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Abstract Context adaptation (CA) based on evolutionary

algorithms is certainly a promising approach to the devel-

opment of fuzzy rule-based systems (FRBSs). In CA, a

context-free model is instantiated to a context-adapted

FRBS so as to increase accuracy. A typical requirement in

CA is that the context-adapted system maintains the same

interpretability as the context-free model, a challenging

constraint given that accuracy and interpretability are often

conflicting objectives. Furthermore, interpretability is dif-

ficult to quantify because of its very nature of being a

qualitative concept. In this paper, we first introduce a novel

index based on fuzzy ordering relations in order to provide

a measure of interpretability. Then, we use the proposed

index and the mean square error as goals of a multi-

objective evolutionary algorithm aimed at generating a set

of Pareto-optimum context-adapted Mamdani-type FRBSs

with different trade-offs between accuracy and interpret-

ability. CA is obtained through the use of specifically

designed operators that adjust the universe of the input and

output variables, and modify the core, the support and the

shape of fuzzy sets characterizing the partitions of these

universes. Finally, we show results obtained by using our

approach on synthetic and real data sets.

Keywords Fuzzy rule-based systems � Context

adaptation � Multi-objective evolutionary algorithms �
Fuzzy partition interpretability

1 Introduction

In the last years, Mamdani-type FRBSs (Mamdani and

Assilian 1975) have been extensively and successfully

applied to several engineering domains such as control,

classification, regression and identification. As stated by

Cordón et al. (2004), Mamdani-type FRBSs consist of:

• A rule base (RB) composed of linguistic IF-THEN

rules, such as if the temperature is hot then the fan

speed is high, where both the antecedent and the

consequent parts are fuzzy propositions.

• A data base (DB), which associates a semantics,

represented by means of fuzzy sets, with the linguistic

terms used in the RB, e.g., hot and high.

The RB is often derived from heuristic knowledge,

which is usually valid independently of the real environ-

ment where the FRBS will work. Thus, the RB can be

considered as a context-free model. Indeed, the real envi-

ronment does not affect the RB, but rather influences the

DB, and, more specifically, the meaning associated with

each linguistic term used in the rules. For instance, in the

aforementioned rule, the meaning associated with the lin-

guistic term high depends on the heat perception of each

person, which is biased by, e.g., the latitude.
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The several interesting possible applications have raised

a large interest among researchers and practitioners in

developing effective and efficient methods to generate

highly performing and/or interpretable Mamdani-type

FRBSs. In this framework, context adaptation (CA) is one

of the most promising techniques, though it cannot be

considered completely explored yet. CA of FRBSs moves

from the following assumption: the RB models universal

knowledge that can be reused in many different environ-

ments (Pedrycz et al. 1997). In each environment, the

meanings associated with linguistic terms have to be

adjusted so as to improve accuracy of the FRBS. Thus, CA

is a tuning process that exploits context-specific informa-

tion so as to adapt the parameters contained in the DB

(Cordón et al. 2004).

The above-mentioned assumption implies that the RB

should not be modified during the adaptation process. Since

there exists a semantic relationship between the RB and the

DB, this implication forces some constraints on the tuning

of the DB.

First, since each linguistic term is bound to a fuzzy set,

each fuzzy set is useful and meaningful only if the asso-

ciated linguistic term is used in the RB. Thus, the number

of fuzzy sets in each partition is directly determined by the

number of linguistic labels defined in the RB and, there-

fore, should not vary during CA.

Second, when experts define the RB, they use an

implicit semantic ordering of linguistic terms that is sig-

nificant to humans. For instance, the linguistic term high

will always follow low, and cold will always precede hot.

The ordering of linguistic terms is usually modeled in

fuzzy partitions by some ordering of fuzzy sets. Conse-

quently, to preserve semantics, the post-CA ordering of the

fuzzy sets should reflect the pre-CA ordering of linguistic

terms.

To summarize, each CA approach should comply with

the following guidelines:

1. Context adaptation should not modify the RB;

2. Context adaptation should not change the number of

linguistic terms defined in the RB and, consequently,

the number of corresponding fuzzy sets;

3. Context adaptation should not affect the semantic

ordering of linguistic terms.

In this paper, we propose an approach to CA of Mam-

dani-type FRBSs aimed at improving accuracy while

following the aforementioned guidelines and preserving

interpretability of partitions (de Oliveira 1999; Casillas

et al. 2003). Our approach exploits a novel interpretability

index based on fuzzy ordering relations. The proposed

index and the MSE are used as objectives of a MOEA

aimed at generating a set of Pareto-optimum FRBSs with

different trade-offs between accuracy and interpretability.

We start from an RB which represents a universal knowl-

edge extracted with an elicitation process by domain

experts. Then, adaptation is obtained by applying a modi-

fied version of the operators introduced in Botta et al.

(2006a).

The paper is organized as follows: Sect. 2 discusses

previous work on CA of FRBSs. Section 3 describes the

operators used in our CA approach. Section 4 discusses the

issue of ordering and interpretability of FRBSs and intro-

duces a novel index to evaluate both these properties

concurrently. Section 5 details the MOEA. Section 6 shows

two application examples in the fields of regression and

data modeling, respectively, and Sect. 7 draws final

conclusions.

2 Previous work

In the literature, the majority of papers on CA of FRBSs

have mostly focused on the use of scaling functions

(Bastian 1994; Gudwin and Gomide 1994; Magdalena

1997; Pedrycz et al. 1997; Gudwin et al. 1998; Cordón

et al. 2001; Magdalena 2002; Botta et al. 2006a, b). Usu-

ally, the scaling function is applied to a normalized

partition, that is, a partition defined over the [0,1] universe

of discourse and uniformly partitioned into triangular,

trapezoidal or Gaussian fuzzy sets. The number of fuzzy

sets for each partition coincides with the number of lin-

guistic terms defined for the linguistic variable

corresponding to the universe of the partition. The scaling

function adapts the partition by mapping the normalized

universe to the context-adapted universe, possibly modi-

fying the distribution and the shape of fuzzy sets.

The scaling functions used in the literature can roughly

be classified into linear (Bastian 1994; Gudwin and Go-

mide 1994; Magdalena 2002) and non-linear (Magdalena

1997; Pedrycz et al. 1997; Gudwin et al. 1998; Cordón

et al. 2001; Klawonn 2006; Botta et al. 2006a, b) Non-

linear scaling functions can be applied on the overall uni-

verse of discourse, thus modifying the shape of fuzzy sets,

as in Magdalena (1997); Pedrycz et al. (1997); Gudwin

et al. (1998); Klawonn (2006), or just on some points (e.g.,

on breakpoints in the case of triangular and trapezoidal

fuzzy sets), as in Cordón et al. (2001); Botta et al.

(2006ab), so as to maintain the original shape of the fuzzy

sets and the interpretability of the partition. Figure 1 shows

an example of application of scaling functions to a nor-

malized partition. We note that both linear and non-linear

scaling functions comply with the guidelines introduced in

Sect. 1. We further remark that scaling functions do not

always perform an effective CA, mostly because of their

limited modeling capabilities. To overcome this weakness,

in Botta et al. (2006b), we introduced four parametric
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operators that affect the core, the support and the boundary

elements of fuzzy sets. While the new operators improve

modeling capabilities of scaling functions, they may also

modify the partition in a way that makes the ordering less

evident. Furthermore, the interpretability of the resulting

partition may be affected as well. In this context, relevant

contributions to the identification of parameters of scaling

functions and CA operators maximize only the accuracy of

the context-adapted FRBS by exploiting evolutionary

algorithms (Magdalena 1997; Gudwin et al. 1998; Cordón

et al. 2001; Botta et al. 2006a, b).

On the other hand, the issue of balancing interpretability

and accuracy has been addressed in the field of FRBS

generation from data (de Oliveira 1999; Casillas et al.

2003). Often, this issue has been tackled by using MOEAs

aimed at generating a set of FRBSs with different trade-

offs between the two objectives (Ishibuchi et al. 1995;

Jimenez et al. 2001; Wang et al. 2005; Ishibuchi and

Nojima 2007; Gonzalez et al. 2007; Cococcioni et al.

2007). The majority of existing approaches, however, focus

on learning the RB from examples rather than on adapting

the meaning of linguistic terms to a specific context. Fur-

ther, interpretability is typically measured indirectly in

terms of complexity (for instance, number of fuzzy sets,

like in Gonzalez et al. (2007), and/or number of rules) or in

terms of properties of the partitions, such as coverage and

distinguishability. Finally, when these properties are con-

sidered, they are measured by a simple similarity index that

cannot completely capture interpretability semantics

(Jimenez et al. 2001; Wang et al. 2005).

In this paper, we introduce a novel interpretability index

that, exploiting a fuzzy ordering relation, explicitly takes

coverage and distinguishability into account, in attempt to

reproduce the interpretability perceived by humans and

described by de Oliveira (1999). Indeed, the definition of

our index reflects the following observation: humans

associate a semantic ordering with the linguistic terms used

as values of a linguistic variable. This ordering has, by and

large, universal acceptance and has to be observed by the

fuzzy sets used to define the meaning of the linguistic terms

employed by the system. A further condition for inter-

pretability is that fuzzy sets should be made distinguishable

from each other so as to preserve distinction between lin-

guistic terms. Indeed, humans associate completely

different meanings with different linguistic terms, and

these differences are more marked for linguistic terms

which are semantically far. For instance, the distinction

between low and medium is less marked than between low

and high. Finally, the universe should be covered, that is,

there should not exist members of the universe which are

represented by no linguistic term. The index we propose in

this paper considers explicitly these three aspects of

interpretability.

3 Operators for CA

In this section, we briefly review the scaling functions and

the operators that we use to perform CA of an FRBS.

Preliminary versions of these operators have been previ-

ously discussed by Botta et al. (2006a). We introduce a

flexible and compact scaling function and we define four

fuzzy modifiers that allow adapting the core, the support

and the boundary elements of fuzzy sets.

In the adaptation process, we first apply the scaling

function, and then the fuzzy modifiers. The modifiers are

chosen and formulated in such a way that the effects on the

context-adapted partition are independent of the order in

which they are executed. Thus, modifiers can be applied

without interfering with each other. Our modifiers are

flexible enough to be used in a wide range of tuning

applications, not necessarily related to CA, and might be

applied to a single fuzzy set. However, in our CA approach,

each modifier is applied with the same intensity to the

overall partition. This allows us to use a very small number

of parameters to represent a wide range of configurations

through the combined effects of the five operators to be

defined next.

The fuzzy modifiers are formulated so as to act on

trapezoidal fuzzy sets defined by (sl,cl,cu,su), where sl and

su, and cl and cu are the left and right bounds of the support

and of the core, respectively, with sl B cl B cu B su. This

definition includes as special cases triangular fuzzy sets

(when cl = cu) and singletons (when sl = cl = cu = su).

Although we use trapezoidal fuzzy sets, we remark that the

proposed modifiers can be easily adapted to work on any

other shape of fuzzy sets.

3.1 Scaling function

To cover the overall universe of discourse and to non-

uniformly distribute the fuzzy sets in the partition, we

adopt the following scaling function:

Fig. 1 Examples of application of different types of scaling functions

to a normalized partition
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sðxÞ : ½0; 1� ! ½a; b�

¼ aþ ðb� aÞðk1�kSF xkSFÞ if x� k
aþ ðb� aÞ½1� ð1� kÞ1�kSFð1� xÞkSF � if x [ k;

�

ð1Þ

where parameters a and b identify the bounds of the uni-

verse of discourse, parameter k [ [0, 1] defines a sort of

center of gravity in the normalized partition, and parameter

kSF [ 0 defines the degree of dilation (kSF [ 1) or com-

pression (kSF \ 1) of fuzzy sets around k. For an example

of scaling function application, the reader can refer to Botta

et al. (2006a).

3.2 Core-position modifier

The core-position modifier acts on the core of a fuzzy set,

shifting its position within the support while maintaining

the original width. The modifier is defined as:

cl0 ¼ cl� ðsl� clÞ � kCP if kCP\0

clþ ðsu� cuÞ � kCP if kCP� 0;

�
ð2Þ

cu0 ¼ cu� ðsl� clÞ � kCP if kCP\0

cuþ ðsu� cuÞ � kCP if kCP� 0;

�
ð3Þ

where cl0 and cu0 are the left and right bounds of the

modified core, respectively, and kCP [ [-1, 1] defines the

intensity of the left shift (kCP \ 0) or right shift (kCP [ 0)

of the core. Figure 2a shows a sample application of the

core-position modifier to a partition P = {A1,...,A5} com-

posed by five uniformly distributed trapezoidal fuzzy sets

over the normalized universe [0,1].

3.3 Core-width modifier

The core-width modifier acts on the core of a fuzzy set,

dilating or shrinking the core within the support. The

modifier is defined as:

cl0 ¼ clþ w � ðsl� clÞ � kCW if kCW\0

clþ ðsl� clÞ � kCW if kCW� 0;

�
ð4Þ

cu0 ¼ cuþ w � ðsu� cuÞ � kCW if kCW\0

cuþ ðsu� cuÞ � kCW if kCW� 0;

�
ð5Þ

where w = (cu-cl)/(cl-sl ? su-cu), and kCW [ [-1,1]

determines the intensity of dilation (kCW [ 0) or shrinking

(kCW \ 0) of the core. Figure 2b shows a sample applica-

tion of the core-width modifier.

3.4 Support-width modifier

The support-width modifier acts on both the support and

the core of a fuzzy set, scaling their widths with respect to

the center of the support and preserving the ratio between

the widths of the core and the support. The modifier is

defined as:

sl0 ¼ smþ kSW � ðsl� smÞ; ð6Þ

cl0 ¼ smþ kSW � ðcl� smÞ; ð7Þ

cu0 ¼ smþ kSW � ðcu� smÞ; ð8Þ

su0 ¼ smþ kSW � ðsu� smÞ; ð9Þ

where sl0 and su0 are the left and right bounds of the

modified support, respectively, sm = (sl ? su)/2, and

kSW [ 0 determines the negative (kSW \ 1) or positive

(kSW [ 1) scaling of the fuzzy set. Figure 2c shows a

sample application of the support-width modifier.

3.5 Generalized positively modifier

The generalized positively modifier is an extension of the

well-known positively linguistic hedge. We use this mod-

ifier to change the degree of membership of the boundary

elements of the fuzzy sets. In other words, the generalized

positively modifier changes the shape of the original

Fig. 2 Sample applications of

the modifiers to a partition

composed by five trapezoidal

fuzzy sets
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trapezoidal fuzzy sets so as to generate, for instance,

Gaussian-like fuzzy sets. The modifier is defined as:

A0ðxÞ ¼ h1�kGP AkGPðxÞ if AðxÞ\h
1� ð1� hÞ1�kGP ½1� AðxÞ�kGP if AðxÞ� h;

�

ð10Þ

where A0 is the fuzzy set resulting from the application of

the linguistic hedge to A, h [ [0,1] is the degree of mem-

bership in which the fuzzy set changes concavity, and

kGP [ 0 is a contrast intensification parameter. Figure 2d

shows a sample application of the generalized positively

modifier.

4 An interpretability index based on fuzzy ordering

relations

4.1 Fuzzy sets ordering

As stated in Section 1, CA of an FRBS consists in tuning the

fuzzy sets corresponding to the linguistic terms used in the

RB. The ordering of the context-adapted fuzzy sets should

reflect the semantic ordering of the linguistic terms. The

ordering of fuzzy sets has been widely addressed in the

literature (Wang and Kerre 2001; Cross and Sudkamp

2002). Given two fuzzy sets A1 and A2 defined over the

universe of discourse R; it is sometimes difficult to deter-

mine whether and how A1 and A2 are ordered. The trivial

approach is to consider basic features of each fuzzy set, such

as the position of modal values or the lower (upper) bound

of the support, and to define the ordering of fuzzy sets based

on the ordering of these metrics. This approach performs

correctly when fuzzy sets are clearly and intuitively ordered,

but it may lead to counter-intuitive results in the general

case. Wang and Kerre (2001) reviewed a number of order-

ing approaches, including some methods that evaluate the B

relation as a fuzzy relation. These methods provide us with

enough expressibility to assess that A1 B A2 and A2 B A1 are

true at different degrees, for instance 0.6 and 0.2, respec-

tively. In this case, we write R B (A1, A2) = 0.6 and

R B (A2, A1) = 0.2. If R B (A1, A2) ? R B (A2, A1) = 1

holds, the relation is called reciprocal.

Figure 3 shows eight case studies of couples of fuzzy

sets (case 4 is taken from an example by Wang and Kerre

(2001)). The ordering of cases 1–3 is easily identifiable,

while the other cases are disputable. For instance, in case 8,

if we use the interval set ordering of the supports to assess

the ordering between A1 and A2, we obtain A2 B A1; on the

other hand, if we adopt the ordering of cores, we obtain A1

B A2. We used these case studies to benchmark the

behavior of Kolodziejczyk’s index and Yuan’s index (Yuan

1991), two reciprocal fuzzy ordering relations previously

reviewed by Wang and Kerre (2001). Table 1 shows the

values of the two indices for the eight case studies. We

remark that, between the two indices, Yuan’s index is able

to distinguish one case from another with higher precision.

4.2 Interpretability and ordering of fuzzy partitions

Interpretability of fuzzy partitions can be defined in several

ways. Here, we refer to the definition proposed by de

Oliveira (1999), who states that a fuzzy partition is inter-

pretable if it satisfies the following properties:

1. The partition should have a reasonable number of

fuzzy sets;

2. The fuzzy sets in the partition should all be normal,

i.e., for each fuzzy set there exists at least one point

with membership degree equal to 1;

3. Each couple of fuzzy sets should be distinguishable

enough, so that there are no two fuzzy sets that

represent pretty much the same concept;

4. The overall universe of discourse should be strictly

covered, i.e., each point of the universe should belong

to at least a fuzzy set with a membership degree over a

given reasonable threshold.

If the number of linguistic terms is low, as it generally

is, guideline 1 defined in Section 1 allows satisfying

property 1. Furthermore, if the operators used for CA do

not alter the normality of the context-adapted fuzzy sets, as,

for instance, the ones introduced in Sect. 3, property 2 is

verified as well. On the other hand, properties 3 and 4 are

not so easily satisfiable. In Botta et al. (2006a) these

properties are achieved by heuristically restricting the

domain of parameters of operators. These two properties

pose interesting challenges to the designer of a learning

method for FRBSs. First, defining a proper metric to

measure them with low computational effort is difficult.

Second, it is hard to find a crisp threshold for the metric so

as to separate good from bad partitions.

An approach to address this problem is to consider

distinguishability and coverage as conflicting properties,

Fig. 3 Case studies for the evaluation of ordering indices between fuzzy sets A1 (solid) and A2 (dotted)
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and to use a metric to assess the trade-off between them.

For instance, the membership value of crossing points

between adjacent fuzzy sets can be used to measure both at

a time (de Oliveira 1999). Since in CA we also require to

preserve ordering of the original fuzzy partition, we choose

to evaluate the interpretability by extending an ordering

index. Indeed, it is extremely difficult to derive useful

information about ordering from traditional interpretability

indices. For instance, by using the membership degrees of

crossing points of adjacent fuzzy sets, we can only derive a

partial ordering based on a-cuts.

Further, it can be shown that Jaccard’s index (Cross and

Sudkamp 2002), which is often used to measure inter-

pretability, does not seem to provide means for salient

evaluation of ordering of fuzzy partitions. Some ordering

indices, however, can be used to evaluate distinguishability

and coverage from an interpretability point-of-view.

Indeed, let us consider again Fig. 3 and Table 1. We

observe that in cases 1 and 2 the fuzzy sets satisfy both the

properties of distinguishability and coverage, whilst case 3

is lacking coverage property and case 4 is lacking distin-

guishability property. The Kolodziejczyk’s index returns

K B (A1, A2) = 1 in all four cases and, therefore, it cannot

be used to evaluate distinguishability and coverage. In

contrast, the Yuan’s index is able to properly discriminate

the four cases, giving a crisp value of 1 only in case 3, in

which A1 \ A2 = [. In the other cases, different degrees of

truth are obtained by the evaluation of Y B (A1, A2). Thus,

Yuan’s index is a sensible choice for evaluating

interpretability.

4.3 The interpretability index

Let us consider a partition P = {A1,...,Ai,...,AN} consisting

of N fuzzy sets. Let dj,i = |j-i| be the semantic distance

between Aj and Ai. For instance, the semantic distance

between A3 and A1 is 2. We define the following index to

evaluate interpretability and ordering of a partition:

UQðPÞ ¼

P
1� i�N � 1

i\j�N

1
dj;i
� ldj;i

Q Q� ðAi;AjÞ
� �

P
1� i�N � 1

i\j�N

1
dj;i

; ð11Þ

where Q is a fuzzy ordering index and ldj;i

Q ðxÞ; with x

= Q B (Ai, Aj), are fuzzy sets defined on the universe [0,1]

of the values of Q.

The value of UQ(P) ranges between 0 (the lowest level

of interpretability) and 1 (the highest level of interpret-

ability). Thus, UQ(P) should be close to 1 for uniform

fuzzy partitions. Fuzzy sets ldj;i

Q ðxÞ are used to assess, for

different values of dj,i, the value of the Q index with respect

to interpretability. For instance, in case of dj,i = 1 and

Ai \ Aj = [, i.e., a situation similar to case 3 in Fig. 3,

adjacent fuzzy sets are not overlapped and, therefore,

coverage is not verified. It follows that ldj;i

Q ðxÞ should return

a value close to 0. On the other hand, in case of dj,i [ 1 and

Ai \ Aj = [, to enforce distinguishability, the fuzzy sets

should not be overlapped and, therefore, ldj;i

Q ðxÞ should

return a value close to 1. Obviously, the definition of the

family of fuzzy sets ldj;i

Q ðxÞ is a critical step, since these

fuzzy sets represent the actual link between the evaluation

of the ordering, coverage and distinguishability properties.

In the following, we describe a procedure to generate the

family of fuzzy sets ldj;i

Q ðxÞ:
We start from the evaluation of a well-known measure

of interpretability, based on the value y of the crossing

point between two fuzzy sets (denoted as XP in the fol-

lowing). We can distinguish two cases:

• dj,i = 1 (Semantically adjacent fuzzy sets): In this case,

y should be neither too close to 1 nor to 0, so as to

preserve, respectively, the distinguishability and the

coverage properties. On the other hand, the two

properties are both verified when y is close to 0.5.

These observations can be modeled by the fuzzy set

mXP
1 (y) shown in solid line in Fig. 4a;

• dj,i [ 1 (Semantically non-adjacent fuzzy sets): In this

case, we do not care about coverage, since it is already

ensured by adjacent fuzzy sets, but we stress distin-

guishability. Thus, y should be close to 0. Nevertheless,

depending on the actual value of dj,i, we can still

tolerate some overlapping between the two fuzzy sets,

and this tolerance should decrease with the increase of

dj,i. These observations can be modeled by the fuzzy set

mdj;i

XPðyÞ shown in dotted line in Fig. 4a for different

values of dj,i. We note that, while mdj;i

XPð0Þ ¼ 1 8dj;i [ 1 ,

the right spread shrinks toward 0 as dj,i increases, so as

to reduce the tolerance.

Table 1 Evaluation of A1B A2 and A2 B A1 on the case studies of

Fig. 3

Kolodziejczyk’s index Yuan’s index

K B (A1,A2) K B (A2,A1) Y B (A1,A2) Y B (A2,A1)

1 1 0 0.9080 0.0920

2 1 0 0.7444 0.2556

3 1 0 1 0

4 1 0 0.5761 0.4239

5 0.5000 0.5000 0.5000 0.5000

6 0.8333 0.1667 0.6576 0.3424

7 0.8333 0.1667 0.5737 0.4263

8 0.4003 0.5997 0.4730 0.5270

442 A. Botta et al.

123



To obtain ldj;i

Q ðxÞ; we project mdj;i

XPðyÞ from its original

universe of discourse y to the universe of discourse x. The

overall process can be formalized as follows:

1. We choose mdj;i

XPðyÞ as triangular membership functions,

defined by the three breakpoints ðsldj;i ; cdj;i ; sudj;iÞ: We

set sldj;i ¼ 0 8dj;i; c1 ¼ 0:5; cdj;i ¼ 0 8dj;i [ 1; su1 ¼
1; and sudj;i ¼ 2=dj;i 8dj;i [ 1: Figure 4a shows mdj;i

XPðyÞ;
with N = 5 and dj,i = 1...4;

2. We empirically identify a relation RQ,XP(x,y) by

evaluating x and y for a number of differently

overlapping trapezoidal membership functions;

3. Using the extension principle and RQ, XP(x, y), we

project the fuzzy sets mdj;i

XPðyÞ from the universe of

discourse y to the universe of discourse x, thus

obtaining a corresponding ldj;i

Q ðxÞ: More formally, we

have:

ldj;i

Q ðxÞ ¼ sup
y2½0;1�

minðmdj;i

XPðyÞ;RQ;XPðx; yÞÞ; ð12Þ

where dj,i = 1...N-1.

We illustrate the above process by detailing the sets

ldj;i

Y ðxÞ corresponding to Yuan’s fuzzy ordering index. We

recall the formula to compute Yuan’s index (Yuan 1991;

Wang and Kerre 2001):

Y �ðA1;A2Þ ¼ DA2;A1
= DA1;A2

þ DA2;A1

� �
; ð13Þ

where DA1;A2
is defined as:

DA1;A2
¼

Z
ajuA1a [lA2a

ðuA1a�lA2aÞdaþ
Z

ajlA1a [uA2a

ðlA1a�uA2aÞda;

a [ [0,1] is an a-cut value, Ai a is the crisp set obtained by

a-cutting Ai, i = {1,2}, and lAia and uAia are the lower and

upper bounds of Aia, respectively. Figure 4b shows the

projections ldj;i

Y ðxÞ obtained by applying the overall pro-

cess. This family of fuzzy sets can then be employed in the

corresponding interpretability index UY(P). In Fig. 5, we

show the evaluation of the proposed index on four sample

partitions characterized by different degrees of coverage,

distinguishability and ordering of fuzzy sets.

5 The MOEA

Thanks to their modeling capabilities, the scaling function

and the fuzzy modifiers introduced in Sect. 3 allow adapting

the normalized partitions to any context. In particular, we

apply a MOEA to perform the CA described in Sect. 1. To

this aim, we need to determine which operators should be

applied and the values of their parameters. These choices are

typically based on the maximization of the accuracy of the

FRBS on real-world examples which describe the behavior

of the context-adapted system. Furthermore, as stated in

Sects. 1 and 4, the partition generated by the application of

the operators should satisfy the ordering and interpretability

constraints. Our objectives are accuracy, measured by MSE,

and interpretability, measured by the average �UY of the

values of the index UY computed for all input and output

partitions of the FRBS. These conflicting goals are balanced

by the adoption of NSGA-II (Deb et al. 2002).

Fig. 4 Fuzzy sets mdj;i

XPðyÞ and ldj;i

Y ðxÞ used in the examples of Sect. 6

Fig. 5 Evaluation of UY on sample partitions with different degrees of coverage, distinguishability and ordering of fuzzy sets
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NSGA-II is a fast and elitist MOEA based on a non-

dominance rank assignment and an ad-hoc density-esti-

mation metric. In our CA approach based on scaling

functions and fuzzy modifiers, individuals represent the

values of the parameters which define the operators used to

adapt a Mamdani-type FRBS.

Assume that the FRBS has V-1 input variables and one

output. Let S ¼ ðx̂~j; ŷjÞ be a set of M real-world examples,

where x̂~j is a vector of V-1 input values, and ŷj is the

corresponding output. Each individual in the population is

represented by a chromosome composed of V strings of 77

bits, where each string codes the five control genes and the

nine 8-bit parameters of the tuning operators (the first V-1

strings determine the parameters for the input variables and

the last string for the output variable). Each string is

characterized by a hierarchical structure: the first five bits,

one for each operator, control whether the corresponding

operator is applied or not on each fuzzy partition. The other

72 bits are organized in sub-strings of 8 bits: each sub-

string determines the value of a different parameter.

Instead of using a mixed binary-real variable coding

(with five binary genes for the choice of the tuning oper-

ators and nine real genes for the parameter values) we

decided to adopt a binary-coded GA based on the following

considerations. We observed that the quantization per-

formed by binary coding does not affect the precision of

the choice of the parameter values due to the small ranges

of these parameters. Furthermore, binary coding provides a

discretization of the search space thus allowing exploring

the solution space with lower computational effort. How-

ever, binary coding suffers from the following problem:

mating can generate descendants which inherit no charac-

teristics of the parents. To solve this problem, we have

adopted, as usual when using binary chromosomes, the

Gray decoding to generate individuals from chromosomes

(Michalewicz 1999). The chromosome has the following

structure:

ðC1
SF;C

1
CP;C

1
CW;C

1
SW;C

1
GP;

a1; b1; k1; k1
SF; k

1
CP; k

1
CW; k

1
SW; h

1; k1
GP;

. . .

CV
SF;C

V
CP;C

V
CW;C

V
SW;C

V
GP;

aV ; bV ; kV ; kV
SF; k

V
CP; k

V
CW; k

V
SW; h

V ; kV
GPÞ;

where CSF
v , CCP

v , CCW
v , CSW

v , and CGP
v , with v = 1,...,V, are

the control genes that determine whether, respectively, the

non-linear scaling function of Eq. 1, the core-position

modifier, the core-width modifier, the support-width mod-

ifier and the generalized positively modifier have to be

applied to the partition. The av,...,kv
SF and kv

CP,...,kGP
v are,

respectively, the values of the parameters of the scaling

function and of the four fuzzy modifiers for the vth

partition.

To the aim of covering the overall universe of discourse,

even if CSF
v = 0, we perform a linear scaling from the

normalized universe [0,1], in which the initial uniform

partition is defined, to the context-adapted universe [av,bv].

Some problems about the normality of the fuzzy partition

may arise when both the core-position and the core-width

modifiers are applied, because these modifiers might move

the core of the first and/or the last fuzzy set out of the

bounds of the universe of discourse, thus leaving some

subnormal fuzzy sets in the partition. To avoid this prob-

lem, once we have applied the modifiers, we adjust the

bounds of the universe of discourse so as to include the

upper and lower bounds of the cores of the first and last

fuzzy sets, respectively.

We start with an initial population composed of ran-

domly generated individuals. At each generation, the

uniform crossover and the uniform mutation operators are

applied (Michalewicz 1999), with probability of 0.8 and

0.05, respectively. Chromosomes to be mated are chosen

by the standard binary tournament proposed by Deb et al.

(2002) in the original version of NSGA-II.

6 Experimental results

To evaluate the effectiveness of our approach, we applied

the proposed CA method to a regression problem and a

data modeling problem. In the first experiment, contexts

are modeled by similar curves generated from a parametric

function. In the second experiment, we determine the fuel

efficiency of a set of vehicles in the contexts of city and

highway traffic conditions.

6.1 Parametric function

Let us consider the following parametric function:

gðx1; x2Þ ¼jþ e�ðj�x1Þ2�j�ð1þx2Þ2�j

� e�x2�j
1
�x2�j

2 � e�ð1þx1Þ2�j�ðj�x2Þ2�j ;
ð14Þ

where x1,x2 [ [-1.5, 0.5]. We evaluated the function with

j in {2, 5, 7}. The range of the output variable and the

smoothness of each curve display similar characteristics for

different values of parameter j. Hence, we can define a set

of rules that linguistically describe these common features,

and consider each of the three curves as a different

instantiation of the same generic shape in a different con-

text, determined by the value of j. We use the intuitive set

of rules shown in Table 2. In the rule base, four linguistic

labels are used in each universe, namely L (low), ML

(medium–low), MH (medium–high) and H (high). For each

of the three instances, we applied the CA approach intro-

duced in the previous section. We evaluated the curves in a
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grid of 120 equally spaced points chosen in the [-1.5,

0.5] 9 [-1.5, 0.5] region. Since there are four linguistic

labels for each variable in the RB, the normalized universes

of discourse were uniformly partitioned into four trape-

zoidal fuzzy sets. To evaluate the robustness of MOEA in

different runs, we adopted a fivefold cross-validation.

Figure 6 shows the Pareto fronts obtained by MOEA on

each of the five folds for the context j = 2, both for the

training and the test sets. We observe that the five fronts are

quite wide and well distributed. Further, the fronts are quite

close to each other on the training set, thus highlighting

that the fronts do not depend on the particular execution of

MOEA. Due to lack of space, we do not show the Pareto

fronts obtained for the other contexts. However, we remark

that similar trends can be observed in the other contexts.

To assess the goodness of the Pareto fronts, we have also

applied the following CA methods as comparison:

• The non-linear scaling function proposed by Cordón

et al. (2001), optimizing its parameters by a single-

objective genetic algorithm (SOGA) with binary rep-

resentation of parameters in the chromosome, uniform

mutation, uniform crossover and binary tournament

selection. We refer to this approach as SOGA1. We

remark that we use only the scaling function and not the

overall methodology proposed by Cordón et al. (2001)

which, unlike our approach, does not rely on a

universally valid RB, but rather identifies rules by

exploiting a quick ad-hoc learn-by-example method.

• The non-linear scaling function and the four fuzzy

modifiers introduced in Section 3, optimizing their

parameters by the same SOGA as in the previous item.

We refer to this method as SOGA2.

In both SOGAs, we adopted the same crossover and

mutation probabilities as in NSGA-II. Further, to guarantee

a fair comparison, we used the same chromosome coding

and genetic operators for all the approaches. Finally, we

employed the MSE as the single-objective fitness function.

All the approaches were tested with a population of

Npop = 50 individuals and a maximum number of gener-

ations Imax = 200. The experiments on SOGA1 and

SOGA2 were repeated five times for each context and for

each fold to obtain statistically meaningful results.

Table 3 shows the comparison among the results,

expressed as average ± standard deviation, achieved by the

three techniques considered. For MOEA, we selected two

FRBSs: one, denoted as MOEAa, with the lowest MSE on

the test set, and the other, denoted as MOEAb, with the

lowest MSE among the solutions dominating the FRBSs

determined by SOGA1 on the test set.

As expected, on the test set the context-adapted FRBSs

generated by SOGA2 are characterized by a low MSE,

comparable, however, to the best MSEs obtained by the

FRBSs in the Pareto fronts. Nevertheless, their interpret-

ability is poor, since the only objective of SOGA2 is to

minimize the MSE. SOGA1 achieves values of MSE higher

than SOGA2, but generates more interpretable FRBSs,

Table 2 RB for the parametric function data set

x1

L ML MH H

x2 H ML L L ML

MH ML L ML ML

ML MH ML MH MH

L MH MH H H

Fig. 6 Pareto fronts obtained on the training set (top) and on the test

set (bottom) for the parametric function data set on context j = 2
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since it is a scaling function-based approach and, therefore,

introduces a lower distortion in the fuzzy partitions than

SOGA2.

MOEA provides the decision maker with a set of FRBSs

with different trade-offs between accuracy and interpret-

ability. In particular, MOEAa and MOEAb achieve an MSE

equal to or lower than SOGA1 and SOGA2 on the test set,

and are characterized by higher values of �UY : Although

SOGA1 performs better than MOEA on the training set,

MOEA outperforms it on test set. Indeed, due to its sim-

plicity, SOGA1 can perform a deeper exploration of the

search space than MOEA, but can also easily incur over-

fitting problems. We recall that we used the same number

of generations for both SOGAs and MOEA. On the other

hand, MOEA balances MSE with interpretability and,

therefore, is less prone to overfitting than SOGA1. Further,

we observe that, as expected, solutions generated by

SOGA2 actually lie on a hypothetical extension of the

Pareto front in a zone of low interpretability.

Figure 7 shows, for the context corresponding to j = 2,

an example of the fuzzy partitions of the input and output

variables of the FRBSs generated by SOGA1 (Fig. 7a) and

SOGA2 (Fig. 7b), and the fuzzy partitions of MOEAa

which, in this context, corresponds also to MOEAb

(Fig. 7c). We note that the FRBS generated by SOGA2

lacks coverage on y, whereas MOEAa shows a high

interpretability degree and a low MSE.

6.2 Fuel efficiency

The 2004 new car and truck data set (Johnson 2004) con-

tains the features of a set of 428 different models of cars

and trucks, such as engine size (ES), horsepower (HP),

retail price (RP) and fuel efficiency (FE), in city and

highway traffic conditions. We preprocessed the data set by

selecting the 387 vehicles with the complete set of 19

features. We aimed to model the effects of the traffic

conditions on FE with respect to the other features. By

computing the correlation between FE and the other fea-

tures, we realized that only ES, HP, RP and the ratio AW

between base area and weight are strongly correlated to FE

(actually, AW was purposely generated by combining three

Table 3 Results for the parametric function data set

SOGA1 SOGA2 MOEAa MOEAb

j = 2

MSEtrain 0.0073 ± 0.0012 0.0056 ± 0.0004 0.0075 ± 0.0007 0.0075 ± 0.0007

MSEtest 0.0094 ± 0.0032 0.0068 ± 0.0016 0.0066 ± 0.0017 0.0066 ± 0.0017

�UY 0.8250 ± 0.0155 0.7003 ± 0.0350 0.9481 ± 0.0443 0.9481 ± 0.0007

j = 5

MSEtrain 0.0462 ± 0.0036 0.0441 ± 0.0034 0.0526 ± 0.0053 0.0526 ± 0.0053

MSEtest 0.0575 ± 0.0152 0.0554 ± 0.0111 0.0509 ± 0.0139 0.0509 ± 0.0139

�UY 0.8510 ± 0.0084 0.7403 ± 0.0484 0.9921 ± 0.0024 0.9921 ± 0.0024

j = 7

MSEtrain 0.0777 ± 0.0056 0.0684 ± 0.0068 0.0817 ± 0.0125 0.0836 ± 0.0106

MSEtest 0.0918 ± 0.0250 0.0842 ± 0.0273 0.0811 ± 0.0333 0.0812 ± 0.0334

�UY 0.8899 ± 0.0156 0.6307 ± 0.0106 0.9533 ± 0.0750 0.9880 ± 0.0115

Fig. 7 Partitions generated for

the parametric function data set

on context j = 2
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features, namely width, length and weight). Hence, we

decided to use only ES, HP, AW and RP as input variables

and FE as output variable of our model. City and highway

traffic conditions were considered as two different con-

texts. ES, HP, AW, RP and FE are measured in liters,

horsepower, inches2/pounds, dollars and miles per gallon

(MPG), respectively.

The rules of the FRBS, shown in Table 4, were

extracted from the following intuitive considerations

derived from experience: FE decreases with the increase of

ES, HP and RP, and increases with the increase of AW.

Further, we did not generate rules for meaningless or

incompatible cases, such as high ES and low HP, or low ES

and high RP. Thus, we uniformly partitioned the normal-

ized input variables and the output variable into three fuzzy

sets, namely L (low), M (medium), and H (high). The

number of fuzzy sets was chosen by interviewing a pool of

experts and asking them for a meaningful partition of the

universes. Again, a fivefold cross-validation was per-

formed, with Npop = 50 and Imax = 200. Figure 8 shows

the Pareto fronts obtained for each fold and for both the

training and test sets on the city context (in the highway

context, we observed similar fronts). Table 5 summarizes

the results obtained by comparing MOEA, SOGA1 and

SOGA2 as described in Sect. 6.1.

Figure 8 and Table 5 confirm the trend that we observed

on the other data set. Indeed, the FRBSs determined by

SOGA2 are characterized by a low MSE and a poor

interpretability, while SOGA1 generates FRBSs with good

trade-offs between accuracy and interpretability that are,

however, Pareto-dominated by some solutions found by

our MOEA. Further, on this dataset, the FRBSs identified

by NSGA-II generalize much better than FRBSs generated

by SOGA1 and SOGA2, since they achieve similar MSEs

on the training and test sets. This behavior can be explained

by the set of CA operators adopted in our approach, which

guarantees a higher modeling capability than the scaling

function used in SOGA1.

Figure 9 shows, for the city context, an example of the

fuzzy partitions of the input and output variables of the

FRBSs chosen as in Sect. 6.1. We note that the partitions of

Table 4 RB for the fuel efficiency data set

Rule ES HP AW RP FE

R1 L L M L H

R2 L L H L H

R3 L M M L M

R4 L M H L H

R5 M M L M M

R6 M M L H M

R7 M M M M M

R8 M M H M M

R9 M H L M M

R10 M H L H L

R11 M H M M M

R12 M H M H L

R13 M H H M M

R14 H M L M M

R15 H M L H L

R16 H M M M M

R17 H M M H L

R18 H H L M L

R19 H H L H L

R20 H H M M M

R21 H H M H L

Fig. 8 Pareto fronts obtained on the training set (top) and on the test

set (bottom) for the fuel efficiency data set in the city context
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the FRBS generated by SOGA2, which outperforms the

other in terms of accuracy on the training set, have inter-

pretability difficulties. In particular, distinguishability

among different fuzzy sets is not evident on the ES and the

PR inputs. In contrast, MOEAa achieves the lowest MSE

on the test set and it maintains its interpretability, even if

the distinguishability of fuzzy sets on the PR input is not

completely evident. Finally, MOEAb (Fig. 9d) outperforms

all the other FRBSs in terms of interpretability and, thanks

to the modeling power of fuzzy modifiers, achieves an

MSE lower than SOGA1.

7 Conclusion

In this paper, we have proposed a MOEA-based approach

to context adaptation of Mamdani-type FRBSs. MOEA

generates a Pareto front composed of context-adapted

FRBSs with different trade-offs between accuracy and

interpretability. Accuracy is measured in terms of mean

square error. Interpretability is evaluated using a novel

index based on a fuzzy ordering relation. This index can be

employed in any constrained tuning of an FRBS where

ordering and interpretability of fuzzy partitions are

required. The results obtained by our approach using a

Yuan-based interpretability index on synthetic and real

data sets have shown that the MOEA-based CA can

determine solutions that achieve an error equal to or better

than accuracy-oriented approaches, while, at the same

time, preserving interpretability of the fuzzy partitions.
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