less interpretable: the more different from being

uniform the partition is, the less interpretable it is. Typi-

cally, partition integrity has been ensured either by using

uniform partitions (Antonelli et al. 2009; Cococcioni et al.

2007; Ducange et al. 2009; Ishibuchi and Nojima 2007;

Ishibuchi and Yamamoto 2004) or constraining the varia-

tion range of the MF parameters during the evolutionary

process (Alcalá et al. 2007a, b, 2009; Antonelli et al. 2009;

Gacto et al. 2009, 2010). In the last years, some interesting

indices have been proposed in order to control the integrity

of the partition during the multi-objective evolutionary

process. As an example, in Botta et al. (2009) authors

perform a multi-objective evolutionary context adaptation

of a predefined RB by concurrently optimizing the accu-

racy and an integrity index suitable for the specific context

operators. Recently, Gacto et al. (2010) have proposed a

three-objective evolutionary approach aimed at concur-

rently selecting rules from an initial rule base and tuning

the MF parameters. In order to control the partition

integrity, authors introduce an index which considers the

MF centroids displacement, the MF lateral amplitude rate

and the MF area similarity.

3.2 The interpretability index

In this work, to increase integrity, we force partitions to

tend towards the uniform partitions. If we analyze how the

MF adaptation process is performed by the piecewise linear

transformation, we can realize that the partitions generated

during the evolutionary process are similar to the uniform

partitions when the piecewise linear transformation tends

to be a linear transformation. Actually, the farther from

being a line the piecewise linear transformation is, the less

similar to the initial partition it is. The piecewise linear

Learning concurrently data and rule bases of MFRBSs 1985
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transformation tends to be a linear transformation when b
^

f ;j

tends to be equal to ~bf ;j; j = 2,…, TMAX � 1: Thus, to

control the linearity of the piecewise linear transformation

in the evolutionary learning of the MF parameters, we

introduce, for each variable Xf ; the following dissimilarity

measure:

df ¼
2

TMAX � 2

XTMAX�1

j¼2

b
^

f ;j � ~bf ;j








: ð3Þ

The highest level of partition integrity occurs when,

8j 2 2; . . .; TMAX � 1f g; ~bf ;j ¼ b
^

f ;j: In this case, df ¼ 0 and

no transformation is performed (actually the piecewise

linear transformation is a line). The lowest level of

partition integrity occurs when all b
^

f ;j; j ¼ 2; . . .; TMAX �
1; coincide with one of the extremes of the universe. In this

case,
PTMAX�1

j¼2 b
^

f ;j � ~bf ;j








 ¼ TMAX�2

2
and thus df ¼ 1: It

follows that 0� df � 1; with df ¼ 0 and df ¼ 1:

corresponding to the highest and lowest partition integrity

values, respectively.

Since the piecewise linear transformation only moves

the cores and the extremes of the fuzzy sets without

deforming their shapes, df can be considered a suitable

measure for evaluating how much a partition generated by

the MF parameter learning is different from the initial

partition.

In order to take both the DB integrity and the RB

complexity into account, we introduce a purposely defined

interpretability index.

First of all, we compute:

DC ¼
XMv

m

XFþ1

f

1þ df

� �
� u jm;f
� �

ð4Þ

where u jm;f
� �

¼
1 if jm;f [ 0

0 if jm;f ¼ 0

( )

: In other words,

u jm;f
� �

¼ 1 only if the index jm;f identifies a fuzzy set

different from the don’t care fuzzy set. We recall that jm;f is

the index of the fuzzy set defined on virtual partition ~Pf

which has been selected for Xf in the virtual rule Rm: Thus,

DC takes concurrently the number of virtual rules, the

number of antecedent conditions and the dissimilarity df

into account. Obviously, a decrease in the number of rules

and antecedent conditions in the virtual RB implies a

decrease in the number of rules and antecedent conditions in

the concrete RB. The value of DC increases with the

increasing of the number of rules and the number of ante-

cedent conditions in the rules, and with the increasing of the

values of dissimilarity df between the actual and the initial

partitions for each linguistic variable Xf : Thus, the higher

the value of DC, the lower the MFRBS interpretability.

We note that, since the RB cannot be composed of rules

with no condition in the antecedents, DC can never be

equal to zero. From simple mathematical considerations,

we derive that 2Mv
min�DC� 2Mv

maxðF þ 1Þ; where Mv
min

and Mv
max are the possible minimum and maximum num-

bers of rules in the virtual RB. Based on DC, we introduce

the following interpretability index I to globally evaluate

the interpretability of a knowledge base of an MFRBS:

I ¼ 1� DC� 2Mv
min

2Mv
maxðF þ 1Þ � 2Mv

min

: ð5Þ

Index I varies from 0 (minimum level of interpretability)

to 1 (maximum level of interpretability). The maximum

value corresponds to an RB composed by the minimum

number of rules with only one condition in the antecedent

and to a DB with uniform partitions for each linguistic

variable.

To increase the value of index I and to improve accuracy

are often conflicting objectives. Thus, we approach the

generation of MFRBSs by using a two-objective evolu-

tionary algorithm, where the two objectives are the MSE

computed as in Antonelli et al. (2009) and the interpret-

ability index I defined in (5), respectively. In particular, the

MSE is calculated as:

MSE ¼ 1

2 Ej j
XEj j

l¼1

F xl
� �
� yl

� �
ð6Þ

where Ej j is the size of the dataset, FðxlÞ is the output

obtained from the MFRBS when the lth input pattern is

considered, and yl is the desired output.

4 The two-objective evolutionary approach

We adopt the (2 ? 2)M-PAES proposed in Cococcioni

et al. (2007) as MOEA for generating a set of MFRBSs

with different trade-offs between MSE and I. In the fol-

lowing, we briefly describe the chromosome coding, the

genetic operators and the evolutionary strategy used in the

MOEA.

4.1 Chromosome coding

Each solution is codified by a chromosome C composed of

three parts ðC1;C2;C3Þ; which define the virtual RB, and

the granularities and the piecewise linear transformations

of all the variables, respectively. In particular, C1 encodes

the virtual RB by considering that each variable Xf is

uniformly partitioned by using TMAX fuzzy sets.

As described in Antonelli et al. (2009), C1 is composed

of MvðF þ 1Þ natural numbers where Mv is the number of

rules currently present in the virtual RB. The RB (defined

as concrete RB) used to compute the MSE is obtained by

means of the RB mapping strategy using the actual
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granularities fixed by C2: C2 is a vector containing F þ 1

natural numbers: the fth element of the vector contains the

number Tf 2 ½2; TMAX� of fuzzy sets which partition the

linguistic variable Xf : C3 is a vector containing F þ 1

vectors of TMAX � 2 real numbers: the fth vector contains

the b
^

f ;2; . . .; b
^

f ;TMAX�1

h i
real values which define the

piecewise linear transformation for the fth linguistic

variable.

4.2 Genetic operators

In order to generate the offspring populations, we exploit

both crossover and mutation. We apply separately the one-

point crossover to C1 and C2 and the BLX-a crossover,

with a = 0.5, to C3. To constrain the search space, we fix

the possible minimum and maximum numbers of rules to

Mv
min and Mv

max; respectively.

Let s1 and s2 be two selected parent chromosomes. The

common gene for C1 is selected by extracting randomly a

number in 1; qmin � 1½ �; where qmin is the minimum num-

ber of rules in s1 and s2. The crossover point is always

chosen between two rules and not within a rule. When we

apply the one-point crossover to the RB part, we can

generate an MFRBS with one or more pairs of equal rules.

In this case, we simply eliminate one of the rules from each

pair. This allows us to reduce the total number of rules. The

common gene for C2 is extracted randomly in ½1;F�:
As regards mutation, we apply two mutation operators

for C1. The first operator adds c rules to the virtual RB,

where c is randomly chosen in 1; cmax½ �: The upper bound

cmax is fixed by the user. The second mutation operator

randomly changes d elements of the matrix J associated

with the virtual RB. The number d is randomly generated

in 1; dmax½ �: The upper bound dmax is fixed by the user. For

each element to be modified, a number is randomly gen-

erated in 0; TMAX½ �:
The mutation applied to C2 randomly chooses a gene

f 2 ½1;F þ 1� and changes the value of this gene by ran-

domly adding or subtracting 1. If the new value is lower

than 2 or larger than TMAX; then the mutation is not applied.

The mutation applied to C3 first chooses randomly a

variable f 2 ½1;F þ 1�; then extracts a random value

j 2 ½2; TMAX � 1� and changes the value of b
^

f ;j to a random

value in b
^

f ;j�1; b
^

f ;jþ1

h i
:

We experimentally verified that these mating operators,

together with the appropriate probabilities, ensure a good

balancing between exploration and exploitation, thus

allowing the MOEA described in the next subsection to

create good approximations of the Pareto fronts.

We would like to highlight that the number of rules can

change in the virtual RB. Indeed, the crossover operator

can decrease the number of rules in the offspring when the

offspring contains two equal rules inherited from the two

parents, respectively. In this case, one of the rules is

removed from the virtual RB. Further, the first mutation

operator adds rules to the virtual RB. On the other hand, the

second mutation operator can decrease the number of rules

since it can make two rules equal by randomly modifying

the selected genes. We would like to remark that rule

reduction performed by the crossover operator and the

second mutation operator occurs also when the number of

input variables is high. Indeed, we have to consider that,

during the evolutionary process, some rules are identified

as good rules and therefore tend to be included in several

solutions. Thus, also in the case of high number of input

variables, when we apply the genetic operators we can

generate MFRBSs with equal rules and therefore obtain

rule reduction.

4.3 The two-objective evolutionary algorithm

We adopted the (2 ? 2)M-PAES proposed in Cococcioni

et al. (2007). Unlike classical (2 ? 2)PAES (Knowles and

Corne 2002), which uses only mutation to generate new

candidate solutions, (2 ? 2)M-PAES exploits both cross-

over and mutation. Further, in (2 ? 2)M-PAES, current

solutions are randomly extracted at each iteration rather

than maintained until they are not replaced by solutions

with particular characteristics.

At the beginning, we generate two solutions s1 and s2

and the genes of C1;C2 and C3 are randomly generated. At

each iteration, the application of crossover and mutation

operators produces two new candidate solutions from the

current solutions s1 and s2. First, we separately apply the

three crossover operators with probabilities equal to Pc1,

Pc2 and Pc3, respectively. Then, we apply the mutation

operators to each part of the chromosome. As regards C1, if

the crossover is not applied, the mutation is always applied;

otherwise the mutation is applied with probability Pm1.

When the mutation is applied, the probabilities of applying

the two mutation operators are Padd and 1 - Padd,

respectively. The probabilities of applying the mutation to

C2 and C3 are Pm2 and Pm3, respectively. When the

mutation is applied to C2 the granularity is increased with a

probability Pinc, otherwise the granularity is decreased.

The candidate solutions are added to the archive only if

they are dominated by no solution contained in the archive;

possible solutions in the archive dominated by the candi-

date solutions are removed. Typically, the size of the

archive is fixed at the beginning of the execution of the

(2 ? 2)M-PAES. In this case, when the archive is full and

a new solution z has to be added to the archive, if z dom-

inates no solution in the archive, then we insert z into the

archive and remove the solution (possibly z itself) that

belongs to the region with the highest crowding degree

Learning concurrently data and rule bases of MFRBSs 1987
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(Knowles and Corne 2002). If the region contains more

than one solution, then the solution to be removed is ran-

domly chosen.

5 Experimental results

5.1 Experimental setup

We tested our method on six regression problem datasets

(available at http://sci2s.ugr.es/keel/datasets.php). Table 1

summarizes the main characteristics of these datasets. We

performed a fivefold cross-validation, using each fold six

times with different seeds for the random function gener-

ator (30 trials in total).

To assess the advantages of exploiting our interpret-

ability index, we compared the results achieved by our

approach with the results obtained by applying the

(2 ? 2)M-PAES to minimize only the complexity of the

concrete RB, together with the MSE, without considering

the partition integrity.

The complexity of the concrete RB is computed as:

COMP ¼
XMc

m

XFþ1

f

u jm;f
� �

ð7Þ

where u jm;f
� �

¼
1 if jm;f [ 0

0 if jm;f¼ 0

( )

: COMP represents the

number of propositions used in the antecedents of the rules

contained in the concrete RB.

We denote these two approaches as (2 ? 2)M-PAES(I)

and (2 ? 2)M-PAES(C), respectively. In the experiments,

we executed the two MOEAs using the parameters shown

in Table 2.

In Sect. 5.2, we discuss the results of the MFRBS

learning in the MSE-Interpretability plane. With the aim of

performing the comparison statistically and not on a single

trial, we resort to the concept of average Pareto fronts used

in our previous works (Antonelli et al. 2009a, b). First, for

each of the 30 trials, we compute the Pareto front

approximations for the two MOEAs and order the solutions

in these approximations for increasing MSE values. Since

the number of solutions varies from one Pareto front

approximation to another, we identify the lowest number of

solutions contained in a Pareto front approximation. Then,

we retain only the solutions (at most, twenty) with the

lowest MSEs for each Pareto front approximation. Finally,

we compute the average values, on the 30 Pareto front

approximations, of the MSE and of the interpretability

index for these solutions. The choice of considering only at

most the twenty solutions with the lowest MSEs has been

motivated by the observation that the other solutions are in

general characterized by quite high MSEs which make

these solutions impractical. The number of solutions con-

tained in the average Pareto front is a good measure of the

easiness or difficulty met by (2 ? 2)M-PAES(I) and

(2 ? 2)M-PAES(C) in exploring the search space and

therefore in generating MFRBSs with different trade-offs.

We also perform a statistical analysis by using the two-

sample Kolmogorov–Smirnov test (Massey 1951). This test

allows verifying whether there exist statistical differences,

in terms of accuracy, between the solutions generated by

the two versions of the (2 ? 2)M-PAES. The two-sample

Kolmogorov–Smirnov test is a non-parametric test which

assumes no particular data probability distributions. The

test compares the distributions of the values of the MSEs

generated by both the versions of (2 ? 2)M-PAES. The

null hypothesis is accepted if the two distributions are from

the same continuous distribution. The alternative hypoth-

esis is that they are from different continuous distributions.

We applied the test to three interesting points in the

average Pareto fronts: the first (the most accurate), the

median and the last (the least accurate) points. We will

refer to these average values as FIRST, MEDIAN and

LAST, respectively.

The interpretability index introduced in Sect. 3 takes

both the RB complexity and the DB integrity into account,

thus allowing us to concurrently optimize both aspects of

Table 1 Datasets used in the experiments

Datasets Number of

patterns

Number of

input variables

Electrical Maintenance (ELE) 1,056 4

Weather Ankara (WA) 1,609 9

Weather Izmir (WI) 1,461 9

Auto-MPG (MPG6) 398 5

Treasury (TR) 1,049 15

Stock (STP) 950 9

Table 2 Values of the parameters used in the experiments

Archive size 64

Total number of evaluations 300,000

Minimum number of virtual rules Mv
min 5

Maximum number of virtual rules Mv
max 50

Crossover probability Pc1 0.3

Crossover probability Pc2 0.5

Crossover probability Pc3 0.5

Mutation probability Pm1 0.1

Probability Padd of mutation for adding rule 0.75

Mutation probability Pm2 0.5

Probability Pinc of mutation for increasing granularity 0.85

Mutation probability Pm3 0.3

cmax and dmax 5
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the interpretability of the global KB. Actually, by only

analyzing the interpretability index in the experimental

results, it is not easy to directly appreciate its effects in the

optimization of the RB complexity and DB integrity. Thus,

to make a reliable comparison between (2 ? 2)M-PAES(I)

and (2 ? 2)M-PAES(C) and therefore to appreciate the

effects of the use of the interpretability index, in Sect. 5.3

we show and discuss the results in terms of complexity of

the concrete RB and in terms of two measures introduced

to evaluate the integrities of the concrete and virtual par-

titions, respectively.

As regards the integrity measure of the concrete parti-

tion, we first introduce the dissimilarity dc
f computed on the

concrete partitions as follows:

dc
f ¼

0 if Tf ¼ 2

2
Tf�2

PTf�1

j¼2

bf ;j � b̂f ;j



 

 if Tf [ 2

8
<

:
: ð8Þ

Then, we compute the following average concrete

dissimilarity Dc defined as Dc ¼ 1
Fþ1

PFþ1
f¼1 dc

f : Dc

expresses how much on average the transformed concrete

partitions differ from the uniform concrete partitions, thus

providing a measure of the integrity of the concrete

partitions: the higher the value of Dc; the lower the

partition integrity. As regards the integrity measure of

virtual partitions, we calculate the average virtual

dissimilarity Dv as Dv ¼ 1
Fþ1

PFþ1
f¼1 df : We recall that
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Fig. 3 Average Pareto fronts plotted on the Interpretability-MSE plane for the training and test sets
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Fig. 3 continued

Table 3 Average MSEs on training and test sets and interpretability index for the FIRST solution

MSETRðrTRÞ k–sTR MSETSðrTSÞ k–sTS
�IðrIÞ

ELE (2 ? 2)M-PAES(I) 13,660.2 (1,851.5) = 15,768.6 (3,239.9) = 0.810 (0.131)

(2 ? 2)M-PAES(C) 13,539.8 (3,764.7) * 15,278.8 (4,129.4) * 0.676 (0.090)

WA (2 ? 2)M-PAES(I) 1.911 (0.381) ? 1.997 (0.298) * 0.909 (0.059)

(2 ? 2)M-PAES(C) 1.694 (0.489) * 2.094 (0.973) = 0.877 (0.032)

WI (2 ? 2)M-PAES(I) 1.474 (0.343) = 1.647 (0.343) = 0.926 (0.107)

(2 ? 2)M-PAES(C) 1.441 (0.276) * 1.556 (0.243) * 0.832 (0.087)

MPG6 (2 ? 2)M-PAES(I) 2.565 (0.341) * 4.185 (1.352) * 0.776 (0.027)

(2 ? 2)M-PAES(C) 2.820 (0.428) = 4.304 (01.365) = 0.786 (0.045)

STP (2 ? 2)M-PAES(I) 0.748 (0.098) * 0.934 (0.175) * 0.814 (0.019)

(2 ? 2)M-PAES(C) 0.795 (0.225) = 1.046 (0.309) = 0.755 (0.019)

TR (2 ? 2)M-PAES(I) 0.056 (0.020) * 0.100 (0.097) * 0.933 (0.039)

(2 ? 2)M-PAES(C) 0.066 (0.025) = 0.132 (0.142) = 0.884 (0.052)
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df ¼ 2
TMAX�2

PTMAX�1
j¼2 b

^

f ;j � ~bf ;j








: The average virtual

dissimilarity Dv has the same meaning of Dc but is

associated with the transformed virtual partition.

Once extracted the complexity and the average concrete

dissimilarity, in Sect. 5.3 we also plot the average Pareto

fronts, achieved by the two algorithms on the training and

test sets, on the complexity-MSE and Dc-MSE planes.

Complexity and number of rules Mc are computed on the

concrete RB. In the following, we will discuss the results

obtained on the six datasets.

5.2 Analysis of the results on the Interpretability-MSE

plane

In this section we report the results obtained by (2 ? 2)M-

PAES(I) and (2 ? 2)M-PAES(C) on the Interpretability-

MSE planes. Figure 3 shows the average Pareto fronts of

both the algorithms on the training and test sets. As

expected, for all the datasets but WA, the average Pareto

fronts generated by (2 ? 2)M-PAES(I) dominate the ones

generated by (2 ? 2)M-PAES(C). For all datasets, the

value of the interpretability index decreases (indeed, the

complexity of the rule bases and the dissimilarities df

increase) with the increase of the accuracy.

To statistically compare the results of the two algo-

rithms, in Table 3 we report for the FIRST solution the

averages and the standard deviations of the MSEs on

training and test sets (MSETRðrTRÞ and MSETSðrTSÞ;
respectively), and the averages and the standard deviations

of the interpretability index �I �IðrIÞð Þ: In ‘‘Appendix’’, we

report the same results for both the MEDIAN and LAST

solutions (Tables 6, 7). In order to assess whether the

differences between the solutions are statistically
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Fig. 4 Average Pareto fronts plotted on the Complexity-MSE plane for the training and test sets
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significant, we also show the results of the Kolmogorov–

Smirnov test (column k–sTR and k–sTS for the training and

test sets, respectively).

The interpretation of the k–s columns is the following:

* represents the best result (in bold in the MSE

columns);

? means that the best result has better performance than

that of the corresponding row;

= means that the best result has performance comparable

to that of the corresponding row

By analyzing the results of the Kolmogorov–Smirnov

test performed on the three representative points of the

average Pareto fronts, we observe that the MFRBSs gen-

erated by the two approaches are statistically equivalent in

terms of both MSETR and MSETS for all datasets except for

the MSETR on WA dataset, even though the average Pareto

fronts provided by (2 ? 2)M-PAES(I) are characterized by

a higher value of �I: Thus, we can conclude that to take both

complexity and integrity into account during the evolu-

tionary process leads to increase the interpretability of the

generated MFRBSs without affecting their accuracy.

5.3 Analysis of the results on the complexity-MSE

and Dc-MSE planes

Figures 4 and 5 show the average Pareto fronts achieved by

(2 ? 2)M-PAES(I) and (2 ? 2)M-PAES(C) on the training

and test sets, plotted on the complexity-MSE and Dc-MSE

planes, respectively.

By analyzing Figs. 4 and 5, we can observe that

(2 ? 2)M-PAES(I) on average generates MFRBSs with

lower complexity values than (2 ? 2)M-PAES(C). Further,

the projections of the average Pareto fronts generated by
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(2 ? 2)M-PAES(I) and (2 ? 2)M-PAES(C) onto the

Dc-MSE plane (Fig. 5) are concentrated around 0.08 and

0.24, respectively. As expected, the interpretability index

used as objective during the evolutionary process allows

increasing the partition integrity. Indeed all the solutions

generated by our algorithm are characterized by lower

values of Dc:

In Table 4, we show the averages and the standard

deviations of the complexity COMPðrCOMPÞ
� �

; of the

number of concrete rules McðrMcÞ
� �

; and of the concrete

DcðrDcÞ
� �

and virtual DvðrDvÞ
� �

dissimilarities for the

FIRST solution. For the sake of commodity, we also report

the average and standard deviation of interpretability index
�I �IðrIÞð Þ: The same results for the MEDIAN and LAST

solutions are shown in Tables 8 and 9 of ‘‘Appendix’’,

respectively. The values in Table 4, confirm the trends

highlighted by analyzing Figs. 5 and 6: (2 ? 2)M-PAES(I)

generates MFRBSs which have always lower values of

concrete and virtual dissimilarities, thus preserving the

partition integrity. Further, these MFRBSs are typically

characterized by lower values of complexity and number of

rules than the ones generated by (2 ? 2)M-PAES(C), except

for the MPG6 and STP datasets. Thus, we can conclude that

the interpretability index allows optimizing both complexity

and integrity during the evolutionary process.

To give a glimpse of the different levels of integrity of

the partitions generated by (2 ? 2)M-PAES(I) and

(2 ? 2)M-PAES(C) we plot in Fig. 6a and b two examples

of fuzzy partitions for the ELE dataset, characterized by

Dc ¼ 0:099 and Dc ¼ 0:19; respectively. We can observe
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Fig. 5 Average Pareto fronts plotted on the DC-MSE plane for the training and test sets
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Fig. 5 continued

Table 4 Average interpretability index I, complexity COMP, number Mc of rules and average dissimilarities Dc and Dv for the FIRST solution

�IðrIÞ COMPðrCOMPÞ McðrMc Þ DcðrDc Þ DvðrDv Þ

ELE (2 ? 2)M-PAES(I) 0.810 (0.131) 68.21 (42.65) 24.24 (12.31) 0.103 (0.048) 0.101 (0.045)

(2 ? 2)M-PAES(C) 0.676 (0.090) 96.48 (27.73) 34.48 (8.97) 0.196 (0.066) 0.241 (0.062)

WA (2 ? 2)M-PAES(I) 0.909 (0.059) 75.16 (46.86) 15.27 (6.43) 0.110 (0.037) 0.115 (0.017)

(2 ? 2)M-PAES(C) 0.877 (0.032) 98.65 (23.11) 20.20 (2.76) 0.197 (0.045) 0.262 (0.037)

WI (2 ? 2)M-PAES(I) 0.926 (0.046) 61.81 (35.95) 13.12 (5.32) 0.107 (0.029) 0.109 (0.025)

(2 ? 2)M-PAES(C) 0.832 (0.087) 83.55 (55.07) 17.83 (8.01) 0.235 (0.054) 0.267 (0.038)

MPG6 (2 ? 2)M-PAES(I) 0.776 (0.027) 130.28 (14.67) 48.03 (3.26) 0.071 (0.025) 0.064 (0.013)

(2 ? 2)M-PAES(C) 0.786 (0.045) 121.66 (18.04) 40.36 (5.49) 0.218 (0.107) 0.263 (0.072)

STP (2 ? 2)M-PAES(I) 0.814 (0.019) 184.00 (18.46) 49.42 (1.97) 0.061 (0.017) 0.040 (0.010)

(2 ? 2)M-PAES(C) 0.755 (0.019) 181.73 (13.37) 48.53 (1.25) 0.201 (0.059) 0.268 (0.039)

TR (2 ? 2)M-PAES(I) 0.933 (0.039) 103.92 (52.83) 19.10 (7.31) 0.119 (0.026) 0.129 (0.024)

(2 ? 2)M-PAES(C) 0.884 (0.052) 147.00 (61.97) 25.10 (8.17) 0.185 (0.045) 0.246 (0.033)
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form Fig. 6a that (2 ? 2)M-PAES(I) generates partitions

practically equal to the initial partitions on three variables

(X3, X4 and X5) and very close for the remaining two. On

the contrary, in Fig. 6b, we can appreciate that partitions

generated by (2 ? 2)M-PAES(C) are far from being close

to the initial partitions for all the variables but one, X2,

which has granularity equal to two (and then its partition

cannot be moved).

Finally, in Table 5, for each dataset, we report the

average granularity GrðrGrÞ
� �

computed on all the lin-

guistic variables and the 30 trials for the FIRST solution.

Although reducing the granularity is not explicitly an

objective of the two (2 ? 2)M-PAES, we can appreciate

how the average granularity is lower than five and so

lower than the maximum granularity, thus proving the

effectiveness of the granularity learning process. As we

have highlighted in Sect. 3, granularity affects the integ-

rity of a fuzzy partition: the lower the number of fuzzy

sets in a partition, the higher the integrity of the partition.

Since on average the granularity achieved at the end of

the evolutionary process is lower than the maximum value

fixed at the beginning, we can conclude that the granu-

larity learning process allows us to increase the level of

integrity and consequently to improve interpretability.

6 Conclusions

In this paper we have proposed a novel index for assessing

MFRBS interpretability, which takes both the rule base

complexity and the partition integrity into account. This

index and accuracy have been used as objectives in a two-

objective evolutionary algorithm which generates MFRBSs

by concurrently learning the rule base, the linguistic par-

tition granularities and the membership function parame-

ters during the evolutionary process. To this aim, we have

adopted a modified version of the well-known

(2 ? 2)PAES and a chromosome consisting of three parts

which codify, respectively, the rule base, and, for each

linguistic variable, the granularity and the parameters of a

piecewise linear transformation of the membership

functions.

The proposed approach has been experimented on six

real world regression problems and the results have been

compared with those obtained by applying the same two-

objective evolutionary algorithm, but with accuracy and

complexity of the rule base as objectives. We have shown

that our approach achieves the best trade-offs between

interpretability and accuracy, preserving the partition

integrity.

X1 X2 X3 X4 X5

(a) 

X1 X2 X3 X4 X5

(b) 

Fig. 6 Two examples of fuzzy partitions for ELE dataset characterized by DC = 0.099 (a) and DC = 0.19 (b), respectively

Table 5 Average values of granularity for all datasets

GrðrGrÞ

ELE (2 ? 2)M-PAES(I) 4.83 (1.62)

(2 ? 2)M-PAES(C) 4.69 (1.63)

WA (2 ? 2)M-PAES(I) 4.73 (1.77)

(2 ? 2)M-PAES(C) 4.2 (1.54)

WI (2 ? 2)M-PAES(I) 4.35 (1.70)

(2 ? 2)M-PAES(C) 4.68 (1.76)

MPG6 (2 ? 2)M-PAES(I) 4.33 (1.78)

(2 ? 2)M-PAES(C) 3.77 (1.63)

STP (2 ? 2)M-PAES(I) 3.85 (1.29)

(2 ? 2)M-PAES(C) 4.02 (1.60)

TR (2 ? 2)M-PAES(I) 4.48 (1.80)

(2 ? 2)M-PAES(C) 4.15 (1.58)
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Appendix

In Tables 6, 7, we show the averages and the standard

deviations of the MSEs on training and test sets

MSETRðrTRÞ
�

and MSETSðrTSÞ; respectively), the results

of the Kolmogorov–Smirnov test (column k–sTR and k–sTS

for the training and test sets, respectively), and the averages

and the standard deviations of the interpretability index

�I �IðrIÞð Þ for the MEDIAN and LAST solutions,

respectively.

In Tables 8 and 9, we show the averages and the

standard deviations of the complexity COMPðrCOMPÞ
� �

;

of the number of concrete rules McðrMcÞ
� �

; and of

the concrete DcðrDcÞ
� �

and virtual DvðrDvÞ
� �

dissimi-

larities for the MEDIAN and LAST solutions,

respectively.

Table 6 Average MSEs on training and test sets and interpretability index for the MEDIAN solution

MSETRðrTRÞ k-sTR MSETSðrTSÞ k-sTS
�IðrIÞ

ELE (2 ? 2)M-PAES(I) 14,729.3 (2,149.0) = 17,390.1 (3,796.3) = 0.865 (0.113)

(2 ? 2)M-PAES(C) 14,197.5 (3,850.8) * 15,849.4 (4,228.4) * 0.747 (0.074)

WA (2 ? 2)M-PAES(I) 2.009 (0.422) ? 2.0951 (0.3973) ? 0.961 (0.043)

(2 ? 2)M-PAES(C) 1.729 (0.516) * 2.111 (0.969) * 0.937 (0.026)

WI (2 ? 2)M-PAES(I) 1.540 (0.385) = 1.729 (0.438) = 0.977 (0.023)

(2 ? 2)M-PAES(C) 1.460 (0.282) * 1.544 (0.242) * 0.862 (0.070)

MPG6 (2 ? 2)M-PAES(I) 2.651 (0.348) * 4.138 (1.313) * 0.815 (0.034)

(2 ? 2)M-PAES(C) 2.874 (0.422) = 4.253 (1.367) = 0.816 (0.056)

STP (2 ? 2)M-PAES(I) 0.775 (0.101) * 0.958 (0.183) * 0.828 (0.024)

(2 ? 2)M-PAES(C) 0.820 (0.223) = 1.065 (0.313) = 0.798 (0.024)

TR (2 ? 2)M-PAES(I) 0.060 (0.021) * 0.093 (0.075) * 0.965 (0.030)

(2 ? 2)M-PAES(C) 0.069 (0.025) = 0.138 (0.141) = 0.919 (0.040)

Table 7 Average MSEs on training and test sets and interpretability index for the LAST solution

MSETRðrTRÞ k-sTR MSETSðrTSÞ k-sTS
�IðrIÞ

ELE (2 ? 2)M-PAES(I) 16,358.5 (2,713.6) * 18,896.0 (3,672.5) * 0.922 (0.062)

(2 ? 2)M-PAES(C) 16,595.8 (5,556.4) = 18,977.3 (5,816.4) = 0.797 (0.072)

WA (2 ? 2)M-PAES(I) 2.142 (0.449) ? 2.244 (0.529) = 0.981 (0.031)

(2 ? 2)M-PAES(C) 1.877 (0.733) * 2.119 (0.937) * 0.965 (0.021)

WI (2 ? 2)M-PAES(I) 1.670 (0.539) = 1.827 (0.566) = 0.99 (0.012)

(2 ? 2)M-PAES(C) 1.577 (0.377) * 1.678 (0.325) * 0.899 (0.056)

MPG6 (2 ? 2)M-PAES(I) 2.829 (0.350) * 4.109 (1.321) * 0.880 (0.026)

(2 ? 2)M-PAES(C) 2.985 (0.457) = 4.327 (1.410) = 0.840 (0.060)

STP (2 ? 2)M-PAES(I) 0.849 (0.164) * 0.958 (0.183) * 0.828 (0.024)

(2 ? 2)M-PAES(C) 0.881 (0.225) = 1.102 (0.323) = 0.798 (0.024)

TR (2 ? 2)M-PAES(I) 0.070 (0.025) * 0.123 (0.125) * 0.977 (0.023)

(2 ? 2)M-PAES(C) 0.076 (0.027) = 0.148 (0.135) = 0.944 (0.032)
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Alcalá R, Ducange P, Herrera F, Lazzerini B, Marcelloni F (2009) A

Multi-objective evolutionary approach to concurrently learn rule

and data bases of linguistic fuzzy rule-based systems. IEEE

Trans Fuzzy Syst 17(5):1106–1122

Alonso JM, Magdalena L, Guillaume S (2008) HILK: a new

methodology for designing highly interpretable linguistic knowl-

edge bases using the fuzzy logic formalism. Int J Intell Syst

23:761–794
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González A, Pérez R (1999) SLAVE: a genetic learning system based

on the iterative approach. IEEE Trans Fuzzy Syst 7:176–191

Guillaume S (2001) Designing fuzzy inference systems from data: An

interpretability-oriented review. IEEE Trans Fuzzy Syst

9(3):426–443

Herrera F (2008) Genetic fuzzy systems: taxonomy, current research

trends and prospects. Evol Intel 1:27–46

Ishibuchi H (2007) Multiobjective genetic fuzzy systems: review and

future research direction. In: Proceedings of FUZZ-IEEE 2007

international conference on fuzzy systems, London, 23–26 July

Ishibuchi H, Nojima Y (2007) Analysis of interpretability-accuracy

tradeoff of fuzzy systems by multiobjective fuzzy genetics-based

machine learning. Int J Approx Reason 44(1):4–31

Ishibuchi H, Yamamoto T (2004) Fuzzy rule selection by multi-

objective genetic local search algorithms and rule evaluation

measures in data mining. Fuzzy Sets Syst 141(1):59–88

Ishibuchi H, Murata T, Turksen IB (1997) Single-objective and two-

objective genetic algorithms for selecting linguistic rules for

pattern classification problems. Fuzzy Sets Syst 89(2):135–150

Klawonn F (2006) Reducing the number of parameters of a fuzzy

system using scaling functions. Soft Comput 10(9):749–756

Knowles JD, Corne DW (2002) Approximating the non dominated

front using the Pareto archived evolution strategy. Evol Comput

8(2):149–172

Mamdani EH, Assilian S (1975) An experiment in linguistic synthesis

with a fuzzy logic controller. Int J Man Mach Stud 7(1):1–13

Massey FJ (1951) The Kolmogorov-Smirnov test for goodness of fit.

J Am Stat Assoc 46(253):68–78

Mencar C, Fanelli AM (2008) Interpretability constraints for fuzzy

information granulation. Inf Sci 178:4585–4618

Mencar C, Castellano G, Fanelli AM (2007) Distinguishability

quantification of fuzzy sets. Inf Sci 177:130–149

Pedrycz W, Gomide F (2007) Fuzzy systems engineering: toward

human-centric computing. Wiley-IEEE Press, NJ

Pulkkinen P, Koivisto H (2010) A dynamically constrained multiob-

jective genetic fuzzy system for regression problems. IEEE

Trans Fuzzy Syst 18(1):161–177

Ruspini EH (1969) A new approach to clustering. Inform Control

15(1):22–32

Teng Y, Wang W (2004) Constructing a user-friendly ga-based fuzzy

system directly from numerical data. IEEE Trans Syst Man

Cybern B 34(5):2060–2070

Wang LX, Mendel JM (1992) Generating fuzzy rules by learning

from examples. IEEE Trans Syst Man Cybern 22(6):1414–1427

Zhou SM, Gan JQ (2008) Low-level interpretability and high-level

interpretability: a unified view of data-driven interpretable fuzzy

system modelling. Fuzzy Sets Syst 159:3091–3131

1998 M. Antonelli et al.

123

http://dx.doi.org/10.1109/TFUZZ.2010.2041008

	Learning concurrently data and rule bases of Mamdani fuzzy rule-based systems by exploiting a novel interpretability index
	Abstract
	Introduction
	Learning Mamdani fuzzy rule-based systems
	Mamdani fuzzy rule-based systems
	Granularity learning
	MF parameters learning

	The problem of the interpretability
	Interpretability: accuracy trade-off
	The interpretability index

	The two-objective evolutionary approach
	Chromosome coding
	Genetic operators
	The two-objective evolutionary algorithm

	Experimental results
	Experimental setup
	Analysis of the results on the Interpretability-MSE plane
	Analysis of the results on the complexity-MSE and Dc-MSE planes

	Conclusions
	Appendix
	References


