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Abstract Unique input–output (UIO) sequences have

important applications in conformance testing of finite state

machines (FSMs). Previous experimental and theoretical

research has shown that evolutionary algorithms (EAs) can

compute UIOs efficiently on many FSM instance classes,

but fail on others. However, it has been unclear how and to

what degree EA parameter settings influence the runtime

on the UIO problem. This paper investigates the choice of

acceptance criterion in the (1 ? 1) EA and the use of

crossover in the ðlþ 1Þ Steady State Genetic Algorithm. It

is rigorously proved that changing these parameters can

reduce the runtime from exponential to polynomial for

some instance classes of the UIO problem.

Keywords Finite state machines �
Unique input–output sequences � Evolutionary algorithms �
Runtime analysis � Crossover operator

1 Introduction

Evolutionary algorithms (EAs) are general purpose opti-

misation algorithms. Although problem domain knowledge

is useful, EAs can in principle be applied with little

problem domain knowledge, only requiring the user to

provide the algorithm with a set of candidate solutions and

a way of measuring the quality of each candidate solution.

This generality allows EAs to be applied in diverse prob-

lem domains, as has been documented extensively. In

practice, the application of EAs is often not straightforward

as it is often necessary to adjust the parameter settings to

the problem at hand. Due to a poor understanding in how

and why genetic operators influence the search process, this

parameter tuning is often expensive.

Theoretical research like runtime analysis will seldom

provide optimal parameter settings for specific real world

problems. However, it may provide insight into how and

why EAs work and sometimes fail. In particular, a theo-

retical analysis can point out simple general cases where

the choice of a genetic operator has a particularly important

effect on the runtime. Equipped with an understanding of

how EAs behave in such archetypical cases, a practitioner

will be able to make better informed decisions as to how to

choose parameter settings on a specific real world problem.

This paper analyses rigorously the influence of genetic

operators on the problem of computing unique input–

output (UIO) sequences from deterministic finite state

machines (FSMs), a computationally hard problem from

the software engineering domain (Lehre and Yao 2007).

UIOs have important applications in conformance testing

of FSMs (Lee and Yannakakis 1996). Similarly to other

approaches in search-based software engineering (Clarke

et al. 2003), the UIO problem has been reformulated as an

optimisation problem and tackled with EAs (Derderian

et al. 2006, Guo et al. 2004). Experimental results show

that EAs can construct UIOs efficiently on some instances.

Guo et al. (2004) compared an evolutionary approach with

a random search strategy, and found that the two
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approaches have similar performance on a small FSM,

while the evolutionary approach outperforms random

search on a larger FSM. Derderian et al. (2006) presented

an alternative evolutionary approach, confirming Guo

et al’s results.

Previous theoretical results confirm that EAs can out-

perform random search on the UIO problem (Lehre and

Yao 2007). The expected running time of (1 ? 1) EA on a

counting FSM instance class is Oðn log nÞ; while random

search needs exponential time (Lehre and Yao 2007). The

UIO problem is NP-hard (Lee and Yannakakis 1996), so

one can expect that there exist EA-hard instance classes. It

has been proved that a combination lock FSM is hard for

the (1 ? 1) EA (Lehre and Yao 2007). To reliably apply

EAs to the UIO problem, it is necessary to distinguish easy

from hard instance classes. Theoretical results indicate that

there is no sharp boundary between these categories in

terms of runtime. For any polynomial nk; there exist UIO

instance classes where the (1 ? 1) EA has running time

HðnkÞ (Lehre and Yao 2007).

Do EA settings have any significant impact on the

chance of finding UIOs efficiently? Guo et al. (2005)

hypothesise that crossover is helpful, without giving further

evidence than two example sequences that recombine into

a UIO. This paper provides, for the first time, rigorous

theoretical results that prove that crossover can be essential

for finding UIO in polynomial time. The results also show

how modifying the acceptance criterion of an EA can have

a similarly drastic impact on the runtime. The remaining of

this section provides preliminaries, followed by the main

results in Sects. 2 and 3.

In this paper, we will consider deterministic Mealy

FSMs which can be defined as follows.

Definition 1 (Finite state machine) A finite state

machine (FSM) M is a quintuple, M ¼ ðI;O; S; d; kÞ; where

I is the set of input symbols, O is the set of output symbols,

S is the set of states, d : S� I ! S is the state transition

function and k : S� I ! O is the output function.

When receiving input symbol x, the machine makes the

transition from its current state s to a next state dðs; xÞ and

outputs symbol kðs; xÞ: The functions k and d are gener-

alised to the domain of input sequences in the obvious way.

Definition 2 (Unique input–output sequence) A unique

input–output sequence (UIO) for a state s in an FSM M is a

string x over the input alphabet I such that kðs; xÞ 6¼ kðt; xÞ
for all states t; t 6¼ s:

Definitions 1 and 2 are illustrated in Fig. 1. An edge

ðsi; sjÞ labelled i=o defines the transition dðsi; iÞ ¼ sj and

the output kðsi; iÞ ¼ o: The input sequence 0202 is a UIO

for state s1; because only starting from state s1 will the

FSM output the sequence aaab. The single input symbol 2

is a UIO for state s2; because only state s2 has output b on

input 2. This FSM does not have any distinguishing

sequence, because for every input symbol x in the FSM,

there exist at least two states s and t such that kðs; xÞ ¼
kðt; xÞ and dðs; xÞ ¼ dðt; xÞ:

To compute UIOs with EAs, candidate solutions are

represented as strings over the input alphabet of the FSM,

which is here restricted to I ¼ 0; 1f g (Guo et al. 2004).

Although the shortest UIOs in the general case can be

exponentially long with respect to the number of states

(Lee and Yannakakis 1996), all the instance classes pre-

sented here have UIOs of length n. The objective in this

paper is to search for an UIO of length n for state s1 in

various FSMs, where the fitness of a input sequence is

defined as a function of the state partition tree induced by

the input sequence (Guo et al. 2004; Lehre and Yao 2007).

Definition 3 (UIO fitness function) Given a finite state

machine M with m states, the associated fitness function

UIOM;s : In ! N is defined as

UIOM;sðxÞ :¼ m� cMðs; xÞ;

where the function cM is defined as

cMðs; xÞ :¼ t 2 S j kðs; xÞ ¼ kðt; xÞf gj j:

Fig. 1 FSM with corresponding

state partition tree for the input

sequence 0202
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The instance size of fitness function UIOM;s1
is here

defined as the length of the input sequence n. The value of

cMðs; xÞ is the number of states in the leaf node of the state

partition tree containing node s, and is in the interval from

1 to m. If the shortest UIO for state s in FSM M has length

no more than n, then UIOM;s has an optimum of m� 1;

where m is the number of states. The following obvious

lemma will be useful when characterising fitness functions

corresponding to FSMs.

Lemma 1 For any FSM M ¼ ðI;O; S; d; kÞ and pair of

states s; t 2 S and pair of input sequences x; y 2 I�; if

kðs; xyÞ ¼ kðt; xyÞ then kðs; xÞ ¼ kðt; xÞ:

Proof If kðs; xyÞ ¼ kðs; xÞ � kðdðs; xÞ; yÞ equals kðt; xyÞ ¼
kðt; xÞ � kðdðt; xÞ; yÞ; then kðs; xÞ ¼ kðt; xÞ: h

The goal of analysing the runtime of a search algorithm

on a problem is to derive expressions showing how the

number of iterations the algorithm uses to find the optimum

depends on the problem instance size. The time is here

measured as the number of fitness evaluations.

Definition 4 [Runtime (Droste et al. 2002; He and Yao

2004)] Given a class F of fitness functions fi : Si ! R;

the runtime TA;F ðnÞ of a search algorithm A is defined as

TA;F ðnÞ :¼ max TA;f j f 2 F n

� �
;

where F n is the subset of functions in F with instance size

n, and TA;f is the number of times algorithm A evaluates the

cost function f until the optimal value of f is evaluated for

the first time.

For a randomised search algorithm A, the runtime

TA;F ðnÞ is a random variable. Runtime analysis of ran-

domised search heuristics estimates properties of the dis-

tribution of TA;F ðnÞ; in particular, the expected runtime

E TA;F ðnÞ
� �

; and the success probability, which for a time

bound t(n) is defined as Pr TA;F ðnÞ� tðnÞ
� �

: The analysis

uses standard notation (e.g., O;X and H) for asymptotic

growth of functions (Cormen et al. 2001).

2 Impact of acceptance criterion

The (1 ? 1) EA is a simple single-individual-based algo-

rithm, which in each iteration replaces the current search

point x by a new search point x0 if and only if f ðx0Þ � f ðxÞ:
The variant ð1þ 1Þ� EA adopts the more restrictive

acceptance criterion f ðx0Þ[ f ðxÞ: There exists an artificial

pseudo-boolean function SPC where (1 ? 1) EA is efficient

while ð1þ 1Þ� EA fails (Jansen and Wegener 2001). Here,

it is shown that the same result holds on the UIO problem

for the RIDGE FSM instance class.

Definition 5 ((1 ? 1) EA)

Definition 6 (RIDGE FSM) For instance sizes n� 2; define

a RIDGE FSM with input and output symbols I :¼ 0; 1f g
and O :¼ a; bf g, respectively, and 2n states S :¼ Q [ R;

where Q :¼ q1; q2; . . .; qnf g and R :¼ s1; s2; . . .; snf g: For

all states qi and si; 1� i� n; define the transition function

as dðqi; 0Þ :¼ qi; dðsi; 1Þ :¼ s1; and

dðqi; 1Þ :¼
s1 if i ¼ n; and

qiþ1 otherwise:

�

dðsi; 0Þ :¼
q1 if i ¼ n; and

siþ1 otherwise:

�

And for all states qi and si; 1� i� n; define the output

function k as kðqi; 0Þ :¼ a; kðsi; 1Þ :¼ a; and

kðqi; 1Þ :¼
b if i ¼ n;

a otherwise:

�

kðsi; 0Þ :¼
b if i ¼ n;

a otherwise:

�

The RIDGE FSM instance class is illustrated in Fig. 2.

The fitness function UIORidge;s1
can be expressed as a

pseudo-boolean function.

Proposition 1 The fitness function UIORidge;s1
associated

with the RIDGE FSM instance class of size n takes the values

RidgeðxÞ ¼ 2n� 1 if x ¼ 0n;Pn
i¼1 xi þ

Pn
i¼1

Qi
j¼1ð1� xjÞ otherwise:

�

Proof The transitions ðsn; q1Þ and ðqn; s1Þ are called

distinguishing because they have unique input/output

behaviours, whereas all other states output a on any input

symbol. Clearly, for any two states s and t and input

sequence x, if neither state s nor state t reaches any

distinguishing transition on input sequence x, then

kðs; xÞ ¼ kðt; xÞ ¼ a‘ðxÞ:

For input sequences x of length n that are different from

0n; we make two claims. First, the number of states, among

the states qi; 1� i� n; with different output than state s1

equals OnemaxðxÞ :¼
Pn

i¼1 xi: And second, the number of

states, among the states si; 2� i� n; with different output

than state s1 equals LzðxÞ :¼
Pn

i¼1

Qi
j¼1ð1� xjÞ: If both

claims hold, then the proposition follows. The first claim

can be proved similarly to the characterisation of the

Easy FSM instance class in (Lehre and Yao 2007) (see

Proposition 1).
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For the second claim, note that all states si; where

1� i� n; collapse to state s1 on input symbol 1. Hence,

input symbols subsequent to input symbol 1 will not pro-

duce any distinguishing output. Therefore, for any state

si; 2� i� n; if kðs1; 0
j1zÞ 6¼ kðsi; 0

j1zÞ; then kðs1; 0
jÞ 6¼

kðsi; 0
jÞ: The only distinguishing transition that si can reach

on input 0j is ðsn; q1Þ: To reach this transition from state si;

it is necessary to have at least n� i 0-bits in the input

sequence. Hence, on input 0j; a state sj has different output

from s1 if and only if j [ n� i: The number of states

si; 2� i� n; with different output from state s1 on input

0 j1z is therefore j. h

The fitness function associated with the RIDGE FSM is

illustrated in Fig. 3. Except for 0n which is the only UIO of

length n for state s1; the fitness function is the sum of LZ

and ONEMAX. In the figure, each search point is mapped to a

point in the plane. The horizontal position of a search point

is given by the Hamming distance to the optimum, and the

vertical position is given by the fitness of the search point.

It is clear from the fitness function RIDGE that all non-

optimal search points are within the triangle in the figure.

The search points 0i1n�i; 0� i\n; have identical fitness,

forming a neutral path of length n� 1: The runtime anal-

ysis for RIDGE is similar to that of SPC in (Jansen and

Wegener 2001). When reaching the path, (1 ? 1) EA

will make a random walk until it hits the global optimum.

ð1þ 1ÞEA� will get stuck on the path, only accepting the

optimal search point. If the distance to the optimum is

large, then it takes long until ð1þ 1ÞEA� mutates the

right bits. The function SPC maximises this distance by

embedding an explicitly defined trap. In contrast, RIDGE

does not have such an explicitly defined trap. Even without

the trap, one can prove that ð1þ 1ÞEA� is still likely to

reach the path far from the optimum because ð1þ 1Þ� EA

optimises ONEMAX quicker than LZ.

Lemma 2 Let x ¼ 0i1a and y ¼ 0j1b be two bitstrings of

length n, with i; j� 0: If there are more 0-bits in substring b
than in substring a; then RidgeðxÞ[ RidgeðyÞ:

Proof Let bitstrings x and y be on the form x ¼ 0i1a; and

y ¼ 0j1b; where i; j� 0: Assume substring a contains less

0-bits than substring b: Then

n� i� 1� OneMaxðaÞ\n� j� 1� OneMaxðbÞ
OneMaxðaÞ[ OneMaxðbÞ þ j� i:

So the fitness of search point x is

RidgeðxÞ ¼ iþ 1þ OneMaxðaÞ
[ iþ 1þ OneMaxðbÞ þ j� i

¼ RidgeðyÞ:

h

Theorem 1 The expected time until (1 ? 1) EA finds an

UIO of length n for state s1 in RIDGE FSM using fitness

function UIORidge;s1
is bounded from above by Oðn3Þ:

Proof By Proposition 1, any non-optimal search point x

can be expressed on the form x ¼ 0i1z; where i is an integer

0� i\n; and z is a bitstring of length n� 1� i that will be

referred to as the suffix of x. Let j denote the number of 0-bits

in the suffix z of the current search point. By Lemma 2, the

value of j will never increase. The search process is divided

into two phases. The process is in Phase 1 when the suffix z

contains at least one 0-bit, i.e. j [ 0; and the process is in

Phase 2 when z does not contain any 0-bit, i.e. j ¼ 0:

We first estimate the expected duration of Phase 1. The

probability of decreasing the value of j in an iteration is at

least the probability of mutating one out of the j 0-bits in

the suffix, and none of the remaining bits, i.e. ðj=nÞ � ð1�
1=nÞn�1� j=en; where e is Euler’s number. So the expected

number of iterations needed to remove the at most n� 1

0-bits and end Phase 1 is en
Pn�1

j¼1 1=j ¼ Oðn ln nÞ:

Fig. 2 RIDGE FSM instance

class

Fig. 3 Illustration of fitness values in UIORidge;s1
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We then estimate the expected duration of Phase 2. During

this phase, only search points on the form 0i1n�i will be

accepted. Hence, the changing value of i can be considered as

a random walk on the integer interval between 0 and n. The

optimum is found when the random walk hits the value i ¼ n:

This process has been analysed by Jansen and Wegener

(2001), showing an upper bound of Oðn3Þ iterations. The

expected duration of both phases is therefore Oðn3Þ: h

Theorem 2 The probability that (1 ? 1)* EA has found

an UIO of length n for state s1 in RIDGE FSM using fitness

function UIORidge;s1
in less than nð1�dÞn steps, is bounded

from above by expð�Xðn1��ÞÞ for any constants d; �[ 0:

Proof The search process is divided into two phases in the

same way as in the proof of Theorem 1. We first claim that

with probability 1� expð�Xðn1��ÞÞ; the first 1-bit will

occur before position dn=2 when the process enters Phase 2.

We say that there is a failure in Phase 1 if Phase 2 starts with

the first 1-bit after position dn=2: Following the arguments in

Droste et al. (2002) for lower bounding the runtime of

(1 ? 1) EA on LEADINGONES, it can be shown that there

exists a constant c1 such that the probability that there are

more than dn=2 leading 0-bits in step c1n2 is e�XðnÞ: By

Lemma 2, the number of 0-bits in the tail will not increase.

Hence, following the same arguments as in the proof of

Theorem 1, it can be shown that the expected time until all

0-bits are removed in the suffix is less than ðc2=2Þn ln n for

some constant c2: Divide the first c1n2 steps into

c1n=ðc2 ln nÞ intervals, each of duration c2n ln n steps. By

Markov’s inequality (Motwani and Raghavan 1995), the

probability that Phase 1 is not finished after one interval is

less than 1=2: Furthermore, the probability that Phase 1 is not

finished after c1n=ðc2 ln nÞ intervals is 2�c1n=ðc2 ln nÞ ¼
expð�Xðn1��ÞÞ for any constant �[ 0:

If there is no failure in Phase 1, then Phase 2 starts with

a search point on the form 0i1n�i; with i\dn=2: From this

point, the selection operator will only accept the optimum,

which is the only search point with strictly higher fitness.

To reach optimum 0n from search point 0i1n�i; it is nec-

essary to flip at least ð1� d=2Þn 1-bits in one iteration, an

event which occurs with probability less than n�ð1�d=2Þn:
So, by a union bound, in runs without failures, the proba-

bility that the optimum is found within nð1�dÞn iterations is

less than nð1�dÞnn�ð1�d=2Þn ¼ n�dn=2 ¼ e�XðnÞ:
Hence, the probability that no failure has occurred and

the optimum has not been found after nð1�dÞn steps is at

least 1� expð�Xðn1��ÞÞ for any constant �[ 0: h

3 Impact of crossover

Although the (1 ? 1) EA is efficient on several instance

classes, one can hypothesise that there exist FSMs for

which this EA is too simplistic. In particular, when is it

necessary to use crossover and a population in computing

UIOs?

There exists theoretical evidence that crossover is

essential on at least some problems, including several

artificial pseudo-boolean functions (Jansen and Wegener

1999, 2002; Storch and Wegener 2004; Dietzfelbinger

et al. 2003). Jansen and Wegener (1999, 2002) were among

the first to rigorously analyse the impact of crossover,

showing that the operator can reduce the runtime expo-

nentially on a variant of the JUMP problem (Droste et al.

2002). However, a crossover event between the right types

of individuals on this problem is only likely to occur when

the population is sufficiently diverse. To guarantee popu-

lation diversity, they assumed an artificially low crossover

probability. For the Ising model, a small runtime gap was

proven for rings (Fischer and Wegener 2005), and an

exponential runtime gap was proven for trees (Sudholt

2005). Oliveto et al. (2008) proved that crossover is

essential on an instance class of the vertex cover problem,

but this result depends again on an artificially low cross-

over probability. Doerr et al. (2008) studied the all pairs

shortest path problem. Under certain restrictions, they

showed that introducing a problem-specific crossover

operator can reduce the expected runtime from Hðn4Þ to

Oðn3:5þeÞ: Through an improved analysis, Doerr and Theile

have recently improved this result, showing that an EA

using crossover solves the problem in time Oðn3:25 log1=4 nÞ
with high probability (Doerr and Theile 2009). Although

this runtime gap is small, the result is important because it

shows for the first time that a crossover operator can be

beneficial, not only on specific problem instances, but in

general on a practical combinatorial optimisation problem.

We present an instance class of the UIO problem and a

steady state EA where crossover decreases the runtime

exponentially. Furthermore, the result holds for any con-

stant crossover probability. More specifically, when

reducing the crossover probability from any positive con-

stant ðpc [ 0Þ to no crossover ðpc ¼ 0Þ; the runtime

increases exponentially. The proof idea is to construct a

fitness function where the individuals in the population can

follow two different paths, each leading to a separate local

optimum. The local optima are separated by the maximal

Hamming distance. The global optimum is positioned in

the middle between these local optima and can be effi-

ciently reached with an appropriate one-point crossover

between the local optima. The paths are constructed to

make it unlikely that mutation alone will produce the

global optimum. It is worth noting that our analysis is

based on specific types of crossover and mutation.

The definition of the TwoPaths FSM instance class is

given in Definition 7, and is parametrised by a constant �

that can take any value in the open interval from 0 to 1. The

Crossover can be constructive when computing UIO sequences 1679
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TwoPaths FSM instance class has a ternary output alphabet

and is illustrated in Fig. 4.

Definition 7 For instance sizes n� 2 and a constant

�; 0\�\1; define a TWOPATHS FSM with input and output

symbols I :¼ 0; 1f g and O :¼ a; b; cf g, respectively, and

2ðnþ 1Þ states S ¼ Q [ R; where R :¼ s1; s2; . . .; snþ1f g
and Q :¼ q1; q2; . . .; qnþ1f g: The output function k is

defined as

kðqi; xÞ :¼
c if i ¼ nþ 1 and x ¼ 0;

a otherwise

�

kðsi; xÞ :¼
b if i ¼ nþ 1 and x ¼ 1;

a otherwise:

�

The state transition function d is defined as

dðsi; 0Þ :¼
qð1��Þ�nþ3 if i ¼ ð1� �Þ � nþ 1;

s1 otherwise:

�

dðsi; 1Þ :¼
q1 if i ¼ nþ 1;

siþ1 otherwise:

�

dðqi; 1Þ :¼ q1; and;

dðqi; 0Þ :¼
s1 if i ¼ nþ 1; and

qiþ1 otherwise :

�

First, we characterise the function UIOTwoPaths;s1

associated with the TWOPATHS FSM instance class.

Proposition 2 Let � be any constant 0\�\1: On input

sequences of length n, the function UIOTwoPaths;s1
takes the

following values,

TwoPathsðxÞ ¼

2nþ 1 if x ¼ x�

LoðxÞ þ 1 if x 2 A n x�f g
LoðxÞ if x1 ¼ 1 and x 62 A
LzðxÞ þ 1 if x1 ¼ 0 and LzðxÞ� �n;
LzðxÞ if x1 ¼ 0 and LzðxÞ\�n;

8
>>>><

>>>>:

where

x� :¼ 1ð1��Þ�n0��n;

A :¼ 1i0�na j a 2 0; 1f gð1��Þn�i
n o

;

and

LoðxÞ :¼
Xn

i¼1

Yi

j¼1

xj;

LzðxÞ :¼
Xn

i¼1

Yi

j¼1

ð1� xjÞ:

Proof Similarly to the proof of Proposition 1, the

transitions ðsnþ1; q1Þ and ðqnþ1; s1Þ are called

distinguishing because they have unique input/output

behaviours, whereas all other states output a on any

input symbol. Clearly, for any two states s and t and input

sequence x, if neither state s nor state t reaches any

distinguishing transition on input sequence x, then

kðs; xÞ ¼ kðt; xÞ ¼ a‘ðxÞ:

Consider first input sequences that have a leading

1-symbol. By arguments similar to those used in the proof

of Proposition 1, the number of states in R that reach the

distinguishing transition ðsnþ1; q1Þ on input 1j equals j.

Furthermore, all states q 2 Q collapse into state q1 on input

1, therefore none of these states will reach a distinguishing

state on any input sequence 1z of length n.

We make the claim that any state si 2 R reaches the

distinguishing transition ðqnþ1; s1Þ if and only if the input

sequence is on the form x ¼ 1ð1��Þ�nþ1�i0��na: To prove this

claim, consider first input sequences of length n on the

form x ¼ 1j0a where j 6¼ ð1� �Þ � nþ 1� i: If 0� j\
ð1� �Þ � nþ 1� i; then dðsi; 1

j0Þ ¼ s1; and from state s1; it

is impossible to reach state qnþ1 with the remaining bits a
which by assumption must be shorter than n. On the other

hand, if j [ ð1� �Þ � nþ 1� i; then on input 1j; we reach a

state beyond sð1��Þ�nþ1 from which the shortest distance to

state qnþ1 is longer than n. Consider next input sequences

of length n that are on the form x ¼ 1ð1��Þ�nþ1�i0j1a with

0� j\� � n; then dðsi; 1
ð1��Þ�n�i0j1Þ ¼ q1; and it is impos-

sible to reach state qnþ1 from state q1 with the remaining

substring a which is shorter than n.

The claim therefore holds, and hence, on input sequence

x� ¼ 1ð1��Þ�n0��n; only state s1 among states R reaches the

distinguishing transition, and none of the states in Q

reaches the distinguishing transition. This implies that this

input sequence is a UIO, i.e. the fitness of input sequence

Fig. 4 TWOPATHS FSM instance

class
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x� is 2nþ 1: For other sequences x with a leading 1-sym-

bol, the number of states with different output than s1 now

equals LoðxÞ þ 1 if x 2 A n x�f g and LoðxÞ if x 62 A:

Consider then input sequences that have a leading

0-symbol. Again, following the arguments similar to those

used in the proof of Proposition 1, the number of states in

Q that reach the distinguishing transition ðqnþ1; s1Þ on input

0z equals Lzð0zÞ: Furthermore, by the claim above, the

number of states in R with different output than state s1 on

input 0j is 1 if j� �n and 0 otherwise. Therefore, the total

number of states with different output than state s1 on input

0z is Lzð0zÞ þ 1 if Lzð0zÞ� �n and Lzð0zÞ otherwise. h

The problem contains two local optima, 0n and 1n; and

one global optimum 1ð1��Þ�n0��n: If all the individuals reach

the same local optimum, then the crossover operator will

not be helpful. An essential challenge with the idea behind

TWOPATHS is therefore to ensure that both local optima are

reached. In addition to a large population size, some sort of

diversity mechanism might therefore be necessary. Fried-

rich et al. (2008) have shown that the choice of diversity

mechanism can have a major impact on the runtime of

EAs. Here, we will consider a steady state GA where

population diversity is ensured through the acceptance

criteria, as in the deterministic crowding diversity mecha-

nism (Friedrich et al. 2008).

Definition 8 (ðlþ 1Þ SSGA)

ðlþ 1Þ SSGA with crossover probability pc ¼ 0 degen-

erates into l parallel runs of the ð1þ 1Þ EA. The algorithm

ðlþ 1Þ SSGA is similar to ðlþ 1Þ RLS introduced in

(Oliveto et al. 2008), but has a different acceptance criterion.

The ðlþ 1Þ RLS accepts both offspring if the best offspring

is at least as good as the worst parent, hence allowing the best

individual in the population to be replaced with a less fit

individual. The ðlþ 1Þ SSGA adopts a more restrictive

acceptance criterion, only accepting the offspring if the best

offspring is at least as good as the best parent. Each indi-

vidual in a ðlþ 1Þ SSGA population can be associated with

a lineage which interacts little with other lineages, thus

facilitating the runtime analysis.

Definition 9 (SSGA lineage) Let x be any individual that

was added to the population by mutating an individual y.

Then individual y is called the parent of individual x. Let

z ¼ a1 � b2 be any individual that was added to the popula-

tion by crossover between two individuals x ¼ a1 � a2 and

y ¼ b1 � b2: If a1 ¼ b1; then individual y is the parent of

individual x, and if a1 6¼ b1; then individual x is the parent of

individual z. The lineage of an individual in the population is

the sequence of search point associated with the parent

relations.

Definition 10 (TWOPATHS prefix) Let x be any search

point where x1 ¼ x2 ¼ � � � ¼ xi and xi 6¼ xiþ1 for an integer

i where 1� i� n: Then i is the prefix length of search point

x, the substring x1 � � � xi is called the prefix of search point

x, and the substring xiþ1 � � � xn is called the suffix of search

point x.

Lemma 3 Define the set A� :¼ ðA [ BÞ n x�f g; where the

set A is as in defined in Proposition 2 and the set B is

defined as

B :¼ bm �ba0�nb
�

j b 2 0; 1f g;
a; b 2 0; 1f g�; and

‘ðaÞ þ ‘ðbÞ ¼ n� m� 1� �ng:

Let i be an integer 1� i� n: Let x be a search point with

prefix length strictly shorter than i and which is not

member of set A�: Let y be another search point with prefix

length at least i. Let x0 be the descendant from x, and y0 the

descendant from y in any crossover between x and y. If

ðlþ 1Þ SSGA on TWOPATHS accepted the crossover prod-

ucts x0 and y0; then xi ¼ x0i:

Proof The proof is by contradiction, assuming that xi 6¼ x0i
and that the crossover products were accepted. Assume in

addition that the crossover point occurred in position k. The

lemma trivially holds if i\k: So let us assume that i� k:

Defining j :¼ i� k; the crossover products can be written as

y0 ¼ y1 � � � y1 � y1 � xkþjþ1 � � � xn; and

x0 ¼ x1 � � � xkþj�1 � y1 � ykþjþ1 � � � yn:

The conditions of the lemma imply that f ðyÞ� k þ j: The

lemma will be proved by showing that both f ðy0Þ\f ðyÞ and
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f ðx0Þ\f ðyÞ hold, which contradicts that the crossover

products were accepted.

Consider first the case where y1 ¼ y2 ¼ � � � ykþj ¼ 1:

This implies that xkþj ¼ ykþj ¼ 0: Since x 62 A�; we must

also have y0 62 A�; which by Proposition 2 implies that

f ðy0Þ ¼ k þ j� 1\f ðyÞ: To see that also f ðx0Þ\f ðyÞ holds,

notice that it is impossible that x1 ¼ x2 ¼ � � � ¼ xkþj�1 ¼ 1;

because then by Definition 9, the descendant satisfies x0 ¼
x and the lemma would hold. But it is also impossible that

x1 ¼ x2 ¼ � � � ¼ xkþj�1 ¼ 0; because then x would have

prefix length at least k þ j ¼ i; which contradicts with a

condition in the lemma. Both search points x and x0

therefore have prefix lengths strictly shorter than k þ j� 1;

and by Proposition 2, we then have f ðx0Þ � k þ j� 1\f ðyÞ:
Consider next the case where y1 ¼ y2 ¼ � � � ykþj ¼ 0:

This implies that xkþj ¼ ykþj ¼ 1: Proposition 2 implies

that f ðy0Þ\f ðyÞ: To see that also f ðx0Þ\f ðyÞ; notice that it

is impossible that x1 ¼ x2 ¼ � � � ¼ xkþj�1 ¼ 0; because

then by Definition 9, the descendant satisfies x0 ¼ x and the

lemma would hold. But it is also impossible that x1 ¼
x2 ¼ � � � ¼ xkþj�1 ¼ 1; because then x would have prefix

length at least k þ j ¼ i; which contradicts with a condition

in the lemma. Both search points x and x0 therefore have

prefix lengths strictly shorter than k þ j� 1; and by Prop-

osition 2, we then have f ðx0Þ � k þ j� 1\f ðyÞ: h

Lemma 4 For any generation t� 0; if no individual until

generation t was member of set A�; and an individual xðtÞ
in generation has prefix length strictly shorter than i, then

Pr xiðtÞ ¼ 1½ � ¼ Pr xiðtÞ ¼ 0½ � ¼ 1=2:

Proof The proof is by induction on generation number t.

The lemma obviously holds for generation t ¼ 0; hence

assume that the lemma also holds for generation t ¼ k: If a

mutation occurs in generation k, then the parent x(k) must

have had prefix length strictly shorter than i, and by the

induction hypothesis Pr xiðkÞ ¼ 1½ � ¼ Pr xiðkÞ ¼ 0½ �: We

then have

Pr xiðk þ 1Þ ¼ 1½ � ¼ Pr bit xi mutated½ � � Pr xiðkÞ ¼ 0½ �
þ ð1� Pr xi mutated½ �Þ � Pr xiðkÞ ¼ 1½ �
¼ Pr xiðkÞ ¼ 1½ �:

Assume that a crossover between individuals x(k) and y(k)

occurs in generation k. If the crossover point was higher than

i, then clearly Pr xiðk þ 1Þ½ � ¼ Pr xiðkÞ½ �: If the crossover

point was equal or less than position i, and the corresponding

bit yiðkÞ was in the suffix of bitstring yðkÞ; then it follows

from the induction hypothesis that Pr xiðk þ 1Þ ¼ 1½ � ¼
Pr yiðkÞ½ � ¼ 1=2: Finally, if the bit yiðkÞ occurs in the

prefix of bitstring y(k), then by Lemma 3, the crossover

occurs only if xiðkÞ ¼ yiðkÞ: Hence,

Pr xiðk þ 1Þ ¼ 1½ � ¼ Pr xiðkÞ ¼ 1 \ yiðkÞ ¼ 1½ �
þ Pr xiðkÞ ¼ 1 \ yiðkÞ ¼ 0½ �

¼ Pr xiðkÞ ¼ 1½ �:

The lemma now holds for all t by induction. h

Proposition 3 The probability that any of the initial ecn

generations of ðlþ 1Þ SSGA on TWOPATHS with population

size l ¼ polyðnÞ contains a non-optimal individual in set

A� is exponentially small e�XðnÞ:

Proof Denote by pt the probability that there exists an

individual in generation t that is member of set A�; con-

ditional on the event that none of the previous t � 1 gen-

erations contained such an individual. Then by Lemma 4,

the probability that any block of bits of length �n in the

suffix contains only 0-bits is 2��n: There are at most OðlnÞ
such suffix-blocks in the population, hence the probability

pt is bounded by pt�OðlnÞ � 2��n ¼ e�XðnÞ if l ¼ polyðnÞ:
By union bound, the probability that within ecn generations,

there exists such an individual is less than
Pecn

t¼0 pt� ecn �
e�XðnÞ ¼ e�XðnÞ for a sufficiently small constant c: h

Lemma 5 For any lineage, if no individual along the

lineage is a member of set A as defined in Proposition 2,

then the fitness along the lineage is monotonically

increasing.

Proof The proof is by contradiction, assuming that there

exists a lineage where y0 is a direct descendant of y, and

f ðy0Þ\f ðyÞ: Search point y0 could not have been accepted

in a mutation step, hence search y0 must have been created

through crossover between y and some other search point x,

producing the offspring x0 and y0: Assume w.l.o.g. that

these individuals can be expressed on the form

x :¼ a1 � a2 x0 :¼ a1 � b2 ‘ða1Þ ¼ ‘ðb1Þ
y :¼ b1 � b2 y0 :¼ b1 � a2 ‘ða2Þ ¼ ‘ðb2Þ

By the definition of a lineage, and the assumption that the

offspring were accepted, the following three conditions

must hold

f ðx0Þ � f ðxÞ ð1Þ

f ðx0Þ � f ðyÞ[ f ðy0Þ; and; ð2Þ
a1 6¼ b1: ð3Þ

The proof is divided into the two main cases y1 ¼ 1 and

y1 ¼ 0: These two cases are further divided into the sub-

cases (a) x1 ¼ 0 and (b) x1 ¼ 1: We will show that all these

cases lead to a contradiction.

Case 1 Consider the case where y1 ¼ 1: By the condition

of the proposition, y; y0 62 A; so the fitnesses of the two
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individuals y and y0 are given by Proposition 2 as f ðyÞ ¼
Loðb1b2Þ and f ðy0Þ ¼ Loðb1a2Þ: Hence

f ðyÞ[ f ðy0Þ ð4Þ
Loðb1b2Þ[ Loðb1a2Þ ð5Þ

This inequality is only satisfied when Loðb1Þ ¼ ‘ðb1Þ and

Loðb2Þ� 1; so in both sub-cases, the following two

inequalities must hold

f ðyÞ� ‘ðb1Þ þ Loðb2Þ� ‘ðb1Þ þ 1; and

f ðy0Þ � ‘ðb1Þ þ Loða2Þ:

Consider the first sub-case where x1 ¼ 0: Then since

Loðb2Þ� 1; we have f ðx0Þ �Lzða1b2Þ þ 1�Lzða1Þ þ 1:

From condition (2), it follows that

f ðx0Þ[ f ðy0Þ
Lzða1Þ þ 1 [ ‘ðb1Þ þ Loða2Þ

This inequality is only satisfied when Lzða1Þ ¼ ‘ðb1Þ and

Lzða2Þ� 1: Note that since Lzðb2Þ ¼ 0; we have

Lzða1b2Þ� �n only if also Lzða1a2Þ� �n: By Proposition

2, the difference between the fitness of individual x and the

fitness of individual x0 is therefore bounded by

f ðxÞ � f ðx0Þ �Lzða1a2Þ � Lzða1b2Þ
� ‘ðb1Þ þ Lzða2Þ � ‘ðb1Þ
� 1;

which contradicts with condition (1). Hence, Case 1a leads

to a contradiction.

In the second sub-case, where x1 ¼ 1; condition (3)

requires that the prefixes of x and y must be different. In

other words, the prefix of x must contain at least one 0-bit,

so Loða1Þ\‘ðb1Þ ¼ Loðb1Þ by Inequality (5). The fitness

of x0 in this sub-case is therefore bounded by

f ðx0Þ � ‘ðb1Þ� f ðy0Þ; which contradicts with condition (2).

Hence, Case 1b also leads to a contradiction.

Case 2 Consider the case where y1 ¼ 0: In this case, we

claim it must hold that

Lzðb1Þ ¼ ‘ðb1Þ; and

Lzðb2Þ� 1:

The claim trivially holds in the sub-case where Lzðb1Þ\�n

and Lzðb1b2Þ� �n: In the other sub-cases, where

Lzðb1Þ� �n or Lzðb1b2Þ\�n; condition (2) and Proposition

2 imply that

f ðyÞ[ f ðy0Þ
Lzðb1b2Þ[ Lzðb1a2Þ;

so the claim must also hold.

By the claim and Proposition 2, the fitnesses of indi-

viduals y and y0 in case 2 therefore satisfy

f ðy0Þ �Lzðb1a2Þ� ‘ðb1Þ; and

f ðyÞ�Lzðb1b2Þ� ‘ðb1Þ þ 1:

In the first sub-case where x1 ¼ 0; condition (3) requires

that the prefixes of x and y must be different. In other

words, the prefix of x must contain at least one 1-bit, so

Lzða1Þ\Lzðb1Þ ¼ ‘ðb1Þ: The fitness of x0 in this sub-case

is therefore bounded by f ðx0Þ � ‘ðb1Þ� f ðy0Þ which

contradicts with condition (2). Hence, Case 2a leads to a

contradiction.

Consider the second sub-case x1 ¼ 1: Assume first that

x0 2 A; where A is as defined in Proposition 2. It cannot be

that Loða1Þ\‘ðb1Þ; because this would lead to the fol-

lowing contradiction with condition (2)

f ðx0Þ ¼ Loða1b2Þ þ 1� ‘ðb1Þ� f ðy0Þ:

Hence, it must hold that Loða1Þ ¼ ‘ðb1Þ; which by the

assumptions x0 2 A and Lzðb2Þ� 1 implies that

Lzðb2Þ� �n: However, from this follows another

contradiction with condition (2)

f ðx0Þ ¼ Loða1b2Þ þ 1

¼ Loða1Þ þ 1

\‘ðb1Þ þ �n� f ðyÞ:

Finally, assuming that x0 62 A would also contradict with

condition (2), because

f ðx0Þ ¼ Loða1b2Þ� ‘ðb1Þ\f ðyÞ:

Hence, Case 2b also leads to a contradiction. It has now

been shown that all of the sub-cases where f ðy0Þ\f ðyÞ lead

to a contradiction. From this, one must conclude that

f ðy0Þ � f ðyÞ; i.e. the fitness along the lineage is monotoni-

cally increasing. h

To show that the population will be relatively evenly

distributed between the two local optima, it is sufficient to

prove that there is a constant probability that a lineage will

always stay on the same path as it started.

Lemma 6 For n� 4; and any lineage x, the probability

that lineage x reached the local optimum without accepting

a search point in which the first bit has been flipped, is

bounded from below by 1=12:

Proof By Proposition 3, with probability 1� e�XðnÞ; no

element of the lineage is member of set A� 	 A as defined

in Proposition 3. Hence, by Lemma 5, the fitness along the

lineage is monotonically increasing.

Denote by v 2 0; 1f g the leading bit in the lineage in the

first iteration. Let pi; 1� i� n be the probability that the

lineage acquires at least i leading v-bits without accepting a

search point where the initial bit has been flipped. We

prove by induction on i that probability pi is bounded from

below by
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pi�
1

4ð1þ ei=nÞ ; ð6Þ

which is sufficient to prove the lemma because it implies

that pn � ð1� e�XðnÞÞ[ 1=12:

Inequality (6) clearly holds for i ¼ 3; because the

probability of getting three identical leading bits in the

initial generation is 1/4. Suppose that the inequality also

holds for i ¼ k; 3� k\n: We show that the inequality must

also hold for i ¼ k þ 1: The probability of reaching k þ 1

leading v-bits without flipping the first bit, equals the

probability of the event that the lineage acquires k leading

v-bits, and then the number of leading v-bits is increased

before k leading v-bits are flipped simultaneously.

pkþ1� pk �
1=en

1=enþ 1=nk

� 1

4
� 1

ð1þ ek=nÞð1þ e=nk�1Þ

� 1

4
� 1

ð1þ eðk þ 1Þ=nÞ;

when n� 4 [ eþ 1 and k� 3: By induction, Inequality (6)

now holds for all k; 1� k� n� 1: h

The success probability of the ðlþ 1Þ SSGA when

using a positive constant crossover probability can now be

estimated easily.

Theorem 3 The probability that the ðlþ 1Þ SSGA with

constant crossover rate pc [ 0 and population size l� 2

and l ¼ polyðnÞ has found the optimum of TWOPATHS

within cl2n2 generations is 1� e�XðlÞ � e�XðnÞ for some

constant c [ 0:

Proof The optimisation process will be divided into two

phases. Phase 1 lasts the first cln2 generations. A failure

occurs in Phase 1 if the population does not contain both 1n

and 0n when the phase ends. Phase 2 lasts for the next

cln2ðl� 1Þ generations. A failure occurs in Phase 2 if the

optimum has not been found by the end of the phase.

Clearly, if no failure occurs, then the optimum has been

found.

We assume that no individual during Phase 1 is member

of the set A� defined Lemma 3, which by Proposition 3 holds

with probability 1� e�XðnÞ: The phase is considered failed if

this assumption does not hold. By Lemma 6, for any of the

two local optima 0n or 1n; the probability that a lineage

reaches this optimum is at least ð1=2Þ � ð1=12Þ ¼ 1=24:

Hence, the probability that both of the two optima will be

reached by at least one individual is at least 1� ð1�
1=24Þl ¼ 1� e�XðlÞ: We now focus on any pair of lineages

that reach different local optima. The probability that a

given lineage is selected for mutation in one generation is

ð1� pcÞ � ð1=lÞ: Hence, by Chernoff bounds (Motwani and

Raghavan 1995), the probability that during ð1� pcÞ �
ð2c0Þ � ln2 generations, the lineage is mutated less than

ð1� pcÞ � c0n2 times is e�XðnÞ:By Lemma 5, the fitness along

the lineage is monotonically increasing, and the progress is

similar to that of (1 ? 1) EA on the LEADINGONES function.

Following the arguments in Droste et al. (2002), for a suf-

ficiently large constant c0; the probability that the lineage has

not reached the local optimum within ð1� pcÞ � ðc0=2Þ � ln2

generations is e�XðnÞ; and the probability that both local

optima has not been reached within cln2 generations is

e�XðnÞ for c :¼ ð1� pcÞ � c0:By union bound, the probability

of failure during Phase 1 is e�XðlÞ þ e�XðnÞ:
Assuming no failure in Phase 1, the probability during

each generation in Phase 2 of crossing over two individuals

0n and 1n to produce the optimum is at least pc=ðl2nÞ:
Hence, the probability that Phase 2 is not finished within

cln2ðl� 1Þ generations, i.e. of a failure in Phase 2, is no

more than

1� pc

l2n

� �cln2ðl�1Þ
¼ e�XðnÞ:

Hence, by union bound, the combined failure probability

during both phases is bounded from above by

e�XðlÞ þ e�XðnÞ: h

It is a common practice in applications of EAs to con-

duct multiple independent runs of the algorithm, either by

launching several parallel runs in a multi-processing

environment, or by sequentially restarting the EA in certain

time intervals. The following result gives the expected

runtime of the ðlþ 1Þ SSGA assuming an appropriately

chosen restart strategy that depends both on the problem

size n and the population size l:

Theorem 4 For a sufficiently large constant c [ 0; if the

ðlþ 1Þ SSGA with constant crossover probability pc [ 0

and population size l; 2� l ¼ polyðnÞ; is restarted every

cl2n2 generations on TWOPATHS, then the expected time

until the optimum is found is Oðl2n2Þ:

Proof The expected runtime is no more than the duration

of one run, i.e. cl2n2; multiplied by the expected number of

restarts needed to find the optimum. By Theorem 3, for a

sufficiently large constant c, the probability of reaching the

optimum within one run is 1� e�XðlÞ � e�XðnÞ: For l� 2;

the expected number of restarts needed is therefore

1=ð1� e�XðlÞ � e�XðnÞÞ ¼ Oð1Þ: h

There is a trade-off between the success probability and

the duration of each run. According to Theorem 3, the

probability of finding the optimum in one run increases

with increasing population size. However, the duration of

one run, following the restarting strategy in Theorem 4,

also increases with population size. The following corol-

lary shows that a constant, small population size is
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sufficient to yield a short, quadratic expected runtime when

using the restart strategy.

Corollary 1 For a sufficiently large constant c [ 0; if the

ðlþ 1Þ SSGA with constant crossover probability pc [ 0

and population size l ¼ 2 is restarted every 4cn2 genera-

tions on TWOPATHS, then the expected time until the opti-

mum is found is Oðn2Þ:

Proof The corollary follows from Theorem 4. h

The previous results show that the ðlþ 1Þ SSGA can

find a UIO for state s1 on the TWOPATHS FSM instance class

efficiently, assuming that one applies the crossover oper-

ator. Finally, we will analyse the runtime of ðlþ 1Þ SSGA

without the crossover operator, i.e. with crossover proba-

bility pc ¼ 0: The proof idea is to focus on a single lineage,

since the lineages are independent, and distinguish between

two conditions. If the lineage has at least ð1� �Þn leading

0-bits, then all these must be flipped into 1-bits. If there is

at least one 1-bit among the first ð1� �Þn bits, then with

high probability, a large number of 1-bits must be flipped

in the tail of the search point.

Theorem 5 The probability that the ðlþ 1Þ SSGA with

crossover probability pc ¼ 0 and population size l ¼
polyðnÞ finds the optimum of TWOPATHS within 2cn gener-

ations is bounded from above by e�XðnÞ; where c is a

constant.

Proof With crossover probability pc ¼ 0; the population

is only updated by mutations and the algorithm is essen-

tially l parallel runs of (1 ? 1) EA. Consider any lineage,

and divide the current search point x into an ð1� �Þn bits

long prefix, and an �n bits long suffix v; such that x ¼ u � v:
The global optimum has prefix 1ð1��Þn and suffix 0�n:

If the run at some point reaches a search point with

prefix u ¼ 0ð1��Þn; then subsequent search points are only

accepted if they have prefix 0ð1��Þn or 1ð1��Þn: The proba-

bility of reaching the optimum in any such iteration is

therefore bounded above by n�ð1��Þn; and the success

probability within ecn iterations is by union bound no more

than n�ð1��Þn � ecn ¼ e�XðnÞ:
For runs where the current search point has at least one

1-bit in the prefix, we will use the simplified drift theorem

(see the appendix) to bound the time until the suffix con-

tains only 0-bits. Let the state i 2 0; . . .;Nf g be the number

of 1-bits in the suffix, with N :¼ �n: Furthermore, define

a :¼ 0 and b :¼ �n=10: To derive a lower bound, we

optimistically assume that any bit-flip from 1 to 0 in the

suffix is accepted, an assumption which can only speed up

the process. The remaining part of the analysis is now

practically identical to the analysis of (1 ? 1) EA on

NEEDLE in (Oliveto and Witt 2008). Assuming a\i\b; the

expected drift in the process is

E DðiÞ½ � ¼ �n� i

n
� i

n

¼ �n� 2i

n

�ð4=5Þ�;

and condition 1 of the drift theorem holds with b ¼ ð4=5Þ�:
In order to decrease the number of 1-bits in the suffix by j,

it is necessary to flip j 1-bits simultaneously, an event

which happens with probability

ð1� �Þ � n
j

� �
� n�j� 1

j!
� 2�jþ1;

so condition 2 of the theorem holds with d ¼ r ¼ 1: Hence,

the probability that a given lineage reaches the optimum

within 2cn iterations, is bounded from above by e�XðnÞ; for

some constant c. Finally, the probability that any lineage

reaches the optimum within 2cn generations, is bounded

from above by l � e�XðnÞ: h

It is easy to see that when not using crossover, the

ðlþ 1Þ SSGA is highly unsuccessful on the TWOPATHS

problem, even when using the restarting strategy.

Corollary 2 The probability that in at least one of 2c0n

runs, each run lasting 2cn generations, ðlþ 1Þ SSGA with

crossover probability pc ¼ 0 and population size l ¼
polyðnÞ finds the optimum of TWOPATHS, is e�XðnÞ; for some

constants c0 and c.

Proof Let c be a constant that satisfies the conditions of

Theorem 5. Then by Theorem 5 and a union bound, the

probability that the optimum has been found within 2c0n

restarts is no more than 2c0n � e�XðnÞ ¼ e�XðnÞ for a suffi-

ciently small constant c0: h

Here, we have studied a problem characteristic where

crossover is beneficial. The crossover operator allows the

ðlþ 1Þ SSGA to overcome a large gap in the search

space by recombining two local optima into the global

optimum. In contrast, the probability of overcoming a gap

with bitwise mutation is exponentially small with respect

to the gap width. Although the analysis only considers a

specific instance class of the UIO problem, similar results

can be envisaged on instance classes that are constructed

similarly to the TWOPATHS FSM. The TWOPATHS FSM can

be decomposed into two smaller FSMs, corresponding to

the set of states R and Q. It is easy for the (1 ? 1) EA to

construct the UIO 0n for state s1; when only taking into

account the set of states Q. Similarly, the UIO 1n for state

s1 can easily be constructed when only taking into

account the states in R. The crossover operator becomes

useful when constructing an UIO for the combined FSM.

Similar characteristics may be obtained by combining

other sub-components that individually are easy for the

(1 ? 1) EA.
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4 Conclusion

This paper has investigated the impact of the acceptance

criterion in (1 ? 1) EA and the crossover operator in

ðlþ 1Þ SSGA when computing UIOs from FSMs. The

objective is to identify simple, archetypical cases where

these EA parameter settings have a particularly strong

effect on the runtime of the algorithm. The results are

obtained by first characterising the fitness landscapes

induced by the UIO problem instance classes (in Proposi-

tion 1 and Proposition 2), and then by analysing the

behaviour of the EAs on these fitness landscapes. This

analysis can therefore be transferred to other problem

domains than FSM testing when the corresponding fitness

landscapes have similar characteristics to those studied

here. Such vigorous theoretical analysis is essential in

gaining insight into fundamental issues in applying meta-

heuristic algorithms to software engineering problems. It

can shed light on when to use (or not to use) what kind of

meta-heuristic algorithms (e.g., EAs). It also helps to

characterise a problem (e.g., UIO in FSM testing) so that a

deeper understanding of the problem can be obtained.

The first part of the paper describes the RIDGE FSM

instance class which induces a search space with a neutral

path of equally fit search points. Runtime analysis shows

that the variant of (1 ? 1) EA which only accepts strictly

better search points will get stuck on the path, while the

standard (1 ? 1) EA which also accepts equally fit search

points will find the UIO in polynomial time. This result

shows how apparently minor modification in EAs can have

an exponentially large runtime impact when computing

UIOs.

The second part of the paper considers the impact of

crossover when computing UIOs with the ðlþ 1Þ SSGA.

The result shows that on the TWOPATHS FSM instance class,

the SSGA finds the UIO in polynomial time with high

probability as long as the crossover probability is any

constant pc [ 0: For single runs of the ðlþ 1Þ SSGA, the

probability of finding the UIO increases with increasing

population size, but a larger population size also imposes

an overhead in terms of increased runtime. However, it is

shown that by using an appropriate restart strategy, the UIO

can be found in expected quadratic time with a small

population size. On the other hand, with crossover proba-

bility pc ¼ 0; the runtime of ðlþ 1Þ SSGA increases

exponentially, even when using a restart strategy. This

result means that when computing UIOs, the crossover

operator can be essential, and simple EAs including the

(1 ? 1) EA can be inefficient. This result is important

because although crossover is assumed important in EAs,

few theoretical results on non-artificial problem domains

have confirmed that this is the case.
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Appendix

The appendix states a result obtained elsewhere which was

used and cited in runtime analysis of EAs in this paper.

Theorem 6 [Simple drift theorem (Oliveto and Witt

2008)] Let Xt; t� 0; be the random variables describing a

Markov process over the state space S :¼ 0; 1; . . .;Nf g; and

denote DtðiÞ :¼ ðXtþ1 � Xt j Xt ¼ iÞ for i 2 S and t� 0:

Suppose there exists an interval ½a; b� of the state space and

three constants b; d; r [ 0 such that for all t� 0

1. E DtðiÞ½ � � b for a\i\b; and

2. Pr DtðiÞ ¼ �j½ � � 1=ð1þ dÞj�r for i [ a and j� 1; then

there is a constant c�[ 0 such that for

T� :¼ min t� 0 : Xt� a j X0� bf g

it holds that Pr T� � 2c�ðb�aÞ� �
¼ 2�Xðb�aÞ:
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