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Abstract In this paper, a new method for secure remote

biometric authentication preventing the vulnerability of

compromised biometrics is presented. The idea is based on

a public-key cryptographical protocol, referred as zero-

knowledge proof, which allows a user to prove that she has

surely a valid biometric data without revealing the data.

Hence, the scheme is free from the risk of disclosure of

biometric data. Even if a malicious administrator has a

privilege access to the private database, it is infeasible for

him to learn the private template. This paper studies two

well-known definitions, the cosine correlation and the

Euclidean distance as similarities of given two feature

vectors. Both similarities are defined with some multipli-

cations and additions, which can be performed in privacy-

preserving way because of the useful property of public-key

commitment scheme, additive homomorphism. The estima-

tion based on the experimental implementation shows that

the private Euclidean distance scheme archives better

accuracy in terms of false acceptance and rejection than the

private cosine coloration scheme, but it requires about 5=2n‘

overhead to evaluate n-dimension feature vectors consisting

of ‘-bit integers.

1 Introduction

Biometrics identifiers are now commonly used to identify

individuals in more secure and more efficient ways than the

conventional password-based methods. Typically, the bio-

metric identifiers including fingerprint, vein, iris, facial

images are scanned and processed in appropriate algorithm

to extract a feature vector, which is stored as a template in

registration (Maltoni et al. 2003). In authentication, a fea-

ture vector extracted from a newly scanned image will be

compared to the template to verify that the owner of the

biometric data is legitimate or not.

The biometric recognition, however, is mostly made in

local environment, e.g., a matching with the template data

stored in secure smartcard (in ATM cards), or a user

authentication at personal laptop PCs. The reason of limi-

tation in local is the known vulnerabilities of remote bio-

metric authentication that once a biometric template is

stolen, it is stolen forever and can not be recovered. If we

store our biometric data to some service provider, we

immediately face risks that the server may be compro-

mised, or a malicious administrator of the server may learn

our highly private data and can disclose it.

Many researchers pointed out the issue in remote bio-

metrics authentication and several attempts addressing it

have been made. Ratha et al. (2001) proposed a ‘‘cancel-

able biometrics’’, using a morphing technique to transform

biometric data into a randomized form, which depends on

given morphing function. Jeong et al. (2006) proposed a

changeable biometrics for face recognition using the
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principal component analysis (PCA) and the independent

component analysis (ICA). Given two vectors chosen from

PCA and ICA coefficients, they extract from an input face

image the transformed vector according to a scrambling

rule. When the transformed template is compromised, the

scrambling rule is replaced by a new one. Juels and

Sudan’s ‘‘fuzzy vault scheme’’ (Juels and Sudan 2002) is

an improvement upon the previous work by Juels and

Wattenberg (1999). In Juels and Sudan (2002), they use

the polynomial reconstruction problem based on an error-

collection code such as the Reed-Solomon. Clancy et al.

(Clancy and Kiyavash 2003) proposed a ‘‘fingerprint vault

system’’ based on the fuzzy vault. Using multiple minutiae

location sets, they use canonical positions of minutiae, as

the elements of a set. Uludag and Jain (2004) proposed a

fuzzy vault system for fingerprint using the Lagrange

interpolation and the cyclic redundancy check (CRC) for

testing polynomial reconstruction instead of the error-

collection step.

Many cryptographical primitives are introduced to

construct secure protocols. Bringer et al. proposed a

scheme using a group signature in Julien et al. (2008). In

Julien et al. (2007), an extended private information

retrieval is used and then improved in Julien and Hervé

(2008), too. Socek et al. used a set intersection as the

degree of similarity in Daniel and Vladimir (2008). Barbosa

et al. proposed a hybrid approach based on the support

vector machine classifier and the Paillier public key

encryption in Manuel et al. (2008).

Studies on security model of remote biometric authen-

tications are made in Qiang et al. (2008). In Qiang et al.

(2008), Tang et al. proposed a new formal security model

for biometric-based remote authentication schemes so that

several privacy concerns can be covered in it. Une et al.

proposes a measure for evaluating schemes, called ‘‘wolf

attack probability’’ in Masashi et al. (2007).

In this paper, we present a new method for secure

remote biometric authentication preventing the vulnera-

bility of compromised biometrics. Our idea is based on a

public-key cryptographical protocol, referred as zero-

knowledge proof, which allows a user to prove that she has

surely a valid biometric data without revealing the data.

Hence, the scheme is free from the risk of disclosure of

biometric data. Even if the administrator with privilege

access to the private database is malicious, it is infeasible

to learn the private template. Without learning the template

stored at the server, he performs an evaluation of similar-

ities between the template and the new input in privacy-

preserving way.

The zero-knowledge proof is generally ‘‘expensive’’ in

terms of communication and computation costs. The per-

formance of schemes depends on what similarity measure

is used for the secret evaluation. In this paper, we study two

well-known definitions, the cosine correlation and the

Euclidean distance as similarities of given two feature

vectors. Both similarities are defined with some multipli-

cations and some additions, which can be performed in

privacy-preserving way because of the useful property of

public-key commitment scheme, additive homomorphic.

The estimation based on the experimental implementation

shows that the private Euclidean distance scheme achieves

better accuracy in terms of false acceptance and rejection

than the private cosine correlation scheme, but it requires

about 5=2n‘ overhead to evaluate n-dimension feature

vectors consisting of ‘-bit integers.

The remainder of this paper is organized as follows.

After giving the definitions for some fundamental building

blocks, e.g., similarities and commitment functions, in

Sect. 2, we construct two protocols for secure private

similarity evaluation in Sect. 3. In Sect. 4, we evaluate our

two proposed protocols from several viewpoints, including

accuracy, performance and security. Section 5 concludes

our study on secure remote biometric authentication.

2 Preliminaries

2.1 Similarities

Let a ¼ ða1; . . .; anÞ and b ¼ ðb1; . . .; bnÞ be n-dimensional

vectors of Rn: We consider the following two well-known

similarities between a and b; which will be evaluated in

privacy-preserving way in a later section.

Definition 1 A cosine correlation is a similarity between

a and b defined as

cosða; bÞ ¼ a � b
jjajj � jjbjj ¼

a1b1 þ � � � þ anbn
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2
1 þ � � � þ a2

n

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b2
1 þ � � � þ b2

n

p

where jjajj is a norm of a:

Definition 2 An Euclidean distance, dða; bÞ; is defined as

dða; bÞ ¼ jja� bjj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

n

i

ðai � biÞ2
s

:

For simplification, taking the normalization of a and b;we

can reduce the computational cost of cosine correlation as

cosða=jjajj; b=jjbjjÞ ¼ a � b: Taking squared as dða; bÞ2; we

can omit the computation of square root for Euclidean

similarity.

2.2 Secure commitment

A commitment is a cryptographical primitive to commit to

a value while keeping it hidden and then reveal the com-

mitted value later.
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A function Eðm; rÞ is considered as secure commitment

to message m; where r is a random number, if it satisfies

1. No information reveals from Eðm; rÞ; and

2. No one finds m0 6¼ m; r and r0 such that Eðm; rÞ ¼
Eðm0; r0Þ:

Fujisaki and Okamoto proposed (Fujisaki and Okamoto

1997) a probabilistic commitment scheme based on the

integer factorization problem as follows.

Definition 3 Let n be a composite number that no one

knows the factors, and g and h be elements of ZN such that

logg h is not known by anybody. A commitment to m is

Eðm; rÞ ¼ gmhr mod N;

where r is a random number.

The Fujisaki–Okamoto commitment has an additive

homomorphism, a useful property for privacy-preserving

computation, satisfying

Eðm; rÞ � Eðm0; r0Þ ¼ Eðmþ m0; r þ r0Þ and Eðm; rÞx
¼ Eðmx; rxÞ;

where the addition mþ m0 is an ordinary arithmetic (not

modular arithmetic) since we do not know the order of g and h:

We often write EðmÞ to mean Eðm; rÞ when we do not

necessary specify the random value.

2.3 Zero-knowledge proof of commitment

We introduce a cryptographical protocol for proving that a

committed value m lies in a specific interval ½a; b� with-

out revealing m; often known as Boudot’s Range Proof

(Boudot 2000).

Definition 4 Let F be a commitment Eðm; rÞ to message m:

A range proof of knowledge of commitment is a crypto-

graphical protocol allowing a prover to show that committed

m is in ½a; b� without revealing m to a verifier, denoted by

PK m; r
?

? F ¼ Eðm; rÞ ^ m 2 ½a; b�
� �

where r is uniformly chosen over ½�2sN þ 1; 2sN � 1� and

s is a security parameter [e.g., s ¼ 160 (bit)].

The range proof takes about five times of overhead of a

standard zero-knowledge proof of the committed value

PKfm
�

� F ¼ Eðm; rÞg: Namely, it is expensive in terms of

both computation and communication.

3 Private similarity evaluations

3.1 Overview and assumption

In our model, Alice is a user who tries to prove her identity

to a server. Bob is the server who authenticates Alice based

on the data that Alice has already registered. Assume that

Alice does not fully trust Bob, that is, in so-called ‘‘honest-

but-curious’’ model, where all players follow the protocol

honestly, but are curious in that they try to find out as much

as possible about the other input. In other words, no party

can intentionally forget knowledge that it learns during the

protocol. Therefore, instead of her private biometric data

x ¼ ðx1; . . .; xnÞ; Alice registers the commitment to x;EðxÞ;
from which Bob cannot learn x: To authenticate her to Bob,

Alice scans her fresh biometric data y ¼ ðy1; . . .; ynÞ and

proves x � y to Bob without revealing y (nor x) in the zero-

knowledge proof of similarities between x and y:

There are many efficient protocols for proving several

kinds of equalities in zero-knowledge way, and we need to

prove privately that y is ‘‘close’’ to x: It is not so hard to

implement the fuzzy matching if Alice is allowed to access

her tamper-proof device to recover x to be compared with

new one y: In the next section, we will show that the state-

of-the-art cryptographical protocols allow us to evaluate

similarities between any given committed vectors and to

show the difference is within a range, without disclosing

private biometric data to anyone. Hence, the protocol is

free from the risk of private information disclosure.

3.2 Private cosine correlation evaluation

We show a protocol for secure evaluation of a cosine

correlation given x and y in Fig. 1.

First of all, Alice needs to compute the commitment to

her true private input x using random values r1; . . .; rn

chosen uniformly over ZN ; as Ei ¼ Eðxi=c; riÞ for i ¼
1; . . .; n: For reducing computational cost, we use the norm

c ¼ jjxjj to normalize the committed input xi: The random

values are used for making the commitment indistin-

guishable against Bob in a sense that he can not distinguish

two messages with non-negligible probability.

The key idea of the protocol is to evaluate the cosine

correlation between template data x and an input data y

without revealing private x and y: The additive homo-

morphic property of the commitment scheme allows Bob to

compute the commitment of the cosine correlation between

hidden x and y at the third step as follows:

DC ¼
Y

n

i¼1

Gn
i¼1 ¼

Y

n

i¼1

Eðxi=c; riÞyi=c0 ¼
Y

n

i¼1

Eðxiyi=cc0; riyi=c0Þ

¼ E
1

jjxjjjjyjj
X

n

i¼1

xiyi;
X

n

i¼1

riyi=c0

 !

¼ Eðcosðx;yÞ;RCÞ

where RC is a random element computed as
Pn

i¼1 riyi=c0:
Since Alice is allowed to access the tamper-proof device to

obtain random values used to commit x; she is able to learn

RC; and thereby get dC: She also needs to prove to Bob that
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the commitment Gi has been correctly computed as defined

formula without revealing yi in PK1:

At the end of the protocol, using the Boudot’s range

proof (Boudot 2000) and the conjunctive proof of knowl-

edge (Cramer et al. 1994) (PK2), she can finally convince

Bob that she has valid input y such that the similarities

dC ¼ cosðx; yÞ is greater than pre-determined threshold s1;

which means that Alice is surely a legitimate user.

3.3 Private Euclidean distance evaluation

Figure 2 shows the protocol private-Euclid for proving

Alice’s private identity y is within the distance s2 from

registered x: In addition to the protocol private-cosine, it

requires Alice to commit to not only x but also to squared x

as ~Ei at the registration step. Implicitly, we use notation X

for the commitment to x; and ~X for the commitment to x2 in

the figure.

The additive homomorphic property allows us to pri-

vately evaluate the Euclidean distance between x and y at

side of Bob, at Step 3, as follows:

DE ¼
Y

n

i¼1

~Ei
~Fi=G2

i ¼
Y

n

i¼1

Eðx2
i ; rixiÞEðy2

i ; ~r
0
iÞ=Eð2xiyi; 2riyiÞ

¼
Y

n

i¼1

Eðx2
i þ y2

i � 2xiyi; rixi þ ~r0i � 2riyiÞ

¼ E
X

n

i¼1

x2
i � 2xiyi þ y2

i ;RE

 !

¼ Eðjjx� yjj2;REÞ;

letting RE be a constant defined as
Pn

i¼1 rixi � 2riyi þ ~r0i:
For constructing zero-knowledge protocols PK3;PK4 and

PK5; we add a protocol proving that a committed number is

a squared number, presented in Boudot (2000). If all proofs

are valid, Bob is convinced that Alice is a legitimate user

who has registered x and hence is able to show the cor-

rectly computed commitment of jjx� yjj2 less than

threshold s2:

4 Evaluation

Most zero-knowledge protocols are designed to be secure

in the cost of communicational and computational over-

head, which are not often considered as significant. There

is a trade-off between performance and security, e.g.,

reducing a probability being impersonated by half requires

double amount of bits to be computed. In addition, we

claim that there is one more trade-off between accuracy

and performance in secure biometric authentication. The

accuracy (and the performance) depends on a function for

similarity to be evaluated in zero-knowledge protocol.

Hence, it is not trivial to identify the optimal function of

similarity for the multiple objective requirements involved

each other.

4.1 Feature vector

To compare two similarities, we performed some experi-

ments using actual fingerprint images under the environ-

ment listed in Table 1. More than 500 live fingerprints are

scanned and performed some sorts of image processing and

extraction algorithms, which yield the feature vectors,

called ridge-valley orientation.

The feature vector consists of a 18� 18 matrix of

orientations of ridges and valleys of the surface of finger,

Fig. 1 Protocol for cosine

correlation evaluation
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taking average for each local 16� 16-pixel image. The

ridge-valley orientation is quite stable against a transfor-

mation of images, thus good for the evaluation of simi-

larities of high-dimension vectors. While, it needs to deal

with empty portions of image caused by miss-scanning. To

avoid some elements of feature from being zero, we take

n ¼ L2 elements from the core of the 18� 18 matrix. The

accuracy of authentication depends on dimension n of the

feature, and hence the optimal dimension is a significant

issue. Figure 3 shows the variance of similarities (Euclid-

ean distance) of two fingerprint images with respect to

dimensions n ¼ 2� 2; 4� 4; . . .; 18� 18: From the

observation of the result, we see that n [ 10� 10 provides

a good enough similarities to distinguish two images.

Figure 4 shows two distributions of cosine correlations;

one between genuine and imposter images (labeled as

‘‘Imposter’’), and the other one between two distinct ima-

ges chosen from genuine images (as ‘‘Genuine’’). The

dimension of feature vector is n ¼ 82: The genuine images

are distributed within a narrow area of range, while the

distribution of imposter images is broad. These distribu-

tions look almost disjoint, that is, the classification hardly

ever fails.

The Euclidean distances of two feature vectors are dis-

tributed as well, shown in Fig. 5. In comparison of two

similarities, the distribution of genuine images is quite

separate from that of imposter images in the Euclidean

distance, while these are distributed closely in cosine cor-

relations. Therefore, the accuracy of Euclidean distance is

likely to be better than that of the cosine correlation.

Fig. 2 Protocol for Euclidean

distance evaluation

Table 1 Experiment environment

Item Values

Fingerprint

scanner

Digital Persona U. are .U4000

Digital Persona Gold SDK 2.5.0

Fingerprint

images

50 genuine and 450 imposter

images

Resolution 300� 300 (pixel)

Image

processing

NIST NFIS2 (NIST FINGERPRINT IMAGE

SOFTWARE 2 (NFIS2).

http://fingerprint.nist.gov/NFIS/)

Software Proprietary application with Java

version 1.5.0_06,

Platform Windows XP, 1.00 GHz, 512 MB

Privacy-preserving similarity evaluation and Application 533
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4.2 Accuracy

We show the accuracy of authentication schemes based on

the similarities in Fig. 6, where overall accuracy is given as

equal error rate (ERR) of thresholds s1 and s2 with respects

to n; the dimensions of feature vectors. An ERR is the rate

at which both accept and reject errors are equal. Obviously,

the experiment means that the Euclidean distance is

superior in accuracy to the cosine correlation for all

dimensions n: The result is compatible with the analysis of

distributions studied in the above section.

Figure 7 shows the relative operating characteristic plot

(ROC) for particular dimension n ¼ 182; illustrating the

change of false rejection rate (FRR) with respects to False

Acceptance Rate (FAR). We observe that the tradeoff

between these rates by varying thresholds, and the cosine

correlation has higher error rate than the Euclidean dis-

tance. After all, the Euclidean distance is better similarity

measure than the cosine correlation in terms of accuracy.

4.3 Performance

There are two factors for performance of protocols; the

computational cost and the communication cost. The for-

mer is estimated as a number of modular exponentiations,

which is the dominant factor of processing time, for each

step in zero-knowledge proof. The latter is the function

taking dimension n and size of modulus ‘ ¼ jNj; typically
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‘ ¼ 1024 bit. We summarize the estimation of both costs in

Table 2. The estimation shows that the Euclidean distance

requires about double, 5=2n‘ overhead of the cosine cor-

relation to evaluate n -dimension vectors consisting of

‘ -bit integers, in theory.

In addition to the estimation from equations, we mea-

sure the processing time based on sample implementation

of the protocols. Figure 8 shows the experimental results,

where the size of modulus is ‘ ¼ jNj ¼ 1024; security

parameter in zero-knowledge protocol is t ¼ 160 bit, and

dimension of feature vector ranges from 2� 2 to 18� 18:

We confirm that the estimation is compatible with the

experimental result. Note that there is a constant amount of

time at n ¼ 0; which means the overhead caused at PK2

and PK5: In typical setting, say n ¼ 82; protocol private-

cosine and private-Euclid take 3; 218 and 8; 078 (ms),

respectively.

4.4 Security

The security of the proposed protocols are based on the

security of the strong RSA assumption, the difficulty of the

decision Diffie–Hellman problem in the random oracle

model. The probability to forge the commitments in PKs

can be negligible as the security parameter increases. On

the other hand, the common biometric features have less

entropy than the commitment scheme. The probability of

malicious party to impersonate someone without his bio-

metric feature is fixed at a level determined by the entropy

of the feature. Hence, the zero-knowledge protocol is

secure enough to apply the biometric authentication.

Definition 5 Let n be a secure RSA modulus. We say that

RSA is a ðt; �Þ-secure one-way function if for any adver-

sary A with running time less than t; we have

Pr½AðN; e; xeÞ ¼ x�\�; where e 2 Z�uðNÞ; x 2 Z�n :

Theorem 1 (Security) Assume that RSA is a ðt; �RSAÞ-
secure one-way function. The Cosine correlation evaluation

protocol is ðt0; q; �0Þ-secure against existential forgeries

making at most q chosen-message queries and running in

time at most t in the random oracle model.

The security of the Euclidean distance evaluation pro-

tocol can be shown in the same way. The confidentiality of

the committed value has been proved in Fujisaki and

Okamoto (1997).

Theorem 2 (Fujisaki and Okamoto 1997) If the proba-

bility that any polynomial-time adversary can factor n is

negligible, there exists no probabilistic polynomial-time

algorithm which given Eðx=c; rÞ can output ðx0=c0; r0Þ such

that ðx=c; rÞ 6¼ ðx0=c0; r0Þ and Eðx=c; rÞ ¼ Eðx0=c0; r0Þ:

Our model makes an assumption of tamper-freeness of

secure device that stores the template feature vector with the

random values used for commitment. We consider the

assumption is reasonable in practical perspective since many

secure devices are widely used in our daily life, e.g., the

RFID and the smart cards. The requirement of secure device,

however, is not useful from the usability point of view.

5 Conclusions

We have studied the protocols for secure similarity

evaluation of vectors, private-cosine and private-Euclid,

based on the zero-knowledge proof of range. The Private-

Cosine allows a user to convince a server that the user

has a secret similar to the data stored at server in a sense

of the cosine correlation, while protocol Private-Euclid

uses the Euclidean distance to evaluate similarity. The

latter archives better accuracy in terms of false acceptance

and rejection than the former in the cost of computational

overhead. Our schemes are designed for secure remote

biometric authentication that no malicious party including

even server administrator can reveal private biometric

data.

Table 2 Estimation of costs for each step in two protocols

Private-Cosine Private-Euclid

Computation 1. PK1 3n 1. PK4 11n

3. PK2 19� 2 3. PK5 19� 2

Total 3nþ 38 11nþ 38

Communication 1. g n‘ 1. G; ~F 2n‘

PK1 n‘ PK4 3n‘

3. PK2 5‘� 2 3. PK5 5‘� 2

Total ‘ð2nþ 10Þ ‘ð5nþ 10Þ
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