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Abstract This work presents a methodology for build-

ing interpretable fuzzy systems for classification prob-

lems. We consider interpretability from two points of

view: (1) readability of the system description and (2)

comprehensibility of the system behavior explanations.

The fuzzy modeling methodology named as Highly

Interpretable Linguistic Knowledge (HILK) is upgraded.

Firstly, a feature selection procedure based on crisp

decision trees is carried out. Secondly, several strong

fuzzy partitions are automatically generated from exper-

imental data for all the selected inputs. For each input, all

partitions are compared and the best one according to

data distribution is selected. Thirdly, a set of linguistic

rules are defined combining the previously generated

linguistic variables. Then, a linguistic simplification pro-

cedure guided by a novel interpretability index is applied

to get a more compact and general set of rules with a

minimum loss of accuracy. Finally, partition tuning based

on two efficient search strategies increases the system

accuracy while preserving the high interpretability.

Results obtained in several benchmark classification

problems are encouraging because they show the ability

of the new methodology for generating highly interpret-

able fuzzy rule-based classifiers while yielding accuracy

comparable to that achieved by other methods like neural

networks and C4.5. The best configuration of HILK will

depend on each specific problem under consideration but

it is important to remark that HILK is flexible enough

(thanks to the combination of several algorithms in each

modeling stage) to be easily adaptable to a wide range of

problems.

Keywords Fuzzy modeling � Interpretability �
Classification � Simplification � Tuning

1 Introduction

Interpretable intelligent systems are always desired for all

kind of applications (medicine, economics, robotics, etc.).

Interpretability is really appreciated and it even becomes a

strong requirement when dealing with humanistic systems,

defined as those systems whose behavior is strongly influ-

enced by human judgment, perception or emotions (Zadeh

1975).

This paper focuses on classification problems where

interpretability is of prime concern. Of course, accuracy

cannot be neglected because, at least at a given level, it is

a prerequisite since a system which is not able to achieve

a minimum accuracy is useless. Nevertheless, some

applications can tolerate a minimum loss of accuracy if it

means getting a transparent and comprehensible model.

Sometimes, both criteria (accuracy and interpretability)

can be satisfied to a high degree, but usually it is not

possible because they somehow represent conflicting

goals. Thus, looking for a good trade-off between them is

one of the most difficult and challenging tasks in system

modeling.

Interpretability is widely admitted to be the most valu-

able property of fuzzy rule-based systems (FRBSs). They

are considered as gray boxes against other techniques such
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as neural networks which are viewed as black boxes. Fuzzy

logic (FL) is acknowledged for its well-known ability for

linguistic concept modeling mainly due to its semantic

expressivity close to expert natural language, using

linguistic variables (Zadeh 1975) and linguistic rules

(Mamdani 1977). In consequence, FL represents a useful

tool to tackle with the problem of building interpretable

systems. In addition, it is especially useful to handle the

intrinsic uncertainty of real-world problems where the

available information is usually vague.

Moreover, being universal approximators (Castro

1995) FRBSs are able to perform nonlinear mappings

between inputs and outputs. Thus, as explained by

Hüllermeier (2005) there are lots of fuzzy machine

learning methods for knowledge induction from experi-

mental data.

On the other hand, the combination of several hetero-

geneous sources of knowledge (mainly expert and induced

knowledge) is likely to yield compact and robust systems

as pointed out by Alonso et al. (2008).

Notice that, the use of FL favors the interpretability of

the final model but it is not enough to guarantee it (Alonso

et al. 2009). Two main aspects must be taken into con-

sideration when regarding interpretability of FRBSs

(Description and Explanation). On the one hand, the sys-

tem description has to be transparent enough to present the

system as a whole describing its global behavior and trend.

On the other hand, system explanation must consider all

possible individual situations, explaining specific behaviors

for specific events. Thus, comprehensibility of a FRBS

depends on all its components, i.e., it depends on the

knowledge base (including both variables and rules)

transparency but also on the inference mechanism

understanding.

Main aspects affecting to the readability of fuzzy sys-

tems have been thoroughly analyzed (Guillaume 2001). In

addition, a complete study on the interpretability con-

straints most frequently used in fuzzy modeling has been

recently published (Mencar and Fanelli 2008). Finally, in

the fuzzy modeling literature there are two main trends

regarding the search of the optimum interpretability–

accuracy trade-off: (1) those first focused on interpret-

ability and then on accuracy (Casillas et al. 2003a); (2)

those who give priority to accuracy and then try to improve

interpretability (Casillas et al. 2003b).

This work describes a fuzzy modeling methodology

with the aim of getting a good interpretability–accuracy

trade-off when building FRBSs for classification tasks also

called fuzzy rule-based classifiers (FRBCs). The rest of the

paper is structured as follows. Section 2 describes the

proposed modeling process. Section 3 explains the exper-

iments made and the obtained results. Finally, Sect. 4

draws some conclusions and future works.

2 Methodology

The starting point is the Highly Interpretable Linguistic

Knowledge (HILK) fuzzy modeling methodology (Alonso

et al. 2008) which focuses on making easier the design

process of interpretable FRBSs. It offers an integration

framework for combining both expert knowledge and

knowledge extracted from data, which is likely to yield

robust and compact systems.

Unfortunately, in some applications expert knowledge

is missing because the expert is not able to explicitly

formalize its knowledge. This situation usually turns up

in complex problems involving many input variables

where expert knowledge extraction and representation

becomes a bottle neck for the whole modeling process. It

is also common that experts only provide a partial view

of the problem. They can only describe the global

behavior and some specific situations. Hence, a fuzzy

modeling methodology must be able to get good models

even when there is no expert knowledge or it is not

complete.

This work only deals with automatic learning from data

taking profit of the general framework provided by HILK,

including strong fuzzy partitions, global semantics, Mam-

dani rules, linguistic simplification, partition tuning, etc.

We assume that expert knowledge is not available in the

problems under consideration. Therefore, the proposed

method works without including expert knowledge. In

addition, it enhances HILK with some new functionalities

(feature selection, interpretability-guided simplification,

etc.) in order to get comprehensible FRBCs.

A FRBC is a fuzzy system able to select one class from

a pre-defined set of NC classes C = {C1, C2, ..., CNC}.

Given an n-dimensional input space ðX � RnÞ, a fuzzy

inference yields an activation degree associated to each

class Ci. Of course, several classes can be activated at

the same time with activation degree greater than zero.

FRBCs designed by HILK are endowed with the usual

fuzzy classification structure based on the Max–Min

inference scheme, and the winner rule fuzzy reasoning

mechanism:

yFRBCðxpÞ ¼ Ci , lCiðxpÞ ¼ max
k¼1;...;NC

lCkðxpÞ ð1Þ

lCkðxpÞ ¼ max
R¼1;...;NR

lRðxpÞ , YR is Ck ð2Þ

lRðxpÞ ¼ min
i¼1;...;NI

lAj
i
ðxp

i Þ ð3Þ

where given an input vector xp = {x1
p, ..., xNI

p }, the output

class Ci is derived from the highest lCiðxpÞ which is the

membership degree of xp to the class Ci. It is computed as

the maximum firing degree of all rules yielding Ci as output

class. For each rule, the firing degree is computed as the
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minimum membership degree of xp to all the attached Ai
j

fuzzy set, for all the NI inputs.

Figure 1 shows graphically the global scheme of the

proposed fuzzy modeling process. The whole process is

made up of four main steps (the most relevant components

will be detailed in the following sections):

1. Feature selection It consists in finding out the most

discriminative variables. In addition, our method gives

the most suitable number of labels.

2. Partition design The readability of fuzzy partitioning

is a prerequisite to build interpretable FRBCs. It

includes partition learning (automatic generation of

fuzzy partitions from data) and partition selection.

3. Rule-based learning Linguistic rules are automati-

cally extracted from data.

4. Knowledge-based improvement It is an iterative

refinement process of both partitions and rules.

2.1 Feature selection

We have implemented a feature selection procedure based

on the popular C4.5 algorithm introduced by Quinlan

(1993) and improved in (Quinlan 1996). Figure 2 shows

a simple example for a simulated problem with five

inputs.

This algorithm lets us discover the most discriminative

variables (V1, V3, and V5 in the example). If all inputs

were used in the tree we may select only a subset of them.

This would be equivalent to prune the tree at the cost of

losing some information. The closer to the root, the more

important a variable is. Hence, inputs are explicitly ranked

according to their contribution for the information gain

represented by entropy. At each node of the tree, C4.5

selects the attribute (input variable) that most effectively

splits the remaining set of training samples.

Fuzzy Decision Trees

Wang and Mendel

Linguistic rules

If V1 is Low and V2 is High Then ClassA

Knowledge−based

DATA

Fast Prototyping Algorithm

Partition selection

Partition learning

(Regular, K−means, HFP)

Rule−based
Linguistic Simplification

Partition Optimization

Linguistic variables

Low Medium High
Strong

Fuzzy

Partitions

Rule ranking

Rule base reduction

Partition simplification

Partition tuning

V1

V1

V3

V5

> a

<=  b

<= 

b >

d > d

C2

C2C3

<= c

C3

> c

C1

<= a

C1

Comprehensible
FRBC

improvement

learning

Partition Design

Feature Selection

Number of labels per variable

The most discriminative variables

Crisp Decision Trees (C4.5)

Fig. 1 Scheme of the proposed fuzzy modeling process
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In addition, generated crisp decision trees can be easily

translated into rules by reading them from the root to the

leaves (Abonyi et al. 2003). Regarding our simple exam-

ple, the tree plotted in Fig. 2 is translated into six rules.

Observe how each branch of the tree yields a new rule.

Finally, the number of breaking values per variable

appearing in a tree gives an estimation of the number of

fuzzy labels needed for that variable. In our example, we

need three labels for V1, while it is enough with two labels

for V3 as well as for V5. Notice that, the same variable, for

instance V1 in the example, can appear several times in the

tree. In consequence, rule premises are expressed in terms of

intervals. A linguistic proposition like (V1[ a AND V1 B c)

may be rewritten (V1 is L2). Since V1 has two breaking

points (a and c), the range covered by V1 [min, max] can be

divided into the following intervals related to three labels:

– L1 = [min, a]

– L2 = (a, c]

– L3 = (c, max]

However, we do not care about the specific values of a

and c which may bias the rest of the process. At this step,

we are only interested in finding out a suitable number of

terms. The tuning of parameters will be made at the end.

2.2 Partition design

Once selected the most influential variables and the number

of fuzzy labels for each of them, the next step is generating

the best fitted fuzzy partitions. The use of strong fuzzy

partitions (SFPs) (Ruspini 1969; Loquin and Strauss 2006)

has already been pointed out as an effective way of satis-

fying semantic constraints (normalization, coverage, dis-

tinguishability, etc.) demanded to get comprehensible

partitions (De Oliveira 1999; Mencar and Fanelli 2008).

Figure 3 illustrates a SFP including three fuzzy sets. As

it can be seen the same value xi is partially Low (0.22) and

Medium (0.78), but the addition of both membership

degrees equals one. It is also important to highlight that

psychologists (Miller 1956; Saaty and Ozdemir 2003)

recommend to work with an odd number of terms (because

it is easier to make reasoning around a central term) and a

small (justifiable) number of terms (7 ± 2 is a limit of

human information processing capability). Therefore, in

our approach we never define more than nine terms for

each input.

Looking for the best partition according to data distri-

bution we propose the generation of three different parti-

tions (with the number of labels resultant of the previous

feature selection step) for each variable: (1) REG, uni-

formly distributed partition on the universe of discourse;

(2) KM, partition defined by the centroids provided by the

K-means algorithm (Hartigan and Wong 1979); and (3)

HFP, partition generated by a fuzzy method guided by

interpretability (Guillaume and Charnomordic 2004).

Then, generated partitions can be compared according to

the three quality criteria defined by equations 4 to 6. The

notation is as follows: lik is the degree of membership of

the k-th element of the data set to the i-th element of the

fuzzy partition, M stands for the number of terms of the

fuzzy partition, and n represents the cardinality of the data

set.

PE ¼ �1

n

Xn

k¼1

XM

i¼1

lik logaðlikÞ½ �
( )

ð4Þ

PC ¼
Pn

k¼1

PM
i¼1 l2

ik

n
ð5Þ

ChI ¼ 1

n

Xn

k¼1

max
i

lik

� 2

MðM � 1Þ
XM�1

i¼1

XM

j¼iþ1

1

n

Xn

k¼1

minðlik; ljkÞ ð6Þ

The partition winning at least two criteria is selected

because we apply an absolute majority voting process. A

good partition should minimize the partition entropy (PE)

defined by Bezdek (1981), while maximizing both the

C3

(R2) If V1 > a AND V3 <= b Then C2
(R3) If V1 > a AND V3 > b AND V1 <= c Then C3
(R4) If V1 > a AND V3 > b AND V1 > c Then C1
(R5) If V1 > a AND V3 > b AND V5 <= d Then C3
(R6) If V1 > a AND V3 > b AND V5 > d Then C2

V1 => 3 labels (a, c) 
V3 => 2 labels (b) 
V5 => 2 labels (d) 

(R4)

> c

C1(R3)

<= c

C3

V1

(R1)

<= a

C1

(R2)

(R5) (R6)

V1

V3

V5

> a

<= b > b

<= d > d

C2

C2

(R1) If V1 <= a Then C1

Fig. 2 Example of crisp decision tree

High

0.0

0.5

1.0

UuUl xi

0.22

0.78
Low Medium

Fig. 3 A strong fuzzy partition with three fuzzy sets
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partition coefficient (PC) introduced by Bezdek (1981) as

well as the Chen index (ChI) defined by Chen (2002).

2.3 Rule-based learning

After designing all the fuzzy partitions it is time to describe

the system behavior in the form of linguistic rules (Mamdani

1977):

R : If I1 is Ai
1|fflfflffl{zfflfflffl}

Premise P1

AND. . .AND INI is A j
NI|fflfflfflfflffl{zfflfflfflfflffl}

Premise PNI|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Premise

Then YR is Ci

|fflfflfflffl{zfflfflfflffl}
Conclusion

where given a rule R, rule premises are made up of tuples

(input variable, linguistic term) where Ia is the name of the

input variable a, while Aa
i represents the linguistic term i

defined for such variable, with a belonging to {1, ..., NI}

and being NI the number of inputs. In the conclusion part,

Ci represents one of the possible output classes.

Note that we are imposing global semantics, i.e., all the

rules use the same linguistic terms defined by the same

fuzzy sets. Furthermore, we consider two kinds of lin-

guistic terms named as elementary and composite ones.

Elementary terms are those directly attached to the fuzzy

sets forming the fuzzy partition. For instance, Low, Med-

ium, and High for the SFP represented in Fig. 3. On the

other hand, we call composite term to the convex hull of

elementary terms corresponding to OR (only combinations

of adjacent elementary terms are allowed) and NOT com-

binations. For instance, Fig. 4 shows the term NOT(Low)

built from the partition illustrated in Fig. 3. It is equivalent

to Medium OR High because we consider the most com-

mon NOT implementation, defined by the complement

as lNOT(A)(x) = 1 - lA(x).

Rule induction is made with three different algorithms

which are able to automatically generate rules from data

with the previously defined fuzzy partitions:

– WM (Wang and Mendel 1992) It starts by generating

one rule for each data pair of the training set but new

rules will compete with existing ones. As a result, WM

generates complete rules (considering all the available

variables) which are quite specific and likely to be

simplified. They usually yield high accuracy regarding

training patterns but very low accuracy with respect to

test data. Its generalization ability is very poor.

– FDT (Fuzzy Decision Tree) It was proposed by

Ichihashi et al. (1996) for generating a neuro-fuzzy

decision tree from data. In addition, inputs are sorted

according to their importance for minimizing the

entropy as in the well-known C4.5 proposed by

Quinlan. Then, the tree is translated into quite general

incomplete rules because only a subset of input

variables is considered.

– FPA (Fast Prototyping Algorithm) This rule learning

method was defined by Glorennec (1999). It generates

rules more general than the ones produced by WM, but

at the same time more specific than the ones generated

by FDT. It starts generating a grid with all possible

combinations of input labels (complete rules like the

ones generated by WM) and then, in an iterative

process, outputs are defined removing redundancies

and inconsistencies. If the number of inputs (and labels

defined per input) is high then FPA is quite inefficient.

Therefore it needs a previous feature selection process

in order to tackle with complex problems.

2.4 Linguistic simplification

With the aim of getting a more compact and general rule

base HILK offers a powerful and flexible simplification

procedure which affects to the whole knowledge base

(KB) including both rule-based simplification and parti-

tion reduction. It starts looking for redundant elements

(labels, inputs, rules, etc.) that can be removed without

altering the system accuracy. Then, it tries to merge

elements always used together. Finally, it forces remov-

ing elements apparently needed but not contributing too

much to the final accuracy. In fact, it is an iterative

process where we first act on the rules and then on the

partitions at each iteration. This cycle is repeated until no

more interpretability improvement is feasible without

penalizing accuracy more than a predefined threshold.

Depending on the complexity of the initial KB the whole

simplification can take several iterations because rule-

based reduction affects partition simplification and vice

versa.

Let us pose a simple example. We are going to consider

a classification problem with two classes (C1 and C2). It

involves two inputs (I1 and I2), each of them characterized

by SFPs made up of five fuzzy sets with the five related

elementary terms (Very low, Low, Medium, High, Very

high). The rule base comprises the following five rules

(note that they only include elementary terms):

NOT(Low) = Medium OR High

0.0

0.5

1.0

UuUl xi

0.22

0.78
Low

Fig. 4 An example of composite term
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R1: If I1 is High AND I2 is High

Then Y is C1

R2: If I1 is Very high AND I2 is High

Then Y is C1

R3: If I1 is Low AND I2 is Medium

Then Y is C2

R4: If I1 is Medium AND I2 is Medium

Then Y is C2

R5: If I1 is Medium AND I2 is Very high

Then Y is C2

In the first iteration, rule-based reduction yields R12

which is obtained after merging R1 and R2, as well as R34

which results of merging R3 and R4. In consequence, the

new rule base is made up of three rules (some of them

include composite terms):

R12: If I1 is (High OR Very high) AND I2 is High

Then Y is C1

R34: If I1 is (Low OR Medium) AND I2 is Medium

Then Y is C2

R5: If I1 is Medium AND I2 is Very high

Then Y is C2

Then, partition simplification yields only four terms for

I1 (Very low, Low, Medium, High OR Very high). Note that

Low and Medium can not be merged in a unique term

because Medium is used alone in the rule R5. Regarding I2,

it only keeps three out of the five terms initially defined

(Medium, High, Very high).

At this point, the simplification procedure seems to be

ended. However, it is time to explore if there is some element

in the KB that can be deliberately removed without reducing

accuracy under a predefined threshold D. For instance, if we

may remove the premise (I2 is Very high) from the rule R5

producing a lost L1 smaller or equal than D, such rule may be

merged with R34 in the next iteration. As a result, the final

rule base would include only two rules. In addition, I2 would

only have two terms (Medium, High). Notice that, removing

a linguistic term implies changing the fuzzy partition (by

extending the related adjacent fuzzy sets) in order to keep

always a SFP. For further details, the interested reader is

referred to (Alonso et al. 2008) where this simplification

procedure is thoroughly explained.

Thanks to the use of global semantics rule comparison

can be directly made at linguistic level. In addition, the

process is absolutely deterministic. It represents a greedy

search. As a result, it is human-oriented and quite intuitive.

However, final results depend on the initial rule ordering.

As illustrated in the previous example, some steps are

allowed if and only if they do not reduce accuracy under a

predefined threshold. Imagine that we start exploring R12

instead of R5 with the aim of finding premises that can be

deliberately removed. It may happen that if we remove the

premise (I2 is High) from rule R12, accuracy is slightly

reduced yielding a lost L2 B D, but L1 ? L2 [ D (where L1

is the lost produced when beginning with R5). In conse-

quence, only one of these two operations can be made. If

we began from R12 it would be simplified, but R34 and R5

would not be merged later on.

One may think about exploring all possible alternatives

and selecting the one yielding the highest interpretability

improvement. Nevertheless, this is not easy at all because

after each taken decision we have a new tree of alterna-

tives. We need to find out the best chain of decisions taking

into account that each new decision strongly depends on

the previous ones. We may see it as a chess game. More-

over, in real problems we have to deal with dozens or even

hundreds of rules involving many inputs. Thus, checking

all alternatives is extremely time consuming and it is not

feasible in practice. It is necessary to think about effective

heuristics.

Therefore, in a first approach we have upgraded the

simplification procedure of HILK adding a new rule

ranking step previous to each simplification task. Hence,

we will check only a reduced set of alternatives, those

derived from the previously established ranking.

The proposed rule ranking is based on a novel inter-

pretability index:

RBC ¼
XNR

j¼1

complexityðR jÞ
� �

ð7Þ

complexityðR jÞ ¼
YNI

a¼1

complexityðPaÞ½ � ð8Þ

complexityðPaÞ ¼ 2� LT j
a

NLa
ð9Þ

RBC ¼
XNR

j¼1

YNI

a¼1

2� LT j
a

NLa

� �" #
ð10Þ

A rule base (RB) is made up of a set of rules, so the total

rule-based complexity (RBC) is given as the addition of all

the r-complexity indices (complexity(Rj)) measured for

the NR rules. Each rule involves a set of premises, so the

complexity of a rule is measured as the product of all the

p-complexity indices (complexity(Pa)) for the NI inputs

used in the rule. A p-complexity index evaluates the

complexity of a premise. It is computed regarding all the
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involved linguistic propositions Pa of form Ia is Aa
i that are

included in the evaluated premise. Notice that, the

linguistic term Aa
i which is assigned to the variable Ia can

correspond to one of the NLa elementary terms defined in

the fuzzy partition of the input Ia. Of course, it can also be

one of the composite terms which usually turn up as result

of the merging of rules and linguistic terms made by

the simplification procedure. LTa
j counts the number of

elementary terms included in Aa
i , taking the following

values:

– One for elementary terms.

– Number of elementary terms combined with OR. For

instance, it equals two for the expression Low OR

Medium.

– NLa minus one half for NOT composite terms, what

penalizes NOT against OR composite terms involving

all the elementary terms minus one.

– NLa when input Ia is not considered in the rule. It

means complexity(Pa) = 1.

This new interpretability index is based on conclusions

derived from a web poll study devoted to discover the main

influential aspects when assessing interpretability of fuzzy

systems (Alonso et al. 2009). In short, people usually

prefer rules free of NOT composite terms. That is why we

penalize NOT composite terms against the equivalent OR

ones. In addition, the increase of rule complexity perceived

by people is not linear with the number of involved pre-

mises, so we have used product for combining complexity

of premises.

2.5 Partition optimization

The last step in the whole fuzzy modeling process is

devoted to increase the system accuracy while preserving

the high interpretability previously achieved. It consists of

a membership function tuning constrained to keep the SFP

property. HILK offers two different optimization strategies

(Alonso et al. 2007):

1. SW (Solis-Wets): An element-by-element optimization

procedure based on the classical local search strategy

proposed by Solis and Wets (1981). It was described

by Glorennec (1999) as a hill climbing method with

memorization of the previous successes. To sum up,

firstly system inputs are ranked regarding their

frequency of use in the rule base. Thus, the optimi-

zation procedure starts with the inputs most frequently

used. Then, the optimization is made label by label

looking for the most suitable parameters. It lets

increase accuracy in only a few iterations but it does

not guarantee to find the global optimum. The

algorithm stops when the maximum number of

iterations is achieved, or the fitness function is under

a predefined threshold. After modifying one label, the

adjacent ones are also changed for keeping the SFP

and the process comes back to the starting point.

2. GT (Genetic-Tuning): An all-in-one optimization

procedure based on a global search strategy inspired

on the evolutionary processes that take place in nature.

It becomes a genetic tuning process (Cordón et al.

2001). In short, a genetic algorithm (GA) (Goldberg

1989) usually starts with a population of several

randomly generated solutions (chromosomes) and try

to find better solutions by applying genetic operators.

All system parameters are adjusted at the same time.

The implementation details can be found in (Alonso

et al. 2007) where GT is adapted from the proposal

made by Cordón and Herrera (1997). First, the initial

KB is used for building the first individual of the

population. For each individual, a real-coded chromo-

some is generated by joining the basic parameters of

all its fuzzy partition. Second, the rest of the popula-

tion is randomly generated and it is made up of 60

individuals. Then, the following steps are repeated for

each generation:

– Binary tournament selection.

– BLX - a crossover (a = 0.3, probability = 0.6).

– Uniform mutation (probability = 0.1).

– Elitism.

Figure 5 shows an example of SFP with five fuzzy sets

where we have represented all parameters handled by both

strategies which consider the same coding scheme. For

each fuzzy partition, the fuzzy sets centers or modal points

(Ci in the figure) are adjusted through slight modifications.

One parameter Ci characterizes each fuzzy set Ai, except

for the trapezoidal membership functions where two

parameters, Ci1 and Ci2, have to be considered. The opti-

mization procedure will move the Ci points of each parti-

tion, given as a result new Ci

0
points that define a new SFP,

without any ambiguity. Notice that, both the initial number

and order of linguistic terms are maintained by imposing an

allowed variation interval for each parameter. This way, a

very compact representation is got for the optimization

procedure, while the SFP property is always kept.

As explained by Alonso et al. (2007), other ways of

doing are possible. Indeed, Van Broekhoven et al. (2007)

made a very similar proposal considering two parameters,

Ci1 and Ci2, for each fuzzy set disregarding its membership

function shape. Thus, a vector of 2M real numbers char-

acterizes a partition of M labels. As a result, the SFP

property is kept, but not the membership function shapes.

For example, a triangular function can derive to a trape-

zoidal one. We prefer to maintain at least the basic shape

(triangular, trapezoidal, etc.), even though the slopes can
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change, because it is strongly related to the linguistic term

meaning. Other proposals like (Karr 1991; Cordón and

Herrera 1997) coded every characteristic point of the fuzzy

sets, which gives more degrees of freedom to the optimi-

zation but disregarding the SFP property. The same stands

for other more recent advanced genetic tuning mechanisms

(Casillas et al. 2005; Alcalá et al. 2007).

In the last years, multi-objective approaches have

become very popular in the sake for fuzzy models with a

good trade-off between accuracy and interpretability

(Cordón et al. 2004; Ishibuchi and Nojima 2007; Herrera

2008). In addition, some authors have proposed useful

indices for assessing the integrity of fuzzy partitions

(Antonelli et al. 2009; Gacto et al. 2010). In such works, the

search process is biased towards models that keep highly

interpretable partitions in the sense that they remain close

to the initial fuzzy partitions. This strategy is really useful

when partitions were defined by an expert since we do not

want to lose the expert knowledge in the optimization

phase. However, it becomes a strong limitation when there

is no expert for defining the fuzzy partitions and they are

defined (in most cases) as uniformly distributed SFPs, what

prevent looking for prototype values that are not repre-

sented by the uniform partition. An interpretable fuzzy

partition must represent prototypes that are meaningful for

the expert, but it is not necessarily uniform. For example, if

we have a fuzzy variable that represents Temperature and it

is characterized by a SFP in the range [20, 40] with three

terms, a uniform partition would set three modal points

corresponding to three prototype values (20, 30, 40), but

everyone knows that 37� is the common temperature for

human beings. Such information remained hidden if we do

not have an expert and the tuning tends to keep the initial

prototypes.

We have chosen single-objective optimization instead of

moving towards multi-objective approaches because par-

tition tuning only represent a small part of the whole

methodology. It has to be effective and not too much

demanding in terms of time and memory because at this

step of the process we have already achieved a quite

compact and reduced KB. Finally, the use of extended

variation intervals yields the flexibility that the tuning

process needs to find out hidden prototypes while keeping

transparent SFPs. Of course, at the end an expert is needed

for assigning the right linguistic terms to the discovered

prototypes.

3 Experimental analysis

The enhanced version of HILK presented in this paper has

been evaluated with six benchmark classification problems

freely available from the UCI (University of California,

Irvine, LA, USA) machine learning repository1:

– IRIS Database created by Fisher with the aim of

classifying three varieties of the iris plant.

– WINE Chemical analysis of wines grown in the same

region in Italy but derived from three different

cultivars.

T31

Fuzzy Sets A1 A2 A3 A4 A5

Basic Parameters C1 C2 C31 C32 C4 C5

T1 T2 T31 T32 T4 T5Variation Intervals

0.0

0.5

1.0

Ul Uu

C1 C32 C5

T32

T4

C2

A2

T1

C31

A3

C4

T5

A1 A4 A5

T2

Fig. 5 Tuning parameters in a

SFP

1 http://www.ics.uci.edu/-mlearn/MLSummary.html.
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– GLASS A study of classification of types of glass that

was motivated by criminological investigation.

– NEWTHYROID Predicting the type of patient’s

thyroid disease.

– WBCD Classification of two cancer states (benign or

malignant). Obtained from the University of Wisconsin

Hospitals.

– PIMA Determining if a patient shows signs of diabetes

according to World Health Organization criteria. All

selected patients are females at least 21 years old of

Pima Indian heritage.

For all the six problems listed above the comprehensi-

bility of the classifier is highly appreciated. The first three

data sets are well-known general purpose classification

problems while the three remaining ones are related to

medical applications. Their main characteristics are sum-

marized in Table 1.

We have chosen 10-fold cross-validation as evaluation

methodology. Cross-validation is a method for estimating

generalization error based on resampling (Hjorth 1994;

Plutowski et al. 1994). The same process is repeated for all

the six problems previously introduced. The data set is

divided into ten parts of equal size keeping the original

distribution (percentage of elements for each class) in the

whole set. One part is used as test set whereas the

remainders are used as training set. Notice that, all tested

algorithms are implemented in Fispro2 and/or KBCT3, two

free software tools for designing FRBSs.

From now on we describe the experimental results

obtained for the four stages that the proposed methodology

comprises. For the sake of clarity, results are grouped and

explained in the two following subsections.

3.1 Feature selection and partition design

Let us begin with the analysis of the two first modeling

stages. First, the feature selection procedure identifies the

most relevant inputs, yielding also their most suitable

number of labels. Second, three partitions (REG, KM, and

HFP) are generated for each input, and then compared to

select the best one according to data distribution.

Table 2 exposes the average results (over 10-fold cross-

validation) which are presented in terms of the Mean and

the Standard Deviation (SD). The first part of the table

(NOI and NOL) is related to the feature selection process.

NOI stands for the number of selected inputs while NOL is

the number of linguistic terms defined per input. The Mean

for NOL is always kept under 4. As a result, we build

interpretable partitions implemented as SFPs with a small

number of terms. The second part of the table (REG, KM,

and HFP) focuses on the partition design phase. Each

column is related to one kind of fuzzy partition. Thus,

looking carefully at the six columns (Mean and SD) in the

center of the table it is easy to appreciate how many inputs

(in average) use each kind of partition. For instance, the 8.7

inputs for GLASS are interpreted as follows: 0.9 inputs

have attached uniform partitions (REG); 5.7 inputs use

partitions induced with K-means (KM); and 2.1 inputs

correspond to partitions generated by means of a hierar-

chical method (HFP). The last part of the table reports the

runtime which is measured in seconds. As expected, the

runtime grows with the number of attributes and instances

included in the data set. Anyway, it is kept reasonably

small for all the six analyzed problems.

From Table 2 we can deduce that most of the selected

partitions are KM. Therefore, if we are working in a

problem where one of the main requirements is that run-

time must be as small as possible we can save a few sec-

onds by only considering KM during the partition design

stage. As expected, results show that automatically gener-

ated partitions are the best fitted for the data distribution.

Although many authors usually advocate working directly

with REG partitions by claiming they are the most inter-

pretable ones, in lots of problems the use of non-uniform

partitions can be quite useful, especially when looking for

hidden prototypes. Nevertheless, it is important to remark

that we are using highly interpretable partitions even when

they are not always uniform.

Figure 6 shows an example of fuzzy partitions for the

WINE problem. On the left side of Fig. 6a, we have plotted

the partitions obtained after feature selection and partition

design. Only three out of the thirteen attributes of WINE

are considered. In addition, the number of terms is quite

small. In consequence, you can appreciate how much

interpretable the designed partitions are.

3.2 Rule-based learning and knowledge-based

improvement

Once all partitions have been designed it is time to tackle

with the generation of the rule base, and the subsequent

Table 1 Description of the data sets under consideration

Dataset Instances Attributes Classes

IRIS 150 4 3

WINE 178 13 3

GLASS 214 9 6

NEWTHYROID 215 5 3

WBCD 683 9 2

PIMA 768 8 2

2 http://www.inra.fr/internet/Departements/MIA/M/fispro/.
3 http://www.mat.upm.es/projects/advocate/kbct.htm.
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improvement of both partitions and rules, as it will be

explained later. On the right side of Fig. 6b, we have

illustrated the same partitions plotted on the left (a) but at

the end of the whole modeling process. After simplification

only two inputs are kept because Proline has been

removed. Furthermore, Color intensity has only two lin-

guistic terms because Medium and High has been merged

as Medium OR High. The effect of the optimization stage is

a modification of the fuzzy partitions. They keep their

original shape (triangular, trapezoidal, etc.) but their modal

points (fuzzy set centers) are slightly moved. This means

slopes may be altered. However, let us highlight that we

only show the final partitions, which are highly interpret-

able, to the final user of the system. Of course, we should

ask an expert (or directly to the final user) for confirming

the suitability of the attached linguistic terms. The designer

Table 2 Results of the experimentation (feature selection and partition design)

Dataset NOI NOL REG KM HFP Runtime (s)

Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD

IRIS 2 0 2.85 0.24 0 0 2 0 0 0 2 1.49

WINE 3.9 0.87 2.15 0.16 0 0 3.9 0.87 0 0 13.4 4.19

GLASS 8.7 0.48 3.63 0.31 0.9 0.87 5.7 1.88 2.1 1.2 8.7 1.83

NEWTHYROID 4.4 0.7 2.6 0.13 0 0 3.1 0.74 1.3 0.67 8.3 1.89

WBCD 5.9 1.2 2.46 0.28 0 0 5.8 1.4 0.1 0.3 3.5 4.19

PIMA 7.2 0.92 3.23 0.76 0.7 0.67 5.4 0.97 1.1 1.1 27.7 3.83

Medium OR High

PROLINE

FLAVANOIDS

COLOR INTENSITY

FLAVANOIDS

COLOR INTENSITY

0.0

0.5

1.0

High

278 1680564.92 1135.8

Low

(a) Initial Partitions (Feature Selection + Partition Design) (b) Final Partitions (Simplification + Optimization)

0.0

0.5

1.0

0.34 5.081.036 2.778

Low High

0.0

0.5

1.0

High

1.28 132.909

Low

5.332

Medium

8.905

0.0

0.5

1.0

0.34 5.08

Low High

0.0

0.5

1.0

1.28 13

1.186 1.965

5.835

Low

1.822

Fig. 6 Example of fuzzy partitions at the beginning (a) and at the end (b) of the modeling process for one of the ten folds in the WINE problem

1968 J. M. Alonso, L. Magdalena

123



should wonder if such terms are really meaningful for the

final user.

Coming back to the experimental analysis, after feature

selection and partition design, the rest of the experimental

procedure was as follows. First, rules were automatically

derived from data with the three rule induction algorithms

(WM, FDT, and FPA) introduced in Sect. 2.3. Then, each

KB was simplified four times (with threshold D = 0.1)

exploring four different rule ranking options:

– S Simplification without changing the rule ranking

provided by the rule induction algorithm.

– S-IC Rule ranking from the simplest rule to the most

complex one (IC stands for increasing complexity).

– S-DC It is just the inverse ranking (decreasing com-

plexity), from the most complex rule to the simplest

one.

– S-IC-DC The three previous strategies are run in

parallel. At each intermediate simplification step the

solution yielding the smallest complexity is selected as

the KB to be simplified in the next step.

Afterwards, the simplified KBs were compared and only

the simplest one, according to RBC defined by Eq. 10, was

selected (set in boldface in Tables 3, 4, 5, 6, 7, 8 and

emphasized with symbol [*]) to be optimized. Notice that,

we are evaluating the complexity of the rules regarding the

complexity of all involved linguistic propositions. Hence,

for each problem and for each rule induction algorithm,

only one KB is selected to be optimized. We choose the

simplest KB, i.e., the one yielding the smallest RBC, but

not necessarily the most compact one in terms of the rest of

interpretability indicators. Moreover, we have highlighted

with the symbol [?] the solution yielding the smallest RBC

in the tables, choosing the most accurate solution, first

looking at ACC (training) and then looking at ACC (test) if

needed, in the case of a draw.

Thus, Tables 3, 4, 5, 6, 7, 8 present the achieved results

for the two last modeling stages (Rule-based learning and

Knowledge-based improvement). In addition to rule induc-

tion and simplification, tables include results after partition

optimization by the two strategies described in Sect. 2.5.

Solis-Wets (O-SW) was carried out label by label with

maximum number of iterations equals 10. The maximum

number of generations for Genetic-Tuning (O-GT) was set

to 600. The rest of parameters were defined in Sect. 2.5.

Each strategy was run three times for each fold yielding a

total of 30 runs for each problem. Furthermore, for com-

parison purpose, the first two rows in the tables show results

provided by other methods implemented in Weka4: MP

(Multilayer Perceptron) which yields very accurate neural

network classifiers (disregarding interpretability), and C45

(Quinlan’s decision trees) which are recognized because

they provide a good trade-off between interpretability and

accuracy, at the cost of achieving usually accuracy smaller

than MP.

Notice that, with the aim of making a fair comparison

with the previous version of HILK, we have included in all

the tables three rows (PD-FDT, S, and O-SW) just below

C45 and MP. They report results provided by HILK

without feature selection (FS). First, we generated fuzzy

partitions made up of five terms for all the attributes.

The partition design (PD) includes the election of the best

partition (comparing REG, KM, and HFP) for each attri-

bute. Then, rule induction was made with FDT. We chose

FDT because in our previous work (Alonso et al. 2008) it

seemed to outperform the other induction methods in terms

of both accuracy and interpretability. Of course, results

presented in the current work are not directly comparable

with those reported by Alonso et al. (2008). There, we also

dealt with the combination of expert and induced knowl-

edge, but remind the current paper is only considering

induced knowledge. Then, the simplification procedure (S)

was performed but without considering the ranking choice

proposed in this work. Finally, the optimization stage was

run with O-SW strategy which was the only one included

in the first version published of HILK (Alonso et al. 2008).

Average results (over 10-fold cross-validation) are pre-

sented in terms of accuracy, interpretability, and runtime.

Accuracy (ACC) is computed as the ratio of samples cor-

rectly classified for training and test. Interpretability is

characterized by the total number of labels defined for all

the inputs (NOI*NOL); the number of rules (NR); the total

rule length (TRL) computed as the total number of pre-

mises for all the rules; the average rule length (ARL)

defined as the average number of premises per rule; and the

rule-base complexity (RBC) computed by equation 10 as

explained in Sect. 2.4. Runtime is measured in seconds.

For each indicator, we have included the Mean and the

Standard Deviation (SD) over the ten folds (the 30 runs in

the case of the optimization stage). Notice that, we have

observed that sometimes the values computed for SD are

quite large due to the diversity among the different folds.

Let us start discussing the results stored in Table 3

which corresponds to the two first problems (IRIS and

WINE). They are two very well-known benchmark clas-

sification problems, probably the two most thoroughly

considered in the specialized literature.

In the case of IRIS, the problem is so simple that our

method is able to achieve almost the ideal solution (only

one rule per class, only one premise per rule, and accuracy

close to 100% regarding both training and test patterns).

The best results (look at Table 3) were provided by FS-PD-

FDT-S-O-GT, i.e., rules were first induced with FDT after

feature selection (FS) and partition design (PD), then they4 http://www.cs.waikato.ac.nz/ml/weka/.
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were simplified without altering the initial ranking (S), and

finally fuzzy partitions were adjusted by genetic tuning

(O-GT). This solution is really good from the interpret-

ability point of view and its accuracy is comparable to the

one obtained by C4.5. The loss of accuracy is negligible

(smaller than 2% for training and smaller than 1%

regarding test). Notice that, the simplicity of the problem

does not let us appreciate the effect of the different

simplification strategies. All of them yield the same results

given a rule induction algorithm.

In addition, O-GT and O-SW yield very similar results.

Of course, O-GT is able to achieve slightly higher accuracy

but at the cost of a much larger computational time. As it

can be easily appreciated the runtime is always in the range

of seconds except for O-GT that consumes about 300 s

(5 min). This is due to the fact that we have set the same

default parameters for O-GT in all the six problems.

Nevertheless, in the case of IRIS it may be enough with a

smaller population and a smaller number of generations

what should reduce dramatically the computational time

while keeping the high accuracy. On the other hand, we can

see the benefits derived from the feature selection stage by

making a comparison between solutions starting with and

without FS. Observe how PD-FDT-S-O-SW yields the

largest RBC even after simplification. Of course, it also

yields the largest ACC (training). Anyway, the increase of

accuracy is not so big as the decrease of interpretability

when disregarding FS.

As deduced from Table 1, the WINE problem is more

complex. It counts with three classes like IRIS, but the

number of attributes is higher (13 against 4). Anyway,

achieved results (look at Table 4) were also very encour-

aging. The best solution was FS-PD-FDT-S-DC-O-GT.

Nevertheless, FS-PD-WM-S-IC-O-GT and FS-PD-FPA-S-

IC-O-GT exhibited also very good trade-offs between

interpretability and accuracy. Like in the case of IRIS, the

gain of interpretability for WINE is obtained at the cost

of some loss of accuracy. Anyway, it is around 3% in the

worst case what is perfectly acceptable. Again, like in

the IRIS problem, the runtime is kept under 10 s for all the

modeling stages except for O-GT which yields about

10 min.

However, when dealing with a more complex problem

like GLASS (look at Table 1), results are not so promising.

Although the number of attributes (nine) is smaller than in

the case of WINE, the number of instances and classes is

bigger. GLASS identifies six different classes quite

unbalanced. The distribution of instances per class is the

following: G1 (32.71%), G2 (35.51%), G3 (7.94%), G4

(6.074%), G5 (4.205%), and G6 (13.561%).

Looking at Table 5, we see how C4.5 is able to yield a

very good solution regarding both accuracy and interpret-

ability for GLASS. ACC (test) is slightly smaller for C4.5

than MP, but ACC (training) is even higher for C4.5.

Furthermore, C4.5 yields a quite compact solution with a

small NR. The simplest solution, i.e., the one yielding the

smallest RBC, provided by HILK?? was FS-PD-FDT-S-

DC-O-GT. It is more interpretable than C4.5 in terms of

TRL and ARL, although NR is larger. Notice that, FS-PD-

FPA-S-IC-O-GT gets even smaller NR than C4.5, but RBC

is larger because of the huge increment in ARL. Of course,

looking at NOI*NOL we observe how the simplification

stage affects not only to the rule base but also to the fuzzy

partitions. Unfortunately, the reduction of NR and TRL is

achieved at the cost of a strong reduction of accuracy.

Hence, such solution is not competitive against C4.5.

In the GLASS problem, the simplest solution is also the

most accurate one. It is comparable to the solution reported

by MP. Nevertheless, its accuracy is not so good in com-

parison with C4.5. Although our solution overcomes C4.5

regarding test, the loss of accuracy is about 10% with

respect to training patterns. Of course, it is not easy to

establish which solution is the most interpretable one. Our

method yields more rules but they are shorter than the ones

provided by C4.5.

The reason why our methodology is not achieving

solutions for GLASS as good as the ones obtained for the

previous problems arises from the feature selection stage.

The proposed method based on C4.5 is not effective in the

GLASS problem since it selects 8.7 inputs (in average) out

of the initial nine inputs (look at Table 2). In consequence,

rule induction algorithms generate a huge number of rules

which remains big even after simplification. In the future,

to tackle with complex problems we should explore the

introduction of a pre-processing stage based on other fea-

ture selection techniques with the aim of reducing the

combinatorial rule explosion effect.

Regarding the runtime, GLASS shows how the execu-

tion time, for both simplification and optimization stages,

depends a lot on the complexity of the knowledge base

under consideration. In the worst case, the runtime for

simplification rises up to about 2 min while it is about

23 min for optimization. Hence, the larger RBC is the

larger runtime becomes. This result hampers the applica-

bility of HILK?? to complex problems available in the

UCI machine learning repository. Fortunately, the main

advantage of HILK?? lies in the fact that induced

knowledge is represented in a highly interpretable manner

what makes possible to combine it with expert knowledge

in an easy way. As a result, HILK?? is especially useful

to tackle with complex real-world problems where both

expert and induced knowledge are available.

Tables 6 and 7 contain the average results for two well-

known benchmark classification problems in the domain of

medical diagnosis (NEWTHYROID and WBCD). Repor-

ted results are similar to those achieved in the IRIS and
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WINE problems in terms of accuracy and runtime (except

for the simplification stage in the case of WBCD that yields

execution time similar to that computed for GLASS).

HILK?? clearly overwhelms C4.5 for all the interpret-

ability indicators while accuracy is comparable:

ACC(training) provided by our method is a bit smaller than

the one achieved by C4.5, but HILK?? is even better

regarding ACC (test) in some cases.

FS-PD-FPA-S-IC-DC-O-GT is the simplest solution for

NEWTHYROID. It also yields the highest ACC (test). In

the case of WBCD, the simplest solution also comes from

FPA but combined with a different simplification option,

S-IC instead of S-IC-DC. Results provided by FS-PD-FPA-

S-IC-O-GT are especially good. In comparison with C4.5,

ACC (training) is almost the same while ACC (test) is

higher with our method. Results are more impressive

regarding interpretability. The reduction ratio is around

46% for NR, 60% for TRL, and 28% for ARL.

Although WBCD has the same number of inputs (nine)

than GLASS with three times more instances (look at

Table 2), our method is able to find out a really good trade-

off between accuracy and interpretability. Notice that, in

this problem the feature selection process is quite effective

keeping, in average, only 5.9 inputs and 2.46 linguistic

terms per input (look at Table 2). As a result, the two last

stages of our method (simplification and optimization) deal

with compact sets of short rules. In some cases, NR is quite

large before simplification what yields high runtime (up to

2.40 min in the worst case). For instance, it equals 142.8

for FPA. However, the main difference between GLASS

and WBCD turns up when looking at the number of clas-

ses. WBCD includes only two classes (against the six

classes of GLASS) what makes easier the simplification

task which becomes much more effective.

We have also tested our method in the PIMA problem.

Results are summarized at Table 8. Apparently, PIMA is a

problem quite similar to WBCD. Both have only two

classes, PIMA has eight inputs (one less than WBCD), and

the number of instances is very close (around 700). Nev-

ertheless, PIMA is much more complex than WBCD as

deduced from the low accuracy achieved by MP and C4.5.

ACC (training) is under 0.84 and ACC (test) is under 0.76.

Notice that this situation is similar to GLASS where MP

and C4.5 also provide low accuracy.

Again, like in GLASS, the feature selection procedure

yields bad results. It selects, in average, 7.2 inputs from the

eight initial ones. Then, rule induction algorithms produce

hundreds of rules. It is remarkable the extremely good results

in terms of interpretability provided by FS-PD-FPA-S. For

instance, NR drops from 19.2 to 3.1 what means a reduction

of more than 80%. The improvement is also very impressive

with respect to TRL and ARL. Of course, such improvement

implies losing about 6% in ACC (training). Although O-SW

only produces a negligible increase of accuracy, the incre-

ment obtained with O-GT is very significant (about 9%)

regarding both training and test. In consequence, we can say

that sometimes it is worthy spending several minutes (almost

15 min in this case) with O-GT because it can become a very

profitable investment. In addition, it is mandatory to mention

that SD gets very high values for many interpretability

indicators in the case of PIMA. This behavior is especially

significant when considering FDT. Notice that, we have

checked carefully that such values are properly computed

and the abnormal values are due to the huge diversity existing

among the ten folds automatically generated for cross-vali-

dation. As a result, FDT produces sets of rules of very dif-

ferent size and complexity what has an important impact in

the rest of the modeling process.

Table 9 gives an overview on the simplest solutions,

those remarked with symbol [*] in Tables 3, 4, 5, 6, 7, 8

obtained for each problem regarding both the rule induc-

tion method and the simplification strategy. The simplest

solution (called Winner) for each problem is set in bold and

remarked with **.

Table 9 Summary of the

configurations (rule induction

and simplification stages)

yielding the simplest solutions

S S-IC S-DC S-IC-DC Winners

WM IRIS WINE PIMA 0

GLASS

NEWTHYROID

WBCD

FDT **IRIS** **WINE** PIMA 3

NEWTHYROID **GLASS**

WBCD

FPA IRIS WINE **NEWTHYROID** 3

**PIMA** GLASS

**WBCD**

Total 6 7 2 3

Winners 2 1 2 1
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Making a comparison among the proposed rule ranking

options, at first glance S-IC seems to be the best one

because it gives the best results in most cases (seven over

eighteen). Nevertheless, we observe that many times (six

over eighteen) preserving the rule ranking provided by rule

induction (S) yields better results. On the other hand, S-DC

and S-IC-DC only yield the simplest solution in two and

three cases each. However, the two cases in which S-DC

produces the simplest solution correspond to two out of the

six winner cases.

Looking at the rule induction technique, the best choice

depends on the application context. We observe that FDT

gives the best solutions for the three general purpose

classification problems (IRIS, WINE, and GLASS). In turn,

FPA yields the best solutions for the three remaining

problems (NEWTHYROID, WBCD, and PIMA), those

related to medical diagnosis. We should discard WM

because it produces a lot of very specific and long rules

with low generalization ability for all the six problems

under study.

It is interesting to observe how S-IC seems the preferred

strategy for most problems when looking at WM and FPA,

but it is never selected in combination with FDT. This is

due to the intrinsic rule nature that characterizes each rule

induction method. WM and FPA produce quite specific

complete rules (including all inputs). As a result, all rules

have the same initial complexity and in such situation S-IC

becomes the best strategy. Nevertheless, FDT generates

more general incomplete rules where only a subset of

inputs is considered. Therefore, different rules have dif-

ferent complexity depending on their length. In conse-

quence, S-DC and S-IC-DC are able to get better results.

Thus, we can draw the next conclusion: The best simpli-

fication strategy depends on the rule induction technique,

but also on the specific problem under consideration.

Notice that, we would like to remark that the simplification

process exhibits an implicit memory effect because every

simplification step has an influence in the whole series of

subsequent ones. Since S-IC-DC only analyzes one step,

we guess it may achieve even better results keeping a

temporal sliding window, but it would increase signifi-

cantly the computational cost. Hence, it remains an open

research challenge.

Finally, Table 10 shows a comparison between C4.5 and

the best solutions provided by HILK??, those remarked

with symbol [?] in Tables 3, 4, 5, 6, 7, 8. We have com-

puted the difference (Diff) between C4.5 and HILK?? in

such a way that Diff greater than zero means C4.5 gets

larger values than HILK?? for the selected quality indi-

cators. Therefore, a positive Diff regarding accuracy means

C4.5 overcomes HILK??. On the contrary, a positive Diff

in terms of interpretability implies HILK?? is able to

achieve a more compact solution than C4.5. In all data sets,

our method achieves smaller ACC (training) than C4.5, but

it yields almost the same ACC (test). Moreover, HILK??

provides slightly bigger ACC (test) than C4.5 in three of

the analyzed problems. This result remarks the good gen-

eralization ability exhibited by our method. It is translating

the specific rules automatically extracted from data (by

means of well-known rule induction techniques) into quite

general ones much closer to those rules that would be

defined by an expert. With respect to interpretability our

method is definitely powerful. In most problems, HILK??

clearly overwhelms C4.5 regarding all the three indicators.

Only in the GLASS problem HILK?? produces bigger

NR but it is compensated with much smaller TRL and

ARL.

4 Conclusions

This paper has proposed new functionalities (C45-based

feature selection and interpretability-guided rule ranking)

as well as a new way of combining tools (partition design,

rule generation, simplification, and optimization) provided

by the HILK methodology. In consequence, HILK has been

upgraded to a new and powerful HILK?? able to get very

encouraging results.

On the one hand, at first glance the overall methodology

may appear quite complex due to the availability of several

alternative algorithms for each main modeling stage.

Nevertheless, this fact should be seen as one of the main

advantages of HILK??. In practice, methodologies with a

small number of parameters to configure are very attractive

for non-expert users because they are easily applicable.

Unfortunately, default configurations usually do not work

properly when looking for personalized solutions to com-

plex real-world problems. The best configuration of

HILK?? will depend on each specific problem under

consideration but it is important to remark that HILK?? is

flexible enough (thanks to the combination of several

algorithms in each step) to be easily adaptable to a wide

Table 10 Comparison between C4.5 and the best solutions provided

by HILK?? (Diff = C4.5 - HILK??)

Dataset ACC (training) ACC (test) NR TRL ARL

IRIS 0.0191 0.0089 1.7 9.5 1.635

WINE 0.0255 0.0266 1.1 4.2 0.363

GLASS 0.1005 -0.0024 -7.6 33.8 2.53

NEWTHYROID 0.0294 -0.0003 3.4 19.3 1.344

WBCD 0.0047 -0.0025 4.8 24.8 1.07

PIMA 0.0816 0.0034 16.1 95.2 2.77

Mean 0.0435 0.0056 3.25 31.13 1.619

SD 0.0383 0.0111 7.65 33.12 0.9
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range of problems. Of course, based on the achieved

experimental results we may suggest a default configura-

tion for HILK??. Let us propose using FS-PD-FDT-S-

DC-O-SW for general purpose classification problems.

However, we have seen that considering FPA may yield

better results when dealing with medical diagnosis prob-

lems. Anyway, if the default configuration does not give

good results for a specific problem then we should try the

alternatives configurations.

On the other hand, although the main ability of HILK

consisted in combining expert and induced knowledge in

an interpretable and human-oriented way under the same

fuzzy framework, this work has focused only on knowl-

edge automatically generated from data. As a result, we are

exploiting only a small part of the HILK power. None-

theless, this way of working let us make a fair comparison

between HILK?? and other pure machine learning tech-

niques available in the literature. Furthermore, the more

interpretable the automatically generated knowledge base

is the easier the understanding of its linguistic description

becomes, because it is closer to the natural language usu-

ally managed by human beings. In consequence, the

combination between expert and induced knowledge would

be more easy and effective.

In most analyzed problems, our method is able to yield

classifiers more robust, compact and comprehensible than

the ones obtained with C4.5. However, such gain of inter-

pretability is obtained at the cost of a loss of accuracy.

Comparing C4.5 with the simplest classifiers obtained by our

method, we lose, in average (for the six problems), around

4.35% regarding training patterns and only around 0.6% with

respect to test. This reduction of accuracy seems absolutely

reasonable taking into account the simplicity and compre-

hensibility of the classifiers designed. It is very remarkable

the huge reduction of TRL that is (in average) higher than 30.

In addition, our method exhibits a good generalization ability

obtaining similar accuracy for both training and test. This

fact is mainly due to the effective combination of the sim-

plification and optimization procedures.

Regarding the computational cost, the experimental

analysis showed how the largest overhead on runtime is

produced because of the simplification and optimization

stages which may take up to several minutes. It varies a lot

depending on the complexity of the knowledge base under

consideration. Of course, such complexity depends on the

selected rule induction technique but also on the number of

attributes and instances included in the data set. Anyway, it

is kept reasonably small for the whole modeling process in

the six analyzed problems, except for the O-GT strategy

which is usually quite large. Hence, if the execution time

spent in the generation of the model is a critical pre-

requisite in our application, then we may discard the use of

O-GT because O-SW is often able to provide very similar

results with a dramatically smaller runtime in most prob-

lems. However, if we have time enough we can trust on

O-GT. It usually yields accuracy only slightly larger than

O-SW, but sometimes the improvement can be very sig-

nificant like in the PIMA problem. The most difficult task

related to O-GT is how to set the most suitable parameters

of the algorithm with the aim of achieving a good trade-off

between accuracy and runtime. Of course, spending infinite

time does not guarantee to find the global optimum due to

the random nature of genetic tuning. Nevertheless, we have

to admit that adapting the configuration parameters to the

specific characteristics of each problem is likely to reduce

significantly the overall runtime.

In comparison with the previous version of HILK, the

main improvements are obtained thanks to the addition of

the new feature selection stage. It finds out the most sig-

nificant variables but also the most suitable number of

terms per input. In consequence, rule induction techniques

produce a more compact initial rule set what makes easier

and much more efficient and effective the subsequent

simplification and optimization stages. It is especially

important for the scalability of our methodology.

However, more work still remains to be done in order to

extend our method to be successfully applied when dealing

with more complex problems. As future work, we will

incorporate the characteristic ability of HILK for combining

expert and induced knowledge into HILK??. Furthermore,

as a complement to the feature selection process we observe

that it would be nice exploring other voting techniques for

selecting partitions as part of the fuzzy partition design.

Moreover, we should analyze the chance of adding a pre-

processing stage based on other feature selection techniques.
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