
FOCUS

Structural learning of Bayesian networks using local algorithms
based on the space of orderings

Juan I. Alonso-Barba • Luis delaOssa •

Jose M. Puerta

Published online: 16 June 2010

� Springer-Verlag 2010

Abstract Structural learning of Bayesian networks (BNs)

is an NP-hard problem which is generally addressed by

means of heuristic search algorithms. Despite the fact that

earlier proposals for dealing with this task were based on

searching the space of Directed Acyclic Graphs (DAGs),

there are some alternative approaches. One of these

approaches for structural learning consists of searching the

space of orderings, as given a certain topological order

among the problem variables, it is relatively easy to build

(and evaluate) a BN compatible with it. In practice, the

latter methods make it possible to obtain good results, but

they are still costly in terms of computation. In this article,

we prove the correctness of the method used to evaluate

each ordering, and we propose some efficient learning

algorithms based on it. Our first proposal is based on the

Hill-Climbing algorithm, and uses an improved neigh-

bourhood definition. The second algorithm is an extension

of the first one, and is based on the well-known Variable

Neighbourhood Search metaheuristic. Finally, iterative

versions of both algorithms are also proposed. The algo-

rithms have been tested over a set of different domains, and

have been compared with other methods such as Hill-

Climbing in the space of DAGs or Greedy Equivalent

Search, in order to study their behaviour in practice.

Keywords Bayesian networks � Structural learning �
Orderings � Variable Neighbourhood Search

1 Introduction

Learning Bayesian networks is a complex task which has

received a lot of attention from researchers in the area.

Since finding the optimal structure of a network given the

data has been stated as an NP-hard problem (Chickering

1996), it becomes necessary to use heuristic and meta-

heuristic techniques to find quality solutions.

There are several approaches to address structural

learning. Thus, in many related works the search for the

network structure is carried out in the space of Directed

Acyclic Graphs (DAGs). In this respect, there are several

proposals based on greedy (Buntine 1991), local search

(Heckerman et al. 1995), and population-based algorithms

(Larrañaga et al. 1996; Blanco et al. 2003).

The Hill-Climbing (HC) algorithm on the space of

DAGs is one of the most popular algorithms, since it pre-

sents a good trade-off between the quality of the network

obtained and computational demands. Moreover, this

algorithm guarantees that, assuming certain conditions, the

network obtained by it is a minimal I-map of the target

distribution. Some recent studies have tried to improve this

algorithm by constraining the search in order to obtain

more scalable algorithms. The Constrained Hill-Climbing

algorithm (CHC) and the iterated CHC algorithm (iCHC)

(Gámez et al. 2010) are based on the restriction of the

candidate solutions to be evaluated during the search pro-

cess when an independency between variables is found.
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Another proposal in the same line, MaxMin Hill Climbing

(MMHC) (Tsamardinos et al. 2006), is a two-step algo-

rithm that in its first stage tries to identify the parents and

children of each variable and in the second uses a local

search algorithm to look for the network, but with the

search restricted to the set of previously found adjacencies

(parents and children). These algorithms achieve a signi-

ficative reduction in computational demand with respect to

the standard HC algorithm and are scalable to higher

dimensionality domains. However, in Gámez et al. (2010),

it is proved that these algorithms are statistically worse

than the HC algorithm in terms of accuracy.

A different approach, which generally improves on the

results obtained by the above methods, consists of

searching the space of equivalence classes. One of the

algorithms based on this, the Greedy Equivalence Search

(GES) (Chickering 2002), is nowadays the algorithm of

reference in Bayesian network learning. Under certain

conditions, the final solution found by GES is guaranteed to

be a perfect-map of the target distribution. Therefore, this

method is considered to be asymptotically correct. How-

ever, its use is limited in the literature due to the fact that

its implementation is complex. In fact, HC is included in

almost all the BN software (such as Weka (Witten and

Frank 2005), Hugin1 or SamIam2) because of its easy

implementation and its relatively good results in practice,

whereas GES is hardly ever included. One of the very few

reliable and open implementations of GES is the one

included in Tetrad3.

An alternative to the aforementioned approaches con-

sists of searching the space of orderings among the domain

variables. Thus, given a certain topological order, it is

possible to obtain a compatible Bayesian network (Buntine

1991; de Campos and Puerta 2001). Based on this, some

methods assign to each order the score of the network built

from it, and then use search algorithms which traverse the

permutation space.

One of the main advantages of this approach is that each

step in the search makes a more global modification of the

current state, thereby avoiding local maxima more effec-

tively. Moreover, there are three more advantages related

with efficiency: (1) the dimension of the search space is

reduced; (2) the need to perform acyclicity checks on

candidate successors is avoided; (3) it is easy to implement

efficient ordering-based algorithms. Therefore, ordering-

based methods make it possible to obtain good results by

efficiently exploring the search space. However, they are

very costly in terms of computation, since a different

Bayesian network must be built on each evaluation.

In this study, we first propose an efficient method to

evaluate each permutation, and we demonstrate that,

asymptotically, it returns the minimal consistent I-map

given the ordering. Afterwards, we propose several effi-

cient methods which explore the space of orderings by

means of Hill Climbing and Variable Neighbourhood

Search (VNS) algorithms (Mladenović and Hansen 1997).

These methods are based on the use of a particular

neighbourhood operator which enables a significant

reduction in the calculations. Nevertheless, experiments

show that the results obtained with these techniques do not

present a statistical difference with respect to those

obtained with Greedy Equivalence Search (GES), and

improve on Hill Climbing defined over the space of DAGs.

This paper is structured into four sections besides this

introduction. Section 2 introduces some aspects of Bayes-

ian network learning through searching the space of

orderings. Then, in Sect. 3 both the proposed algorithm and

the improvements used to increase its efficiency are

explained in detail. Afterwards an experimental evaluation

is carried out in Sect. 4. Finally, Sect. 5 outlines some

conclusions and sets out some lines for future work.

2 Learning Bayesian Networks: space of orderings

Bayesian Networks (BN) are graphical models that can

efficiently represent n-dimensional probability distribu-

tions. This representation has two components that

respectively codify qualitative and quantitative knowledge:

• A graphical structure, or more precisely, a DAG, G ¼
ðV;EÞ; where the nodes in V = {X1, X2, …, Xn}

represent the random variables4 from the problem

being modelled and the topology of the graph, i.e., the

arcs in E � V� V, encodes conditional (in)dependence

relationships among the variables (by means of the

presence or absence of direct connections between pairs

of variables).

• A set of numerical parameters (H), usually conditional

probability distributions drawn from the graph struc-

ture: For each variable Xi 2 V there is a conditional

probability distribution PðXijpaGðXiÞÞ, where paGðXiÞ
represents any combination of the values of the

variables in PaGðXiÞ, and PaGðXiÞ is the parent set of

Xi in G. From these conditional distributions we can

recover the joint probability distribution over V

because of the Markov Condition:

1 http://www.hugin.com/.
2 http://reasoning.cs.ucla.edu/samiam/.
3 http://www.phil.cmu.edu/projects/tetrad/.

4 We use standard notation, that is, bold font to denote sets and

n-dimensional configurations, calligraphic font to denote mathemat-

ical structures, upper case for variables or sets of random variables,

and lower case to denote states of variables or configurations of states

(vectors).
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PðX1;X2; . . .;XnÞ ¼
Yn

i¼1

PðXijPaGðXiÞÞ

This decomposition of the joint distribution gives rise to

important savings in storage requirements, and also enables

the performance of probabilistic inference by means of

(efficient) local propagation schemes (Jensen and Nielsen

2007).

We denote that variables in X are conditionally inde-

pendent (through d-separation) of variables in Y given the

set Z, in a DAG G by hX;YjZiG. The same affirmation, but

related to a probability distribution p, is denoted by

Ip(X, Y|Z). From these conditions, two definitions arise:

Definition 1 A DAG G is an I-map of a probability dis-

tribution p if hX;YjZiG ) IpðX;YjZÞ. And it is minimal if

there is no arc such that, when removed, the resulting graph

G0 is still an I-map. G is a D-map of p if

hX;YjZiG(¼IpðX;YjZÞ.

Definition 2 When a DAG G is both an I-map and a

D-map of p, it is said thatG and p are isomorphic models (that

is G is a perfect - map of p). Furthermore, a distribution

p is faithful if there exists a graph, G, to which it is faithful.

In a faithful BN hX;YjZiG , IpðX;YjZÞ. It is always

possible to build a minimal I-map of any given probability

distribution p, but some distributions do not admit an iso-

morphic (faithful) model (Pearl 1988). In the rest of this

article, faithfulness will be assumed. Therefore, the terms

d-separation and conditional independence will be used

interchangeably.

The problem of learning the structure of a Bayesian

network can be stated as follows:

Given a training dataset D = {v1, ..., vm} of instances

(configurations of values) of V, find a DAG G� such that

G� ¼ arg max
G2Gn

f ðG : DÞ; ð1Þ

where f ðG : DÞ is a scoring metric (or scoring criterion)

which evaluates the merit of any candidate DAG G with

respect to the dataset D, and Gn is the set containing all the

DAGs with n nodes.

There are many methods for finding G�. The most basic,

based on Local Search algorithms (specifically Hill

Climbing), traverse the search space of DAGs by starting

from an initial solution and performing a finite number of

steps. At each step, the algorithm only considers local

changes, i.e. neighbour DAGs which only differ in one

edge, and chooses the one which leads to the greatest

improvement in f. Finally, the algorithm stops when there

is no local change which improves f. Due to their nature,

local algorithms often get trapped at local optima. In order

to deal with this problem, different strategies such as

restarts, randomness, etc., are used.

The effectiveness and efficiency of a local search pro-

cedure depends on several factors, such as the neighbour-

hood structure considered, the starting solution, or the

capacity for fast evaluation of candidate subgraphs

(neighbours). Thus, the neighbourhood structure is directly

related to the operations used to generate neighbours. The

usual choices to induce local changes when working in the

space of DAGs are arc addition, arc deletion, and arc

reversal. Thus, given a graph G, there are Oðn2Þ possible

changes, n being the number of variables. In the case of BN

learning, this number is slightly smaller, since the appli-

cation of the operators cannot produce any directed cycle.

In relation to the starting solution, there are several

alternatives. Despite the fact that using an empty network

is a valid option, random starting points or perturbed local

optima are frequently used, specially in the case of iterated

local search algorithms.

Finally, the efficient evaluation of neighbours of DAGs

in Local Search algorithms, such as Hill-Climbing, is based

on an important property of scoring metrics: decompos-

ability in the presence of full data. In the case of BNs,

decomposable metrics evaluate a given DAG as the sum of

the scores of the subgraphs formed by each node and its

parents in G. Formally, if f is decomposable, then:

f ðG : DÞ ¼
Xn

i¼1

fDðXi;PaGðXiÞÞ

fDðXi;PaGðXiÞÞ ¼ fDðXi;PaGðXiÞ : Nxi;paGðXiÞÞ;

where Nxi;paGðXiÞ are the statistics of the variables Xi and

PaGðXiÞ in D, i.e, the number of instances in D that match

each possible instantiation of Xi and Pa(Xi).

If a decomposable metric is used, graphs resulting from

changing one arc can be efficiently evaluated. Thus, this

kind of (local) methods reuse the computations carried out

at previous stages, and only the statistics corresponding to

the variables whose parents have been modified need to be

recomputed. This fact makes it possible to reduce the

complexity of each iteration from Oðn2Þ to OðnÞ.

2.1 Search space of orderings

Early algorithms for BN structure learning, like K2 (Cooper

and Herskovits 1992), assumed that a given ordering was

known and then they searched for a network consistent

with such an ordering. However, coming up with a good

ordering requires a significant amount of domain knowl-

edge, which is not commonly available in many practical

applications. However, as these methods allow the trans-

formation of an ordering into a BN, they provide a

mechanism to evaluate such an ordering: evaluating THE

network in question. Therefore, structural learning can be

carried out by searching the space of orderings.
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Given an ordering �, the possible parents sets for any

given variable Xi can be defined as: U i;� ¼ fU : U � Xig,
where U � Xi is defined to hold when all nodes in U pre-

cede Xi in �. The optimal parent set for each node Xi is

simply:

Pa�GðXiÞ ¼ arg max
U2U i;�

fDðXi;U : DÞ ð2Þ

As the decisions for the different nodes do not constrain

each other, this set of selected families provides the

optimal network G�� consistent with �. Without any

restriction on the number of parents for the variables, we

note that any acyclic (directed) graph is consistent with

some ordering. Hence, the optimal network is simply the

network G�� given by:

��¼ arg max
�

f ðG�� : DÞ ð3Þ

Therefore, the optimal network can be found by

searching for the optimal ordering, considering that the

score of an ordering is the score of the best network

consistent with it. In order to do this, the parent set for each

node Xi must be determined. There are two criteria to do

this. Thus, the first one consists of looking for the parent set

that maximizes f, as it is defined in Sect. 2. This problem is

exponential, and there are papers which use an exhaustive

search equipped with a parameter k to limit the size of

parent sets as in Friedman and Koller (2003) and Teyssier

and Koller (2005). On the other hand, the best network can

be defined as the minimal I-map compatible with the given

permutation, that is, we can search for that subset of

parents which make the variable Xi conditionally

independent of the set of predecessors in the ordering

U i;� n Pa�GðXiÞ given the set of parents Pa�GðXiÞ. In this

case, it can be considered that the search is being carried

out in the space of minimal I-maps.

In this study, we consider both approximations at the

same time. In order to do this, the search is carried out with

a version of the K2 algorithm which is equipped with an

additional deletion operation. At each step, the modified

algorithm K2, which will be referred to as K2M, analyzes

all the possible addition and deletion operations, and

chooses independently, for each variable Xi, the one which

produces the highest positive difference with respect to f.

K2M depends on two parameters: The ordering �, and

data D. Thus, the resulting graph G ¼ K2Mð�;DÞ is

composed of the subgraphs Pa�GðXiÞ ¼ K2MðXi;U i;�Þ.
This algorithm has already been used in other papers (de

Campos and Puerta 2001; Blanco et al. 2003), either as part

of a local search algorithm, or with an Estimation of Dis-

tribution Algorithm (EDA). However, K2M has not been

proven yet to be able to find the optimal subset of parents

for each variable. Next, the definitions and results ne-ces-

sary to do that are described (Chickering 2002). The

following concepts will constitute the theoretical basis of

our proposal.

Definition 3 A node or variable X is a collider in a path p
of G if X has two incoming edges, i. e. we have the sub-

graph A! X  B (also known as a head to head node). If

the tail nodes of a collider node are not adjacent in G, i.e. A

and B are not adjacent in G, this subgraph is called a

v-structure in X.

Definition 4 Two DAGs are equivalent if they lead to the

same Essential Graph or CPDAG (Completed Partially

Directed Acyclic Graph), that is, if they share the same

skeleton and the same v-structures. (Pearl 1988).

Definition 5 A scoring metric f is score equivalent if for

any pair of equivalent DAGs G and G0; f ðG : DÞ ¼ f ðG0 : DÞ.

Definition 6 (Consistent scoring criterion)

Let D be a dataset containing m iid samples from some

distribution p. Let G and H be two DAGs. Then, a scoring

metric f is consistent if in the limit as m grows large, the

following two properties hold:

1. If H contains p and G does not contain p, then

f ðH : DÞ[ f ðG : DÞ
2. if H and G contain p, but G is simpler than H (has less

parameters), then f ðG : DÞ[ f ðH : DÞ

A probability distribution p is contained in a DAG G if

there exists a set of parameter values H such that the

Bayesian network defined by ðG;HÞ represents p exactly.

Of course, if two graphs are correct, then the sparser one

should receive more merit. This is the basis for defining a

criterion score as consistent.

Definition 7 (Locally consistent scoring criterion)

Let G be any DAG, and G0 the DAG obtained by adding

edge Xi ! Xj to G. A scoring metric is locally consistent if

in the limit as data grows large the following two

conditions hold:

1. If :IpðXi;XjjPaGðXjÞÞ, then f ðG : DÞ\f ðG0 : DÞ
2. If IpðXi;XjjPaGðXjÞÞ, then f ðG : DÞ[ f ðG0 : DÞ

Chickering (2002) also proves that the BDe, BIC and

MDL scoring criteria are score equivalent, consistent and

locally consistent when we suppose that D constitutes a

sample which is isomorphic to a graph. The following

proposition gives us the way to correctly evaluate

(asymptotically) a given order using the K2M algorithm:

Proposition 1 Let D be a dataset containing m iid sam-

ples from some distribution p. Let Ĝ be the DAG obtained

by running the K2M algorithm for each variable Xi; Ĝ ¼
K2Mð�;DÞ: If the metric f used to evaluate DAGs is

consistent and locally consistent, then Ĝ is a minimal

I-map of p in the limit as m grows large.
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Proof Firstly, we will prove that Ĝ is an I-map of p. Let

us suppose the contrary, i.e., Ĝ is not an I-map of p. Then

there is at least one pair of variables Xi and Xj such that

Xi;XjjPaĜðXiÞ
� �

Ĝ and :IpðXi;XjjPaĜðXiÞÞ. Thus, Ĝ cannot

be a local optimum of f because the addition of arc Xj ! Xi

has a positive difference.

Finally, we will prove the minimal condition. Again let

us suppose the contrary, that is, there exists Xj 2 PaĜðXiÞ
such that IpðXi;XjjPaĜðXiÞ n fXjgÞ. If so, Ĝ cannot be a

local optimum because there is (at least) one deletion

operation with a positive difference. h

The importance of the result lies in the fact that, given

the correct order among the variables, it guarantees under

faithful conditions (as the GES algorithm does), that K2M

would obtain the correct Bayesian network. Moreover, if

evaluating a given ordering � with the K2M algorithm, a

minimal I-map would be obtained.

3 Local algorithms: HCbO and VNSbO

To define a local method, a neighbourhood operation which

transforms one solution to another must be defined. In the

case of permutations, used to represent the orderings, it is

usual to consider swapping between variables. However,

there are alternatives which may allow the optimization of

the search procedure. Thus, the algorithms presented in this

study are based on the use of an insertion operator which

enables a considerable reduction, in the case of local-

search-based algorithms, in calculations when building the

Bayesian network consistent with each ordering.

The proposed insertion operator is defined as follows: for

different indexes i and j, the insert operator modifies the

ordering �, generating a new ordering �0 by moving the

variable in position i to position j in the new ordering. If j [ i,

the variables in positions (i, j] are moved one position

backward in the ordering. Else, if j \ i, the variables in

positions [j, i) are moved one position forward in the order-

ing. Examples of these definitions can be seen in Figs. 1 and 2.

3.1 The ordering-based Hill-Climbing: HCbO

Once a local operator, such as the previous one, is defined,

a greedy Hill-Climbing algorithm based on Orderings

(HCbO) can easily be implemented. On each iteration, the

algorithm moves from the ordering �k to the ordering �kþ1

by applying the neighbourhood operation which produces

the network which the highest positive difference with

respect to that obtained from �k. The algorithm stops when

any neighbour improves on the current one.

The evaluation of all the possible insert operations in an

iteration of the HCbO algorithm can be very expensive in

terms of computation, since each one produces a new order

which must be evaluated, i.e. a network must be built and

then f must be calculated. However, the use of the insertion

operator makes it possible to carry out some improvements

which speed up these operations significantly. These

improvements are explained in detail below.

3.1.1 First improvement

The first improvement, used in previous studies (Friedman

and Koller 2003; de Campos and Puerta 2001; Teyssier and

Koller 2005), allows the reduction of the number of com-

putations of parent sets needed in any insert operation

Insert ð�; i; jÞ, from n to |i - j| ? 1. Thus, the computation

of the parent sets for those variables which are not located

between the variables at positions i and j can be omitted, as

the set of variables preceding them is the same in � and �0.
Figure 3a shows an example of the situation where this

improvement can be applied. As can be seen, the relative

ordering for variables A, B, G and H for Insert(�; 3; 6) is

the same after and before the insertion.

3.1.2 Second improvement

The second improvement speeds up the computation of some

insert operations, Insert(�; i; j), if the insertion of the vari-

able in position i at another position has already been eval-

uated. Figure 3b shows the insertion of a variable at different

positions. Let us suppose that �0¼ Insertð�; 3; 4Þ has

already been calculated, and let us focus on the operation

�00¼ Insertð�; 3; 5Þ. Taking into account the first improve-

ment, it is only necessary to recompute the parent set of the

variables located between D and C. However, as can be seen

in Fig. 3b, the position of the variable D after both insertions

is the same. So, it is only necessary to recompute two dif-

ferent parent sets in this operation (E and C).

These two improvements allow an efficient implemen-

tation of the insert operation. It is possible to compute only

Fig. 1 Definition of the forward insertion and an example

Structural learning of Bayesian networks using local algorithms 1885
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two parent sets in each insert operation if they are com-

puted in the correct order, i.e. computing Insertð�; i; j� 1Þ
before Insertð�; i; jÞ if j [ i ? 1 and Insertð�; i; jþ 1Þ
before Insertð�; i; jÞ if j \ i - 1.

3.1.3 Third improvement

The third improvement uses the computations performed in

an iteration of the algorithm to skip some computations in the

next iteration. In order to clarify the explanation, this

improvement will be described individually, without con-

sidering the previous improvements. Figure 3c shows an

example of the insert operation in two consecutive iterations.

The algorithm has moved from �k�1 to �k using the oper-

ation Insertð�k�1; 3; 5Þ. In iteration k, for instance, the

algorithm needs to compute the operator Insertð�k; 2; 7Þ
(note that Insertð�k�1; 2; 7Þ has already been computed).

According to the situation described in the figure, the posi-

tions of the variable A and the subset of variables located

between F and H are the same in the operations in �k�1 and

�. Therefore, it is only necessary to compute the new parent

set for variables C, D and E, that is, the variables modified by

the current insertion but also by the previous accepted

insertion. As a direct consequence of this improvement, if the

intersection between the previous accepted insertion and the

current insertion is null, the computation of the parent sets for

all the variables can be omitted.

Analyzing the impact of each one of the proposed

improvements on the complexity of the algorithm, it can be

seen that the largest reduction is produced by the second

improvement, which allows a reduction of order n on

average.

The first improvement makes Oðn3Þ calls to the K2M

algorithm. Since there are n variables which can be inserted

in n - 1 positions and, for each position there are, on

average, n/2 positions between the indexes used in the

insertion operation, the complexity is given by Oðn�
ðn� 1Þ � n=2Þ.

If considering the second improvement, it is only nec-

essary to calculate two new parent sets on each operation,

one for each of the affected indexes. Therefore, as there are

n variables which can be inserted in n - 1 positions, and

each insertion operation makes only 2 calls to the K2M

algorithm, the complexity reached with the second

improvement is Oðn� ðn� 1Þ � 2Þ ¼ Oðn2Þ.
The third improvement only reduces the variables that

are outside the intersection between the current and the

previous orderings. Thus, assuming n/2 variables in com-

mon between the two orderings on average, complexity can

be reduced from n to n/2, yielding Oðn� n=2Þ ¼ Oðn2Þ.

Fig. 2 Definition of the backward insertion and an example

Fig. 3 Example of the improvements (a Example of the first improvement, b example of the second improvement, c example of the third

improvement). Only parent sets for the highlighted variables need to be recomputed

Fig. 4 Behaviour of the maximum radius parameter. Only the

insertion of variable X between positions i - rm and i ? rm is

considered
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Even considering the improvements presented, the

computation of the insertions could be very expensive. For

this reason, the proposed algorithm can use a parameter

(named maximum radius) that limits the possible opera-

tions. Thus, if a maximum radius rm is set, for each variable

X in position i it only considers the insertion of this variable

at positions j 2 ½i� rm; iþ rm� (see Fig. 4). This makes it

possible to reduce the number of calls to the K2M algo-

rithm, since the neighbours which are not considered are

precisely those which need more calls to be evaluated.

The pseudocode for the above method can be seen in

Algorithm 1. The function Evaluate(Insertð�k; i; jÞ) has

implemented the improvements described previously and

the function Evaluate(�0) simply executes K2Mð�0;DÞ:

Finally, it is necessary to point out that, as using a

maximum radius limits the neighbourhood of an ordering,

some orderings cannot be reached in one step. However, it

is possible to obtain such orders with two or more inter-

mediate steps.

3.2 VNS based on orderings: VNSbO

Given an ordering, the number of neighbour orderings is

directly proportional to the maximum radius. So, for big

values of the maximum radius, the number of neighbours

that the HCbO needs to evaluate in each iteration can still

be high. Therefore, it seems worth starting with a small

value for the maximum radius and increasing it during the

execution of the algorithm.

The VNS (Mladenović and Hansen 1997) algorithm

works with different neighbourhood definitions. In our

proposal, called VNSbO, each neighbourhood definition is

determined by the value of the current radius (see Fig. 5).

At each iteration of the algorithm, if none of the neighbours

of the current ordering improves it, the current radius r is

increased by one unit. Otherwise, the algorithm moves

from the current ordering to the best neighbour ordering

and sets r to 1. The algorithm stops when r is bigger than

the maximum radius previously established. If we set rm

equal to n - 1 (number of variables minus one) we say that

we have a VNSbO without radius restriction.

The pseudocode for VNSbO can be seen in Algorithm 2.

3.3 Iterated versions of HCbO and VNSbO

Considering the behavior of the previous algorithms, there

are two aspects which should be mentioned:

Fig. 5 Radius-based hierarchical neighborhood for VNS algorithm.

Variable r defines the neighbourhood. When r = k only the insertion

of variable X in positions i - k and i ? k is considered
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• First, given a good initial ordering, the algorithms

provide better results and, more importantly, are less

time consuming in the execution.

• Second, in order to achieve good initial orderings at

early stages in the algorithm, it may not be necessary to

be so strict when finding the best set of parents for each

variable.

Following the scheme used with the VNS algorithm

above, we can consider starting to look for more restricted

parents sets in order to find good orderings at these early

stages. Then, the complexity of the parent sets can be

increased to refine this search. In this study, we propose

two iterated algorithms based on HCbO and VNSbO. In

these new algorithms, called iHCbO and iVNSbO (Algo-

rithms 3 and 4) respectively, the search will start with a

size of one for the parent sets for each variable. Later, when

getting stuck in a local optimum, the maximum size of pare-

nts sets will be increased by one unit, launching then into

another local search. This procedure continues until two

consecutive iterations obtain the same Bayesian network.

In this case the procedure EvaluatesðInsertð�k; i; i� rÞÞ
is restricted to search parent sets limited to size s.

4 Experimental evaluation

In this section, we describe a set of experiments aimed at

testing the performance of the algorithms presented in this

paper. Below we provide details about the implementation

of the algorithms, the datasets used in this comparison, the

indicators we chose to argue about the goodness of each

algorithm and, to end the section, we give the results and

their analysis.

4.1 Experimental setup

In Gámez et al. (2010), the authors compare some of the

latest algorithms proposed to carry out the task of learning

Bayesian networks. As was remarked in the introduction,

the results obtained show that there are some proposals that

are more efficient than standard Hill-Climbing in the space

of DAGs. However, in terms of accuracy, the compared

algorithms are worse than the Hill-Climbing algorithm.

For this reason, in this section, our proposed algorithms

are compared with standard Hill-Climbing defined over the

space of DAGs (HC), and the Greedy Equivalence Search

Algorithm (GES) (Chickering 2002).
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The actual implementation includes the improvements

presented previously, was coded in Java and interacts with

the WEKA library for dataset management. The imple-

mentation of HC includes all the common optimizations

suggested in the literature. The implementation of GES is

based on the one included in Tetrad4:3:9, adds the

optimizations suggested in Chickering (2002), and uses

the same scoring function as the rest of the algorithms. The

GES algorithm is executed without limitation on the

maximum number of parents when this is possible.

The score metric used in the algorithms is the Bayesian

Dirichlet equivalent in its uniform prior version BDeu

(Heckerman et al. 1995). The equivalent sample size (N0)
used in the experiments is 10, and the network priors

are calculated as in Chickering et al. (1995), where k =

1/(N0 ? 1). As the proposed algorithms are stochastic, we

report, for each dataset and algorithm, the execution of 30

independent runs with 30 random initial orderings. For HC

and GES the initial DAG is the empty one as usual.

Finally, in order to test the algorithms, we have selected

from different sources eight networks to test the algorithms

with different sizes and characteristics: ALARM (Beinlich

et al. 1989), BARLEY (Kristensen and Rasmussen 2002),

CHILD (Cowell et al. 2003), HAILFINDER (Jensen and

Jensen 1996), INSURANCE (Binder et al. 1997), MILDEW

(Jensen and Jensen 1996), MUNIN version 1 (Andreassen

et al. 1989) and PIGS (Jensen 1997), all of them commonly

used in the literature. Table 1 shows the main character-

istics of these networks. As can be seen, some of them

represent domains with few variables, like ALARM and

CHILD, whereas others model complex domains with

hundreds of variables, such as MUNIN version 1 or PIGS.

For each one of the networks we obtained a dataset by

sampling 5,000 instances from it. Each dataset was given

the same name as its corresponding network.

4.2 Empirical results

To compare the algorithms described in the previous

section, we have considered two kinds of factors as

performance indicators: the quality of the network obtained

by the algorithm, given by the value of the score metric

(BDeu) for the resulting model; and the complexity of each

algorithm, given by the number of computations of the

score metric.

Table 2 shows the BDeu score of the algorithms HC,

GES, the unconstrained versions (no radius restriction) of

HCbO and VNSbO and also the iterated versions, iHCbO and

iVNSbO. The results shown for the database HAILFINDER

and the GES algorithm (marked with asterisk) were obtained

by limiting the maximum number of parents to 4 (the max-

imum in degree of the real network). We did this because the

algorithm was not able to finish the execution without this

limitation. This problem with the GES algorithm is due to

variable X2 that has 1 parent and 16 children such that none of

them have any other parent (Fig. 6). For this reason, when

transforming the HAILFINDER database to a CPDAG,

variable X2 has 17 undirected edges adjacent to it. In general,

in this kind of structures, where a variable has a large number

of children that do not have other parents (i.e. a Naive Bayes

structure), GES is exponential in the number of variables

involved in the structure.

For a more rigorous analysis of the BDeu results in

Table 2, we performed a Friedman rank test (Friedman,

1940) as suggested in the literature (Demšar 2006; Garcı́a

and Herrera 2008) to compare the relative performance of

multiple algorithms across multiple data sets. Table 3

shows the average rankings of the algorithms calculated in

order to perform the Friedman test. With a 95% confidence

level, we can reject the hypothesis that all algorithms are

equivalent for all eight scenarios. We also performed a

post-hoc analysis using Holm’s procedure (Holm 1979).

The numerical results are shown in Table 4, where Holm’s

procedure rejects those hypotheses that have a p value

	 0:00417. So, according to the test, HC is the worst

algorithm, and it presents statistical differences with

respect to the rest of the algorithms. The rest of the algo-

rithms do not present statistical differences between them.

A summary of the results for the number of computa-

tions of the metric are shown in Table 5. We performed the

Table 1 Bayesian networks

used in our experimental

evaluation

For each network, we indicate

the number of variables, edges,

average number of states per

variable, minimum and

maximum number of states and

maximum number of parents

and children

Variables Edges Average states Min–max states Max. in–out degree

A-LARM 37 46 2.84 2–4 4–5

BARLEY 48 84 8.77 2–67 4–5

CHILD 20 25 3.00 2–6 2–7

HAILFINDER 56 66 3.98 2–11 4–16

INSURANCE 27 52 3.30 2–5 3–7

MILDEW 35 46 17.60 3–100 3–3

MUNIN 1 189 282 5.26 1–21 3–15

PIGS 441 592 3.00 3–3 2–39
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same tests that we used with the BDeu results in order to

compare the complexity of the algorithms. We excluded

from this test the algorithm HC because it is statistically

worse than the other ones. Including HC in the comparison

would add noise as it would be selected as the control

algorithm in the test. Table 6 shows the average rankings

of the algorithms. The result of the Friedman test is that we

can reject the hypothesis that all algorithms are equivalent.

Finally, the result of the Holm’s procedure is shown in

Table 7, where those hypotheses that have a p value

	 0:00714 are rejected. The main result obtained is that

there is no statistical difference, in terms of the number of

computations of the metric, between GES and the algo-

rithms VNSbO, iHCbO and iVNSbO.

In order to compare our algorithms not only at the end of

their execution, but also during the execution, we have also

studied the BDeu score and the Structural Hamming Dis-

tance (SHD) at each iteration. When the first network is

learned, and after each accepted insertion, we measure the

BDeu score of the resulting network and the SHD with

respect to the original network. The SHD is defined in

Table 2 BDeu score of the networks obtained by the proposed algorithms

HC GES HCbO VNSbO iHCbO iVNSbO

ALARM1 -49,313 –49,163 –48,699 –48,675 –48,717 –48,764

BARLEY –290,677 2286,309 -287,162 -287,703 -287,884 -288,503

CHILD -61,896 261,761 -61,809 -61,868 -61,770 -61,862

HAILFINDER -253,169 2253,010* -253,107 -253,123 -253,159 -253,134

INSURANCE -68,542 -68,216 268,130 -68,132 -68,159 -68,174

MILDEW -259,433 2259,262 -259,424 -259,439 -259,415 -259,449

MUNIN1 -236,081 -231,365 -223,399 2223,174 -224,517 -223,874

PIGS -1,684,333 21,681,903 -1,682,391 -1,682,379 -1,682,481 -1,682,492

Boldface indicates the best result for each dataset

Partial HAILFINDER DAG

Partial HAILFINDER CPDAG

Fig. 6 Partial HAILFINDER DAG and CPDAG. Both graphs were

obtained by removing from the complete network variables not in the

Markov blanket of variable X2

Table 3 Average rankings of the algorithms for the BDeu score

Algorithm Ranking

HC 5.75

GES 2.5

HcbO 2.25

VNSbO 2.75

iHCbO 3.375

iVNSbO 4.375

Table 4 Statistical analysis of results of Table 2

i Algorithms z = (R0 - Ri)/SE p Holm

15 HC versus HcbO 3.74166 0.00018 0.00333

14 HC versus GES 3.47440 0.00051 0.00357

13 HC versus VNSbO 3.20713 0.00134 0.00385

12 HC versus iHCbO 2.53898 0.01112 0.00417

11 HcbO versus iVNSbO 2.27172 0.02310 0.00455

10 GES versus iVNSbO 2.00446 0.04502 0.005

9 VNSbO versus iVNSbO 1.73720 0.08235 0.00556

8 HC versus iVNSbO 1.46994 0.14158 0.00625

7 HcbO versus iHCbO 1.20268 0.22910 0.00714

6 iHCbO versus iVNSbO 1.06904 0.28505 0.00833

5 GES versus iHCbO 0.93541 0.34957 0.01

4 VNSbO versus iHCbO 0.66815 0.50404 0.0125

3 HcbO versus VNSbO 0.53452 0.59298 0.01667

2 GES versus HcbO 0.26726 0.78927 0.025

1 GES versus VNSbO 0.26726 0.78927 0.05

Holm’s test for a = 0.05. Boldface indicates rejected hypothesis
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Complete Partially Directed Acyclic Graphs (CPDAGs)

instead of in Directed Acyclic Graphs (DAGs). So, first we

transform the networks into their corresponding CPDAGs,

and then the SHD is computed as the number of the fol-

lowing operators required to make the CPDAGs match: add

or delete an undirected edge, and add, remove, or reverse

the orientation of an edge.

In Fig. 7 we plot the BDeu score and SHD against the

number of score computations at each iteration of four

representative networks (ALARM, INSURANCE, MUNIN

1 and PIGS) obtained by applying the procedure described

in the previous paragraph. The minimum values on the

y-axis in the BDeu graphs are adjusted to fit the values

obtained by the HCbO and VNSbO algorithms in order to

obtain better detail in the rank of BDeu values that are

more important. The iterated algorithms usually obtain low

BDeu scores in their first steps due to fact that the

maximum number of parents is set to small values. For this

reason, fitting the y-axis to represent also the first iterations

of these algorithms would reduce the resolution of the

graphs at the end of the algorithms. The graphs also show

the final result obtained by GES and HC. From these

graphs the following conclusions can be drawn:

• Usually, as the BDeu score increases, the SHD

decreases.

• HCbO performs a large number of computations in the

first iteration. By contrast, VNSbO does not have this

problem because of the use of a small radius in the

initial steps.

• In spite of the fact that iterated algorithms usually

obtain low BDeu scores in their first steps, the networks

they have learnt when they reach the point (in number

of computations) where VNSbO and HCbO find their

initial networks, are better.

• In the ALARM, INSURANCE and MUNIN 1 datasets,

the networks learnt by the iterated algorithms when

they reach the number of computations where GES

finishes, are better than the final network obtained by

GES.

• There is a common pattern in the graphs with the

iHCbO algorithm. First, the BDeu score increases in a

small number of computations of the metric, and then,

the BDeu score remains at the same value during a

large number of computations. This happens when the

algorithm increases the maximum number of parents. A

new network is learnt with the same ordering, but with

the new maximum of parents. The new network usually

increases the quality of the previous network. Then, the

iHCbO algorithm computes all the possible insert

operations. This last step performs a large number of

computations of the metric, but the quality of the

network is not increased in the process.

• The iVNSbO algorithm presents a similar pattern to the

one presented by the iHCbO. It also presents a big

improvement of the BDeu score in a small number of

computations when the maximum number of parents is

increased, but then it does not present a large number of

computations without increasing the BDeu score.

Table 5 Number of

computations of the score

metric

HC GES HCbO VNSbO iHCbO iVNSbO

ALARM1 3,201 5,878 14,268 11,877 8,341 8,336

BARLEY 4,744 9,084 11,080 9,957 8,959 8,954

CHILD 901 3,547 2,352 1,894 1,525 1,503

HAILFINDER 6,541 38,022* 18,580 15,898 13,865 13,427

INSURANCE 1,894 3,195 6,585 5,295 3,916 3,809

MILDEW 2,305 3,507 4,189 3,819 3,418 3,470

MUNIN1 75,766 156,193 307,763 240,963 184,624 175,774

PIGS 527,089 552,732 2,356,271 1,911,619 1,198,004 1,157,968

Table 6 Average rankings of the algorithms for the number of calls

Algorithm Ranking

GES 2.0

HcbO 3.75

VNSbO 2.75

iHCbO 1.5

Table 7 Statistical analysis of results of Table 5 excluding HC

i Algorithms z = (R0 - Ri)/SE p Holm

10 HcbO versus iVNSbO 3.9528 0.00008 0.0050

9 HcbO versus iHCbO 3.00416 0.00266 0.00556

8 GES versus HcbO 2.84605 0.00443 0.00625

7 VNSbO versus iVNSbO 2.68793 0.00719 0.00714

6 VNSbO versus iHCbO 1.73925 0.08199 0.00833

5 GES versus VNSbO 1.58114 0.11385 0.01

4 HcbO versus VNSbO 1.26491 0.20590 0.0125

3 GES versus iVNSbO 1.10680 0.26838 0.01667

2 iHCbO versus iVNSbO 0.94868 0.34278 0.025

1 GES versus iHCbO 0.15811 0.87437 0.05

Holm’s test for a = 0.05. Boldface indicates rejected hypothesis
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• In some cases, when the number of parents is increased,

the SHD of the newly learnt network increases. This

happens because the ordering used to learn the network

was a local optimum given the previous maximum

number of parents, but this ordering was not good given

the new value.

We also performed an analysis of how the maximum

radius affects both the accuracy and speed of the algo-

rithms. The maximum radius (rm) is set proportionally to

the number of variables in the dataset using factors 0.2, 0.4

and 0.6. The results are shown in Fig. 8, where we show

the graphs of two representative networks, ALARM and
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Fig. 7 BDeu score versus number of calls and SHD versus number of calls for the databases ALARM, INSURANCE, MUNIN 1 and PIGS.

Dotted lines represent the results obtained by HC and dashed lines the ones obtained by GES
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PIGS. The graphs obtained with the other datasets are

similar to the ones included. From this last experiment, we

can reach the following conclusions:

– As expected, the final score increases as the maximum

radius increases and the number of computations

decreases as the maximum radius decreases.

– The number of computations made by the HCbO

algorithm in the first iteration can be reduced by

constraining the radius, but, in general, the final results

obtained with this approach are not good.

– Constraining the radius in VNSbO determines when the

algorithm finishes. However, the unconstrained version
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Fig. 8 BDeu score versus number of calls and SHD versus number of calls of the constrained versions of the algorithms for the databases

ALARM and PIGS
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of VNSbO outperforms the constrained versions for

any given number of score computations. It seems

better to run the unconstrained version of VNSbO and

stop it when wanted than to use a constrained version.

5 Conclusions and future work

In this paper, we have presented a correct way to evaluate a

given ordering when using the space of orderings for

structural learning of Bayesian networks, which consists of

a modified version of the well-known K2 algorithm

equipped with a deletion operation. Moreover, we have

introduced a new neighbourhood operator based on inser-

tion as an alternative to the classical swapping operation.

This last choice allows improvements in the computations

of the neighbourhood, also presented in this paper, which

save a lot of parent set computations. We have also pre-

sented two local methods based on the previous operator.

One is the classical Hill-Climbing search, and the second is

a VNS method. This last method can be viewed as the

natural extension which automatically adapts the use of the

parameter radius during the search. Finally, we have also

presented variants of the methods that allow us to reduce

the number of computations performed by the algorithms.

The variant consists of running the algorithms in an iterated

way, increasing the maximum numbers of parents in each

run.

From the experiments, we can conclude that HCbO and

VNSbO, and their iterated variants iHCbO and iVNSbO,

improve on classical HC based on searching the DAGs

space in terms of accuracy. Constraining the radius is not

the best choice to speed up the algorithms, because the

results obtained usually are a little worse. However, the

iterated approach speeds up the algorithms and maintains

the same performance as the base algorithms. In particular,

iHCbO appears to be the best choice considering both

complexity and effectivity.

In relation with the GES algorithm, which is considered

the reference algorithm for BN learning, the results

obtained with the proposed algorithms do not present a

significant difference with respect to those obtained with

this algorithm in terms of accuracy. In terms of the number

of score computations, only HCbO performs significantly

more computations than GES. Compared with GES, there

are no statistical differences between it and VNSbO,

iHCbO or iVNSbO. However, if comparing from a prac-

tical point of view, our algorithms are significantly easier

to implement. Another problem with the GES algorithm is

the need to establish a maximum number of parents in

order to assure that the algorithm does not have problems.

In the future, we plan to study how to save more com-

putations in order to speed up the algorithms. This objec-

tive can be achieved by searching more restricted

neighbourhoods, but assuring that the behaviour of the

algorithms is the same. Also, we can use the structure of

the BN for a given ordering to characterize the minimal

number of operations to be evaluated in the next step of the

local algorithm.
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