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Abstract Kernel functions are used in support vector

machines (SVM) to compute inner product in a higher

dimensional feature space. SVM classification performance

depends on the chosen kernel. The radial basis function

(RBF) kernel is a distance-based kernel that has been

successfully applied in many tasks. This paper focuses on

improving the accuracy of SVM by proposing a non-linear

combination of multiple RBF kernels to obtain more flex-

ible kernel functions. Multi-scale RBF kernels are weigh-

ted and combined. The proposed kernel allows better

discrimination in the feature space. This new kernel is

proved to be a Mercer’s kernel. Furthermore, evolutionary

strategies (ESs) are used for adjusting the hyperparameters

of SVM. Training accuracy, the bound of generalization

error, and subset cross-validation on training accuracy are

considered to be objective functions in the evolutionary

process. The experimental results show that the accuracy of

multi-scale RBF kernels is better than that of a single RBF

kernel. Moreover, the subset cross-validation on training

accuracy is more suitable and it yields the good results on

benchmark datasets.

Keywords Support vector machines �
Evolutionary strategies � Kernel methods

1 Introduction

Support vector machines (SVMs) are learning algorithms

proposed by Vapnik (1995, 1998), which are based on the

idea of empirical risk minimization principle. They have

been widely used in many applications such as pattern

recognition and function approximation. Basically, SVM

performs a linear separation in an augmented space by

means of a pre-defined kernel function that satisfies Mer-

cer’s condition (Vapnik 1995; Schölkopf et al. 1998; Ayat

et al. 2001). This kernel maps the input vectors into a very

high dimensional space, possibly of infinite dimension,

where a linear separation is more probable (Ayat et al.

2001). Then, a linear separating hyperplane is created by

maximizing the margin between two classes in this space.

Hence, the complexity of the separating hyperplane

depends on the nature and the properties of the chosen

kernel (Ayat et al. 2001).

The goal of this paper is to improve the SVM accuracy

on classification problems. A kernel function is an impor-

tant part in SVM that affects classification performance.

There are many types of kernel functions such as linear

kernels, polynomial kernels, sigmoid kernels, and RBF

kernels. Each kernel function is suitable for different tasks,

and it must be chosen for the task under consideration by

hand or using prior knowledge. The RBF kernel is one of

the most effective kernel functions for many problems, but

still has restrictions in some complex problems. Therefore,

we propose to improve the performance of the classifica-

tion by using the combination of RBF kernels at different

scales. These kernels are weighted and combined. The

weights, the widths of the RBF kernels, and the regulari-

zation parameter of SVM are called hyperparameters.

In order to obtain an SVM that has good classification

accuracy, a large number of the hyperparameters are needed
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to be evaluated. In general, a good set of hyperparameters

are usually determined by a grid search. During the search,

the hyperparameters are varied by a fixed step-size in the

range of possible values, but this kind of search consumes a

lot of time. Hence, we propose to use evolutionary strategies

(ESs) for choosing these hyperparameters. An objective

function is an important part in an evolutionary algorithm,

and there are many ways to measure the fitness of the hy-

perparameters. In this work, we consider training accuracy,

the bound of generalization error, and subset cross-valida-

tion on training accuracy, as objective functions for evalu-

ating the hyperparameters in the evolutionary process.

We give a short description of support vector machines,

evolutionary strategies, and related works in Sect. 2. In

Sects. 3 and 4, we propose a multi-scale RBF kernel and

apply evolutionary strategies to determine the appropriate

hyperparameters, respectively. Three possible objective

functions of the evolutionary process are proposed in

Sect. 5. We evaluate the proposed kernel and three objec-

tive functions for ES in Sect. 6. The results show that ES

can effectively identify a good set of hyperparameters

when a suitable objective function is used. Finally, the

conclusions and the discussions are given in Sect. 7.

2 Background and related works

2.1 Support vector machines

A support vector machine is a classifier which finds an

optimal separating hyperplane. It is one of the latest and

most successful statistical pattern classifiers that utilizes the

kernel technique (Vapnik 1995). For simple pattern recog-

nitions, SVM uses a linear separating hyperplane to create a

classifier with the maximum margin (Cristianini and Shawe-

Taylor 2000; Kecman 2001; Müller et al. 2001). Consider

the problem of binary classification, where a training dataset

is denoted as ðx1; y1Þ; ðx2; y2Þ; . . .; ðxl; ylÞ; xi 2 RN ; is a

sample data and yi 2 f�1; 1g is its label (Shawe-Taylor and

Cristianini 2004). A linear decision surface is defined by the

following equation:

w � xþ b ¼ 0: ð1Þ

Occasionally, there are multiple hyperplanes which can

perform the separation. The goal of learning is to find w 2
RN and the scalar b such that the margin between positive

and negative examples is maximized. An example of the

decision surface and its margin is shown in Fig. 1.

In soft margin SVM, this surface can be achieved by

minimizing 1
2
kwk2 þ C

Pl

i¼1

ni subject to the constraints

yi((w � xi) ? b) C 1 - ni where ni C 0 for all i = 1,…, l

(Schölkopf and Smola 2002). The width of the soft margin

can be controlled by the corresponding regularization

parameter C (Kecman 2001). The constant C [ 0 deter-

mines the trade-off between margin maximization and

training error minimization (Schölkopf and Smola 2002).

These lead to the following decision function

f ðxÞ ¼ sign
Xl

i¼1

aiyixixþ b

 !

: ð2Þ

where the ai for i = 1,…, l are the solution of the

following quadratic optimization problem:

Maximize
Xl

i¼1

ai �
1

2

Xl

i;j¼1

aiajyiyjxixj ð3aÞ

subject to 0� ai�C for all i ¼ 1; . . .; l; and
Xl

i¼1

aiyi

¼ 0: ð3bÞ

A data example xi which corresponds to a non-zero ai

value is called support vector.

In most cases, seeking a proper linear hyperplane in the

original input space is not always possible. This problem

can be solved by enabling these support vector machines to

produce complex non-linear boundaries in the original

space. This is done by mapping the input space into a

higher dimensional feature space through a mapping

function U. Then a linear separating is performed in the

higher dimensional space (Schölkopf and Smola 2002).

The mapping is achieved by substituting U(xi) into each

training example xi.

However, one good property of SVM is that it is not

required the explicit form of U. Only the inner product in

the feature space, called a kernel function K(x, y) =

U(x) � U(y), must be defined. The decision function then

becomes the following equation:

f ðxÞ ¼ sign
Xl

i¼1

aiyiKðxi; xÞ þ b

 !

; ð4Þ

Fig. 1 An example of decision surface and margin
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where ai C 0 is a coefficient associated with a support

vector xi and b is an offset. A function which can be a

kernel must satisfy Mercer’s condition (Shawe-Taylor and

Cristianini 2004). Some of the common kernels are shown

in Table 1.

Each kernel corresponds to some feature space and

because no explicit mapping to the feature space occurs,

optimal linear separators can be found efficiently in the

feature space with millions of dimensions (Russell and

Norvig 2003).

2.2 Evolutionary strategies

The evolutionary strategy (ES) is one of the major branches

of evolutionary algorithms, which was developed by Re-

chenberg and Schwefel (Rechenberg 1965, 1973; Schwefel

1981, 1995; Beyer and Schwefel 2002) at the Technical

University of Berlin and has been extensively studied in

Europe. ES was developed in order to conduct successive

wing tunnel experiments for aerodynamic shape optimi-

zation, and it has been used successfully to solve various

types of optimization problems. ES is an algorithm that

imitates the natural processes (a natural selection and the

survival-of-the-fittest principle). ES uses a fixed-length

real-valued vector as a representation of a solution, which

makes it significantly faster than traditional genetic algo-

rithms that use a binary representation (Beyer and

Schwefel 2002; Goldberg 1989; Fogel 1995). The simple

ES algorithm is shown in Fig. 2.

Every point in the search space is an individual (a

potential solution). ES uses a population of l individuals to

conduct the search for possibly better solutions (deDoncker

et al. 1996). The initial population of individuals is ran-

domly generated but, ideally, should be uniformly distrib-

uted throughout the search space so that all regions can be

explored. Each individual in each generation (iteration) is

evaluated to determine its fitness. The goal of the search is

to find individuals with high fitness values.

The main reproduction operator in evolutionary strate-

gies is Gaussian mutation. Another operator that can be

used is intermediate recombination, in which the vectors of

two parents are averaged to form a new offspring. Each

generation of the ES algorithm takes a population of

individuals and modifies them with reproduction and

mutation operators to produce offspring (new solutions).

Both the parents and the offspring are evaluated but only

the fittest individuals (better solutions) survive and become

new generation. Poorer solutions are dropped (deDoncker

et al. 1996).

In each iteration, individual are recombined and then

mutated to produce offspring. This means that ES simul-

taneously investigates several regions of the search space,

which greatly decreases the amount of time required to

locate good solutions. ES terminates after a pre-defined

number of generations have been produced and evaluated,

or earlier if the acceptance criterion is reached (deDoncker

et al. 1996).

There are several variations of ES. The (l ? k)-ES and

(l, k)-ES are two common variations. In the former, l
parents produce k offspring. The parents and the offspring

compete equally for survival. In the latter, l parents pro-

duce k[ l offspring, but only the l best offspring survive.

Thus the lifespan of any solution is only one generation

(deDoncker et al. 1996). In Sect. 4, we discuss how

(l ? k)-ES is applied in our proposed kernel.

2.3 Related works

There are many research studies that propose new kernel

functions for support vector machines. In research of Ayat

et al. (2001), a new SVM kernel family, kernel function

with moderate decreasing (KMOD), was proposed. This

research explained the distinctive properties that allow

better discrimination in feature space. Their experimental

results showed that their kernel function was better than

RBF kernels and exponential RBF kernels on a spiral

problem. In addition, a digital recognition task was pro-

cessed using this new kernel. The results show comparable

performance to state-of-the-art kernels. In Zhang et al.

(2000), scaling kernels were introduced for SVM. These

kernels are multi-dimensional scaling functions with

translation vectors. SVMs that use the scaling kernels can

Table 1 Common kernel functions

Kernel Formula

Linear K(x, y) = x � y

Homogeneous polynomial K(x, y) = (x � y)d

Inhomogeneous

polynomial

K(x, y) = (x � y ? c)d

Exponential RBF Kðx; yÞ ¼ expð�c kx� ykÞ
Gaussian RBF Kðx; yÞ ¼ expð�c kx� yk2Þ
Multi-quadratic

Kðx; yÞ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

kx� yk2 þ c2

q

Simple ES algorithm: 
Step 1 Randomly generate a parent population of µ  solutions. 
Step 2 Evaluate all parents to determine their fitness. 
Step 3 Apply reproduction operators to create λ  offspring. 
Step 4 Evaluate and keep the µ  fittest individuals. 
Step 5 Repeat step 3 and step 4 until an acceptable solution has 

been found or a pre-defined number of generations has 
been produced and evaluated.

Fig. 2 Simple ES algorithm
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approximate any objective function in some space. In

Zhang et al. (2004), a wavelet kernel was proposed. This

kernel is a multi-dimensional wavelet function that can

approximate arbitrary non-linear functions. The existence

of wavelet kernels was proved by the result of theoretic

analysis. Computer simulations showed the feasibility and

validity of wavelet support vector machines in regression

and pattern recognition tasks.

Examples of kernel functions that have been proposed

are asymmetric kernel (Koji 1999), time-alignment kernel

(Hiroshi et al. 2001), triangular kernel (Fleuret and Sahbi

2002), and hyperkernels (Ong et al. 2005). These kernels are

suitable for different applications and datasets. Although

these enhanced kernel functions yield better classification

results, they are not widely used in practical applications

when compared to simple kernels such as linear, polyno-

mial, and RBF kernels. The research of Rameswar and

Haruhisa (2004) reviewed that several researchers used the

RBF kernel in their applications. According to various

experimental results, the RBF kernel has the best perfor-

mance. Moreover, Rameswar and Haruhisa (2004) tried to

improve only the polynomial kernel to compare with the

RBF kernel, whereas other kernels were not considered.

However, there are a few research studies that consider

combining well-known kernels together. The research of

Smits and Jordaan (2002) showed that the RBF kernel has a

better interpolation property while the polynomial kernel

has a better extrapolation property. Therefore, both kernel

functions are combined using mixtures. In Howley and

Madden (2005), genetic programming is used to create a

kernel for an SVM classifier, but this approach does not

guarantee that the resulted kernel obeys Mercer’s theorem.

In contrast, our approach presented in this paper uses the

combination of kernel functions that is represented in

the form of the multi-scale RBF kernel which satisfies the

Mercer’s theorem.

There are also many research studies that attempt to

solve the problem of parameter selection for SVM by using

meta-heuristic methods. In a work of Chapelle et al.

(2002), an algorithm that alternates the SVM optimization

with a gradient step was employed. Although this algo-

rithm is useful and accurate, there are a lot of details in the

computation that make the algorithm quite complex. The

algorithm requires gradient computation which is either not

possible or at least very difficult for general kernel func-

tions. Moreover, the gradient descent may get stuck in the

local optima.

Most of the research studies on parameter selection use

evolutionary algorithms such as a genetic algorithm (GA)

and an evolutionary strategy (ES). Eads et al. (2002) pro-

posed the use of the genetic algorithm and support vector

machines for time series classification problems. They

introduced a hybrid algorithm that employs evolutionary

computation for feature extraction, and a support vector

machine for classification. They evaluated the proposed

algorithm on a lightning classification task. It yielded better

results in terms of a cross-validation fitness measure, though

the difference was not large. In Fröhlich et al. (2003), a

special genetic algorithm was proposed to solve a feature

selection problem which is a difficult combinatorial task in

machine learning. They optimized kernel parameters such

as the regularization parameter of SVM by means of genetic

algorithms. Xuefeng and Fang (2002) and Chunhong and

Licheng (2004) proposed other research works that used

real-coded GA for SVM parameter selection.

Many research studies use the evolutionary strategies for

model selection. In research of deDoncker et al. (1996),

the evolutionary strategies were used for computing the

solutions of multivariate integration problems. Adaptive

integration algorithms and evolutionary strategies can be

parallelized easily. Moreover, the covariance matrix

adaptation evolution strategy (CMA-ES) in Friedrichs and

Igel (2004) was proposed to determine the kernel from a

parameterized kernel space and to control the regulariza-

tion. The ES method proposed in that paper is simpler; the

random process is used to find the optimal hyperparameter,

and only recombination and mutation methods are used to

create new solutions. Their experiments on benchmark

datasets showed that ES achieved better results than the

grid search and can handle much more kernel parameters.

There are other evolutionary strategy research studies

on model selection for support vector machines such as

Runarsson and Sigurdsson (2004) and Igel (2005). Both of

these studies attempted to use the evolutionary strategies

for optimizing parameters of SVMs. Runarsson and Sig-

urdsson (2004) proposed the asynchronous parallel evolu-

tion strategy for SVM model selection, and Igel (2005)

proposed the use of the multi-objective in the evolutionary

algorithm. The evolutionary strategies were successfully

applied to their applications and datasets. Therefore, the

evolutionary strategy is an interesting algorithm for

parameter selection in our research.

The model-based global optimization (Fröhlich and Zell

2005) was proposed to deal with the model selection

problems. This research is based on the idea of learning an

online Gaussian process using a sampling technique to

search for the solutions in the parameter space. In 2007,

differential evolution (DE) was applied to parameter

selection of SVM approximation (Zhou et al. 2007). DE

was modified by adaptation a time-varying crossover

probability strategy. The experiment results demonstrated

that SVM with DE parameter selection has better approx-

imation performance than artificial neural network (ANN).

The particle swarm optimization (Guo et al. 2008) is

another meta-heuristic algorithm that was used for select-

ing the hyperparameter of SVM. This method does not
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need any prior knowledge about the hyperparameter of

SVM and can be used to determine multiple hyperparam-

eters at the same time. Although the concept of particle

swarm is different from the evolutionary algorithm, it is a

dynamic system that uses a fitness function to evaluate the

candidate solutions similar to the evolutionary algorithm.

We notice that SVM parameter selection is an optimization

problem in a large continuous search space. Among many

meta-heuristic algorithms, only the evolutionary algorithms

and the dynamic systems were used to solve this problem.

For the fitness function in the evolutionary process,

many research studies use a classifier to measure the

classification accuracy on the training data. However, Eads

et al. (2002) compared the classification accuracy on the

training data with the cross-validation accuracy. Their

experimental results showed that the accuracies of the

cross-validation score are better than those of the simple

score. There are some research studies, such as Markatou

et al. (2005), Blum et al. (1999) and Kääriäinen and

Langford (2005), that analyzed the generalization perfor-

mance of SVM and proposed to estimate the true error of

learned classifiers. However, in Bartlett and Shawe-Taylor

(1998), the bound of generalization performance for a large

margin linear classifier are clearly explained. Therefore,

the generalization performance of SVM is an interesting

alternative for estimating the classification performance in

the evolutionary process.

3 Multi-scale RBF kernel

There are many kernels that can be used in the SVM. Each

kernel is suitable for different kinds of problems. The

Gaussian RBF kernel is widely used in many problems. It

uses the Euclidean distance between two points in the

original space to find the correlation in the augmented

space. The points that are very close to each other in the

original space are strongly correlated whereas points that

are far apart have uncorrelated in the augmented space

(Ayat et al. 2001). This correlation function is rather

smooth. There is only one parameter for adjusting the

width of RBF, which is not powerful enough for some

complex problems.

In order to get a better kernel, one possible way is to

adjust the velocity of decrement in each range of distance

between two points. Moreover, that kernel function should

maintain good characteristics of the RBF kernel. To

implement this capability, the combination of RBF kernels

at different scales is proposed. The analytic expression of

this kernel is the following:

Kðx; yÞ ¼
Xn

i¼1

aiKðx; y; ciÞ; ð5Þ

where n is a positive integer, ai C 0 for i = 1,…, n are the

arbitrary non-negative weighting constants, and

Kðx; y; ciÞ ¼ expð�ci kx� yk2Þ ð6Þ

is an RBF kernel with a width ci for i = 1,…, n.

In addition, the correlations in the feature space (rela-

tions between kernel functions and the distance between

two points in the original space) of the multi-scale RBF

kernels for n = 1, 2, and 3 are displayed in Fig. 3. This

figure shows that the correlations of the RBF kernel are

rather smooth, while those of 2-RBF and 3-RBF have more

variable shapes. This can be interpreted that the increase in

the number of adjustable parameters provides a more

adaptive kernel.

In general, the function which maps the input space into

the augmented feature space is not explicitly known.

However, the existence of such function is assured by

Mercer’s theorem (Kecman 2001).

Mercer’s theorem: Any symmetric function K(x, y) in

the input space can represent an inner product in the feature

space if
ZZ

Kðx; yÞgðxÞgðyÞ dx dy� 0 ð7Þ

is valid for all g 6¼ 0for which
R

g2ðuÞdu\1: Then the

kernel function K can be expanded in terms of Ui

Kðx; yÞ ¼
X1

i¼1

k i UiðxÞ UiðyÞ ð8Þ

with ki C 0 (Schölkopf et al. 1998; Kecman 2001). In this

case, the mapping function from the input space to the

feature space is expressed as

U : x!
ffiffiffiffiffi
k1

p
U1ðxÞ;

ffiffiffiffiffi
k2

p
U2ðxÞ; . . .

� �
ð9Þ

Fig. 3 Graph of single RBF, 2-RBF, and 3-RBF kernels
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such that K(x, y) can be the inner product

UðxÞ � UðyÞ ¼
X1

i¼1

kiUiðxÞUiðyÞ ¼ Kðx; yÞ: ð10Þ

In the next lemma, the proposed kernel function is

proved to be an admissible kernel by the Mercer’s theorem.

Lemma: The non-negative linear combination of Mer-

cer’s kernels is a Mercer’s kernel.

Proof Let K(x, y, ci) be the Mercer’s kernels with the

parameter ci, for i = 1,…, n, and let

Kðx; yÞ ¼
Xn

i¼1

aiKðx; y; ciÞ; ð11Þ

where ai for i = 1,…, n are non-negative real values.

According to Mercer’s theorem, we know that
ZZ

Kðx; y; ciÞgðxÞgðyÞ dx dy� 0; 8g ð12Þ

for i = 1,…, n.

By taking linear combination with non-negative coeffi-

cients ai, we get

Xn

i¼1

ai

ZZ

Kðx; y; ciÞgðxÞgðyÞ dx dy� 0 ð13Þ

ZZ Xn

i¼1

aiKðx; y; ciÞgðxÞgðyÞ dx dy� 0 ð14Þ

ZZ

Kðx; yÞgðxÞgðyÞdx dy� 0; 8g: ð15Þ

Hence, the function Kðx; yÞ ¼
Pn

i¼1

aiKðx; y; ciÞ is a

Mercer’s kernel. (
The proof of the multi-scale Mercer’s kernels is rather

obvious. The other combination methods were presented

and proved in (Tan and Wang 2004). The RBF is a well-

known Mercer’s kernel; therefore, the non-negative linear

combination of RBFs in (5) can be proved to be an

admissible kernel by the Mercer’s theorem.

From Eq. 5, there are 2n parameters when n terms of

RBF kernels are used (n parameters for adjusting weights

and n values of the widths of RBFs). However, we notice

that the number of parameters can be reduced to 2n - 1 by

fixing the value of the first parameter to 1. The multi-scale

RBF kernel that will be used throughout the rest of this

paper becomes as follows,

Kðx; yÞ ¼ Kðx; y; c0Þ þ
Xn�1

i¼1

aiKðx; y; ciÞ: ð16Þ

When multiple RBF functions are combined, the

separating hyperplane is more flexible than using a single

RBF function. However, the multi-scale RBF kernel may

lead to the overfitting problem. This problem can be

overcome by the objective function proposed in Sect. 5.

4 Evolving hyperparameters of SVM

The approach presented here combines the techniques of

SVM and ES together, using ES to evolve hyperparameters

of SVM based on the multi-scale RBF kernel. As shown in

(16), the proposed kernel has 2n - 1 parameters when n

terms of RBF kernels are used. These values have an

influence on the performance of the proposed kernel. In the

soft margin SVM, there is a regularization parameter C that

affects the performance of the classification. The parame-

ters of the kernel function and the regularization parameter

are called hyperparameters.

In order to obtain appropriate values of these hyperpa-

rameters, ES is considered. There are several variations of

ES. Nevertheless, we choose to use the (l ? k)-ES where

l parents produce k offspring. Both parents and offspring

compete equally for survival (deDoncker et al. 1996).

Therefore, good solutions are preserved until better solu-

tions are found.

Let v
*

be a non-negative real-value vector of hyperpa-

rameters that has 2n dimensions. The vector v
*

is repre-

sented in the form of:

v
* ¼ ðC; c0; a1; c1; a2; c2; . . .; an�1; cn�1Þ; ð17Þ

where C is a regularization parameter, ci for i ¼ 0; . . .;

n� 1 are the widths of RBFs, ai for i ¼ 1; . . .; n� 1 are the

weights of RBFs, and n is the number of terms of RBFs.

Our goal is to find v
*

that optimizes an objective function

gðv*Þ: The (5 ? 10)-ES is applied to adjust these

hyperparameters.

Although the ES algorithm can be implemented by

parallel programming, it is more convenient to imple-

ment and run it on a computer. When the population size

of ES is large, the algorithm may need a lot of running

time to process each generation of ES but may require

only a few generations to obtain the optimal solutions.

On other hand, when the population size of ES is small,

the population may lack diversity and a large number of

generations may be required to converge to the optimal

solutions. Hence, (5 ? 10)-ES is a choice of (l ? k)-ES

which can preserve the diversity of the population

and does not require a lot of running time for each

generation. The algorithm of (5 ? 10)-ES is shown in

Fig. 4.

This algorithm starts with the 0th generation (t = 0) that

selects the non-negative real valued vectors of five solu-

tions v
*

1; . . .; v
*

5 2 R2n
þ with standard deviation r* 2 R2n

þ
using randomization. These five initial solutions are eval-

uated by their fitness. Then, the global intermediary

recombination method is used for creating ten new solu-

tions. Ten pairs of solutions are selected from five con-

ventional solutions. The average of each pair of solutions,

element by element, is a new solution.
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v
*0

1 ¼
1

2
v
*

1 þ v
*

2

� �
ð18aÞ

v
*0

1 ¼
1

2
v
*

1 þ v
*

3

� �
ð18bÞ

..

.

v
*0

10 ¼
1

2
v
*

4 þ v
*

5

� � ð18cÞ

This recombination method is chosen for this research

because every individual from the parent population is used

for creating new individuals. Most of the offspring

individuals are different from their parents because each

of them is the average of two different parents, except for

the case where there are two parent individuals that are the

same. Moreover, no offspring comes from the same

parents. Therefore, the diversity of the population can

also be preserved by this recombination method.

These solutions are then mutated by the following

function:

mutate ðv*Þ ¼ ðC þ z1; c0 þ z2; . . .; an�1 þ z2n�1; cn�1

þ z2nÞ ð19bÞ

zi�Nið0; r2
i Þ: ð19bÞ

v
*0

i for i = 1,…, 10 are mutated by adding each of them

with ((z1, z2,…, z2n), where zi is a random value from a

normal distribution with zero mean and r2
i variation. In

each generation, the standard deviation is adjusted by

mutate rðr*Þ ¼ r1 � ez1 ; r2 � ez2 ; . . .; r2n � ez2nð Þ ð20aÞ

zi�Nið0; s2Þ; ð20bÞ

where s is an arbitrary constant.

This mutation is performed in order to vary the solu-

tions. Although the offspring solutions will be different

from their parents and each of them differs from one

another by our recombination method, these offspring

solutions could be the same as ones on the previous

generations. The mutation will make these solutions dif-

ferent from the previous generations. A random number

will be added to each component of these offspring

solutions. Therefore, the new solutions can be produced

unlimitedly.

Then, only the 5 fittest solutions are selected from

5 ? 10 solutions to be the parents in the next generation.

Then, the process is repeated until a fixed number of

generations have been produced or the acceptance criterion

is reached. In this research, the maximum number of

generations is used as a stop criterion of the ES algorithm.

In our experiments, the maximum number of generations is

fixed to 1,000. Although high quality solutions can be

found with fewer generations for some datasets, we want to

ensure that high quality solutions can be found for all

datasets in our experiments. A large number of generations

does not decrease the performance of the classification.

Nevertheless, the maximum number of generations is

restricted by the running time allowed to run ES.

5 Objective functions in ES

One of the most important and difficult parts of the evo-

lutionary algorithm is how to define an objective function

for the task under consideration. In our case of evaluating

the hyperparameters, there are many ways to define an

objective function. In this research, we propose three

possible objective functions: training accuracy, the bound

of generalization error, and subset cross-validation on

training accuracy. These objective functions are described

and verified in the following sections.

5.1 Training accuracy

The training accuracy is a measure of learning perfor-

mance. This function indicates the ability of a learning

machine as measured by its accuracy on training data. This

is the simplest way to define our objective function in the

evolutionary algorithm. The formula expression of the

training accuracy is depicted by the following equation:

gðv*Þ ¼ 1�

Pl

i¼1

jyi � f ðxiÞj

2l

0

B
B
@

1

C
C
A; ð21Þ

where xi 2 RN is a training data, yi 2 f�1; 1g is its label,

and f(xi) is a decision function of xi for i = 1,…, l.. We

expect that a suitable set of hyperparameters should yield a

high training accuracy. The optimal hyperparameters

Fig. 4 The (5 ? 10)-ES algorithm
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obtained by using the training accuracy as an objective

function will be evaluated on the test data.

5.2 Bound of generalization error

The generalization error of a machine learning algorithm is

a function that indicates the capacity of the machine in

classifying data (Burges 1998). We define the class Q of

real-valued functions on the ball of radius R in Rn as

Q ¼ fx 7!w � x : kwk� 1; kxk�Rg: ð22Þ

There is a constant c such that, for all probability

distributions, with probability at least 1 - d over l

independently generated examples z, if a classifier f ¼
sgnðqÞ 2 sgnðQÞ has margin at least c on all examples in z,

then the error of h is no more than

c

l

R2

c2
log2 lþ logð1=dÞ

� �

: ð23Þ

Furthermore, with probability at least 1 - d, every

classifier h 2 sgnðBÞ has error no more than

k

l
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c

l

R2

c2
log2 lþ log 1=dð Þ

� �s

; ð24Þ

where k is the number of labeled examples in z with margin

less than c (Bartlett and Shawe-Taylor 1998). Hence, we

can bound the generalization error of SVM even when the

kernel is defined in an infinite dimensional feature space

(Bartlett and Shawe-Taylor 1998).

The expression in (24) is called the bound of gener-

alization error. The term k
l is equivalent to the empirical

risk that is defined to be just the measured mean error

rate on the fixed number of training data. Also, R2

c2 is the

Vapnik–Chervonenkis (VC) dimension. The VC-dimen-

sion is a measure of the capacity of a statistical classi-

fication algorithm. It was originally defined by Vapnik

and Chervonenkis (Vapnik and Chervonenkis 1971;

Blumer et al. 1989). Intuitively, the capacity of a clas-

sification model is related to how complicated the model

can be.

The VC-dimension measures the complexity of the

hypothesis space, not by the number of distinct hypotheses,

but instead by the number of distinct instances that can be

completely discriminated using one hypothesis (Mitchell

1997). As the bound in (24) considers both the training

error and the VC-dimension, we expect that the general-

ization performance of the SVM that uses our kernel can be

approximated by this bound. Therefore, the bound of

generalization error is considered as one objective function

in our ES algorithm. We presume that a suitable set of

hyperparameters should provide a lower bound of gener-

alization error.

5.3 Subset cross-validation on training accuracy

Although the training accuracy can be easily calculated,

this objective function may overfit the training data.

Sometimes, the data may contain a lot of noise. If the

decision function is trained by these noisy data, the learned

concept may be wrong. Hence, we propose to train the

decision function with several sets of data. A good set of

parameters should perform well on many training sets.

However, as we have only a fixed amount of training data,

subset cross-validation is considered.

At the beginning, the training data are divided into five

subsets, each of which has almost the same amount of data.

For each generation of ES, the five classifiers with the same

hyperparameters but with different training and testing sets

are evaluated. In the jth iteration (j = 1, 2, 3, 4, 5), the

classifier is trained on all subsets except for the jth one.

Then, its classification accuracy is evaluated on the jth

subset. These partitions are displayed in Fig. 5.

Only the real training data sets are used to produce the

classifiers with the same set of hyperparameters. Then, the

validation sets are used for evaluating the accuracy of

the classifiers. The average of these five accuracy values is

used as the objective function gðv*Þ:

gðv*Þ ¼

P5

j¼1

1�

Plj

i¼1

yi�f ðxiÞj j

2lj

0

B
@

1

C
A

5
ð25Þ

For parameter selection, subset cross-validation is a

rather good estimate of the generalization accuracy of a

learning algorithm. The testing data set is reserved for

testing the final classifier with the best parameters

identified by the evolutionary strategy. In the same way,

subset cross-validation can be applied to the bound of

generalization error. However, the bound of generalization

Fig. 5 Partition training data into five subsets
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error is already known to overcome the overfitting

problem. Therefore, the subset cross-validation on the

bound of generalization error may not be necessary. This

assumption will be verified in the next section.

6 Experimental results

In order to verify the performance of the proposed method,

SVMs with the multi-scale RBF kernels are trained and

tested on 15 datasets from the UCI repository (Blake and

Merz 1998). These datasets come from real world problems

such as game playing, medical inference, and predictions in

biology and physics. Each of datasets contains two classes.

The name, the number of attributes, and the sample size of

each dataset are shown in Table 2.

In our experiments, the proposed method is evaluated by

fivefold cross-validation. The evolutionary strategy is used

to find the optimal hyperparameters of both the conven-

tional RBF and the proposed kernel. The value of s in the

evaluation process of these experiments is 1.0. The number

of RBF terms is a positive integer which is less than or

equal to 10. The widths of RBFs (ci), the weights of RBFs

(ai), and the regularization parameter (C) are real numbers

between 0.0 and 10.0. These hyperparameters are searched

within 1,000 generations of ES. A real-coded genetic

algorithm (RCGA) and differential evolution (DE) are the

other evolutionary algorithms that are applied to hyperpa-

rameter selection. These evolutionary algorithms and a grid

search are compared to ES.

An algorithm of RCGA presented in Chunhong and

Licheng (2004) is implemented and tested on SVM with a

single RBF kernel. The representation of RCGA is the

fixed-length real-valued vector. The genetic operators are

crossover and mutation that are different from ES. Linear

crossover is used as the crossover operator; two parameter

vectors are weighted and combined. The mutation operator is

performed by random mutation (Herrera et al. 1996). Another

difference between RCGA and ES is the mutation of the

standard deviation that only appears in the ES algorithm.

For DE, the representation is also the real valued vector

of parameters. DE generates a new parameter vector by

adding the weight difference between two population

vectors to a third vector; this operation is called mutation

(Storn and Price 1997). Then, the mutated vector is mixed

with the parameters of another predetermined vector; this

process is referred to as crossover (Storn and Price 1997).

For each target vector v
*

i, a mutant vector is generated

according to

u
*

i ¼ v
*

r1
þ cðv*r2

� v
*

r3
Þ ð26Þ

where r1; r2; r3 2 1; 2; . . .; lf g are random indices and c is

a real and constant factor. Then, the new trial vector:

v
*

i ¼ vi;1; vi;2; . . .; vi;m

� �
ð27Þ

is formed by

vi;j ¼
vi;j if (randðjÞ� cr)

ui;j if (randðjÞ[ cr)

�

ð28Þ

where randðjÞ is the jth uniform random number generator

with outcome in [0, 1], and cr is the crossover constant in

[0, 1].

In both RCGA and DE, 5 parents are used for produced

10 new offspring and the number of generations is defined

as 1000. These numbers of population and generations are

the same with the proposed ES algorithm. The average

accuracy from fivefold cross-validation and the ranks on

each dataset of the grid search, RCGA, DE, and ES are

compared in Table 3. All algorithms used training error as

the heuristic for specifying hyperparameters of SVM with

the single RBF kernel.

The experimental results show that the average accura-

cies of DE and ES with a single RBF kernel are higher than

the other methods on many datasets. The average accuracy

for all datasets and the average rank of ES is the lowest.

Therefore, ES is a suitable algorithm for hyperparameter

selection. Then, the statistical tests are involved in order to

assure the performance of our parameter selection algo-

rithm. An example on the use of the non-parametric sta-

tistical tests was appeared in Garcia et al. (2009).

The Friedman test (Friedman 1937) is a statistical

method for testing the differences between more than two

related sample means, and it can be used to compare

multiple classifiers in our experiments. The algorithms are

Table 2 Datasets from UCI Repository

Datasets No. of attributes No. of examples

Checkers 2 192

Spiral 2 582

LiverDisorders 6 345

IndiansDiabetes 8 768

ThreeOfNine 9 512

TicTacToe 9 958

BreastCancer 10 699

ParityBits 10 1,024

SolarFlare 10 1,066

ClevelandHeart 13 270

Australian 14 690

German-org 24 1,000

Ionosphere 34 351

Tokyo 44 959

Sonar 60 208

Evolutionary strategies for hyperparameters of support vector machines 689

123



ranked for each dataset separately, i.e. the best performing

algorithm gets the rank of 1, the second best gets the rank

of 2, and so on, as shown in the parentheses in Table 3. In

case of ties, an average rank is assigned to both algorithms

or all tie algorithms. Then, the average ranks across the

datasets are compared at the last row of Table 3.

The average ranks of the algorithms are compared under

the null-hypothesis, which states that all the algorithms are

equivalent so their ranks should be equal (Demsar 2006).

Let Rj be the average ranks of the jth of k algorithms on the

N datasets. The Friedman statistic

v2
F ¼

12N

kðk þ 1Þ
X

j

R2
j �

kðk þ 1Þ2

4

" #

ð29Þ

is distributed according to v2
F with k - 1 degrees of

freedom, when N and k are large enough. Iman and

Davenport (1980) derived a better statistic from

Friedman’s v2
F

FF ¼
ðN � 1Þv2

F

Nðk � 1Þ � v2
F

ð30Þ

which is distributed according to the F distribution with

k - 1 and (k - 1)(N - 1) degrees of freedom.

From the experimental results in Table 3, the Friedman

test is used to check whether the measured average ranks

are significantly different from the mean rank Rj = 2.5:

v2
F ¼

12ð15Þ
4ð4þ 1Þ

"

ð3:03332 þ 2:83332 þ 2:30002 þ 1:83332Þ

� 4ð4þ 1Þ2

4

#

¼ 7:92 ð31Þ

FF ¼
ð15� 1Þ7:92

15ð4� 1Þ � 7:92
¼ 2:9903: ð32Þ

With 4 algorithms and 15 datasets, FF is distributed

according to the F distribution with 4 - 1 = 3 and (4 - 1)

9 (15 - 1) = 42 degrees of freedom. The critical value of

F(3,42) for a = 0.05 is 2.832, so we reject the null-

hypothesis.

Then, we use the Bonferroni–Dunn test for pairwise

comparison. The performances of two classifiers are sig-

nificantly different if their corresponding average ranks

differ by at least the critical difference

CD ¼ qa

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kðk þ 1Þ

6N

r

; ð33Þ

where critical values qa are illustrated in Demsar (2006).

This research uses q0.10 for four classifiers which is 2.128.

The corresponding CD is

CD ¼ ð2:128Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ð4þ 1Þ

6ð15Þ

s

¼¼ 1:0031: ð34Þ

From the CD value, we can say that the performance of

ES is significantly better than the grid search. However, it

is not sufficient to conclude about the different

performance of these evolutionary algorithms.

Holm (1979) is another statistical test; it was used for

comparisons of multiple classifiers by adjusting the value

of the level of confidence in a step down method (Garcia

and Herrera 2008). For Holm’s test, the corresponding

statistics and probability values (p) are computed and

ordered. The ordered p values are denoted by p1, p2,…, so

that p1 B p2 B ��� B pk-1. Holm’s procedure compares

Table 3 Average Accuracy of

Single RBF Kernel when Using

Training Error as the Heuristic

for Hyperparameter Selection

(%)

Bold values are the best

accuracy for each dataset

Datasets Grid search RCGA DE ES

Checkers 83.32 (3) 83.83 (2) 67.65 (4) 89.58 (1)

Spiral 100.00 (2.5) 100.00 (2.5) 100.00 (2.5) 100.00 (2.5)

LiverDisorders 61.74 (4) 64.06 (3) 64.64 (2) 69.57 (1)

IndiansDiabetes 64.97 (3) 64.45 (4) 69.00 (2) 72.52 (1)

ThreeOfNine 53.51 (2.5) 53.51 (2.5) 53.51 (2.5) 53.51 (2.5)

TicTacToe 65.34 (3.5) 68.23 (2) 68.33 (1) 65.34 (3.5)

BreastCancer 86.41 (4) 94.13 (2.5) 94.13 (2.5) 95.28 (1)

ParityBits 48.05 (2.5) 42.08 (4) 56.95 (1) 48.05 (2.5)

SolarFlare 80.87 (2) 80.68 (3) 80.58 (4) 83.30 (1)

ClevelandHeart 55.56 (3) 58.89 (2) 61.48 (1) 55.55 (4)

Australian 55.51 (2) 55.36 (4) 55.51 (2) 55.51(2)

German-org 70.10 (3) 70.20 (2) 69.70 (4) 70.40 (1)

Ionosphere 66.10 (2.5) 62.74 (4) 69.31 (1) 66.10 (2.5)

Tokyo 81.02 (4) 85.71 (3) 87.69 (2) 91.24 (1)

Sonar 70.67 (4) 87.49 (2) 87.48 (3) 91.35 (1)

Average accuracy 69.54 71.42 72.40 73.82

Average rank 3.0333 2.8333 2.3000 1.8333

690 T. Phienthrakul, B. Kijsirikul

123



each pi with a/(k - i). (Demsar 2006). It starts with the

most significant p value. If p1is below a/(k - 1), the

corresponding hypothesis is rejected and p2 is allowed to

compare with a/(k - 2) (Demsar 2006). As soon as a null

hypothesis cannot be rejected, all the remaining hypothesis

are retained as well (Demsar 2006).

From Table 3, the standard error is

SE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kðk þ 1Þ

6N

r

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ð4þ 1Þ

6ð15Þ

s

¼ 0:4714: ð35Þ

The corresponding statistics and p values are computed

and displayed in Table 4.

These results correspond to the Bonferroni–Dunn test.

The Holm procedure rejects the first null-hypotheses since

the corresponding p values are smaller than the adjusted a.

Therefore, ES yields the results that are significantly better

than grid search at a = 0.05. The other null-hypothesis

cannot be rejected because their p values are more than the

adjusted a, so we would have to retain them. Hence, ES is a

better alternative for hyperparameter selection.

Furthermore, the average accuracies of ES can be

enhanced by using a suitable objective function. Different

objective functions are used in ES for identifying the opti-

mal hyperparameters of SVM. Training accuracy (TrnAcc),

the bound of generalization error (BdOfGenErr), 5-subset

cross-validation on training accuracy (5SubsetOnTrnAcc),

and 5-subset cross-validation on the bound of generalization

error (5SubsetOnBdOfGenErr) are used as an objective

function in the evolutionary process. ES with the various

objective functions are compared in terms of the average

accuracies and their ranks in Table 5. The statistical paired t

test is used for testing the difference of two algorithms in

terms of the average accuracy on each dataset.

When different objective functions of ES are used,

TrnAcc provides good accuracies on testing and BdOfGen-

Err yields better results on many datasets. Moreover, the

average accuracy on 15 datasets of BdOfGenErr is higher

than that of TrnAcc. These results show that TrnAcc is not

the best objective function, and in fact it may guide ES to

select a classifier which overfits the training data. On other

hand, BdOfGenErr is an approximation of the generalization

performance of SVM which considers both the training error

as well as the VC-dimension. Thus, it can avoid the over-

fitting problem, resulting in better performance.

Although BdOfGenErr can improve the performance of

the classification, 5SubsetOnTrnAcc is more accurate.

When 5SubsetOnTrnAcc is used, the average accuracy is

higher than those of the other objective functions. The

training data is partitioned into five subsets to avoid the

overfitting problem. Thus, the hyperparameters which work

well for all of the five subsets would have less chance to

overfit the data. Hence, 5SubsetOnTrnAcc should be a good

objective function for our proposed kernel. We also run an

experiment using 5SubsetOnBdOfGenErr, but the average

accuracy does not increase from BdOfGenErr. This may

come from the fact that the bound of generalization error

has already taken the overfitting problem into consideration

by examining both the training error and the VC-dimension

of SVMs. Therefore, subset cross-validation may not be

necessary for the bound of generalization error.

Although the average classification accuracies across

different datasets can present the performance of our

methods, it may be susceptible to outliers. Moreover, the

averages could be meaningless if the results on different

datasets are not comparable (Demsar 2006). In general, we

prefer the classifiers that work well on many problems.

Therefore, a ranking method is applied to compare these

algorithms. Wilcoxon signed-ranks test is a non-parametric

testing that ranks the differences in performances of two

classifiers for each dataset, ignoring the signs, and com-

pares the ranks for the positive and the negative differences

(Demsar 2006). The Wilcoxon signed-ranks test is applied

for comparing between TrnErr and the other objective

functions of ES. Table 6 shows the accuracy difference and

the ranks of each objective function over the various

datasets. These results show that we cannot reject the null-

hypothesis at a = 0.05 because the value of Z on each

pairwise comparison is greater than -1.96.

Then, the Friedman test is applied for comparing many

objective functions. The test is used for testing the differ-

ence of multiple algorithms over multiple datasets based on

their average ranks. The average ranks provide a fair

comparison of these algorithms. On average, ES with

5SubsetOnTrnAcc is the best objective function (with the

average rank of 2.3333), TrnAcc and BdOfGenErr are the

second best, whereas 5SubsetOnBdOfGenErr is not better

than the other objective functions.

As shown in the experimental results in Table 5, the

Friedman test is used to check whether the measured

Table 4 Holm’s Test for Hyperparameter Selection Algorithms

I Parameter selection methods z = (R0 - Ri)/SE p a/(k - i)

1 ES (3.0333 - 1.8333)/0.4714 = 2.5456 0.0109 0.0167

2 DE (3.0333 - 2.3000)/0.4714 = 1.5557 0.1198 0.0250

3 RCGA (3.0333 - 2.8333)/0.4714 = 0.4243 0.6713 0.0500
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Table 5 Average Accuracy of ES with Single RBF Kernel that Uses Different Objective Functions (%)

Datasets Grid search Objective Function of ES

TrnAcc BdOfGenErr 5SubsetOn TrnAcc 5SubsetOn BdOfGenErr

Checkers 83.32 (3.5) 89.58 (1) 88.56 (2) 83.82 (3.5) 80.19 (5)

Spiral 100.00 (3) 100.00 (3) 100.00 (3) 100.00 (3) 100.00 (3)

LiverDisorders 61.74 (5) 69.57 (1) 68.41 (2) 66.67 (3) 62.61 (4)

IndiansDiabetes 64.97 (5) 72.52 (2) 68.61 (3) 73.30 (1) 65.10 (4)

ThreeOfNine 53.51 (4.5) 53.51 (4.5) 100.00** (2) 100.00** (2) 100.00** (2)

TicTacToe 65.34 (4.5) 65.34 (4.5) 98.96** (3) 99.69** (1) 98.75** (2)

BreastCancer 86.41 (5) 95.28 (1) 94.85 (2) 94.56 (3) 93.85 (4)

ParityBits 48.05 (4) 48.05 (4) 80.46** (1) 75.78** (2) 48.05 (4)

SolarFlare 80.87 (5) 83.30 (1) 82.93 (2) 80.96 (4) 82.93 (3)

ClevelandHeart 55.56 (4) 55.55 (4) 55.55 (4) 78.15 (1) 62.59 (2)

Australian 55.51 (3) 55.51 (3) 55.51 (3) 55.51 (3) 55.51 (3)

German-org 70.10 (3) 70.40 (1) 70.00 (4.5) 70.30 (2) 70.00 (4.5)

Ionosphere 66.10 (4.5) 66.10 (4.5) 95.45** (1) 95.16** (2) 92.31** (3)

Tokyo 81.02 (5) 91.24 (2) 88.32 (4) 91.66 (1) 88.53 (3)

Sonar 70.67 (5) 91.35 (1.5) 91.35** (1.5) 88.92 (3) 88.43 (4)

Average accuracy 69.54 73.82 82.60 83.63 79.26

Average rank 4.2000 2.5333 2.5333 2.3000 3.3667

**Statistically significant at the level of 0.001 when compared to TrnAcc

Bold values are the best accuracy for each dataset

Table 6 Comparisons between TrnAcc and other objective functions

Datasets Difference from average accuracy of TrnAcc Rank

BdOfGenErr 5SubsetOn TrnAcc 5SubsetOn BdOfGenErr BdOfGenErr 5SubsetOn TrnAcc 5SubsetOn BdOfGenErr

Checkers -1.03 -5.76 -9.39 8 10 12

Spiral 0.00 0.00 0.00 2.5 1.5 2

LiverDisorders -1.16 -2.90 -6.96 9 9 9

IndiansDiabetes -3.91 0.78 -7.42 11 6 11

ThreeOfNine 46.49 46.49 46.49 15 15 15

TicTacToe 33.61 34.34 33.40 14 14 14

BreastCancer -0.43 -0.71 -1.43 7 5 6

ParityBits 32.42 27.73 0.00 13 12 2

SolarFlare -0.38 -2.34 -0.38 5 7 4

ClevelandHeart 0.00 22.59 7.04 2.5 11 10

Australian 0.00 0.00 0.00 2.5 1.5 2

German-org -0.40 -0.10 -0.40 6 3 5

Ionosphere 29.35 29.07 26.22 12 13 13

Tokyo -2.92 0.42 -2.72 10 4 7

Sonar 0.00 -2.43 -2.91 2.5 8 8

Rþ ¼
P

di [ 0

rankðdiÞ þ 1
2

P

di¼0

rankðdiÞ 59 76.5 55

R� ¼
P

di\0

rankðdiÞ þ 1
2

P

di¼0

rankðdiÞ 61 43.5 65

T = min (R?, R-) 59 43.5 55

Z ¼ T�1
4
NðNþ1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
24

NðNþ1Þð2Nþ1Þ
p -0.0568 -0.93714 -0.28398
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average ranks are significantly different from the mean

rank Rj = 3:

v2
F ¼

12ð15Þ
5ð5þ 1Þ

"

ð4:22 þ 2:53332 þ 2:53332 þ 2:32

þ3:36672Þ � 5ð5þ 1Þ2

4

#

¼ 12:5994 ð36Þ

FF ¼
ð15� 1Þ12:5994

15ð5� 1Þ � 12:5994
¼ 3:7213: ð37Þ

With 5 algorithms and 15 datasets, FF is distributed

according to the F distribution with 5 - 1 = 4 and (5 - 1)

9 (15 - 1) = 56 degrees of freedom. The critical value of

F(4,56) for a = 0.05 is 2.54136, so we reject the null-

hypothesis.

Then, we use the Bonferroni–Dunn test that is a post-

hoc test for pairwise comparisons. This research uses q0.10

for five classifiers which is 2.241. The corresponding CD is

CD ¼ ð2:241Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5ð5þ 1Þ

6ð15Þ

s

¼ 1:5538: ð38Þ

From the CD value, we can say that the performance of

the grid search is significantly worse than those of ES with

TrnAcc, 5SubsetOnTrnAcc, and BdOfGenErr; however, it

is not sufficient to conclude about 5SubsetOnBdOfGenErr

(4.2 - 3.3667 \ 1.5538).

The Holm procedure is another post-hoc test that will be

performed if the Friedman test rejects the null-hypothesis.

Standard error of 5 algorithms and 15 datasets in Table 5 is

calculated by the following equation:

SE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kðk þ 1Þ

6N

r

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5ð5þ 1Þ

6ð15Þ

s

¼ 0:5774: ð39Þ

The corresponding statistics and p values are computed

and displayed in Table 7.

When a = 0.05, the Holm procedure rejects the first, the

second, and then the third hypotheses since the corre-

sponding p values are smaller than the adjusted a. The last

hypothesis cannot be rejected, and thus we would have to

retain them. Hence, TrnAcc, 5SubsetOnTrnAcc, and

BdOfGenErr will be evaluated in the next experiments,

whereas 5SubsetOnBdOfGenErr will not be used as an

objective function in the rest of our experiments.

For the running time, it is rather obvious that the evo-

lutionary strategy consumes a lot of time when it is com-

pared to a single SVM. However, this process is

indispensable, as the accuracy of the learned SVM depends

heavily on the quality of the obtained hyperparameters.

Furthermore, determining high-quality hyperparameters is

an off-line process in most application, and thus this run-

ning time can be disregarded. Nevertheless, we found that

the running time of each proposed method (ES with a

different objective function) is less than that of the grid

search with a large number of evaluations. The running

time of each method on a fold of Sonar dataset is recorded

and illustrated in Table 8.

The proposed methods and the grid search were run on a

computer with an Intel Xeon 2.73 GHz CPU and 3.85 GB

memory. In the grid search, the regularization parameter,

the width of RBF kernel, and the combination weight are

varied by a log-scale from 0.0001, 0.0002,…, 0.001,

0.002,…, to 10.0. The running time of the grid search on

Sonar was about 3 h, whereas the running time of RCGA,

DE, and ES with TrnAcc are about eight times shorter than

grid search. In addition, the running time of ES with

TrnAcc is close to that of BdOfGenErr, and the running

time of 5SubsetOnTrnAcc is also close to that of

5SubsetOnBdOfGenErr.

However, we found that the running times of 5Subse-

tOnTrnAcc and 5SubsetOnBdOfGenErr are about five

times longer than those of TrnAcc and BdOfGenErr. For

the case of five-subsets cross-validation, SVM classifiers

are trained and validated five times for each hyperparam-

eter. For other datasets, the running times of these methods

have a similar trend; the running times of 5SubsetOnTr-

nAcc and 5SubsetOnBdOfGenErr are more than those of

TrnAcc and BdOfGenErr, and the running time of each

proposed methods is less than that of the grid search with a

large number of evaluations.

For multi-scale RBF kernels, the average accuracies and

the ranks of each objective function using n-RBF when

n = 2, 3, 4, and 5 are illustrated in Tables 9, 10, 11, and

12, respectively. Furthermore, the average accuracies on 15

datasets for each objective function are illustrated by the

Table 7 Holm’s test for comparing between Grid search and different objective functions of ES

i Objective functions z = (R0 - Ri)/SE p a/(k - i)

1 5SubsetOnTrnAcc (4.2000 - 2.3000)/0.5774 = 3.2906 0.0010 0.0125

2 TrnAcc (4.2000 - 2.5333)/0.5774 = 2.8866 0.0039 0.0167

3 BdOfGenErr (4.2000 - 2.5333)/0.5774 = 2.8866 0.0039 0.0250

4 5SubsetOnBdOfGenErr (4.2000 - 3.3667)/0.5774 = 1.4432 0.1490 0.0500
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graphs in Fig. 6. These results show the performance of

each objective function. For all n-RBF kernels, the average

accuracies of 5SubsetOnTrnAcc are better than those of

TrnAcc and BdOfGenErr. There are many datasets where

5SubsetOnTrnAcc yields the highest accuracies. Moreover,

the average accuracies of 5SubsetOnTrnAcc are signifi-

cantly better than those of TrnAcc on some datasets.

When the average rank is considered, we found that

5SubsetOnTrnAcc performed the best for all n-RBF when

n = 2, 3, 4, and 5, while TrnAcc and BdOfGenErr gave

similar results for all experiments. However, the average

accuracies of BdOfGenErr are significantly better than

those of TrnAcc on some datasets, such as ThreeOfNine,

Table 8 The running time of an SVM with the RBF kernel that uses

different parameter selection methods when training on a fold of

sonar dataset

Parameter selection methods Running time (hours)

Grid Search 3:05:35

RCGA with TrnAcc 0:20:20

DE with TrnAcc 0:19:47

ES with TrnAcc 0:23:18

ES with BdOfGenErr 0:22:31

ES with 5SubsetOnTrnAcc 1:56:31

ES with 5SubsetOn BdOfGenErr 1:58:54

Table 9 Average accuracy of 2-RBF kernel (%)

Datasets Objective Functions of ES

TrnAcc BdOfGenErr 5SubsetOn TrnAcc

Checkers 90.62 (1) 89.07 (2) 84.35 (3)

Spiral 100.00 (2) 100.00 (2) 100.00 (2)

LiverDisorders 70.73 (2) 71.31 (1) 67.25 (3)

IndiansDiabetes 72.39 (2) 71.35 (3) 74.86 (1)

ThreeOfNine 53.51 (3) 100.00** (1.5) 100.00** (1.5)

TicTacToe 65.34 (3) 98.33** (2) 99.69** (1)

BreastCancer 95.56 (2) 95.42 (3) 95.99 (1)

ParityBits 48.05 (3) 79.49** (2) 80.18** (1)

SolarFlare 83.21 (1) 82.93 (2) 80.96 (3)

ClevelandHeart 55.55 (3) 62.22 (2) 83.34** (1)

Australian 55.51 (2) 55.51 (2) 55.51 (2)

German-org 70.80 (2) 70.00 (3) 73.40 (1)

Ionosphere 66.10 (3) 95.45** (2) 96.29** (1)

Tokyo 89.05 (2) 87.79 (3) 91.66 (1)

Sonar 92.78 (1) 92.30 (2) 88.92 (3)

Average accuracy 73.95 83.41 84.83

Average rank 2.1333 2.1666 1.7000

**Statistically significant at the level of 0.001 when compared to

TrnAcc

Bold values are the best accuracy for each dataset

Table 10 Average accuracy of 3-RBF kernel (%)

Datasets Objective Functions of ES

TrnAcc BdOfGenErr 5SubsetOn TrnAcc

Checkers 90.62 (1) 89.07 (2) 83.82 (3)

Spiral 100.00 (2) 100.00 (2) 100.00 (2)

LiverDisorders 71.02 (1.5) 71.02 (1.5) 68.99 (3)

IndiansDiabetes 73.55 (2) 71.34 (3) 75.26 (1)

ThreeOfNine 53.51 (3) 100.00** (1.5) 100.00** (1.5)

TicTacToe 65.34 (3) 98.54** (2) 99.69** (1)

BreastCancer 94.99 (3) 95.28 (2) 96.42 (1)

ParityBits 48.05 (3) 79.49** (2) 80.18** (1)

SolarFlare 83.21 (1) 82.93 (2) 80.96 (3)

ClevelandHeart 55.55 (3) 71.85 (2) 82.96** (1)

Australian 55.51 (2) 55.51 (2) 55.51 (2)

German-org 72.00 (2) 70.00 (3) 73.70 (1)

Ionosphere 66.10 (3) 96.30** (1) 96.01** (2)

Tokyo 90.19 (2) 89.47 (3) 91.66 (1)

Sonar 92.30 (1.5) 92.30 (1.5) 88.92 (3)

Average accuracy 74.13 84.21 84.94

Average rank 2.2000 2.0333 1.7667

**Statistically significant at the level of 0.001 when compared to

TrnAcc

Bold values are the best accuracy for each dataset

Table 11 Average Accuracy of 4-RBF Kernel (%)

Datasets Objective Functions of ES

TrnAcc BdOfGenErr 5SubsetOn TrnAcc

Checkers 90.09 (1) 88.54 (2) 83.82 (3)

Spiral 100.00 (2) 100.00 (2) 100.00 (2)

LiverDisorders 70.15 (1) 68.99 (3) 69.57 (2)

IndiansDiabetes 74.47 (2) 71.98 (3) 75.26 (1)

ThreeOfNine 53.51 (3) 99.80** (2) 100.00** (1)

TicTacToe 65.34 (3) 98.44** (2) 99.69** (1)

BreastCancer 95.85 (2.5) 95.85 (2.5) 96.42 (1)

ParityBits 48.05 (3) 79.49** (2) 80.18** (1)

SolarFlare 83.21 (1) 82.93 (2) 80.96 (3)

ClevelandHeart 55.55 (3) 78.15** (2) 83.33** (1)

Australian 55.51 (1.5) 55.51 (1.5) 55.22 (2)

German-org 73.50 (2) 70.00 (3) 75.40 (1)

Ionosphere 66.10 (3) 95.72** (2) 96.01** (1)

Tokyo 89.15 (3) 90.30 (2) 91.56 (1)

Sonar 92.78 (1.5) 92.78 (1.5) 88.92 (3)

Average accuracy 74.22 84.57 85.09

Average rank 2.1667 2.1667 1.6000

**Statistically significant at the level of 0.001 when compared to

TrnAcc

Bold values are the best accuracy for each dataset

694 T. Phienthrakul, B. Kijsirikul

123



TicTacToe, ParityBits, and Ionosphere. As shown in Fig. 6,

the average accuracies on 15 datasets of 5SubsetOnTrnAcc

are the highest for all n-RBF kernels while those of BdOf-

GenErr are slightly lower. When 5SubsetOnTrnAcc is used

as an objective function in the evolutionary process, the

average accuracy of n-RBF increases with the number of

RBF terms (n). In contrast, the average accuracy of BdOf-

GenErr decreases for some of the multi-scale RBF kernels.

Although BdOfGenErr does not provide higher average

accuracies than those of 5SubsetOnTrnAcc, it requires less

time to evaluate a set of hyperparameters. 5SubsetOnTr-

nAcc has to train a classifier five times when evaluating

each set of hyperparameters. Therefore, BdOfGenErr is a

good choice for an objective function, which yields good

results and is easy to implement. In general situations,

training an SVM is an off-line process. Therefore, the

training time could be disregarded, and in these situations,

5SubsetOnTrnAcc is the best choice that yields the best

accuracies in many datasets. When 5SubsetOnTrnAcc is

used as an objective function, there is a trend that the

average accuracy on all 15 datasets increases with the

number of terms of RBF kernels.

However, as shown in Table 13, the average accuracies

of 5SubsetOnTrnAcc increase until a specific number of

terms of RBF kernels is reached. After that, they are

unchanged or slightly decrease. Therefore, increasing the

number of terms of the RBF kernels contributes positively

to the accuracy. Although it is not always the case that the

kernel with the largest number of terms yields the best

result, more RBF terms usually provide better outcomes and

should be employed when there are no time constraints.

Furthermore, the proposed method was compared to the

k-nearest neighbors (k-NN), where the target class is esti-

mated from the voting among k nearest training data points.

In this research, SVM with the 10-RBF kernel whose

parameters are selected by ES that uses 5SubsetOnTrnAcc

Table 12 Average Accuracy of 5-RBF Kernel (%)

Datasets Objective Functions of ES

TrnAcc BdOfGenErr 5SubsetOn TrnAcc

Checkers 90.10 (1) 88.02 (2) 83.82 (3)

Spiral 100.00 (2) 100.00 (2) 100.00 (2)

LiverDisorders 70.15 (1) 69.57 (2) 68.99 (3)

IndiansDiabetes 73.17 (2) 71.99 (3) 74.61 (1)

ThreeOfNine 53.51 (3) 100.00** (1.5) 100.00** (1.5)

TicTacToe 65.34 (3) 98.44** (2) 99.69** (1)

BreastCancer 95.42 (2) 94.99 (3) 96.42 (1)

ParityBits 48.05 (3) 79.49** (2) 80.18** (1)

SolarFlare 83.12 (1) 82.93 (2) 80.96 (3)

ClevelandHeart 55.55 (3) 68.89 (2) 83.33** (1)

Australian 55.65 (2) 55.51 (3) 56.96 (1)

German-org 71.20 (2) 70.00 (3) 76.70 (1)

Ionosphere 66.10 (3) 96.01** (1) 95.73** (2)

Tokyo 90.82 (2) 88.94 (3) 91.66 (1)

Sonar 92.30 (1.5) 92.30 (1.5) 88.92 (3)

Average accuracy 74.03 83.81 85.20

Average rank 2.1000 2.2000 1.7000***

**Statistically significant at the level of 0.001 when compared to

TrnAcc

***Statistically significant by Wilcoxon signed-ranks test at the level

of 0.1 when compared to TrnAcc

Bold values are the best accuracy for each dataset

Fig. 6 Average accuracies on

15 datasets
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as the objective function is compared to k-NN for k = 1, 3,

5, and 7. The experimental results are shown in Table 14.

The average accuracies of the proposed method are better

than those of k-NN on many datasets. Furthermore, the

result of the Friedman test shows that the average ranks of

5 algorithms, i.e. 1-NN, 3-NN, 5-NN, 7-NN and the pro-

posed method, on 15 datasets are significantly different

from the mean rank Rj = 3:

v2
F ¼

12ð15Þ
5ð5þ 1Þ

"

ð3:63332 þ 3:16672 þ 3:13332 þ 3:33332

þ1:76672Þ � 5ð5þ 1Þ2

4

#

¼ 12:3468 ð40Þ

FF ¼
ð15� 1Þ12:3468

15ð5� 1Þ � 12:3468
¼ 3:6290: ð41Þ

The critical value of F(4,56) for a = 0.05 is 2.54136, so

we reject the null-hypothesis. Therefore, the average ranks

of these five algorithms are significantly different from the

mean rank at a significance level of 0.05.

Then, the Bonferroni–Dunn test is used for pairwise

comparisons. The corresponding critical difference (CD)

for q0.10 is

CD ¼ ð2:241Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5ð5þ 1Þ

6ð15Þ

s

¼ 1:5538: ð42Þ

Therefore, the average rank of the proposed method

(SVM with the 10-RBF kernel and 5SubsetOnTrnAcc) is

significantly better than the average rank of k-NN for k = 1

and 7 (3.6333 - 1.7667 and 3.3333 - 1.7667 are more

than 1.5538).

For Holm’s test, the standard error of 5 algorithms and

15 datasets is 0.5774. The corresponding statistics and p

values are computed and displayed in Table 15. When a ¼
0:05; the Holm procedure rejects all hypotheses since the

corresponding p values are smaller than the adjusted a:
These results confirm that the results of SVM with the

10-RBF kernel and objective function 5SubsetOnTrnAcc

are also significantly better than the results of k-NN.

7 Conclusions and discussions

The main focus of this paper is to improve the accuracy of

SVM on a classification problem. The non-negative

weighted linear combination of multiple RBF kernels is

proposed for support vector machines in classification

tasks. The RBF kernel is the most popular distance-based

kernel that has been applied to various applications and

yields good results. Here we show that the performance of

the RBF kernel can be further enhanced with the combi-

nation of several RBF kernels. The proposed kernel is

proved to be an admissible kernel by Mercer’s theorem.

Moreover, the proposed kernel has more adaptability for

complex problems.

Then, the evolutionary strategy is applied to select the

hyperparameters of SVM. The optimum values of both the

regularization parameter and the parameters of kernel

function are searched. Although other methods for

Table 13 Average accuracies of 5SubsetOnTrnAcc (%)

Datasets Kernel Function

1-RBF 2-RBF 3-RBF 4-RBF 5-RBF 6-RBF 7-RBF 8-RBF 9-RBF 10-RBF

Checkers 83.82 84.35 83.82 83.82 83.82 82.77 82.77 82.77 82.77 82.77

Spiral 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

LiverDisorders 66.67 67.25 68.99 69.57 68.99 67.83 67.83 67.83 67.83 67.83

IndiansDiabetes 73.30 74.86 75.26 75.26 74.61 75.25 75.25 75.25 75.25 75.25

ThreeOfNine 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

TicTacToe 99.69 99.69 99.69 99.69 99.69 99.69 99.69 99.69 99.69 99.69

BreastCancer 94.56 95.99 96.42 96.42 96.42 96.42 96.42 96.42 96.42 96.42

ParityBits 75.78 80.18 80.18 80.18 80.18 80.18 80.18 80.18 80.18 80.18

SolarFlare 80.96 80.96 80.96 80.96 80.96 80.87 80.87 80.87 80.87 80.87

ClevelandHeart 78.15 83.34 82.96 83.33 83.33 82.96 81.85 81.48 82.22 83.33

Australian 55.51 55.51 55.51 55.22 56.96 56.96 56.96 56.96 57.39 58.84

German-org 70.30 73.40 73.70 75.40 76.70 76.70 76.70 76.70 76.40 76.40

Ionosphere 95.16 96.29 96.01 96.01 95.73 95.73 95.73 95.73 95.73 95.73

Tokyo 91.66 91.66 91.66 91.56 91.66 91.66 91.66 91.87 92.18 92.18

Sonar 88.92 88.92 88.92 88.92 88.92 88.92 88.92 88.92 88.92 88.92

Average accuracy 83.63 84.83 84.94 85.09 85.20 85.06 84.99 84.98 85.06 85.23

Bold values are the best accuracy for each dataset
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optimizing the parameters can also be used such as gradient

based methods, these methods are more complicated or

cannot be implemented for some kernel functions of SVM.

The (5 ? 10)-ES is used in this research because it has the

ability to escape from local minima. Moreover, its popu-

lation size of this ES is not so large, and thus it converges

to the optimal solution rather quickly. Three possible

objective functions in the evolutionary process, training

accuracy, the bound of generalization error, and subset

cross-validation on training accuracy, are investigated.

From our experimental results, we suggest using the subset

cross-validation on training accuracy as an objective

function since it provides the best accuracy.

Since the multi-scale RBF kernels are flexible according

to the number of terms of RBF, a set of hyperparameters

may create a decision surface that overfits the training data,

and thus produces misclassification on the test data. Subset

cross-validation can avoid this overfitting problem because

the training data are divided into many subsets. The

parameters that work well on all subsets should perform

well on unseen data. Hence, the subset cross-validation on

training accuracy is a good choice of objective function for

multi-scale RBF kernels.

The experimental results show the performance of the

proposed method in the terms of average accuracy on

fivefold cross-validation. The multi-scale RBF kernels

yield better results. When SVM uses the proposed kernel, it

is able to learn from data very well. Furthermore, the

evolutionary strategy is effective in optimizing the hyper-

parameters. Hence, the proposed method is very suitable

for the problems where we have no prior knowledge about

their parameters. Besides, this non-negative linear combi-

nation can be applied to other Mercer’s kernels such as

polynomial, Fourier series, and spectrum kernels, as the

general form of the linear combination of Mercer’s kernels

has already been proved to be a Mercer’s kernel.
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