
ORIGINAL PAPER

Self-spawning neuro-fuzzy system for rule extraction

Zhi-Qiang Liu Æ Tao Guan Æ Ya-Jun Zhang

Published online: 23 May 2009

� Springer-Verlag 2009

Abstract In this paper we propose self-spawning neuro-

fuzzy system (SSNFS), a new neuro-fuzzy system to derive

fuzzy rules from data. The SSNFS model is based on a

generic definition of incremental perceptron and a new

learning algorithm that is capable of both structural (rule)

learning and parametric learning. It constructs the fuzzy

system by detecting a suitable number of rule patches and

their positions and shapes in the input space. Initially the

rule base consists of one single fuzzy rule; during the

iterative learning process the rule base expands according

to a supervised spawning validity measure. The rule

induction process terminates when a given stop criterion is

satisfied. SSNFS is very general since it does not require

the prior knowledge about the input space and can be used

in any application based on the scatter-partitioning fuzzy

system. To demonstrate the effectiveness and applicability

of our algorithm, we present a synthetic example and real-

world modelling problems.

Keywords Incremental clustering �
Gaussian membership function � Rule extraction �
Self-spawning competitive learning (SSCL) �
Self-spawning neuro-fuzzy system (SSNFS)

1 Introduction

Fuzzy inference systems are able to model the continuous

input/output relationships by means of fuzzy IF–THEN

rules without employing precise quantitative analysis. This

fuzzy modelling has been successfully used in many

applications, e.g., to build function approximators (Po-

mares et al. 2000; Chen and Saif 2005), fuzzy controllers

(Boukezzoula et al. 2006), fuzzy classifiers (Pal and Mitra

1992), and decision making. Researchers have developed

many practical systems, such as prediction and inference

(Kandel 1992), non-linear control (Sugeno 1985; Pedrycz

1989; Berenji and Khedkar 1992; Lin 1994; Jouffe 1998),

signal processing and communication systems (Nie and

Linkens 1994), type 2 fuzzy system model (Uncu and

Türkşen 2007), just to mention a few.

The basic components in a fuzzy inference system are

fuzzy rules. It is desirable that the rule base covers all the

states of the system that are important to data under-

standing (Duch et al. 2001; Duch et al. 2004) and the

intended application (Setnes 2000). In general, fuzzy rules

can be obtained by either human experts or a data-driven

extraction scheme from measured input–output data pairs.

The latter case is currently a growing research topic, since

in most cases people or decision makers in a data-mining

project or industry applications are usually not trained

statisticians, mathematicians, or AI experts. Moreover, in

many commercial areas there is a huge number of

unstructured data collections. Therefore, it is important to

learn knowledge and derive fuzzy rules from the data itself

(Cherkassky and Mulier 1998). Various methods have been

proposed, e.g., fuzzy clustering in product space (Setnes

2000) or in augmented data set (Pal et al. 2002), rule

generation using data condensation algorithm (Mitra et al.

2002), genetic algorithms (Lee and Takagi 1993; Ishibuchi

Z.-Q. Liu (&) � T. Guan � Y.-J. Zhang

School of Creative Media,

City University of Hong Kong,

Hong Kong, Hong Kong SAR

e-mail: zq.liu@cityu.edu.hk

T. Guan

e-mail: taoguan@cityu.edu.hk

Y.-J. Zhang

Department of Computer Science and Software Engineering,

The University of Melbourne, Melbourne, VIC 3010, Australia

123

Soft Comput (2009) 13:1013–1025

DOI 10.1007/s00500-008-0375-z

et al. 1995), entropy (Yager and Filev 1993), orthogonal

transformation methods (Wang and Mendel 1992; Yen and

Wang 1999), and a group of neuro-fuzzy approaches

(Berenji and Khedkar 1992; Brown and Harris 1994; Gupta

and Rao 1994; Jang 1993; Fritzke 1997), etc.

Over the last few years, research on combining neural

networks and fuzzy systems, neuro-fuzzy systems, has

gained considerable importance and attention (Mitra and

Hayashi 2000; Jang and Sun 1995). The learning capabil-

ities of neural networks give fuzzy systems the ability to

tune the parameters and shapes of fuzzy membership

functions (MFs). There are several paradigms to combine

neural networks and fuzzy systems: concurrent neural/

fuzzy models, cooperative neuro-fuzzy models, and hybrid

neuro-fuzzy models (see Kruse and Nauck 1995 for

details). Among these approaches, the hybrid neuro-fuzzy

models are the most popular forms in the modern neuro-

fuzzy systems. In general, a hybrid neuro-fuzzy system can

be viewed as a special n-layer feed-forward neural network

(Nauck 1997) with sampled fuzzy memberships as the

input/output (Keller and Tahani 1992; Keller et al. 1992),

or with parameterized MFs stored in the neurons (Jang

1993; Berenji and Khedkar 1992), or with fuzzy sets as the

link weights (Nauck 1997). In fact, few neuro-fuzzy

approaches actually employ true neural networks, although

they are very often depicted in the form of some kind of

neural network structure which exhibits some learning

capability (Nauck 1997). With this learning capability, we

are able to determine the fuzzy sets or fuzzy rules with an

iterative process. Learning in a neuro-fuzzy system nor-

mally involves two phases: structural learning and para-

metric learning (Jouffe 1998; Rojas et al. 2000). The

structure learning tunes a number of rules, thus it is also

often referred to as rule learning, whereas the parametric

learning tunes the positions of fuzzy sets. For some of the

neural-fuzzy systems in the literature (e.g., Berenji and

Khedkar 1992; Jang 1993), there is no rule learning pro-

cedure defined. Therefore, once the neural network archi-

tecture has been determined, the number of rules is

assumed fixed during the learning process. Such a process

is often not effective to yield good (i.e., small and inter-

pretable) rule bases. In this case, we may consider pruning

techniques to reduce the number of rules and variables in

the neuro-fuzzy system (Nauck 1997; Zimmermann et al.

1996). This usually starts from a large number of rules,

during the learning process some of the rules are pruned

(rule deduction) resulting in a set of rules that are most

relevant to the problem at hand. However, it is difficult in

most cases to choose a reasonably large number of rules,

because we simply do not have enough knowledge about

the data. This can lead to poor system performance in real-

world applications. In the last few years incremental

learning (rule induction) is getting to be another solution.

The adaptive nature of incremental learning requires it to

be implemented in the on-line fashion (Fritzke 1997). A

serious problem with such learning algorithms is that they

do not have a criterion to terminate the growth process of

the neural network structure: the termination is judged by

the human satisfactory degree on the learning performance

and a pre-defined maximum network size. Furthermore, the

shape adaption of a MF is based on a simple calculation

between two closest rule patches in the input space, e.g.,

half of their distance. This is not suitable for rule patches

with different sizes, as in this case the memberships for

smaller rule patches may overlap significantly with parts of

larger rule patches, leading to misclassification in data

analysis.

In this paper, we introduce a new incremental, hybrid

neuro-fuzzy system using the supervised self-spawning

competitive learning (SSSCL) paradigm, self-spawning

neuro-fuzzy system (SSNFS). It is a scatter-partitioning

fuzzy inference system that allows the IF-parts of the fuzzy

rules to be positioned at arbitrary locations in the input

space. A major problem with scatter partitions is to find a

suitable number of rules, suitable positions and suitable

width of the rule patches in the input space (Fritzke 1997).

Our neuro-fuzzy model will focuses on this problem and is

able to incrementally and adaptively build up a network

structure during the training process. It requires only a

single rule prototype randomly initialized in the input

space; during the training process the rule base expands

adaptively according to a split validity measure to discover

more rule patches. The shape width of the rule patch is

indicated by an on-line property vector. The rule induction

process terminates when a stop criterion is satisfied. The

output weights are trained in the on-line manner, this is

more appropriate (computationally less complex) than to

repeatedly solve the complete linear system with matrix

manipulation as that in batched learning. To extract rules

from data, we assume that a limited number of input–output

pairs are provided on-line for single-pass processing.

The rest of this paper is organized as follows. We first

give a brief analysis on the scatter-partitioning fuzzy

inference system in Sect. 2. In Sect. 3 we describe the

detailed neuro-fuzzy modelling and the self-spawning

learning algorithm. Section 4 illustrates the experimental

study and simulations, and Sect. 5 presents discussions and

conclusions.

2 Scatter-partitioning fuzzy systems

2.1 Takagi–Sugeno fuzzy model

The problem we are going to solve is to design a parti-

tioning fuzzy inference system from input–output data for

1014 Z.-Q. Liu et al.

123

classification analysis. The basic component of a fuzzy

inference system is the fuzzy rule which is expressed using

linguistic labels, for instance,

IF ðx1 is lowÞ AND ðx2 is mediumÞ
THEN ðy1 is 0:2Þ AND ðy2 is 0:4Þ;

ð1Þ

where x1; x2 2 R is the input variables (antecedent) and

y1; y2 2 R is the output (consequent) of this rule. The

linguistic labels (e.g., low) are usually modelled as

parameterized MFs within a particular area of the input

space. AND is the T-norm fuzzy operator and in some cases

OR (T-conorm) is used in fuzzy rules. In the example shown

above, the fuzzy sets involved only in the premise part

ðIF-partÞ: Fuzzy systems consists of this kind of rules are

referred to as Takagi–Sugeno fuzzy systems. Moreover, the

THEN-parts consists of only crisp values, e.g., 0.2 and 0.4,

this model is called as zero-order Sugeno fuzzy model. In

an nth-order Sugeno fuzzy system the THEN-part of each

rule consists of a polynomial of degree n in the input

variables (Fritzke 1997).

In this paper we will concentrate on zero-order Sugeno

fuzzy systems since they have the interesting property of

being equivalent to radial basis function networks (RBFNs)

and have been used for data analysis in many applications.

Different shapes of the MFs have been proposed such as

the Gaussian, triangular, or trapezoidal. In the following

discussions we assume that the MFs have the form of the

Gaussian function and that the fuzzy system consists of m

fuzzy rules each with n input variables and is designed to

classify data into k fuzzy or crisp classes. Thus, the fuzzy

system can be described as fRigi2f1;...;mg. For the ith rule Ri,

Ri : IF ðx1 is gi1ðx1ÞÞ AND ðx2 is gi2ðx2ÞÞ
AND � � � AND ðxn is ginðxnÞÞ

THEN ðy1 is ti1Þ AND ðy2 is ti2Þ
AND � � � AND ðyk is tikÞ;

ð2Þ

where gij(xj) is the MF denoting the linguistic label

associated with the jth input variable in the ith fuzzy rule,

gijðxjÞ ¼ exp �ðxj � pijÞ2

2r2
ij

" #
; ð3Þ

where the variable pij and rij are the center and variance of

the Gaussian MF gij, respectively. Ti ¼ ½ti1 ; . . .; tik �
T

is the

output vector for the ith fuzzy rule, tij [{0, 1} for parti-

tioning crisp clusters or function approximation and

tij [[0, 1] for partitioning fuzzy clusters.

Usually only a moderate number of MFs is defined for

each input variable. It is always desirable that the mem-

bership values for each input variable add to unity every-

where. This may be achieved by dividing the membership

values gij(xj) by the sum of all memberships with respect to

xj, leading to normalized MFs,

bgijðxjÞ ¼ gijðxjÞ
,Xm

l¼1
gljðxjÞ: ð4Þ

We focus our attention on rules that combine their sub-

expressions by fuzzy AND: In the case of Gaussian MFs, the

fuzzy AND can be realized by the arithmetic product. Let Gi

denote the membership value for the IF-part of Ri in Eq. 2,

Gi ¼
Yn

j¼1

gijðxjÞ: ð5Þ

In this case the IF-part of each fuzzy rule can be described

by an n-dimensional Gaussian MF,

GiðXÞ ¼ exp � 1

2
ðX� PiÞTK�1ðX� PiÞ

� �
; ð6Þ

where X is the multivariate input vector ½x1; x2; . . .; xn�T;
Pi ¼ ½pi1 ; pi2 ; . . .; pin �

T
is the n-dimensional Gaussian center

that has the corresponding centers of the one-dimensional

factor Gaussians as components. K�1 ¼ diagð1=r2
i1
; 1=

r2
i2
; . . .; 1=r2

in
Þ is the inverse of the covariance matrix K

corresponding to the product of n one-dimensional

Gaussian memberships. Similarly, we can normalize the

multivariate Gaussian MFs as follows,

bGiðXÞ ¼ GiðXÞ
,Xm

l¼1
GlðXÞ: ð7Þ

For the input pattern X, the output of the ith component of

a fuzzy system with normalization is given by

OðiÞðXÞ ¼
Xm

j¼1

tji
bGjðXÞ ¼

Xm

j¼1
tjiGjðXÞ

,Xm

j¼1
GjðXÞ:

ð8Þ

2.2 Scatter-partitioning fuzzy systems

Based on Eq. 6, we may simplify the fuzzy rule in Eq. 2 as

Ri : if X is GiðXÞ then Y is Ti; ð9Þ

where Y ¼ fy1; y2; . . .; ykg is the multivariate output vari-

able and Ti is the consequent output vector for ith rule.

Since each Gaussian MF Gi; i 2 f1; . . .;mg covers a

particular area in the input space, each rule is considerably

activated only in this area. One can think of the input space

as being covered by some small patches, each of them

corresponding to the IF-part of one fuzzy rule (Fritzke

1997). We denote these small patches as rule patches in this

paper. Building a meaningful fuzzy inference system to a

large extent is to establish a series of fuzzy rules that cover

all the rule patches in the input space. At the same time, we

must keep the number of rules as low as possible in order to

maintain the generalizing ability of the model and to ensure

a compact and transparent model (Setnes 2000). Therefore,

Self-spawning neuro-fuzzy system for rule extraction 1015

123

our task is reduced to seeking an optimal number of rule

patches, locating their positions, and computing their shape

widths in the input space. This is known as scatter-parti-

tioning distinguished from grid-partitioning approaches in

which the rule patches are assumed on a regular predefined

grid distribution. In a scatter-partitioning fuzzy system the

fuzzy memberships are not confined to the corners of a

rectangular grid. Rather, they can activate anywhere with

any width in the input space as long as the P and K in Eq. 6

can be detected. If the covariance matrices Ki of the

Gaussians are diagonal, then they can still be thought of

being generated as a product of n one-dimensional Gaussian

MFs. Figure 1 shows an example of grid-partitioning and

scatter-partitioning fuzzy systems. Once the IF-parts are

solved, the output vector T for each rule may be achieved by

minimizing the summed squared error,

E ¼ 1

2

XM

i¼1

Xm

j¼1

Yi � bGjðXiÞTj

h i2

; ð10Þ

where (Xi, Yi) is the training pattern, and M is the total

number of patterns presented for training. This approach is

usually computationally complex. In fact, the output vector

can be learned on-line concurrently in the output space to

reduce the complexity, such as training by the delta-rule

(Fritzke 1997; Nauck and Kruse 1995).

Now, the problem is how to correctly classify the rule

clusters in the input space. The conventional learning

algorithms using neural networks or fuzzy clustering are

very sensitive to the number of prototypes initialized. They

perform reasonably well when the number of prototypes has

been chosen appropriately; the best case is when the number

of prototypes equals to that of the natural clusters and with

properly positioned initial prototypes. We, however, do not

usually have an adequate prior knowledge about the data

set. Therefore it is desirable to develop an algorithm that is

able to adaptively detect the number of rule patches and

their locations. In this paper we consider an incremental

learning paradigm which first constructs a fuzzy system by

seeking one fuzzy rule, and conducting rule induction in an

iterative learning process according to a self-spawning

validity measure. The rule growth is terminated when all the

rule patches have been detected based on a stop criterion.

The algorithm is implemented as an on-line competitive

learning process. Therefore, we may consider the scatter-

partitioning fuzzy systems as a neuro-fuzzy system.

3 The SSNFS neuro-fuzzy modeling

In general, neuro-fuzzy modelling includes two phases:

building a neural network to interpret the fuzzy rules,

and employing a learning algorithm to update fuzzy

perceptrons or the structure itself. We consider neuro-fuzzy

modelling as a technique to derive a fuzzy system from

data, or to enhance it by learning from examples.

Many neuro-fuzzy systems use parameterized MFs that

are stored within the ‘‘neurons’’ of a multilayered feed-

forward architecture, e.g., GARIC (Berenji and Khedkar

1992) and ANFIS (Jang 1993). The links in these kinds of

networks indicate only the data flow directions between

nodes and no weights are associated with the links. The

membership functions are usually parameterized Gaussi-

ans, trapezoidal, or triangular functions, or they are con-

structed by superposing sigmoids. NEFCLASS (Nauck

1997; Nauck and Kruse 1995) builds a different structure

which uses sampled memberships (fuzzy sets) as link

weights. For a quick review, Fig. 2a shows a typical AN-

FIS architecture and Fig. 2b shows an example of NEF-

CLASS structure. It can be seen that, either in Fig. 2a or b,

each input variable is associated with a specific MF in its

input area. This, however, brings difficulty to the structural

learning. For instance, in Fig. 2a, a new linguistic label

(membership function) will cause the network to learn the

connection relationships from both the input to layer 1 and

the input from layer 1 to layer 2.

It must be clear that the above mentioned neuro-fuzzy

models (and in fact almost all neuro-fuzzy models in the

literature) have little to do with fuzzy logic in the narrow

sense (Kruse and Gebhardt 1994) but to do with the

parameterized MFs in the fuzzy IF-THEN rules which are

associated with linguistic labels.

3.1 SSNFS architecture

As discussed in Sect. 2, each fuzzy rule is associated with

one parameterized Gaussian membership with multivariate

inputs and one output vector, as seen in Eq. 9. The

Gaussian MFs can be identified by detecting rule patches in

the input space, whereas the output vectors can be updated

on-line in the output space. In this perspective, we propose

SSNFS based on a generic incremental perceptron and a

new learning algorithm, self-spawning competitive learn-

ing, to incrementally search the rule patches.

Figure 3 shows an example of SSNFS architecture and

its fuzzy reasoning. Similar to ANFIS, the MFs are stored

in the hidden nodes to model continuous input relation-

ships. However, the difference is, the new model uses a

multivariate membership function for each rule, thus the

node with this MF is fully connected to all the input

variables. Also, in SSNFS, the parameters for each MF are

modelled as the link weights between the input nodes and

membership nodes, and the consequent vector of each rule

is modelled as the weights between the input nodes and

rule nodes. The benefit is, the weight vectors can be

adaptively updated given each input training pattern. Third,

1016 Z.-Q. Liu et al.

123

different from network models with pre-specified struc-

tures, the SSNFS is not a static model, but dynamically

adjusted according to the distribution of patterns. This

means that the number of fuzzy rules will change with the

that of the nodes in layer 4. The dynamical learning

scheme, called structure learning, makes SSNFS have

better adaptivity than models with fixed structure.

To build a neuro-fuzzy system for extracting fuzzy

linguistic rules, we present a generic five-layer incremental

perceptron that will provide a basis for SSNFS architecture

and self-spawning learning algorithm.

Definition 1 A generic five-layer incremental perceptron

is a five-layer feed-forward neural network (U, W, P, T,

NET, A, O, ex, Inc) with the following specifications:

1. U ¼
S

i 2 I Ui is a non-empty set of neurons and I ¼
f1; . . .; 5g is the index set of U. For all i, j [I, Ui 6¼ ;
and Ui \ Uj ¼ ; for i 6¼ j. U1 ¼ U

ðXÞ
1

S
U
ðXÞ
1

S
U
ðYÞ
1 is

Fig. 1 TClassfication example

with a grid-partitioning fuzzy

system and a scatter-partitioning

fuzzy system. a Two

dimensional dataset in the unit

square consisting of two classes

(white and black). b The grid-

partitioning system initializes 3

9 3 grid to arrange nine fuzzy

rules. c The non-normalized

Gaussian view in the input

space for this grid-partitioning

system. d The classification

result by the grid-partitioning

system. e The scatter-

partitioning system captured six

rule patches in the input space. f
The classification result by the

scatter-partitioning system

Self-spawning neuro-fuzzy system for rule extraction 1017

123

the input layer, U2, U3 and U4 are the hidden layers,

and U5 is the output layer.

2. Let M = {2m1 ? m5, m2, m3, m4, m5} define the

number of neurons for layer 1 to layer 5, respectively;

m1 is the number of neurons for either U
ðXÞ
1 or U1

(X);

m2 = m3 = m4 is the number of neurons for each hidden

layer; m5 is the number of neurons for U1
(Y) or U5.

3. W defines the link connectedness in the perceptron as

follows:

(a) for ui 2 U
ðXÞ
1

S
U
ðXÞ
1 and vj [U2, W(ui, vj) = 1;

(b) for ui [U1
(Y) and vj [U4, W(ui, vj) = 1;

(c) for ui [U2 and vj [U3, W(ui, vj) = 1;

(d) for ui [U3 and vj [U4 and i = j, W(ui, vj) = 1;

(e) for ui [U4 and vj [U5, W(ui, vj) = 1;

otherwise, W(ui, vj) = 0.

4. P ¼ fP1; . . .;Pm2
g defines the weight vectors (proto-

types) on the connections W(U1
(X), U2). The ith

prototype can be given by Pi ¼ ½pi1 ; . . .; pim1
�T where

pij is the weight on the connection W(uj, vi) with

u [U1
(X) and v [U2. T ¼ fT1; . . .;Tm2

g defines the

weight vectors on the connections W(U1
(Y), U4).

Ti ¼ ½ti1 ; . . .; tim5
�T where tij is the weight on the

connection W(uj, vi) with u [U1
(Y) and v [U4.

5. NET defines the propagation function for each unit u [
U to calculate the net input netu.

(a) for u [U1:

NETui
: R 7! R; netui

¼ exui
;

(b) for u [U2:

NETui
: Rm1 7! Rm1 ;

netui
¼ OðUðXÞ1 Þ

�½ov1
pi1 ; ov2

pi2 ; . . .; ovm1
pim1
�T; v 2 U

ðXÞ
1 ;

(c) for u [U3:

NETui
: Rm2 7! R;

netui
¼ oviPm2

j¼1
ovj

; v 2 U2;

(d) for u [U4:

NETui
: R�Rm5 7! Rm5 ;

netui
¼ ½ovi

ti1 ; ovi
ti2 ; . . .; ovi

tim5
�T; v 2 U3;

(e) for u [U5:

NETui
: Rm4 7! R;

netui
¼
Pm4

j¼1 ovj
; v 2 U4:

6. A defines the activation function for each u [U to

calculate the activation au.

(a) for u 2 U1

S
U3

S
U4

S
U5 :

Aui
: aui
¼ Aui

ðnetui
Þ ¼ netui

;

(b) for u [U2:

(a) (b)

Fig. 2 An example of the

ANFIS and NEFCLASS

architectures. a The ANFIS

structure with two antecedent

variables, four fuzzy rules and

one consequent output; the

membership functions (MFs)

are stored in the neurons and the

link connections only indicate

the data flow. b A NEFCLASS

system with two inputs, five

rules and two output classes; the

MFs are modeled as the link

weights. In both cases, each

one-dimensional antecedent

variable is associated with one

MF in its input area

Fig. 3 An example of the SSNFS architecture. In this case, the MFs

are generalized as multivariate parameterized functions stored in the

hidden neurons. Either their parameters or the consequent output

vectors are modelled as the link weights

1018 Z.-Q. Liu et al.

123

Au : Rm1 7! R; au ¼ AuðnetuÞ;

where Au is the parameterized activation function.

7. O defines for each u [U an output function Ou to

calculate the output ou.

(a) for u 2 U1

S
U2

S
U3

S
U4 :

oui
¼ Oui

ðaui
Þ ¼ aui

;

(b) for u [U5:

Oui
: R 7! f0; 1g (for fuzzy partitioning or

function approximation),

ou = Ou(au) = au;

Oui
: R 7! ½0; 1� (for crisp partitioning),

ou = Ou(au) = DF(au),

where DF is a suitable defuzzification function.

8. ex defines for each input unit u [U1 its external input

ex(u) = exu. For all other units ex is not defined.

9. Inc defines the policy for the perceptron increment. A

spawning request will be carried out by taking the

following actions:

(a) One neuron is spawned for each hidden layer,

while the input and output layers remain

unchanged. Let u, v and w indicate the new

added neuron for layer 2, 3, and 4, respectively.

U2 :¼ U2

S
fug; m2 :¼ m2 þ 1;

U3 :¼ U3

S
fvg; m3 :¼ m3 þ 1;

U4 :¼ U4

S
fwg; m4 :¼ m4 þ 1;

m2 = m3 = m4 holds anytime.

(b) for all U1, U2, U3, U4, and U5, the structure are

reconstructed following the definition of (U, W,

P, T, NET, A, O, ex).

Given the definition of the generic perceptron, we can

describe the SSNFS as follows.

Definition 2 A SSNFS system is a generic five-layer

incremental perceptron employing supervised SSCL algo-

rithm with the following specifications:

1. In SSNFS, U
ðXÞ
1 is the input layer for data classifica-

tion; U1
(X) and U1

(Y) are the input layers for training; U2

is the membership layer; U3 is the normalized

membership layer; U4 is the rule layer and U5 is the

output layer.

2. SSNFS starts from a single neuron for each hidden

layer, m2 = m3 = m4 = 1 holds initially.

3. SSNFS assigns each prototype Pi with three property

vectors (Ai, Ci, Ri), called asymptotic property vector

(APV), center property vector (CPV), and distant

property vector (DPV), respectively. In a simulated

neural network, it is achieved by assigning each pij

three other weights, while for a real neural network we

can simply set W(ui, vj) = 4 where u [U1
(X) and v [U2.

4. SSNFS applies Gaussian MFs or triangular MFs as the

activation functions for layer 2; P and its property

vectors are the parameter vectors for MFs and T is the

consequent output vector for a rule.

5. SSNFS switches between the training process and

classification task as following:

(a) for training process, exu = N/A, for u 2
U
ðXÞ
1 ; U

ðXÞ
1

S
U
ðYÞ
1 is the active input layer;

(b) for classification task, exv ¼ 1; for v 2 U
ðXÞ
1

S
U
ðYÞ
1 ; U

ðXÞ
1 is the active input layer.

In the SSNFS model, we model fuzzy rule extraction as

a task to spawn the structure and to establish the premise

and consequent parameters in the training process.

3.2 Supervised self-spawning competitive learning

As defined above, SSNFS employs SSSCL algorithm to

tune the structure and parameters. Compared to pruning

techniques, it is an incremental learning process. Thus it

has to face with the one prototype takes multi-clusters

(OPTMC) problem. That is, when the number of initial

prototypes is less than that of the actual clusters in the data

set, the conventional competitive learning process ensures

there must be at least one prototype that wins patterns from

more than one cluster after the learning process. Unfortu-

nately, this behavior is not desirable in a neuro-fuzzy

system as the rules extracted will give missing represen-

tation of the input space. As shown in Fig. 4a, suppose

there are three rule patches in the input space and one

prototype is initialized to detect them, by the conventional

competitive learning paradigm, this single prototype moves

to the center of the training patterns. As a result, the

extracted fuzzy rule covers a wrong rule patch leading to

misclassification. In fuzzy systems, or for that matter any

Fig. 4 Two learning behaviors: OPTMC versus OPTOC. a OPTMC:

one prototype P1 is trying to take all three patches {S1, S2, S3},

resulting in oscillation phenomenon. b OPTOC: this prototype detects

only one rule patch S2 and ignores the other two

Self-spawning neuro-fuzzy system for rule extraction 1019

123

rule-based systems, it is desirable that the extracted fuzzy

rules represent the true rule patches.

The SSSCL tackles this problem by designing a new

learning scheme in which one prototype takes one cluster

(OPTOC) and ignores the others when the number of

prototypes is less than that of the natural clusters, or in this

case, the true rule patches. Figure 4b shows the same

example as that in (a) but applying the OPTOC learning

paradigm. In this case, one rule patch (cluster) is correctly

detected, and the rest rule patches can be detected by

spawning new prototypes in subsequent learning rounds. In

this way we will be able to extract a correct set of rules

from the data set.

In the neural-fuzzy network, the spawning of new pro-

totypes is accomplished by expanding the SSNFS structure

according to a spawning validity measure and the incre-

ment policy. The newly spawned prototype is hence to

extract one more fuzzy rule in the next iterative learning

process. This growth process terminates when a stop cri-

terion is satisfied. The process is supervised in that the split

validity measure is based on the desired output patterns for

the given training patterns.

Let Pi(Ai, Ci, Ri) denote the ith prototype in terms of its

three property vectors; (X, Y) denote the pair of training

patterns for input layer, where X is a m1-dimensional pat-

tern in the input space, and Y is a desired m5-dimensional

pattern in the output space; Ei denote the regression error

and Ti the desired output vector for the fuzzy rule extracted

by Pi. Each time when a pair of patterns, (X, Y), is ran-

domly picked from the training set, the competition occurs

among all the current prototype vectors. The winning

prototype is judged by the nearest neighbor criterion.

3.2.1 The SSSCL OPTOC learning algorithm

1. SSNFS starts from one fuzzy rule, therefore,

m2 = m3 = m4 = 1 holds initially. The only single

prototype vector, P1, is initialized randomly in the

input space. Its APV (A1) and CPV (C1) are initialized

at a random location far from P1, whereas its DPV (R1)

is set at the same place as P1. Ti is randomly initialized

in the output space and Ei is initialized to 0.

2. For the input (X, Y), if Pi is the winning prototype for

X, its APV (Ai) is updated in the input space by

A�i ¼ Ai þ
1

nAi

� di � ðX� AiÞ �HðPi;Ai;XÞ: ð11Þ

where

Hðl; m;xÞ ¼
1 if jlmj � jlxj;
0 otherwise:

(
ð12Þ

and

di ¼
jPiAij

jPiXj þ jPiAij

� �2

: ð13Þ

nAi is the winning counter and |uv| is the Euclidean

distance between a vector u and a vector v. d is the

adaptively updated learning rate which satisfies 0 \ di

B1.

3. The DPV (Ri) always follows the farthest pattern for

which Pi has been the winner in the input space so far.

For the input (X, Y), if Pi is the winning prototype for

X, Ri is updated by

R�i ¼ Ri � ð1�HðPi;X;RiÞÞ þX �HðPi;X;RiÞ: ð14Þ

4. For the input (X, Y), if Pi is the winning prototype for

X, the following update scheme guarantees Pi to

cluster one rule patch and ignore the others in the input

space.

P�i ¼ Pi þ ai � ðX� PiÞ; ð15Þ

where ai is computed with

ai ¼
jPiAij

jPiXj þ jPiAij

� �2

ð0\ai� 1Þ: ð16Þ

The OPTOC scheme enables each prototype to find only

one natural rule patch in the input space when the patches

are more than the prototypes. This in itself is a major

improvement over other competitive learning algorithms in

the literature. However, at this stage we are still not sure

whether there are other rule patches that have not been

detected yet. For this we introduce a spawning validity

measure to judge if all the rule patches have been properly

discovered. If not yet, SSNFS expands its structure by

spawning and appending one neuron for each hidden layer,

then reconstruct the architecture. The prototype vector of

the newly spawned neuron in U2 is hence to join the

competition in the next iterative learning process. Based on

the OPTOC learning scheme, it is therefore able to extract

one more fuzzy rule.

Definition 3 (The SSSCL spawning validity measure and

stop criteria)

1. For the input (X, Y), if Pi is the winning prototype for

X, Ci and Ti are updated on-line by the k-Means

learning scheme (MacQueen 1967),

C�i ¼ Ci þ
1

nCi

ðX� CiÞ; T�i ¼ Ti þ
1

nTi

ðX� TiÞ:

ð17Þ

Just as the name k-Means indicates, the CPV (Ci)

indicates the arithmetic means (centroid) of all the X’s

1020 Z.-Q. Liu et al.

123

and Ti indicates the arithmetic centroid of all the Y’s,

where (X, Y)’s are the presented patterns for which Pi

has been the winner.

2. Ei denotes the regression error for the fuzzy rule

extracted by Pi. Therefore, it is given by

E�i ¼ Ei þ ðOðXÞi � YÞ2; ð18Þ

where Oi represents the output vector of the fuzzy rule

extracted by Pi as the if-parts and Ti as the then-parts.

3. For all i [{1, ..., m2}, if |PiAi|\ e and there is at least

one prototype Pj satisfies |PjCj| [e, then SSNFS is

suitable for spawning. e is a small positive constant

which is theoretically 0. The self-spawning process is

carried by:

(a) SSNFS expands its structure in terms of the

policy Inc defined in the Definition 1.

(b) Let Pm2
denote the prototype vector for the newly

spawned neuron in U2. It is initialized with

Pm2
¼ Rs

where the index s satisfies

s ¼ arg minjEjjjPjCjj[�

set Rm2
¼ Pm2

;Am2
¼ Cm2

at a random location in the

input space, Em2
¼ 0; and Tm2

at a random location in

the output space.

4. For all i [{1, ..., m2}, if |PiAi| \ e and |PiCi| \ e,
SSNFS finishes its structural and parametric learning

and can be interpreted as a set of established fuzzy

rules.

SSNFS adaptively updates its structure and weight

parameters to extract fuzzy rules. In the next section, we

present our experimental results to show the effectiveness of

our rule-extracting neuro-fuzzy model for data classification.

4 Experimental results

To demonstrate our system and its applicability, in this

section we present the experimental results for three clas-

sical problems. First, we consider the reconstruction of a

known rule base from data to verify the ground truth. The

purpose is to identify the partition in the data from the rule

base. Second, we describe an application in pattern rec-

ognition using a well-known benchmark data, namely, the

Iris data set. Finally, we consider a chaotic time series

given by the Mackey–Glass differential equation and use

SSNFS to approximate this function.

4.1 Modeling a known rule-base

We consider an existing fuzzy system which partitions a

two-dimensional data into three classes: A, B, and C. Let

Tr(x, a, b, c) denote the triangular MF specified by three

parameters (a, b, c),

Trðx; a; b; cÞ ¼

x� a

b� a
; if a� x� b

c� x

c� b
; if b\x� c

0; if x\a or x [c:

8>>><
>>>:

ð19Þ

The rule base consists of seven fuzzy rules as shown in

Table 1. The input variables take values in the domain [0,

10]. The output vector y indicates the class an input pattern

belongs to. The three classes are labelled as A = [100], B =

[010], and C = [001].

Figure 5a shows the training data set obtained by the

data-generating rule base. It contains 200 data points par-

titioned into three classes. We know that the data-gener-

ating system consists of seven rules, but it is not

straightforward to tell how many clusters are actually

present in the input space (Setnes 2000). Given this data

set, we apply the SSNFS model to extract the fuzzy rules

with two-dimensional Gaussian MFs. Our objective is to

verify, from the given data set, whether the SSNFS is able

to extract a set of rules that are similar to those in the

original, known rule base. It is a network of two input

neurons, one neuron for each hidden layer and three output

neurons. The constant parameter e in the spawning validity

measure was initialized to 2% of the domain scale. Ini-

tially, as expected, the only single prototype extracted one

fuzzy rule by detecting one rule patch. During the self-

spawning learning process, the spawning action occurred

seven times. Consequently the rule base expanded to eight

rules finally. In Fig. 5b the learning trajectories and

spawning actions were drawn in detail in the input space to

Table 1 Rule base consists of

seven fuzzy rules for generating

the data set

R1 If x1 is Tr(x1, 0.0, 2.7, 5.2) and x2 is Tr(x2, 2.5, 4.2, 5.4) then y is [1, 0, 0]

R2 If x1 is Tr(x1, 0.0, 2.5, 5.0) and x2 is Tr(x2, 4.8, 5.6, 7.5) then y is [0, 1, 0]

R3 If x1 is Tr(x1, 2.5, 5.2, 7.3) and x2 is Tr(x2, 0.0, 1.5, 3.4) then y is [0, 0, 1]

R4 If x1 is Tr(x1, 2.5, 5.2, 7.3) and x2 is Tr(x2, 2.5, 4.2, 5.4) then y is [0, 1, 0]

R5 If x1 is Tr(x1, 5.8, 7.5, 9.4) and x2 is Tr(x2, 2.5, 4.2, 5.4) then y is [0, 1, 0]

R6 If x1 is Tr(x1, 5.8, 7.5, 9.4) and x2 is Tr(x2, 5.6, 7.5, 9.2) then y is [1, 0, 0]

R7 If x1 is Tr(x1, 2.5, 5.2, 7.3) and x2 is Tr(x2, 5.6, 7.5, 9.2) then y is [0, 0, 1]

Self-spawning neuro-fuzzy system for rule extraction 1021

123

show the effectiveness of the SSNFS. The number in each

circle indicates the spawning order and the initial position

of the newly spawned prototype; the thin curves are the

learning trajectories of prototype vectors. Figure 5c shows

the partition of the data after the rules have been extracted

by SSNFS. Table 2 lists the extracted rules with their

parameters using SSNFS, where Pi, Ri, and Ti are defined

in Definition 3.

Figure 6a shows the classification map with respect to

class B data (filled circles) obtained by the original, known

rule base. Figure 6b shows the corresponding classification

map obtained by using the rules extracted by the SSNFS from

the input data set (the 200 data points). Since the training data

set does not reflect the global distribution of the data-gen-

erating rules, the extracted rules mostly perform well on

these training data points and thereabouts. One can easily

extract the global optimal fuzzy rules by uniformly sampling

the input space with small step. Thus this is not a problem of

technique but of computation complexity.

From the known rule set in Table 1, the extract rules in

Table 2, and classification maps in Fig. 6, we can see that

the SSNFS is able to reconstruct the existing rule base very

accurately.

4.2 Rule extraction from Iris data

The Iris data is one of the best known databases found in

pattern recognition.1 The data set contains three classes,

where each class refers to a type of iris plant and contains

50 data points. The three types are, Iris Setosa, Iris Ver-

sicolour, and Iris Virginica. For each data point, there are

four real valued numerical attributes in turn: (1) sepal

length in cm; (2) sepal width in cm; (3) petal length in cm;

(4) petal width in cm. The objectives in this experiment

are: (1) extract a set of fuzzy rules; (2) classify the data set

using the extracted rules; (3) compare the class centroids

with the actual centroids.

We applied the SSNFS to the Iris data set to extract a set

of fuzzy rules. The SSNFS network consists of four input

neurons, one hidden neuron for each hidden layer initially,

and three output nodes. Throughout the test, we set

e = 0.02. During the learning process, the spawning action

occurred four times, therefore five rules were extracted by

SSNFS. Table 3 lists the final rules with their parameters.

Fig. 5 a The data set contains 200 data points obtained by the data-

generating rule base; they were partitioned into 3 classes: A (plus
signs), B (filled circles), and C (hollow circles). b The OPTOC

learning trajectories and spawning actions of SSNFS; the spawning

occurred seven times and finally eight fuzzy rules were extracted. c
The classification result obtained by our neural-fuzzy system

Table 2 The rule parameters extracted by SSNFS based on the data set in Fig. 5

Rule 1 Rule 2 Rule 3 Rule 4 Rule 5 Rule 6 Rule 7 Rule 8

Pi (2.71, 3.75) (2.08, 5.83) (3.85, 5.00) (5.83, 2.08) (6.46, 3.96) (7.08, 7.71) (5.52, 7.50) (2.81, 7.60)

Ri (3.54, 4.17) (1.46, 6.88) (3.02, 4.79) (4.38, 1.67) (7.50, 5.00) (7.19, 6.67) (5.52, 6.46) (3.23, 8.23)

Ti (0.99, 0.01, 0) (0, 1, 0) (0.01, 0.99, 0) (0, 0.03, 0.97) (0, 0.97, 0.03) (1, 0, 0) (0, 0, 1) (0, 0, 1)

Fig. 6 a The class B output

surface of the data generating

rule base. b The corresponding

output surface of the simulated

fuzzy rules based on a limited

data set

1 The Iris data was obtained from http://www.ics.uci.edu/mlearn/ML

Repository.html via a free, public ftp site.

1022 Z.-Q. Liu et al.

123

http://www.ics.uci.edu/mlearn/MLRepository.html
http://www.ics.uci.edu/mlearn/MLRepository.html

To test the robustness of the proposed model, we carried out

Monte Carlo tests and run the SSNFS ten times. Each time,

SSNFS was able to extract a very consistent set of rules; in

fact, the rules were almost identical among the tests. Fig-

ure 7 shows a classification result for attribute 2 against

attribute 4 by using the extracted fuzzy rules to classify data

points as being Iris Setosa, Versicolour, or Virginica.

The spawning constant e is a constant that is used to tune

the quality of rule extraction. The smaller the e, the more

rule patches in the input space, therefore the better accu-

racy of the rule extraction. Typically it is sufficient that e\
0.05. As shown in Table 4, by setting e = 0.02 or

e = 0.05, we can obtain the centroids of classes that are

very close to the actual centroids of the three classes.

4.3 Function approximation

To show the learning capability of the SSNFS, in this

section we consider a chaotic time series given by the

Mackey–Glass differential equation (Mackey and Glass

1977). The prediction of future values of this time series is

a benchmark problem which has been considered by a

number of connectionist researchers (see Jang 1993, for

more details). The equation can be described as

_xðtÞ ¼ 0:2xðt � TÞ
1þ x10ðt � TÞ � 0:1xðtÞ: ð20Þ

We use the values, x(t-18), x(t-12), x(t-6), and x(t), to

predict x(t ? 6). The training data were created using the

fourth-order Runge–Kutta procedure with a unity step size.

Assume initially x(0) = 1.2, T = 17, x(t) can thus be

derived for 0 B t B 2,000. We created 1,000 values

between x = 118 and 1,117, where the first 500 samples

were used for training and the second half was used as a

validation set. To give a sense of each four-dimensional

data ½xðt � 18Þ; xðt � 12Þ; xðt � 6Þ; xðtÞ�T, we displayed it

as two-dimensional data points. Figure 8a shows a plot of

variable x(t-18) against x(t-6), whereas Fig. 8b shows a

plot of variable x(t-6) against x(t). The SSNFS has four

input nodes, one output node, and one node for each hidden

layer. We set e to 0.07. During the learning process, the

spawning action occurred 46 times. Therefore, 47 fuzzy

rules were extracted to approximate this function. The final

positions of each rule patch were shown in Fig. 8c and d,

where we mapped them into the space of x(t-18) against

x(t-6), and the space of x(t-6) against x(t), respectively. It

must be noted that some data points in the mapped space

could come from other dimensions, therefore, not all data

points are covered by the rule prototypes (Cherkassky and

Mulier 1998; Vapnik 1998).

Figure 9 shows the original Mackey–Glass time series

(solid curve) and the simulated predictions (dashed curve)

based on the first 500 samples. Since this is a local linear

mapping problem, it would correspond to a first-order

Sugeno fuzzy system; consequently, the SSNFS adaptively

generates a large number of small systems to approximate

the given data set.

Table 3 The rule parameters extracted by SSNFS on the Iris data

Rule 1 Rule 2 Rule 3 Rule 4 Rule 5

Pi (5.19, 3.54, 1.42, 0.24) (6.60, 2.64, 3.49, 1.23) (6.60, 2.64, 4.72, 1.23) (7.64, 2.64, 5.75, 2.08) (7.64, 2.64, 6.60, 2.08)

Ri (4.50, 2.30, 1.30, 0.30) (4.90, 2.40, 3.30, 1) (4.90, 2.50, 4.50, 1.70) (6.30, 3.40, 5.60, 2.40) (7.90, 3.80, 6.40, 2.00)

Ti (1, 0, 0) (0, 1, 0) (0, 0.58, 0.42) (0, 0, 1) (0, 0, 1)

Fig. 7 An example: attribute 2 versus attribute 4 for Iris types 1, 2,

and 3 classified by the SSNFS rules

Table 4 The class centroids

obtained by e = 0.02 and

e = 0.05

Iris setosa Iris versicolour Iris virginica

Actual (5.006, 3.428, 1.462, 0.246) (5.936, 2.770, 4.260, 1.326) (6.588, 2.974, 5.552, 2.026)

e = 0.05 (5.012, 3.536, 1.460, 0.245) (5.836, 2.731, 4.389, 1.332) (6.848, 3.078, 5.632, 2.058)

e = 0.02 (5.007, 3.425, 1.473, 0.250) (5.882, 2.752, 4.353, 1.421) (6.832, 3.061, 5.611, 2.052)

Self-spawning neuro-fuzzy system for rule extraction 1023

123

5 Conclusions and discussions

In this paper, we first discussed the scatter-partitioning

fuzzy system, based on which we then presented the

SSNFS model, a neuro-fuzzy system for rule extraction. It

is derived from a generic five-layer incremental perceptron

model and employs the SSSCL algorithm. When initialized

with a single rule prototype, the SSNFS is able to adapt its

structure to reach a suitable number of rules by the self-

spawning learning algorithm. The considered synthetic and

real-world examples demonstrated the effectiveness and

applicability of the new rule generating system.

In most real-world applications, rarely do we have an

adequate prior knowledge to specify the shapes, locations,

and the number of rules. Therefore, extracting rules using

the SSCL algorithm is effective and robust. However, there

are many challenging theoretical problems open to further

research. For instance, rule generalization in SSNFS, con-

vergence property, rule-patch validation in the context of

soft computing, etc. The error based insertion strategy is a

popular approach to guide the growth of a neuro-fuzzy

system. This is effective in many ways, however, it has a

disadvantage in that a well partitioned large cluster could

still own more distortions than small cluster do. Thus, it

can be always tricked to generate new, redundant proto-

types to share the large cluster while ignore the small ones.

To avoid this problem, in SSNFS model, we use a new

spawning validity measure in which the error is part of the

factors to be considered for rule growth. The rule induction

and deduction strategies are always the active areas of

investigation.

Fig. 8 a The view of four-

dimensional data points in the

two-dimensional space of x(t-
18) versus x(t-6). b The view

of four-dimensional data points

in the two-dimensional space of

x(t-6) versus x(t). c The SSNFS

rule prototypes mapped in the

space of x(t-18) versus x(t-6).

d The SSNFS rule prototypes

mapped in the space of x(t-6)

versus x(t)

Fig. 9 Approximation of the Mackey–Glass time series by SSNFS.

The solid curve shows the Mackey–Glass time series while the dashed
one shows the prediction curve by SSNFS

1024 Z.-Q. Liu et al.

123

Acknowledgments This research has been supported by a grant

from Hong Kong RGC CERG 9041020 (CityU 118205).

References

Pomares H, Rojas I, Ortega J, Gonzalez J, and Prieto A (2000) A

systematic approach to a self-generating fuzzy rule-table for

function approximation. IEEE Trans Syst Man Cybern Part B

Cybern 30(3):431–447

Chen W, Saif M (2005) A novel fuzzy system with dynamic rule base.

IEEE Trans Fuzzy Syst 13(5):569–582

Boukezzoula R, Foulloy L, Galichet S (2006) Inverse controller

design for fuzzy interval systems. IEEE Trans Fuzzy Syst

14(1):569–582

Pal SK, Mitra S (1992) Multi-layer perceptron, fuzzy sets and

classification. IEEE Trans Neural Netw 3(5):683–697

Kandel A (1992) Fuzzy expert systems. CRC Press, Boca Raton

Sugeno M (ed) (1985) Industrial applications of fuzzy control.

Elsevier, New York

Pedrycz W (1989) Fuzzy control and fuzzy systems. Wiley, New

York

Berenji HR, Khedkar P (1992) Learning and tuning fuzzy logic

controllers through reinforcements. IEEE Trans Neural Netw

3(5):724–740

Lin CT (1994) Neural fuzzy control systems with structure and

parameter learning. World Scientific, Singpore

Jouffe L (1998) Fuzzy inference system learning by reiforcement

methods. IEEE Trans Syst Man Cybern Part C 28(3):338–355

Rojas I, Pomares H, Ortega J, Prieto A (2000) Self-organized fuzzy

system generation from training examples. IEEE Trans Fuzzy

Syst 8(1):23–36

Nie J, Linkens DA (1994) Fuzzy neural control: principles,

algorithms, and applications. Prentice-Hall, Englewood Cliffs

Uncu ö, Türkşen _IB (2007) Discrete interval type 2 fuzzy system

models using uncertainty in learning parameters. IEEE Trans

Fuzzy Syst 15(1):90–106

Duch W, Adamczak R, Grabczewski K (2001) A new methodology of

extraction, optimization and application of crisp and fuzzy

logical rules. IEEE Trans Neural Netw 12(2):277–306

Duch W, Setiono R, _Zurada JM (2004) Computational intelligence

methods for rule-based data understanding. Proc IEEE

92(5):771–805

Setnes M (2000) Supervised fuzzy clustering for rule extraction. IEEE

Trans Fuzzy Syst 8(4):416–424

Pal NR, Eluri VK, Mandal GK (2002) Fuzzy logic approaches to

structure preserving dimensionality reduction. IEEE Trans Fuzzy

Syst 10(3):277–286

Mitra P, Murthy CA, Pal SK (2002) Density-based multiscale data

condensation. IEEE Trans Pattern Anal Mach Intell 24(6):734–

747

Cherkassky V, Mulier P (1998) Learning from data. Wiley, New York

Lee MA, Takagi H (1993) Integrating design stages of fuzzy systems

using genetic algorithms. In: Proceedings of FUZZY-IEEE/

IFES’93, San Franciso, CA, pp 612–617

Ishibuchi H, Nozaki K, Yamamoto N, Tanaka H (1995) Selecting

fuzzy if-then rules for classification problems using genetic

algorithms. IEEE Trans Fuzzy Syst 3(2):260–270

Yager RR, Filev DP (1993) Unified structure and parameter

identification of fuzzy models. IEEE Trans Syst Man Cybern

23(4):1198–1205

Wang LX, Mendel JM (1992) Fuzzy basis functions, universal

approximation, and orthogonal least-squares learning. IEEE

Trans Neural Netw 3(5):807–813

Yen J, Wang L (1999) Simplifying fuzzy rule-based models using

orthogonal transformation methods. IEEE Trans Syst Man

Cybern Part B 29:13–24

Brown M, Harris C (1994) Neurofuzzy adaptive modeling and

control. Prentice-Hall, Englewood Cliffs

Gupta MM, Rao DH (1994) On the principles of fuzzy neural

networks. Fuzzy Sets Syst 61(1):1–18

Jang JR (1993) ANFIS: adaptive-network-based fuzzy inference

system. IEEE Trans Syst Man Cybern 23(3):665–685

Fritzke B (1997) Incremental neuro-fuzzy systems. In: Proceedings of

application of soft computing, SPIE international symposium on

optical science, engineering and instrumentation, San Diego

Mitra S, Hayashi Y (2000) Neuro-fuzzy rule generation: survey in

soft computing framework. IEEE Trans Neural Netw 11(3):748–

768

Jang J-SR, Sun C-T (1995) Neuro-fuzzy modeling and control. Proc

IEEE 83(3):378–406

Kruse R, Nauck D (1995) Learning methods for fuzzy systems. In:

Proceedings of the 3rd German GI-workshop ‘‘Neuro-Fuzzy-

Systeme’’, Darmstadt, Germany, vol 3, pp 683–697

Nauck D (1997) Neuro-fuzzy systems: review and prospects. In:

Procedings of the 5th European congress on intelligent tech-

niques and soft computing (EUFIT’97), Aachen, pp 1044–1053

Keller JM, Tahani H (1992) Implementation of conjunctive and

disconjunctive fuzzy logic rules with neural networks. Int J

Approx Reason 6:221–240

Keller JM, Yager RR, Tahani H (1992) Neural network implemen-

tation of fuzzy logic. Fuzzy Sets Syst 45(1):1–12

Zimmermann HG, Neuneier R, Dichtl H, Siekmann S (1996)

Modeling the german stock index DAX with neuo-fuzzy. In:

Proceedings of fourth European congress on intelligent tech-

niques and soft computing (EUFIT96), Aachen

Nauck D, Kruse R (1995) NEFCLASS-A neuro-fuzzy approach for

the classification of data. Applied computing. In: George KM,

Carrol JH, Deaton E, Oppenheim D, Hightower J (eds)

Proceedings of the 1995 ACM symposium on applied comput-

ing, Nashville, February 26–28. ACM Press, New York, pp 461–

465

Kruse R, Gebhardt J (1994) Foundations of fuzzy systems. Wiley,

Chichester
MacQueen J (1967) Some methods for classification and analysis of

multivariate observations. In: Proceedings of 5th Berkeley

symposium on mathematical statistics and probability. Univer-

sity of California Press, Berkeley, pp 281–297

Mackey MC, Glass L (1977) Oscillation and chaos in physiological

control systems. Science 197(4300):287–289

Vapnik VN (1998) Statistical learning theory. Wiley, New York

Self-spawning neuro-fuzzy system for rule extraction 1025

123

	Self-spawning neuro-fuzzy system for rule extraction
	Abstract
	Introduction
	Scatter-partitioning fuzzy systems
	Takagi-Sugeno fuzzy model
	Scatter-partitioning fuzzy systems

	The SSNFS neuro-fuzzy modeling
	SSNFS architecture
	Supervised self-spawning competitive learning
	The SSSCL OPTOC learning algorithm

	Experimental results
	Modeling a known rule-base
	Rule extraction from Iris data
	Function approximation

	Conclusions and discussions
	Acknowledgments
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

