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Abstract This article proposes a distributed differential
evolution which employs a novel self-adaptive scheme,
namely scale factor inheritance. In the proposed algorithm,
the population is distributed over several sub-populations
allocated according to a ring topology. Each sub-popula-
tion is characterized by its own scale factor value. With a
probabilistic criterion, that individual displaying the best
performance is migrated to the neighbor population and
replaces a pseudo-randomly selected individual of the tar-
get sub-population. The target sub-population inherits not
only this individual but also the scale factor if it seems
promising at the current stage of evolution. In addition, a
perturbation mechanism enhances the exploration feature
of the algorithm. The proposed algorithm has been run on a
set of various test problems and then compared to two
sequential differential evolution algorithms and three dis-
tributed differential evolution algorithms recently proposed
in literature and representing state-of-the-art in the field.
Numerical results show that the proposed approach seems
very efficient for most of the analyzed problems, and
outperforms all other algorithms considered in this study.
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1 Introduction

Differential evolution (DE, see, Storn and Price 1995;
Price et al. 2005; Chakraborty 2008) is a reliable and
versatile function optimizer which displays a solid per-
formance for diverse continuous optimization problems.
DE is a very interesting population-based metaheuristic
having mixed features. Due to its recombination and
selection features DE can be seen as an evolutionary
algorithm (EA). On the other hand, a DE structure tends
to generate an individual with an above average perfor-
mance which leads the exploration search, similar to
swarm intelligence algorithms (SIA). In addition, DE,
unlike EAs, generates offspring by perturbing the solu-
tions with a scaled difference of two randomly selected
population vectors, instead of recombining the solutions
by means of a probabilistic criterion. Finally, DE employs
a very peculiar survivor selection scheme, namely one to
one spawning. This selection scheme allows replacement
of an individual only if the offspring outperforms its
corresponding parent.

Regardless of its classification, DE has proven to have a
very good performance on various real-world problems.
For example, in Joshi and Sanderson (1999) a DE appli-
cation to the multisensor fusion problem is given. In Su and
Lee (2003), and Chiou et al. (2004) DE applications to
power electronics are presented. In Wang and Jang (2000)
an application of DE to chemical engineering is proposed.
In Storn (2005) a filter design is carried out by DE.

Reasons for success of the DE can be found in its
simplicity and ease of implementation, while at the same
time demonstrating reliability and high performance. In
addition, the fact that only three parameters require tuning
greatly contributes to the rapid diffusion of DE schemes
among computer scientists and practitioners.
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Although the DE undoubtedly has a great potential,
setting of the control parameters is not a trivial task, since it
has a heavy impact on the algorithmic performance. Thus,
over the years, the DE community has intensively inves-
tigated the topic of parameter setting. Several studies have
been reported, e.g., in Storn and Price (1997), Price and
Storn (1997), Liu and Lampinen (2002), Ronkkonen et al.
(2005), and Zielinski et al. (1857), and lead to contradic-
tory conclusions. In other words, in accordance with the No
Free Lunch Theorem, (Wolpert and Macready 1997), an
efficient DE parameter setting is prone to problems, as the
studies in Gimperle et al. (2002), Liu and Lampinen
(2002), and Mallipeddi and Suganthan (2008) confirm.

To overcome the problem of the setting, some algo-
rithms which employ adaptive and self-adaptive parameter
settings have recently been proposed in literature. In Teo
(2005, 2006), a variable population size is presented. The
adaptive population size approach has been recently
improved in two different implementations reported in
Teng et al. (2009). Another scheme, which proposes a
progressive population size reduction in DE, has been
proposed in Brest and Maucec (2008). A variable popula-
tion size DE, based on a fitness diversity adaptation is
proposed in Tirronen and Neri (2009). An adaptive scheme
for the DE scale factor is presented in Ali and Torn (2004).
An automatic update of the scale factor has been proposed
in Das et al. (2005). By following a similar line of thought,
in Ronkkonen and Lampinen (2003), Omran et al. (2005),
and Salman et al. (2007), a normal distribution is employed
in order to perform a self-adaptation on the parameters F'
and CR. A Cauchy distribution in the self-adaptive scheme
proposed in Soliman et al. (2007), Soliman and Bui (2008).
An alternative kind of self-adaptation which employs the
so called chaos mutation is proposed in Zhenyu et al.
(2006). A controlled randomization of scale factor and
crossover rate has been proposed in Brest et al. (2006).

In addition, since the DE algorithm suffers from many real
world conditions, e.g., high dimensionality and noisy prob-
lems, some modifications on the standard DE scheme can
significantly improve upon its performance. Modern DE-based
algorithms can be divided into the two following categories:

1. DE integrating an extra component. This class includes
those algorithms which use the DE as an evolutionary
framework in which it is assisted by additional
algorithmic components, e.g., local searchers or extra
operators (see, Fan and Lampinen 2003; Liu and
Lampinen 2005; Noman and Iba 2008; Tirronen et al.
2008; Caponio et al. 2009), and (Neri and Tirronen
2009). The algorithms belonging to this class can be
clearly decomposed as a DE framework and additional
components.
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2. Modified structures of DE. This class includes those
algorithms which make a substantial modification
within the DE structure, in the search logic, the
selection etc. Some examples are given in Qin et al.
(2009) and Das et al. (2009).

A popular way to enhance the DE performance by
structurally modifying the algorithmic functioning is
through employment of structured populations. In other
words, the population individuals are distributed over
several sub-populations which evolve independently and
interact by exchanging data and information details and
contribute to a unique simultaneous evolution.

In Kwedlo and Bandurski (2006) a distributed DE
scheme employing a ring topology (the cores are inter-
connected in a circle and the migrations occur following
the ring) has been proposed for the training of a neural
network. In Salomon et al. (2005), an example of DE
parallelization is given for a medical imaging application.
A few famous examples of distributed DE are presented in
Zaharie (2002, 2003), Zaharie and Petcu (2003); in these
papers the migration mechanism as well as the algorithmic
parameters are adaptively coordinated according to crite-
rion based on genotypical diversity. In paper, Zaharie
(2004), a distributed DE for preserving diversity in the
niches is proposed in order to solve multi-modal optimi-
zation problems. In Tasoulis et al. (2004), a distributed DE
characterized by a ring topology and the migration of
individuals with the best performance, to replace random
individuals of the neighbor sub-population, has been pro-
posed. An application of the algorithm in Tasoulis et al.
(2004) for training of a neural network has been presented
in Pavlidis et al. (2005). Following similar logic, paper
(Kozlov and Samsonov 2006) proposes a distributed DE,
where the computational cores are arranged according to a
ring topology and, during migration, the best individual of
a sub-population replaces the oldest member of the
neighboring population. In De Falco et al. (2007a, b, ¢) a
distributed DE has been designed for the image registration
problem. In these papers, a computational core acts as a
master by collecting the best individuals detected by the
various sub-populations running in slave cores. The slave
cores are connected in a grid and a migration is arranged
among neighbor sub-populations. In Apolloni et al. (2008),
a distributed DE which modifies the scheme proposed in
Tasoulis et al. (2004) has been presented. In Apolloni et al.
(2008), the migration is based on a probabilistic criterion
depending on five parameters. It is worthwhile mentioning
that some parallel implementations of sequential (without
structured population) DE are also available in literature
(see, Nipteni et al. 2006). An investigation of DE parall-
elization is given in Lampinen (1999).
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This paper focuses on distributed differential evolutions
and proposes a novel distributed algorithm. The proposed
algorithm distributes its individuals within sub-populations
arranged according to a ring topology. Each sub-population
is characterized by its own scale factor. According to a
simple probabilistic criterion, the migration of individual
with the best performance and its associated scale factor
occurs between neighbor sub-populations (following the
ring topology). At each migration, the scale factor is also
perturbed by means of a normal distribution. This paper is
based on the idea that the scale factor is a determinant
element within the DE search strategy. Thus, a successful
search strategy can be inherited by the other sub-popula-
tions and propagated throughout the ring. A probabilistic
perturbation enhances the exploration pressure of the
algorithm.

The remaining of this paper is organized as follows.
Section 2 describes the working principles of DE.
Section 3 gives a short description of recently presented
distributed versions of DE and introduces algorithms
employed for comparison in the experimental section.
Section 4 describes the proposed algorithm and discusses
its algorithmic principle of functioning. Section 5 shows
the experimental setup and numerical results of the present
study. Section 6 gives the conclusions of this paper.

2 Sequential differential evolution

To clarify the notation used throughout this chapter we
refer to the minimization problem of an objective function
fix), where x is a vector of n design variables in a decision
space D.

According to its original definition given in Storn and
Price (1995), the DE consists of the following steps. An
initial sampling of S,,, individuals is performed pseudo-
randomly with a uniform distribution function within the
decision space D. At each generation, for each individual x;
of the S,op, three individuals x,, x, and x, are pseudo-
randomly extracted from the population. According to the
DE logic, a provisional offspring x; is generated by
mutation as:

Xotr = Xt + F(x, — x;) (1)

where F € [0,14] is a scale factor which controls the
length of the exploration vector (x, — x;) and, thus, deter-
mines how far from point x; the offspring should be gen-
erated. With F € [0, 1+], it is meant here that the scale
factor should be a positive value which cannot be much
greater than 1 (see, Price et al. 2005). While there is no
theoretical upper limit for F, effective values are rarely
greater than 1.0. The mutation scheme shown in Eq. I is

also known as DE/rand/1. Other variants of the mutation
rule have been subsequently proposed in literature (see,
Qin and Suganthan 2005):

— DE/best/1: X, = Xpest + F(xr — Xy)

— DE/cur-to-best/1: X,y = x; + F(Xpest — X;i) + F (x5 — X;)

— DE/best/2: x; = Xpest + F(x; — x;) + F(x, — x,)

— DE/rand/2: x4 = x, + F(x, — x5) + F(x, — x,)

— DE/rand-to-best/2: X, = x; + F (Xpest — ;) + F (2, — x5)
+F(x, —x,)

where xy,. is the solution with the best performance among
the individuals of the population, x, and x, are two
additional pseudo-randomly selected individuals. It is
worthwhile to mention the rotation invariant mutation
shown in Qin and Suganthan (2005):

— DE/current-to-rand/1 x.p = x; + K (x; — x;) + F' (x, — x;)

where K is the combination coefficient, which, as sug-
gested in Price (1999), should be chosen with a uniform
random distribution from [0, 1] and F’ = K - F. For this
special mutation, the mutated solution does not undergo the
crossover operation described below.

Recently, in Price et al. (2005), a new mutation strategy
has been defined. This strategy, namely DE/rand/1/either—
or, consists of the following:

, X+ F(x, — x) if
Xoff = ;
X+ K(x, + x; — 2x,) otherwise

rand(0, 1) <pr

(2)

where for a given value of F, the parameter KX is set equal to
0.5 (F 4+ 1).

When the provisional offspring has been generated by
mutation, each gene of the individual x/ is exchanged
with the corresponding gene of x; with a uniform proba-
bility and the final offspring x.¢ is generated:

x;;  if rand(0, 1) <CR
Xoftj = 4 3)
o Xy, otherwise

where rand(0, 1) is a random number between 0 andl; j is
the index of the gene under examination. The crossover
described in Eq. 3 is known as binary crossover (simply
indicated with “bin”) and is the most common crossover
scheme. It can be remarked that also the exponential
crossover (see, Price et al. 2005), is used in some cases.

The resulting offspring x.¢ is evaluated and, according
to a one-to-one spawning strategy, it replaces x; if and only
if f(xorr) <f(x;); otherwise no replacement occurs. It must
be remarked that although the replacement indexes are
saved one by one, during generation, actual replacements
occur all at once at the end of the generation. For the sake
of clarity, the pseudo-code highlighting working principles
of the DE is shown in Fig. 1.
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generate Spop individuals of the initial population pseudo-randomly
while budget condition do
for i =1: .Sy, do
compute f (z;)
end for
for i =1: Spop do
{** Mutation **}
select three individuals z,, zs, and x¢
compute I/oﬁ =zt + F(zr — zs)
{** Crossover **}
T = :v;ff
for j=1:ndo
generate rand(0, 1)
if rand(0,1) < CR then
Toff j = Tirj
end if
end for
{** Selection **}
if f (Jtuf_:f) < f(z;) then
save index for replacement x; = x5
end if
end for
perform replacements
end while

Fig. 1 Pseudo-code of DE/rand/1/bin

3 Distributed differential evolution: recently developed
algorithms

This section describes three distributed algorithms based
on a DE structure recently proposed in literature. The
algorithms described in this section are, according to our
judgement, representative of the state-of-the-art structured
DE algorithms and have been included in the benchmark
for comparing the performance of the proposed approach.
Although the notation can generate some confusion, i.e., all
algorithms are distributed and can easily be parallelized,
we decided to indicate these according to original termi-
nology defined by their respective authors.

3.1 Parallel differential evolution

In Tasoulis et al. (2004), the problem of parallelization for
DE schemes has been studied through an experimental
analysis and an algorithm, namely parallel differential
evolution (indicated here with PDE) has been proposed.

The original PDE implementation uses the parallel vir-
tual machine (PVM), allowing multiple computers (called
nodes) to be organized as a cluster and exchange arbitrary
messages. The PDE algorithm is organized around one
master node and m sub-populations running each on one
node, and organized as a unidirectional ring, as illustrated
in Fig. 2. It must be noted that although the logical
topology is a ring which does not contain the master node,
the actual topology is a star, where all communications
(i.e., the migrations of individuals) are passing through the
master.

The S,o, individuals constituting the populations are
distributed over the m sub-populations composing the ring.
Each sub-population is composed of % individuals. Each
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Fig. 2 Unidirectional ring topology in the parallel differential
evolution algorithm

sub-population runs a regular DE algorithm while the
master node coordinates the migration of individuals
between sub-populations. On each generation, the sub-
population has a given probability ¢ to send a copy of its
best individual to its next neighbor sub-population in the
ring. When migration occurs, the migrating individual
replaces a pseudo-randomly selected individual belonging
to the target sub-population. Figure 3 describes the
behavior of both the master node and the sub-populations
in more detail.

The DE variant run by each sub-population is the same
across all the sub-populations. In Tasoulis et al. (2004), six
mutation strategies have been compared, namely DE/best/1,
DE/rand/1, DE/cur-to-best/1, DE/best/2, DE/rand/2 descri-
bed in Sect. 2, as well as the trigonometric operator
described in Fan and Lampinen (2003). Each strategy is
used with different values of the migration constant ¢ and
compared over seven test functions the dimensions of which
vary between 2 and 30. The results in Tasoulis et al. (2004)
showed that DE/best/1 is the most efficient mutation strat-
egy and quite stable across different values of ¢ for the low
dimensional problems analyzed.

3.2 Island based distributed differential evolution

In Apolloni et al. (2008) a distributed DE algorithm,
namely island based distributed differential evolution
(IBDDE) has been proposed. The IBDDE algorithm is a
modified version of PDE described in Subsect. 3.1. In
IBDDE, the population, having size Sy, is structured in m
sub-populations. Thus, each sub-population is composed of
% individuals. The migration policy is then defined as a
five-tuple M = (y,p, d;, ¢,,7). y € N is the number of
generations between two migrations, p € N is the number
of individuals which migrate from a sub-population P
during each migration, ¢, is the selection function which,
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Fig. 3 Pseudo-code of PDE.
a At the master node, b At each
sub-population

end if
end for

end if
end for

spawn N sub-populations, each one on a different processor
for each generation do
receive an individual from each sub-population
for each received individual do
if rand(0,1) < ¢ then
send the individual to the next sub-population in the ring

if the stop criterion for the objective function is met then
send a termination signal to all the sub-populations

(a)

end if

end if
end for

for each generation do
perform a DE generation
send a copy of the best individual to the master node
if a migrated individual has been received then
replace a random individual, different from the best, by this migrated individual

if a termination signal has been received then
terminate the execution

applied to a sub-population, returns the migrating indi-
viduals vg, ¢, is the replacement function that selects
individuals to be replaced by the immigrants in the
receiving sub-population, and t is the topological rule,
which selects the target sub-population Q. The individuals
to be migrated are pseudo-randomly (uniformly) chosen by
the selection function ¢,. Incoming individuals from other
sub-populations replace pseudo-randomly chosen local
individuals, only if the former are better, by the replace-
ment function ¢,.

Figure 4 describes the algorithm as pseudo-code.

In Apolloni et al. (2008), the experiments have been run
with a population size S, equal to 20. The population is
divided into two sub-populations of 10 individuals in one
experiment, and into four sub-populations of 5 individuals
in a second experiment. The migration parameters are set
to y = 100, p = 1, the functions ¢, and ¢, are defined to
randomly select an individual, the topology t is a unidi-
rectional ring very similar to the logical topology used by
PDE (see, Subsect. 3.1). The mutation strategy for DE is
DE/rand/1, and the algorithm is tested on 25 different test
functions in 30 and 50 dimensions, for a total of 50 test
functions.

3.3 Distributed differential evolution

In De Falco et al. (2007a, b, c), in order to solve some
image registration problems a distributed DE (indicated
here with DDE) has been proposed. This algorithm differs
from PDE and IBDDE by the topology it uses. Instead of a
unidirectional ring, DDE uses a locally connected topol-
ogy, where each node is connected to p other nodes.

(b)

initialize(P)
while the stopping condition is not met do
perform a DE generation
if the last migration was ~ generations ago then
for each of the p individuals to send do
vl — ¢s(P)
send v;i to Q chosen by T
end for
end if {** Asynchronous communication **}
while individuals are arriving do
receive vy’ from P
replace an individual chosen from ¢,(Q) by vg
end while
end while

Fig. 4 Pseudo-code of IBDDE for the sub-population P

Figure 5 represents such a topology, where the nodes are
arranged in a mesh folded into a torus.

In De Falco et al. (2007a, b, c), it has been proposed to
set 4 = 4, i.e., each node (such as the black disc in the
Fig. 5) has exactly four nearest neighbors (represented by
the four gray discs). In DDE, each node represents one
processor running a DE algorithm with a DE/rand/1
mutation strategy on a sub-population. Every M, genera-
tions (the migration interval), each sub-population is
allowed to exchange S; (the migration rate) individuals
with its nearest neighbors. In the experimental setup, each
node sends a copy of its best individual to its neighbors.
Figure 6 describes the algorithm as pseudo-code.

DDE also makes use of a master node, the role of which
is to collect the best solutions found in each sub-population
and to present these results to the user.
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Fig. 5 Torus topology in distributed differential evolution

initialize the sub-population
while the stopping condition is not met do
perform a DE generation
if the last migration was M generations ago then
send a copy of the best individual to each neighbor
end if
if there are incoming individuals then
replace the worst S7 X p individuals by the S; X p incoming ones
end if
end while

Fig. 6 Pseudo-code of the DDE algorithm at a sub-population

4 Distributed differential evolution with scale factor
inheritance

The proposed algorithm enhances the PDE structure
described in Subsect. 3.1 by means of the implementation,
in a distributed logic, of the self-adaptive parameter control
proposed in Brest et al. (2006). More specifically, an
adaptive control of the scale factor “F” is proposed here.
The novel mechanism proposed here in this article is
named scale factor inheritance. The proposed algorithm,
namely “F” adaptive control parallel differential evolution
(FACPDE) consists of the following steps.

At the beginning of the optimization process, Spop
individuals are pseudo-randomly sampled within the deci-
sion space D. These Sy, are distributed over m sub-pop-
ulations; each sub-population is composed of %
individuals. For each (generic hth) sub-population a scale
factor F*, fork = 1,...,m, is assigned. Each scale factor is
initially generated as pseudo-random by sampling a value
from a uniform distribution between — 1 and 1. The sub-
populations are then arranged according to ring topology,
as with the PDE topology represented in Fig. 2.

At each generation, each sub-population performs a DE
scheme. For each individual x; of the S;;’p, three individuals
X,, x; and x, are pseudo-randomly extracted from the pop-
ulation. The provisional offspring x/; is generated by
mutation as:
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X = X + Fk(x, — Xg)- 4)

It is clear that a scale factor taking on a negative value
means that the search direction is inverted.

When the provisional offspring has been generated by
mutation, each gene of the individual x[; is exchanged
with the corresponding gene of x; with a uniform proba-
bility and the final offspring x.¢ is generated:

x;;  if rand(0, 1) <CR
Xoff,j = ! (5)
! Xy, otherwise

where, as for the sequential DE, rand(0, 1) is a random
number between 0 and 1; j is the index of the gene under
examination. The standard one-to-one spawning is then
applied and, at the end of each generation, the scheduled
replacements are performed.

For each sub-population, between two subsequent gen-
erations, a pseudo-random number rand(0, 1) is generated
by means of a uniform distribution. Analogous to what was
explained about the PDE in Subsect. 3.1, this pseudo-ran-
dom number is then compared with a constant value ¢,
namely migration constant. If rand(0, 1) < ¢, the individual
with the best performance is selected to undergo migration.
Thus, for the generic kth sub-population, the individual
xf,, is duplicated and then replaces a pseudo-randomly
selected individual of the neighbor (in the ring) sub-pop-
ulation. The scale factor inheritance mechanism occurs
contextually with the migration. More specifically, when
the migration occurs, performance of the individual x’gesl is
compared with that of the best individual belonging to the
target sub-population, indicated here with x'gjsz If the new
immigrant has a better performance than the best individual
of the target sub-population, i.e., if f(xf.) <f (x’g:s:), the
(k+1)th sub-population inherits the scale factor F* after a
perturbation. More specifically, the scale factor F**' rela-
ted to the (k41)th sub-population is updated according to
the following formula:

F = FF 1 aN(0,1) (6)

where A (0,1) is a pseudo-random value sampled from a
normal distribution characterized by a zero mean and
variance equal to 1. The constant value o has the role of
controlling the range of perturbation values o\ (0,1). It
must be observed that we did not impose any bounds for
the variation of F. On the contrary, we decided to allow an
unbounded variation of the control parameter and rely on
the self-adaptation mechanism.

If the new immigrant does not outperform the best
individual of the target sub-population, i.e.,
f (x’gest) >f (x,’;:i), the scale factor inheritance mechanism
is not activated and, thus, only the migration of the indi-
vidual x’gesl occurs.
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Fig. 7 Graphical representation of FACPDE

The described operations are repeated until the budget
conditions are satisfied.

A graphical representation of FACPDE is given in
Fig. 7.

For the sake of clarity, the pseudo-code illustrating
working principles of FACPDE is shown in Fig. 8.

4.1 Scale factor inheritance: algorithmic philosophy

As shown in Sect. 2, DE is based on a very simple idea,
i.e., a search by means of adding vectors and a one-to-one
spawning for the survivor selection. Thus, DE is very
simple to implement/code and contains a limited number of
parameters to tune (only Spop, F, and CR).

From an algorithmic viewpoint, reasons for the success
of DE have been highlighted in Feoktistov (2006): success
of DE is due to an implicit self-adaptation contained within
the algorithmic structure. More specifically, since, for each
candidate solution, the search rule depends on other

solutions belonging to the population (e.g., x;, x,, and x;),
the capability of detecting new promising offspring solu-
tions depends on the current distribution of the solutions
within the decision space. During early stages of the
optimization process, solutions tend to be spread out within
the decision space. For a given scale factor value, this
implies that the mutation appears to generate new solutions
by exploring the space by means of a large step size (if x,
and x, are distant solutions, F(x, — x;) is a vector charac-
terized by a large modulus). During the optimization pro-
cess, the solutions of the population tend to concentrate on
specific parts of the decision space. Therefore, step size in
the mutation is progressively reduced and the search is
performed in the neighborhood of the solutions. In other
words, due to its structure, a DE scheme is highly
explorative at the beginning of the evolution and subse-
quently becomes more exploitative during optimization.

Although this mechanism seems at first glance to be
very efficient, it hides a limitation. If for some reason, the
algorithm does not succeed in generating offspring solu-
tions which outperform the corresponding parent, the
search is repeated again with similar step size values and
will likely fail by falling into an undesired stagnation
condition (see, Lampinen and Zelinka 2000). Stagnation is
the undesired effect which occurs when a population-based
algorithm does not converge to a solution (even subopti-
mal) and the population diversity is still high. In the case of
the DE, stagnation occurs when the algorithm does not
manage to improve upon any solution of its population for
a prolonged number of generations. In other words, the
main drawback of the DE is that the scheme has, for each
stage of the optimization process, a limited amount of
exploratory moves. If these moves are not enough for
generating new promising solutions the search can be
heavily compromised.

Thus, in order to enhance the DE performance, alter-
native search moves should support the original scheme
and promote a successful continuation of the optimization
process. The use of multiple populations in distributed DE
algorithms allows an observation of the decision space

Fig. 8 Pseudo-code of the
FACPDE algorithm

end if
end if
end for
end for
end while

while budget conditions do
for each generation do
for each sub-population k =1: m do

if rand (0,1) < ¢ then
select and copy ), ,
migrate xlgest into the (k + l)th sub-population by replacing a pseudo-randomly
selected individualk )
if f (:p’;mt) <f (m + ) then

FF+tl = FF + aN(0,1)

best
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(b)

Fig. 9 Search mechanism in differential evolution performance
trends in 500 dimensions. a Too explorative conditions, b Too
exploitative conditions, ¢ Ackley, d DropWave, e Michalewicz,

from various perspectives and, most importantly, decreases
the risk of stagnation since each sub-population imposes a
high exploitation pressure. In addition, the migration
mechanism ensures that solutions with a high performance
are included within the sub-populations during their evo-
lution. This fact is equivalent to modifying the set of search
moves. If the migration gives privilege to the best indi-
viduals, the new search moves promote the detection
of new promising search directions and, thus, allow the
DE search structure to be periodically “refurbished”.
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Thus, migration is supposed to mitigate the risk of DE
(sub-)populations stagnating and to enhance the global
algorithmic performance.

As a countermeasure against stagnation, several recent
DE versions propose a randomization in the search logic
which increases the amount of potential exploration moves.
For example, in Brest et al. (2006), scale factor and
crossover rates are periodically updated by generating new
random values. This simple operation seems to have a very
relevant effect on the algorithmic performance. Also the
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Fig. 9 continued

DE scheme proposed in Qin et al. (2009) enhances a
previously proposed algorithm (presented in Qin and
Suganthan 2005) by introducing a randomization of the
control parameters. Thus, two operations are needed in
order to obtain significant improvements in DE perfor-
mance which seems to be the updating and randomization
of control parameters.

In this paper we focus on the scale factor dynamics.
Although DE schemes are characterized by the implicit
self-adaptation described above, employment of a unique
and constant scale factor value can be improper since the
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exploratory moves depend on distribution of the solution
within the decision space. For example, for a highly multi-
modal problem, a scale factor F' = 1 can generate very long
moving vectors F(x, — x;) if the population is spread out
within the decision space (see, Fig. 9a) and very short
moving vectors if the population is concentrated in some
areas of the decision space (see, Fig. 9b). This fact may
lead to an excessively explorative behavior during some
stages of the evolution and an excessively exploitative
behavior during other stages. These two behaviors can
cause, respectively, stagnation due to an incapability to

@ Springer



1196

M. Weber et al.

detect a promising search direction and a premature con-
vergence due to the excessive exploitation of a suboptimal
basin of attraction. In other words, a proper choice of the
scale factor depends not only on the optimization problem
but also on the stage of the evolution.

On the basis of this consideration, the scale factor
inheritance mechanism has been designed. The initial
pseudo-random assignment of the scale factors (one per
sub-population) allows each FACPDE sub-population to
explore the decision space from complementary perspec-
tives. Subsequently, each evolving sub-population can be
seen as a separate searcher which cooperates and competes
with the other searcher, analogous to memetic algorithms
(see, Ong and Keane 2004; Tang et al. 2007a; Caponio
et al. 2007), and (Neri et al. 2007). The sub-populations
cooperate with each other by means of migration of the
individual with the best performance which can be seen as
a suggestion of a promising search direction. The sub-
populations compete with each other by means of the scale
factor migration; this fact can be seen like the imposition of
the most successful search strategy to other sub-popula-
tions employing a weaker strategy. The ring topology
assures propagation of this successful strategy to all sub-
populations. On the other hand, this propagation is rather
slow, so as to avoid too greedy an algorithmic behavior. In
addition, randomization of the scale factor when the
migration occurs guarantees a certain diversity of scale
factors even in the event that a propagation throughout the
entire ring occurs. Thus, we avoid that all the sub-popu-
lation are characterized by the same scale factor.

In summary, the combined action of an exploration of
the decision space from diverse and complementary per-
spectives, the cooperation mechanism with its suggestion
of promising search directions, the competitive procedure
of the most successful search strategies and their random-
ized updates should, together, compose a robust DE-based
algorithm which efficiently balances its explorative and
exploitative resources in order to efficiently and robustly
solve complex optimization problems.

5 Experimental results

To prove the viability of the FACPDE and test its perfor-
mance with respect to modern distributed DE-based algo-
rithms, the following numerical experiments have been
performed. The test problems listed in Table 1 have been
considered in this study.

The rotated version of some of the test problems listed
in Table 1 have been included into the benchmark set.
These rotated problems have been generated through the
multiplication of the vector of variables by a randomly
generated orthogonal rotation matrix. In total, 24 test
problems have been considered in this study with both
n =500 and n = 1,000. The FACPDE has been tested
with these 24 test problems and its behavior and perfor-
mance have been compared with those obtained by stan-
dard sequential DE/rand/1/bin (simply indicated here as
DE), the improved DE algorithm employing random scale
factor proposed in Das et al. (2005) and indicated as

Table 1 Test problems Test problem

Function

Decision space

Ackley

Alpine

Axis-parallel hyper-ellipsoid
DelJong

DropWave

Griewangk

Michalewicz
Pathological

Rastrigin

Rosenbrock valley
Schwefel

Sum of powers

Tirronen

—20+e+20 exp<fM > xf)

n

—exp(137 | cos(2m - x;)x;)

[717 1]”

Soiy | sinx + 0. 1x; [-10,10]"

S i [-5.12,5.12]"

||x[)? _ [-5.12,5.12]"

—W [-5.12,5.12]"
g 2l

a5 — [ipcos %+ 1 [—600, 600]"

ix? 20

— %, sinx; (sin (j)) [0,x]"

n—1 sinz(m—lfo.S) _ n
Zi:l (OS + l+0.001*(x?72x,x,+|+x,2‘])2) [ 1007 100]
10n 4+ 3% (x7 — 10cos(2mx;)) [-5.12,5.12]"
) (100(x,-+l — )41 —x,-)z) [~2.048,2.048]"
S —xisin( /|x] [—500, 500]"
S bl (-1 1)

"l n
Sexp(—Hl'O‘ll) - lOexp(—8|\xH2> [-10,5]

5 (s 0 imd (1))
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Table 4 Results of the Wilcoxon rank-sum test for 500-dimension
problems

Table 5 Results of the Wilcoxon rank-sum test for 1,000-dimension
problems

DE DERSF PDE [IBDDE DDE DE DERSF PDE [IBDDE DDE
Ackley + + + + + Ackley + + + + +
Alpine + + + + + Alpine + + + + +
Ax.-par. hyp.-ell. + + + + + Ax.-par. hyp.-ell. + + + + +
DelJong + + + + + DelJong + + + + +
DropWave + + + + + DropWave + + + + +
Griewangk + + + + + Griewangk + + + + +
Michalewicz + + + + + Michalewicz + + + + +
Pathological + + + + + Pathological + + + + +
Rastrigin + + + + + Rastrigin + + + + +
Rosenbrock + + + =+ Rosenbrock + + + + +
Schwefel + + + + + Schwefel + + + + +
Sum of powers + + = + + Sum of powers + + = + =
Tirronen + + + + + Tirronen + + + + +
Rt. Ackley + + + + + Rt. Ackley + + + + +
Rt. Alpine + + + + + Rt. Alpine + + + + +
Rt. Ax.-par. hyp.-ell.  + + + + + Rt. Ax.-par. hyp.-ell.  + + + + +
Rt. Griewangk + + + + + Rt. Griewangk + + + + +
Rt. Michalewicz + + + + + Rt. Michalewicz + + + + +
Rt. Pathological + + - + + Rt. Pathological + + + + -
Rt. Rastrigin + + + + + Rt. Rastrigin + + + + +
Rt. Rosenbrock + + + + + Rt. Rosenbrock + + + + +
Rt. Schwefel + + = + + Rt. Schwefel + + + + +
Rt. Sum of powers + = + + Rt. Sum of powers = = = = =
Rt. Tirronen + + + + + Rt. Tirronen + + + + +

DERSF, PDE introduced in Tasoulis et al. (2004), IBDDE
given in Apolloni et al. (2008) and DDE employed in De
Falco et al. (2007a, b, ¢). It must be remarked that all the
algorithms chosen for comparison are modern distributed
DE algorithms recently proposed in literature, and which
are representative of the state-of-the-art in the field. Each
algorithm has been run for 500,000 fitness evaluations in
the case of n = 500 and for 1,000,000 fitness evaluations
when n = 1,000. As much as 50 independent runs have
been performed for each algorithm involved in this article.

The algorithms considered in this study have been run
with the following parameter setting.

— DE has been run with F =0.7 and CR = 0.3 in
accordance with the suggestions given in Zielinski et al.
(1857), Zielinski and Laur (2008). The population size has
been set to Sy, = 200 for the 500-dimensional problems
and to Spop = 400 for the 1,000-dimensional ones.

— DESREF has been run with CR = 0.3. Analogous to DE,
the population size has been set to Sp,, = 200 for the
500-dimensional problems and to Spe, = 400 for the
1,000-dimensional ones. In DERSF the scale factor is
randomized, at each generation, according to the rule
F =0.5(1 +rand(0, 1)).

— PDE has been run with populations of 200 or 400
individuals divided into 5 sub-populations of 40 or 80
individuals each, for the 500 and 1,000-dimensional
problems, respectively. Despite (Tasoulis et al. 2004)
showing better performance for the DE/best/1 mutation
strategy in 30 and 50 dimensions, it has proven
excessively exploitative and has led to premature
convergence of the solutions when used on higher
dimension problems. In order to perform a fair
comparison, we have carried out an analysis on
mutation strategies, leading to the choice of DE/rand/
1 and setting the migration constant to ¢ = 0.2. These
settings proved to be the best choices in terms of
algorithmic performance and have, thus, been chosen
for the experiments described below.

— Similar to PDE, IBDDE has been run with populations
of 200 or 400 individuals divided into 5 sub-popula-
tions of 40 or 80 individuals each, depending on the
dimensionality of the test problems. The other param-
eters have been chosen according to the values in
Apolloni et al. (2008): the sub-populations exchange
one individual (p =1) every 100 generations
(y = 100). ¢, and ¢, have been defined so as to
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pseudo-randomly select an individual by means of a
uniform distribution, and 7 has been set to a unidirec-
tional ring.

— For the 500-dimensional problems, the DDE has been
run with a population of 200 individuals divided into 16
sub-populations of alternatively 12 or 13 individuals. In
the case of the 1,000-dimensional problems, the
population has been set to 400 individuals divided into
16 sub-populations of 25 individuals. Following the
suggestions in De Falco et al. (2007b) the sub-popu-
lations have been organized into a 4 x 4 grid folded
into a torus (1 = 4). Migration occurred in each sub-
population with only its best individual (S; = 1) every
M; =5 generations.

— Similar to PDE and IBDDE, FACPDE has been run
with populations of 200 and 400 individuals divided
into 5 sub-populations of 40 and 80 individuals each for
the 500 and 1,000-dimensional cases, respectively. The
migration constant ¢ has been set equal to 0.2 and the
constant « in formula (6) has been set equal to 0.1.

It is worthwhile commenting on choice of the population
sizes Spop = 200 and Spop = 400. Although in Storn and
Price (1997) it is suggested that the DE population size be
set equal to about 10 times the dimensionality of the
problem, this indication is not confirmed by a recent study
in Neri and Tirronen (2008), where it is shown that a
population size lower than the dimensionality of the
problem can be optimal in many cases.

Table 2 shows the average of the final results detected
by each algorithm =+ the standard deviations, with the
500 dimension case. Table 3 shows the results for the
1,000-dimension case. The best results are highlighted in
boldface.

Results in Tables 2 and 3 show that the sequential DE
algorithms are outperformed by the distributed algorithms.
This result confirms that a structured population can
enhance performance of the DE (see, Alba and Tomassini
2002). In addition, FACPDE seems to have a very good
performance with the test problems considered in this study
since it detects those solutions with best performance for
23 and 21 test problems out of the 24 considered in 500 and
1,000 dimensions, respectively. It must be remarked that in
the cases, where FACPDE does not detect the solutions
with best performance, the algorithm still detects, in any
case, competitive solutions; these solutions usually have,
on average, the second best performance. In this sense,
FACPDE seems to be a high-quality algorithm for various
test problems.

To prove statistical significance of the results, the Wil-
coxon Rank-Sum test has also been applied according to
the description given in Wilcoxon (1945), where the con-
fidence level has been fixed to 0.95. Tables 4 and 5 show
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results of the test. A “4” indicates the case in which
FACPDE statistically outperforms, for the corresponding
test problem, the algorithm mentioned in that column; a
“=" indicates that a pairwise comparison leads to success
of the Wilcoxon Rank-Sum test, i.e., the two algorithms
have the same performance; a “— indicates that FACPDE
is outperformed.

In the case of 500-dimensional problems, the Wilcoxon
test results in Table 4 shows that FACPDE, out of the 120
pairwise comparisons performed, loses out only in one
case, obtains the same results in four cases, and wins in 91
cases. Thus, FACPDE comes out behind in only 0.83% of
the comparisons and comes out ahead in 95.0% of the
considered comparisons. In 1,000 dimensions, the Wilco-
xon test results displayed in Table 5 show that FACPDE,
out of the 120 pairwise comparisons performed, loses in
one case, obtains the same results in seven cases, and wins
in 112 cases. Thus, FACPDE loses only 0.83% of the
comparisons and is shown to be superior in 93.3% of the
considered comparisons. The statistical test carried out
confirms that FACPDE has a very good performance in
regard to the studied test problems. In addition, the com-
parison between PDE and FACPDE shows that the pro-
posed scale factor inheritance mechanism seems to be very
beneficial.

To strengthen the statistical significance of the results,
the Holm procedure (Holm 1979) has been applied by
following the description in Garcfa et al. (2008). The Holm
procedure consists of the following. Considering the results
in Tables 2 and 3, the six algorithms under analysis have
been ranked on the basis of their average performance

Table 6 Results of the Holm procedure for 500-dimensional prob-
lems (FACPDE is the control algorithm)

Ny —j Optimizer zy,_; PNy 0/(Ns —j) Hypothesis
5 DE —8.72¢ + 00 1.41e — 18 1.00e — 02 Rejected
4 DERSF —733e + 00 1.16e — 13 1.25¢ — 02 Rejected
3 IBDDE —5.63¢ + 00 8.90e — 09 1.67e — 02 Rejected
2 DDE —3.09¢ + 00 1.0le — 03 2.50e — 02 Rejected
1 PDE —2.08¢e + 00 1.86e — 02 5.00e — 02 Rejected

Table 7 Results of the Holm procedure for 1,000-dimensional
problems (FACPDE is the control algorithm)

Nj —j Optimizer zy,—; DPNy—j 0/(Na —j) Hypothesis
5 DE —8.72¢ + 00 1.4le — 18 1.00e — 02 Rejected
4 DERSF  —6.71e + 00 9.59e — 12 1.25¢ — 02 Rejected
3 IBDDE —5.86e + 00 2.27e — 09 1.67e — 02 Rejected
2 PDE —2.62e + 00 4.36e — 03 2.50e — 02 Rejected
1 DDE —2.0le + 00 2.24e — 02 5.00e — 02 Rejected
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Table 8 Results of the Q-test for 500 dimensions problems
THR DE DERSF PDE IBDDE DDE FACPDE

Ackley 2.15¢ — 01 0 0 4.58e + 03 0 4.65¢ + 03 7.37e + 02
Alpine 9.8% + 01 0 0 5.82e + 03 0 2.54e 4 04 1.79¢ + 03
Ax.-par. hyp.-ell. 499 + 04 o0 o0 2.14e + 03 o0 1.20e 4+ 03 4.43e + 02
DeJong 2.02e + 02 0 o0 2.36e + 03 o0 1.35¢ + 03 4.96e + 02
DropWave —4.81e — 03 0 o0 9.31e + 04 0 0 3.50e + 03
Griewangk 1.19¢ + 03 0 0 2.34e + 03 0 1.40e + 03 5.29¢ + 02
Michalewicz —3.3% + 02 0 0 0 0 0 3.38¢e + 03
Pathological —3.37e 4+ 02 0 0 8.43e + 03 1.65¢ + 04 0 1.22¢ + 03
Rastrigin 1.38¢ + 03 o0 o0 0 o0 o0 1.23e + 03
Rosenbrock 1.17e 4+ 04 0 00 1.57e + 03 0 7.23e 4+ 02 4.71e + 02
Schwefel —1.46e + 05 0 0 0 0 o0 1.17e + 03
Sum of powers 1.24e — 01 0 0 2.32e + 02 3.52e + 04 7.97e + 01 1.81e + 02
Tirronen —1.55e + 00 0 0 5.04e + 03 0 0 2.04e + 03
Rt. Ackley 2.55e — 01 0 0 4.98e + 03 0 4.5% + 03 8.62e + 02
Rt. Alpine 1.31e + 02 o0 o0 4.35e + 03 o0 8.47e + 03 1.50e + 03
Rt. Ax.-par. hyp.-ell. 4.97e + 04 0 0 2.04e + 03 0 1.04e 4 03 4.84e + 02
Rt. Griewangk 1.19¢ + 03 o0 o0 2.17e + 03 o0 1.18¢ 4+ 03 4.91e + 02
Rt. Michalewicz —1.83¢ + 02 o0 o0 2.27e + 04 o0 o0 3.87e + 03
Rt. Pathological —1.15¢ + 02 o0 o0 5.24e + 03 o0 3.16e + 04 1.0le + 04
Rt. Rastrigin 1.49¢ + 03 0 0 0 0 0 1.76e + 03
Rt. Rosenbrock 1.17e + 04 o0 o0 1.41e + 03 0 6.18¢ + 02 4.70e + 02
Rt. Schwefel —1.60e + 05 0 0 4.70e + 03 0 0 3.3%¢ + 03
Rt. Sum of powers 6.33¢ + 20 2.27e + 01 1.31e 4+ 01 5.24e + 00 1.44e 4 01 4.92e 4+ 00 4.12¢ + 00
Rt. Tirronen —1.21e + 00 0 o0 521e + 03 o0 o0 3.72¢ + 03

calculated over the 24 test problems. Thus, or in other
words, a score R; fori = 1, ..., Ny (where N, is the number
of algorithms under analysis, N4 = 6 in our case) has been
assigned. With the calculated R; values, the FACPDE has
been taken as a reference algorithm. Indicating with R, the
rank of FACPDE, and with R; for j=1,...,Ny — 1 the
rank of one of the remaining five algorithms, the values z;
have been calculated as

R — Ry

Na(Na+1)
6NTp

3=

where Ntp is the number of test problems in consideration
(Ntp = 24 in our case). By means of the z; values, the
corresponding cumulative normal distribution values p;
have been calculated. These p; values are then compared
with the corresponding 5/(Ns —j) where ¢ is the level of
confidence, set to 0.05 in our case. Tables 6 and 7 display z;
values, p; values, and corresponding ¢/(N4 — j). The val-
ues of z; and p; are expressed in terms of zy, _; and py, _; for
j=1,...,Ns — 1. Moreover, it is indicated whether the
null-hypothesis (that the two algorithms have indistin-
guishable performances) is “Rejected” i.e., the FACPDE

statistically outperforms the algorithm under consideration,
or “Accepted” if the distribution of values can be con-
sidered the same (there is no outperformance).

The Holm procedure confirms that the FACPDE dis-
plays a significantly better performance with respect to the
other algorithms in this study for both 500- and 1,000-
dimensional cases.

To carry out a numerical comparison of the convergence
speed performance, for each test problem, the average final
fitness value returned by the best performing algorithm G
has been considered. Subsequently, the average fitness
value at the beginning of the optimization process J has
also been computed. The threshold value THR =J —
0.95(J — G) has then been calculated. The value THR
represents 95% of the decay in the fitness value of the
algorithm with the best performance. If an algorithm suc-
ceeds during a certain run to reach the value THR, the run
is said to be successful. For each test problem, the average
amount of fitness evaluations re required, for each algo-
rithm, to reach THR has been computed. Subsequently, the
Q-test (Q stands for Quality) described in Feoktistov
(2006) has been applied. For each test problem and each
algorithm, the Q measure is computed as:

@ Springer
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Table 9 Results of the Q-test for 1,000-dimension problems

THR DE DERSF PDE IBDDE DDE FACPDE

Ackley 2.10e — 01 o0 o0 0 o0 0 2.14e + 03
Alpine 2.41e 4+ 02 o0 o0 0 o0 o0 2.81e + 03
Ax.-par. hyp.-ell. 2.02e 4+ 05 o0 o0 9.45¢ + 03 o0 6.10e + 03 1.43e + 03
DelJong 4.11e + 02 0 0 0 0 7.61e + 03 1.40e + 03
DropWave —1.98e — 03 0 o0 0 0 0 1.13e + 04
Griewangk 2.43e + 03 0 0 1.22e + 05 0 7.43e + 03 1.45¢ + 03
Michalewicz —5.7% + 02 0 0 0 0 o0 7.94¢ + 03
Pathological —6.81e + 02 0 0 0 o0 o0 4.3% + 03
Rastrigin 2.78¢e 4+ 03 o0 o0 0 o0 o0 2.59¢ + 03
Rosenbrock 2.38e + 04 0 0 6.57e + 03 0 3.37e 4+ 03 1.54e + 03
Schwefel —3.09¢ + 05 0 0 0 0 0 2.57e + 03
Sum of powers 1.23e — 01 0 0 6.84e + 02 0 1.90e + 02 4.86e + 02
Tirronen —1.51e + 00 0 0 0 0 0 5.03e + 03
Rt. Ackley 2.52e — 01 0 0 0 0 0 2.60e + 03
Rt. Alpine 2.52e + 02 0 0 [c0) 0 o0 3.68e + 03
Rt. Ax.-par. hyp.-ell. 2.02e 4 05 0 0 8.78¢ + 03 0 5.15¢ + 03 1.49¢ + 03
Rt. Griewangk 2.40e 4+ 03 o0 o0 1.0le + 04 o0 6.09¢ + 03 1.37e + 03
Rt. Michalewicz —2.94e + 02 0 o0 0 0 o0 8.87e + 03
Rt. Pathological —1.72e 4+ 02 0 0 0 0 7.56e + 03 3.30e + 04
Rt. Rastrigin 2.96e + 03 0 0 0 0 o0 4.03¢ + 03
Rt. Rosenbrock 2.43e + 04 0 0 5.65¢ + 03 0 2.52e + 03 1.30e + 03
Rt. Schwefel —3.0le + 05 0 0 [e9) 0 0 6.91e + 03
Rt. Sum of powers 2.08e + 56 8.00e + 00 1.30e + 01 8.00e + 00 8.00e + 00 8.00e + 00 9.28¢e + 00
Rt. Tirronen —9.88¢ — 01 0 o0 2.10e + 04 0 0 9.92¢ + 03
0— ne_ (7) Figure 9 shows average performance trends of the five

Rob considered algorithms over a selection of the test problems

where the robustness Rob is the percentage of successful
runs. It is clear that, for each test problem, the smallest
value equals the best performance in terms of convergence
speed. The value “o0” means that Rob = 0, i.e., the
algorithm never reached the THR.

Tables 8 and 9 show the Q values for 500-dimensional
problems and 1,000-dimensional problems respectively, as
well as the associated THR values. The best results are
highlighted in boldface.

The Q-test results, listed in Tables 8 and 9, show that in
500 and 1,000-dimensional cases, the proposed FACPDE
algorithm has the best performance in terms of conver-
gence speed in 22 and 21 cases out of the 24 considered,
respectively. Most importantly, the FACPDE algorithm,
throughout all considered test problems, is never charac-
terized by an oo value of Q-measure. This fact shows that
the proposed algorithm is always competitive with the
other algorithms in the benchmark and is never relevantly
outperformed. In summary, the algorithmic behavior of
FACPDE, thanks to its scale factor inheritance mechanism,
is extremely promising in terms of algorithmic robustness.

@ Springer

listed in Table 1 in 500 dimensions.

Figure 9c—k show that in 500 dimensions, the serial
DE algorithms improve only marginally. IBDDE has a
slightly better performance than DE and DERSF (see, for
example, Fig. 9i), but is still not competitive compared to
PDE, DDE, and FACPDE for the high dimensional
problems considered in this study. In Fig. 9d—k, DDE
improves its solutions very quickly in the beginning,
before ceasing to make any significant improvement. The
transition occurs around 100,000 fitness evaluations in all
cases except in Fig. 9h, where it occurs around 200,000
fitness evaluations. PDE’s improvement rate is slower
than DDE’s, but contrary to the latter, it continuously
improves its solutions and in all but one of the examples
listed above, finds a better solution than DDE; Figure 9c
is the exception, but PDE’s solution is still very close to
DDE’s. Finally, FACPDE’s improvement rate at the onset
is steeper than DDE’s in Fig. 9c, f, and j, similar in 9i
and k, and softer in Fig. 9d, e, g, and h. In all cases,
however, FACPDE does not show symptoms of pre-
mature convergence as DDE does. Moreover, FACPDE’s
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Fig. 10 Performance trends in 1,000 dimensions. a Ackley, b Alpine, ¢ DropWave, d Griewangk, e Michalewicz, f Pathological, g Rastrigin,

h Rotated Ackley, i Rotated Michalewicz

final solutions are, in all above examples except Sh, better
than PDE’s.

Figure 10 shows average performance trends of the five
considered algorithms over a selection of the test problems
listed in Table 1 in 1,000 dimensions.

Qualitative results represented in Fig. 10 confirm the
findings in 500 dimensions. For large scale problems, the

sequential DE seems to suffer from the curse of dimen-
sionality. The IBDDE algorithm succeeds at improving
upon the performance of sequential DE and DERSF. The
other algorithms demonstrate a better behavior for the high
dimensional problems. The DDE has good convergence
speed performance during early stages of the evolution
since it often manages to detect high quality solutions
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Fig. 10 continued

during the initial generations. However, the DDE tends to
stop improving upon previous achievements quite quickly,
see, e.g., Fig. 10c and i. It is interesting to observe that in
1,000 dimensions PDE is slower at detecting high-quality
solutions with respect to the 500-dimensional case e.g.,
compare the behavior with Michalewicz function in
Figs. 9¢ and 10e. Thus, more often than in the 500-
dimensional case, the DDE outperforms PDE in high
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Fig. 11 Example of the scale factor behavior over the five sub-
populations

dimensions. The FACPDE algorithm, on the contrary,
seems to be very efficient and outperforms, in most cases,
both PDE and DDE. In addition, the gap between FACPDE
and the second best algorithm performance seems to be
systematically larger for the 1,000-dimensional case with
respect to the results in 500 dimensions, see e.g., Fig. 10a,
¢, e, and h. In other words, the scale factor inheritance
mechanism seems to be very beneficial in order to tackle
large scale problems.

To better understand the working principle of the scale
factor inheritance, Fig. 11 has been included. Figure 11
shows an example, based on a single run, of the trend that
the absolute value of F takes during the FACPDE evolution
for the five distributed sub-populations.

It can be noticed from Fig. 11 how the scale factor
inheritance mechanism works. For example, at around
150,000 a sudden increase in the scale factor value occurs
throughout all the sub-populations. This phenomenon is
clearly visible in sub-populations 1, 2, and 3 and proves
how promising scale factor values are propagated within
the ring of sub-populations. The most important finding in
Fig. 11 is related to the variation of the scale factor values.
It can be observed that although the variation of F is, in
principle, unbounded, there is no divergence in the trends.
On the contrary, the scale factors never take a value greater
than 2. In addition, the scale factor trends do not converge
to a constant value. On the contrary, the trends continue to
oscillate throughout the entire evolution. This fact can be
seen as confirmation that there is no optimal scale factor for
a given problem, but that a dynamic mechanism is required
in order to satisfy the necessities of the evolution. Finally,
since the evolution is biased by randomization, according
to our interpretation, the scale factor control should also
contain some randomization, as empirically shown in many
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Table 10 Experimental Results for the IEEE CEC08 benchmark

n = 1,000

2.45e + 02 £ 2.42¢ + 02
1.13e + 02 £ 7.20e + 00
2.3% + 08 £ 3.40e 4 08
8.31e 4+ 02 &+ 1.66e + 02
4.18e + 00 £ 2.89% + 00
2.83e + 00 £ 2.24e 4 00

3.76e + 02 &+ 3.54e + 02
1.28¢ 4+ 02 £ 9.92e 4 00
3.35e 4+ 08 + 3.09¢e + 08
1.65e + 03 £ 3.32e 4+ 02
1.36e + 01 £ 4.96e + 01
4.24e + 00 £ 4.41e +00

n = 100 n = 500
F1 394e 4+ 01 £ 1.41e + 02
F2 8.97e + 01 £ 7.68e + 00
F3 8.49¢ + 06 £ 3.05¢ + 07
F4 1.89¢ 4+ 02 £ 7.18e + 01
F5 8.64e — 01 £ 1.17e + 00
F6 1.01e + 01 £ 3.60e + 00
F7 —1.32e + 03 £ 5.09¢ + 01

—6.31e + 03 &+ 2.03e + 02

—1.19¢ + 04 £+ 9.28e + 02

papers on DE (e.g., Das et al. 2005, 2009; Brest et al.
2006; Qin et al. 2009).

5.1 Experimental results for a large scale optimization
benchmark

The proposed FACPDE has been finally tested on the large
scale benchmark settled for the 2008 IEEE Congress on
Evolutionary Computation (IEEE CECO0S8) described in
Tang et al. (2007b). Following the suggestions given in
Tang et al. (2007b), each function has been considered in
100, 500, and 1,000 dimensions. For each problem, FAC-
PDE has been has been run 25 times (25 independent runs)
and the computational budget has been fixed equal to
5, 000 x n. Regarding the parameter setting, the FACPDE
has been in 500 and 1,000 dimensions with the same setting
mentioned above. Following the same rate SL, in 100
dimensions, the population size Sp,, has been set equal to
40. The final results, expressed in terms of fitness differ-
ence between the detected value and the actual minimum
( % related standard deviation) are given for the seven test
problems contained in Tang et al. (2007b) for the three
levels of dimensionality in Table 10.

Although the results displayed in Table 10 are outper-
formed in several cases by the algorithms which took part
in the CEC08 competition, FACPDE is still competitive in
most cases. This fact is, in our opinion, very relevant since
FACPDE, unlike most of those algorithms, does not
employ local search components and did not undergo a
parameter setting in order to have a high-quality perfor-
mance for these specific test problems.

6 Conclusion

This paper proposes an adaptive mechanism for the scale
factor in distributed differential evolution schemes. The
proposed mechanism, namely, scale factor inheritance,
consists of the perturbation, by means of a random number
and migration, of promising scale factor values throughout
sub-populations arranged according to a ring topology.

This mechanism is integrated within a distributed differ-
ential evolution which employs migration of those indi-
viduals demonstrating the best performance.

The resulting algorithm has been tested on a broad and
various set of optimization problems and then compared
with two sequential differential evolution algorithms and
three distributed differential evolution schemes, recently
proposed in literature. Numerical results show that the
proposed approach is very promising and that the resulting
algorithm displays excellent performance in terms of
detected final solutions, convergence speed, and robustness
for all test problems and comparisons considered in this
study.

On the basis of the obtained results and an analysis of
the algorithmic working principles, some additional con-
clusions have been drawn. In distributed differential
evolution a cooperative/competitive adaptation of the
scale factor is beneficial to algorithmic performance and,
more generally, the employment of multiple scale factors,
updating of which can greatly improve performance of the
distributed algorithm. In addition, a constant scale factor
value is inadequate since it restricts the amount of search
moves in differential evolution (both sequential and dis-
tributed). In other words, for a given problem there is no
optimal scale factor since the optimal setting varies dur-
ing the various stages of evolution. An optimal setting
dynamically varies with distribution of the solutions
within the decision space during evolution. Although an
understanding of a proper control dynamic of the scale
factor variation is not yet complete, according to our
interpretation, it does not follow a progressive increase or
decrease, but takes on an oscillatory behavior. Finally,
since the evolution is affected by random events, mainly
in the selection of individuals composing the moving
vectors within the mutation operation, a certain random-
ization of the scale factor seems to be beneficial for a
successful enhancement of the differential evolution
performance.
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