
Soft Comput (2009) 13:905–917
DOI 10.1007/s00500-008-0355-3

FOCUS

A memetic algorithm for the optimal winner
determination problem

Dalila Boughaci · Belaïd Benhamou · Habiba Drias

Published online: 26 July 2008
© Springer-Verlag 2008

Abstract In this paper, we propose a memetic algorithm for
the optimal winner determination problem in combinatorial
auctions. First, we investigate a new selection strategy based
on both fitness and diversity to choose individuals to parti-
cipate in the reproduction phase of the memetic algorithm.
The resulting algorithm is enhanced by using a stochastic
local search (SLS) component combined with a specific cros-
sover operator. This operator is used to identify promising
search regions while the stochastic local search performs an
intensified search of solutions around these regions. Expe-
riments on various realistic instances of the considered pro-
blem are performed to show and compare the effectiveness
of our approach.

1 Introduction

An auction is a market protocol for the coordination of agent
activities or for resource allocation in multi-agent systems.
The combinatorial auction (CA) is the mechanism that allows
agents (bidders) to bid on bundles of items (goods). It allows

D. Boughaci (B) · B. Benhamou
INCA/LSIS, CMI 39 rue Fredric Joliot-Curie,
13013 Marseille, France
e-mail: boughaci@cmi.univ-mrs.fr

B. Benhamou
e-mail: belaid.benhamou@cmi.univ-mrs.fr

D. Boughaci · H. Drias
LRIA/USTHB, BP 32 El-Alia, Beb-Ezzoaur,
16111 Algiers, Algeria
e-mail: dboughaci@usthb.dz

H. Drias
e-mail: hdrias@usthb.dz

the bidders to express both complementarity1 and
substitutability2 of their preferences within bids. The combi-
natorial auction avoids the risk to obtain incomplete bundles
since the seller allows bids on bundles of items.

Combinatorial auctions have been used in various domains
such as economics, game theory and task allocation in
multi-agent systems (Rothkopf et al. 1998; Fujishima et al.
1999; Leyton-Brown et al. 2000b; Boughaci and Drias 2005;
Collins et al. 2000). They have been also used in real-world
applications such as the sale of spectrum licenses in
America’s Federal Communications Commissions (FCC)3

auctions.
In this work, we are interested in the optimal winner deter-

mination problem (WDP) in combinatorial auctions. The
WDP is a complex problem, it is equivalent to the weigh-
ted set packing problem which is NP-Complete (Rothkopf
et al. 1998). Given a set of bundles bids, the winner deter-
mination problem is to decide which of the bids to accept.
The accepted bids must ensure optimality and feasibility. The
problem is expressed as follows:

1.1 The problem formalization

The optimal winner determination problem in combinatorial
auctions can be stated as follows:

Let us consider a set of m items, M = {1, 2, . . . , m} to be
auctioned and a set of n bids, B = {B1, B2, . . . , Bn}. A bid
B j is a tuple ≺S j , Pj� where S j is a set of items, and Pj is

1 Complementarity between items means that the value assigned to a
collection of goods is greater than the sum of the values assigned to its
individual’s elements.
2 Substitutability means that the value assigned to a collection of goods
is lower than the sum of the value attached to its individual’s elements.
3 http://wireless.fcc.gov/auctions.

123

http://wireless.fcc.gov/auctions.

906 D. Boughaci et al.

the global price of the items of S j (Pj � 0). Further, consider
a matrix am×n having m rows and n columns where ai j = 1
iff the item i belongs to S j , ai j = 0, otherwise. Finally the
decision variables are defined as follows: x j = 1 iff the
bid B j is accepted (a winning bid), and x j = 0 otherwise
(a losing bid).

The W D P is the problem of finding winning bids that
maximize the auctioneer’s revenue under the constraint that
each item can be allocated to at most one bidder. The W D P
can be modeled as the following integer program (Sandholm
1999):

Maximize
n∑

j=1

Pj .x j (1)

Under the constraints :
n∑

j=1

ai j x j ≤ 1 i ∈{1, . . . , m}

(2)

x j ∈ {0, 1} (3)

The objective function (1) maximizes the auctioneer’s
revenue which is equal to the sum of the prices of the winning
bids. The constraints (2) express the fact that each item can
be allocated to at most one bidder. Due to the free disposal
assumption, some items could be left uncovered. Now we
address the methodology that we propose to solve the W D P
problem.

1.2 The proposed methodology

Classical optimization methods such as A∗, for example,
encounters a great difficulty when faced with the challenge of
solving hard problems that bound in the real world. Metaheu-
ristics go beyond the classical techniques to provide methods
that are able to solve problems of practical significance in
reasonable time. In this work, we are interested in a meme-
tic algorithm for the WDP. The memetic algorithm (M A)
Moscato (1989) is an evolutionary metaheuristic like a gene-
tic algorithm. The M A approach is inspired by the Darwinian
principles on natural evolution and the notion of a meme of
Dawkins, which is defined as a cultural evolution unit that
performs local refinements (Dawkins 1976). The MA can be
viewed as a genetic algorithm combined with some kinds
of local search. Recent studies have shown that memetic
approaches can lead to high quality solutions more efficiently
than genetic algorithms (Hart William et al. 2005; Ong et al.
2007). MA has been successfully applied on many complex
problems (Boughaci et al. 2004; Burke et al. 2001; Caponio
et al. 2007; Franca et al. 2001; Ishibuchi and Narukawa 2004;
Ishibuchi et al. 2003; Neri et al. 2007; Ong et al. 2006; Tang
et al. 2007; Tang and Yao 2007; Zhou et al. 2007). The ability
of MA in solving large problems motivates our choice to use
memetic concepts to solve the WDP.

In this paper, we develop a new memetic algorithm for the
WDP. The main contributions of this work are summarized
in the following points:

1. The first point consists in generating individuals, the
proposed algorithm makes use of the random key enco-
ding (RK) introduced by Bean (1994) mainly to solve
ordering and scheduling problems. The RK encoding
mechanism allows to generate and manipulate feasible
individuals, then avoids additional penalties for invalid
individuals.

2. Secondly, we propose a new selection strategy based on
both fitness and diversity to choose a list of candidate
individuals in order to participate in the reproduction
phase and generate other individuals.

3. The third point consists in enhancing the proposed stra-
tegy by using a specific crossover operator combined
with a SLS as an improvement technique. Our objective
is to achieve a good compromise between intensification
and diversification in the search process.

4. The fourth point consists on the way to manage the popu-
lation. Our approach takes into account the diversity and
the fitness criteria to add a new individual to the current
collection. That is, the new individual is added to the
current collection when it improves either the quality or
the diversity of the collection. Otherwise, it is discarded.

5. Finally, to maintain a feasible allocation along the meme-
tic search process, we have defined a conflict graph where
the vertices are the bids and the edges connect bids that
cannot be accepted together. This graph is used to remove
any conflicting bids4 occurring in the current allocation
when new bids are added.

The rest of the paper is organized as follows. Section 2
describes the new memetic algorithm that we propose for
the W D P problem. Some experimental results are reported
in Sect. 3. Section 4 presents some previous works on the
W D P problem. Finally, Sect. 5 concludes the work.

2 The new memetic algorithm for the WDP problem

2.1 The principle

The memetic algorithm that we propose here starts with an
initial population P of individuals5 created randomly accor-
ding to the random key encoding (RK). It then selects a
collection C of individuals of size |C | 6 from the current
population in order to participate in the reproduction phase.

4 Conflicting bids are those sharing goods.
5 Individuals represent solution candidates for the WDP problem.
6 |C | is the cardinality of the collection C .

123

A memetic algorithm for the optimal winner determination problem 907

The collection C contains, on one hand, |C1| highest-
fitness individuals, that are selected from the population P
according to their fitness value. On the other hand, |C2| other
individuals from P − C1 are added to the collection C to
complete it. The individuals of C2 are called diverse indivi-
duals since they are the most distant from the individuals in
C . The diversity of an individual is measured by a similarity
function that computes the number of the same genes exis-
ting between two individuals. The novel strategy of selection
helps the algorithm to maintain at each generation a good
and diversified population which lead to a good compromise
between intensification and diversification. The size of the
collection C , |C | = |C1| + |C2|, is fixed by an empirical
study.

After selecting a set of good and diverse individuals, the
reproduction phase starts. Once two parents have been selec-
ted, their chromosomes are combined and a new individual
is generated. In order to locate solutions more effectively, the
mutation phase is replaced by a stochastic local search.

Unlike a classical genetic algorithm that replaces the bad
individuals by the fittest new ones, the memetic approach
inserts the new individual in the current collection of indi-
viduals according to both their fitness and diversity values.
A new individual is added to the best solutions of C1 and
the worst one is removed when the new individual improves
the quality of the current collection C . Otherwise, if the new
individual improves the diversity of the current collection C ,
then the individual in the collection having a big similarity
value is replaced by the new one.

2.2 The memetic algorithm components

The components of the memetic algorithm for solving the
WDP problem are defined as follows:

2.2.1 The individual representation

The individual representation is defined as a combination
of bids satisfying the target goals described in the objective
function. We use an integer vector A having a variable length
bounded by the number of bids n where each component Ai

receives the number of a winning bid. But when there is no
confusing, we consider in our explanation as components of
the vector A the winning bids themselves.

An individual is generated randomly according to the Ran-
dom Key Encoding that operates as follows: we generate n
real numbers sequenced by an r order, where n is the num-
ber of bids and the r order is a permutation of key values.
To generate an allocation, first we select the bid having the
highest order value and include it in the allocation. Secondly,
the bid having the second-highest order value is accepted if it
does not conflict with bids that are already in the allocation,
otherwise it is discarded. The process continues until having

examined the n bids. We obtain a subset of bids that may be
a feasible solution to the W D P .

Consider for instance a set of four items {1, 2, 3, 4} to
be auctioned and three bids {B1, B2, B3}. Each bid specifies
the price Pi that the bidder proposed to pay for a particular
bundle Si . Suppose that the proposed bids are the following:

Bid 1 : B1 = ({1, 2}, 500.25)

Bid 2 : B2 = ({1, 2, 3}, 678)

Bid 3 : B3 = ({3, 4}, 200.10)

To generate a feasible individual for this example, we
follow these steps:

1. First, generate three random real numbers, for example,
r = (0.65, 0.70, 0.80). The first bid to accept is the bid
B3 because it has the highest order value 0.80. The cur-
rent allocation receives the bid B3. A = (B3).

2. The bid having the second-highest order value is B2,
but it is discarded because it conflicts with the bid B3

7

currently in A.
3. Finally, the bid B1 can be added to the allocation A

because it does not conflict with the bids in A.

We obtain the allocation A = (B3, B1) that can be one
of the solutions for the W D P . The overall price is simply
the sum of prices of the winning bids =200.10 + 500.25 =
700.35. From the allocation A, we can say that the winning
bids are B3 and B1 and B2 is a losing bid.

2.2.2 The objective function

The objective process consists in finding a solution that
maximizes the bidder revenue. On other words we need to
compute a feasible allocation A that maximizes the objective
function. The objective function represent the fitness of the
collection A which is simply expressed by the overall price
of the winning bids of A. Formally, it is encoded by the for-
mula: fitness(A) = ∑L

i=1 Price(Bi) where L is the number
of bids in the allocation A.

2.2.3 The diversity/similarity function

This function computes the number of the same genes
between two individuals which represents their similarity.
It is used to choose a collection of diverse individuals that
will participate in the reproduction phase. It is clear that an
individual that has a small similarity value to the other indivi-
duals that are already in the current collection will contribute
to the diversity of the collection.

7 The bids B3 and B2 shares the same item 3.

123

908 D. Boughaci et al.

Given the similarity measure Sm(X, Y) between two
individuals X and Y , the similarity value SmC (X) of an indi-
vidual X to a set of individuals C is given by the formula:
SmC (X) = maxY∈C (Sm(X, Y))

Example 1 We illustrate in the following how to compute
the similarity value of individuals.

1. The similarity value between X = (B1, B2, B3) and
Y = (B3, B1, B4, B5) is equal to 2.

2. The similarity value between X = (B1, B2, B3) and
Y = (B3, B2, B5, B1) is equal to 3.

3. The similarity value between X = (B1, B2, B3) and the
set of the two individuals Y = (B3, B1, B4, B5) and
Z = (B3, B2, B5, B1) is equal to 3. It is equal to the
maximum between Sm(X, Y) and Sm(X, Z) values.

The diversity function is based on similarity comparison.
To compute the diversity value of a solution X to the col-
lection C requires calculating |C | diversity values which is
computationally expensive. This is one of the reasons why
the new selection strategy is more effective when applied to
a small collection of individuals.

2.2.4 The collection selection strategy

The selection strategy that we propose focuses on both diverse
and quality criteria to choose individuals. The individuals
represent solution candidates to be improved, and from which
other individuals are generated. These individuals are selec-
ted as follows:

1. First, we select from the current population P a set of
|C1| best individuals. The collection C receives initially
the C1 highest-fitness individuals.

2. Secondly, we compute for each individual V from the
rest of the population P − C1, its similarity value to the
current collection C . To ensure high level of diversity
in the collection, we select from P − C1, a number of
|C2| diverse individuals having small similarity values
to complete the collection C .

Finally, we obtain a collection C of C1 highest-fitness indi-
viduals and C2 diverse individuals.

2.2.5 The crossover operator

The crossover operator that we propose takes into conside-
ration the semantic of the individuals to obtain efficient chil-
dren. It takes two individuals (called parents) and produces
a new individual (called a child). From the first parent to the
end of the second parent, the operator decides which parent

will give its gene value to the child; and all conflicting bids
are discarded as shown in Algorithm 1.

Consider for example a set of five items M = {1, 2, 3, 4, 5}
to be auctioned and five bids B = {B1, B2, B3, B4, B5}. Each
bid specifies which price Pi that the bidder propose to pay
for a particular bundle of items. Suppose that the proposed
bids are the following:

Bid 1 : B1 = ({1, 2}, 500)

Bid 2 : B2 = ({2, 3}, 200)

Bid 3 : B3 = ({3, 5}, 300)

Bid 4 : B4 = ({4}, 100)

Bid 5 : B5 = ({1}, 100)

Now, let us consider two allocation parents X and Y such that
X = (B1, B4) and Y = (B3, B5, B4) having the revenues
600 and 500, respectively. To construct a child Z , we apply
the crossover operator that operates as follows:

To build the child Z , we take from the parent X , the bids
B1 and B4, and from the parent Y the bid B3. The bid B5 of
Y conflicts with the bid B1 of Z since they share the same
item 1, then it is discarded.

Finally, We obtain the child Z = (B1, B4, B3) having a
revenue = 500+100+300 = 900. The code of the crossover
operator is given in Algorithm 1.

Algorithm 1 : The crossover operator.
Require: two parents Parent1 and Parent2
Ensure: A child, Child
1: Child ⇐ φ

2: for each gene from the beginning of Parent1 to the end of the
Parent2 do

3: if (there is no conflict) then
4: Child ⇐ Child with a gene value included into it
5: end if
6: end for

return the individual Child .

2.2.6 The stochastic local search method

In order to explore the most important part of the whole
search space for attaining good solutions, we propose a sto-
chastic local search (SLS) technique. The SLS technique
starts with a generated individual V , then performs a cer-
tain number of local steps that consists in selecting a bid
to be added in the individual V . The added bid is selected
according to one of the two following criteria:

1. The first criterion (step 1 of Algorithm 2) consists in
choosing the bid in a random way with a fixed probability
wp > 0.

123

A memetic algorithm for the optimal winner determination problem 909

2. The second criterion (step 2 of Algorithm 2) consists in
choosing the best bid. That is, the one maximizing the
auctioneer’s revenue.

The process is repeated until a certain number of iterations
called maxiter is reached. At each step, a new bid is included
in the current allocation V and the conflicting bids of V are
removed from it. The SLS method is sketched in Algorithm 2.

Algorithm 2 : The SLS improved method.
Require: a WDP instance, a Child V , maxiter, wp
Ensure: an improved individual V
1: for I = 1 to maxiter do
2: r ⇐ random number between 0 and 1
3: if r ≺ wp then
4: bid = pick a random bid (*Step 1)
5: else
6: bid = pick a best bid; (*Step 2)
7: end if
8: Add bid in the current solution V ;
9: Remove all the conflicting bids from V ;
10: end for

return the best individual solution found.

The overall algorithm for the WDP is sketched in
Algorithm 3.

Algorithm 3 : The Memetic Algorithm for the WDP.
Require: an instance of WDP.
Ensure: an allocation of bids that maximizes the auctioneer’s revenue
1: Create the conflict graph
2: Generate randomly an initial population P according to the RK

encoding
3: Select a list of candidate individuals C from P using the new selec-

tion strategy
4: while (the maximum number of generations is not reached) do
5: repeat
6: Select two individuals from C
7: Apply the crossover to obtain a new individual V
8: Apply the SLS on V
9: if (V improves the quality of C) then
10: Add V to the C1 best individuals
11: Remove from C the worst one
12: else if (V improves the diversity of C) then
13: Add V to the C2 diverse individuals
14: Remove from C the less diversified one
15: end if
16: until (All the parent combinations are examined)
17: end while

return the best individual solution found.

2.2.7 The conflict graph

To ensure feasibility of allocations during the memetic search
process, we implemented a conflict graph having as a set of
vertices the bids, and its edges connect the pairs of conflicting
bids (bids sharing items).

3 Computational experiments

This section gives some experiment results. The source code
is written in C language and run on a Pentium-IV 2.8 GHz,
with 1GB of RAM.

To show the effectiveness of our approach, we compa-
red the memetic algorithm (MA) with a genetic algorithm
(GA) that we have implemented. The method GA uses a
standard selection strategy, a same specific crossover opera-
tor as the one used by M A and a mutation operator without
a local search. The selection strategy of GA is standard and
consists in a fitness-based process and its mutation operator
consists in selecting a random bid to be included in the current
individual. A comparative study with some other algorithms
of the state of the art concerning the WDP like Casanova
(Hoos and Boutilier 2000) and SAGII (Guo et al. 2006) is
also given in this section.

3.1 Benchmarks

To measure the performance of algorithms on the WDP pro-
blem, Leyton-Brown et al. developed the program combina-
torial auction test suite (CATS) (Leyton-Brown et al. 2000a)
to generate benchmarks. Recently Lau and Goh provided new
data of various sizes consisting of up to 1500 items and 1500
bids (Lau and Goh 2002). These data sets allow for several
factors such as a pricing factor, a bidder preference factor
and a fairness factor in distributing items among bids. The
CATS instances are easily solved by CPLEX and CABoB
(Sandholm et al. 2001). In this paper, we use the realistic data
pre-generated by Lau and Goh (2002) for which the CPLEX
was unable to find the optimal solution in reasonable time
(Guo et al. 2006). The pre-generated data set includes 500
instances and it is available at the Zhuyi’s home page.8 These
instances can be divided into 5 different groups of problems
where each group contains 100 instances.

If m is the number of items and n is the number of bids
then the details of each group are given as follows:

– REL-1000-500 : 100 instances from in 101 to in 200:
m = 500, n = 1000.

– REL-1000-1000 : 100 instances from in 201 to in 300:
m = 1000, n = 1000.

– REL-500- 1000 :100 instances from in 401 to in 500:
m = 1000, n = 500.

– REL-1500-1000 : 100 instances from in 501 to in 600:
m = 1000, n = 1500.

– REL-1500-1500 : 100 instances from in 601 to in 700:
m = 1500, n = 1500.

8 (http;//logistics.ust.hk/~zhuyi/instance.zip)

123

http;//logistics.ust.hk/~zhuyi/instance.zip

910 D. Boughaci et al.

 60000

 70000

 80000

 90000

 100000

 110000

 120000

(3,10) (6,6) (5,7) (5,10) (10, 3)

m
ea

n
re

ve
nu

e

REL-500-100REL-500-1000

REL-1000-500

REL-1000-1500

REL-1000-1000

REL-1500-1500

Fig. 1 The impact of |C | on the solution quality of the method MA

3.2 Parameters tuning

The adjustment of parameters of the MA algorithm is fixed
by an experimental study. The MA parameters are: the popu-
lation size (popsi ze), the size of the collection C (|C | =
|C1|+|C2|), the maximum number of generations (maxgen).
The local search improvement phase MA performs a number
of iterations at each call equals to maxiter , and the proba-
bility wp is fixed empirically to 0.3.

3.2.1 The impact of the size of the collection C on the
performance of MA

To examine the impact of |C | on the efficiency of the method
MA, several experiments have been done on the instances of
the five different groups.

Figure 1 shows the impact of the parameter |C | on the
solution quality of MA. We can see that for each group
of problems, the quality of solutions is improved when |C |
increases. Figure 2 shows that the CPU time of MA grows
when |C | increases.

3.2.2 The impact of maxiter on MA

Figure 3 (respectively Fig. 4) shows the impact of the maxi-
mum number of iterations (maxiter) of the SL S method
on solution quality (respectively on CPU time) of the M A
method.

We can see that in general both the solution quality and
CPU time grow when maxiter is increased.

0

 100

 200

 300

 400

 500

 600

 700

 800

(3,10) (6,6) (5,10)

C
P

U
 ti

m
e

in
 s

ec
on

d

REL-500-1000
REL-1000-1000

REL-1000-500
REL-1000-1500
REL-1500-1500

 (5,7)

Fig. 2 The impact of |C | on the efficiency of the MA

 60000

 70000

 80000

 90000

 100000

 110000

 120000

 REL-500-1000 REL-1000-500 REL-1000-1000 REL-1000-1500 REL-1500-1500

m
ea

n
re

ve
nu

e

maxiter=100
maxiter=60

maxiter=300
maxiter=500

Fig. 3 The impact of maxiter of SLS on the MA solution quality

0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

REL-500-1000 REL-1000-500 REL-1000-1000 REL-1000-1500 REL-1500-1500

C
P

U
 ti

m
e

in
 s

ec
on

d

maxiter=60
maxiter=100
maxiter=300
maxiter=500

Fig. 4 The impact of maxiter of SLS on the CPU time of MA

123

A memetic algorithm for the optimal winner determination problem 911

Table 1 The results of MA on
instances of the WDP for
different parameters

Test set #ins Max pop |C | Max Time µM A
Gen Size iter

REL-500-1000 100 100 100 3,10 100 12.36 64644.93

REL-1000-500 100 100 100 3,10 100 3.07 72219.16

REL-1000-1000 100 100 100 3,10 100 7.57 81565.07

REL-1000-1500 100 100 100 3,10 100 12.49 78963.38

REL-1500-1500 100 100 100 3,10 100 8.69 98177.20

REL-500-1000 100 200 60 6,6 60 17.72 65133.21

REL-1000-500 100 200 60 6,6 60 4.48 72596.19

REL-1000-1000 100 200 60 6,6 60 10.87 82149.41

REL-1000-1500 100 200 60 6,6 60 13.56 79114.62

REL-1500-1500 100 200 60 6,6 60 14.52 98401.08

REL-500-1000 100 300 300 5,7 300 159.30 66544.93

REL-1000-500 100 300 300 5,7 300 38.30 73562.89

REL-1000-1000 100 300 300 5,7 300 96.37 84199.99

REL-1000-1500 100 300 300 5,7 300 105.66 80173.42

REL-1500-1500 100 300 300 5,7 300 113.31 101035.52

REL-500-1000 100 500 500 5,10 500 477.22 67520.23

REL-1000-500 100 500 500 5,10 500 101.12 74149.49

REL-1000-1000 100 500 500 5,10 500 281.63 84926.39

REL-1000-1500 100 500 500 5,10 500 297.35 80805.98

REL-1500-1500 100 500 500 5,10 500 321.27 102234.80

3.2.3 The effective sets of parameters

To further illustrate how the different MA parameters are
adjusted, we give an overview of the experimental study per-
formed for different parameters. Table 1 shows the results
found MA on the five groups of instances where #ins cor-
responds to the number of instances, µM A corresponds to the
average revenue found by MA and time is the average CPU
time of the algorithm given in second.

We can see from Table 1 that in general better solutions are
found by MA When the values of the parameters increase,
and the MA process requires more CPU time.

3.3 Experimental results

We carried several experiments to evaluate the performance
of MA on the WDP and compared it to some other methods.

3.3.1 A comparison with the genetic algorithm (GA)

To show the improvement in the performance of MA when
the new selection strategy is used with the SLS improvement

technique, we compared it with GA on some instances of the
WDP.

The parameters of GA are fixed by an empirical study
as follows: maxgen = 100, popsi ze = 25, crossover
rate = 0.6 and a mutation rate = 0.1. The fixed parame-
ters values of MA are those for which a good compromise
between solution quality and CPU time is obtained (see the
bold lines of Table 1). They are set as follows: the collection
C includes five higher quality individuals and seven diver-
sified individuals, the population contains 300 individuals,
the number of generations is fixed to 100 and the number of
iterations of the local search is 300.

Tables 2, 3, 4, 5 and 6 depict the results of both MA and
GA on several instances of the WDP problem where sol
corresponds to the solution quality found by each algorithm
and t to the CPU time in seconds of the algorithm.

Tables 2 and 3 give the results concerning some instances
of the groups REL-1000-500 and REL-1000-1000 where we
can see that MA outperforms GA in both the solution quality
and CPU time.

Table 4 shows the results found by MA and GA on some
instances from the group REL-500-1000. We can also see
from this table that MA outperforms GA on all the checked

123

912 D. Boughaci et al.

Table 2 MA versus GA on some of the REL-1000-500 instances

Instances GA MA

t sol t sol

in101 336.90 42100.71 129.62 67101.93

in102 432.76 39641.22 132.18 67797.61

in103 338.89 43376.54 133.34 66350.99

in104 376.37 42790.65 135.14 64618.41

in105 331.31 40841.21 153.96 66376.83

in106 385.43 41770.07 140.96 65481.64

in107 379.15 38781.82 146.40 66245.70

in108 337.35 43881.51 161.03 74588.51

in109 336.89 42001.62 144.71 62492.66

in110 320.84 38632.49 149.01 65171.19

in111 320.50 43831.12 157.34 72969.16

in112 317.32 40026.36 151.40 66671.67

in113 323.59 40135.40 165.26 68901.96

in114 372.81 40685.71 160.00 64190.63

in115 417.56 39978.49 148.03 62052.25

in116 341.92 39152.03 162.54 64849.85

in117 352.71 41790.51 152.85 66466.39

in118 301.28 41559.48 159.06 69239.96

in119 314.40 38458.14 153.84 63968.32

in120 341.26 40275.37 166.82 68587.41

Table 3 MA versus GA on some REL-1000-1000 instances

Instances GA MA

t sol t sol

in201 697.65 56640.60 98.26 77499.82

in202 693.14 59029.76 106.68 90464.19

in203 562.29 59476.80 102.28 86239.21

in204 732.71 57671.10 97.40 81969.046

in205 573.98 59915.07 91.26 82469.19

in206 627.01 58674.13 93.99 86881.42

in207 667.75 60383.29 100.90 91033.51

in208 646.34 63052.38 101.29 83667.76

in209 655.09 59333.98 96.42 81966.65

in210 547.09 64762.35 97.78 85079.98

in211 866.21 58568.23 90.78 79746.14

in212 593.75 57672.75 103.45 81061.38

in213 690.20 59964.10 101.56 83549.21

in214 719.62 61385.50 95.06 81935.32

in215 624.50 60232.70 102.48 83663.13

in216 621.57 59365.35 100.93 83286.63

in217 792.65 62209.26 90.34 83125.25

in218 571.62 61195.15 105.06 86936.78

in219 734.35 62981.18 93.35 88054.21

in220 544.40 56908.39 104.35 86937.85

Table 4 MA versus GA on some of the REL-500-1000 instances

Instances GA MA

t sol t sol

in401 1193.89 56437.68 37.07 72948.07

in402 1272.06 56637.00 37.20 71454.78

in403 1299.01 57024.78 38.81 74843.96

in404 1088.39 61123.14 38.78 78761.68

in405 1030.96 58852.75 39.29 72674.25

in406 1318.40 58714.53 38.09 71791.03

in407 1021.79 58239.19 40.95 73935.28

in408 1348.82 59185.08 39.07 72580.04

in409 1342.28 54950.59 36.28 68724.53

in410 1005.54 59764.76 41.90 71791.57

in411 1204.06 57763.20 38.76 71200.55

in412 1078.70 58708.49 37.17 75292.63

in413 1072.39 56028.32 40.95 73350.87

in414 1231.54 60838.76 41.26 77146.36

in415 1163.98 57543.26 36.32 71926.73

in416 915.70 58341.97 39.81 72520.66

in417 1050.37 58246.95 39.29 74680.99

in418 1232.98 57528.04 40.00 71404.84

in419 1037.37 56596.05 38.45 70472.84

in420 1240.54 60112.81 37.65 71381.02

in421 918.68 58766.12 38.78 75694.94

in422 983.56 61292.74 37.36 72850.90

in423 1377.53 60477.81 36.17 68134.35

in424 1030.62 60185.16 43.26 73196.15

in425 874.73 56802.95 41.35 73258.59

in426 1224.12 59085.87 39.67 74524.80

in427 1114.67 62091.74 36.96 73147.95

in428 986.89 61519.22 38.64 76554.58

in429 1015.65 58450.56 39.87 75540.96

in430 974.25 57753.19 39.60 76264.92

instances. MA finds better quality solutions in shorter time
than GA.

Table 5 summarizes the results found by MA and GA on
some instances of the group REL-1500-1500. Here too, we
can see that MA gives better solutions than GA in shorter
CPU time.

Table 6 shows the results of MA and GA on some ins-
tances of the group REL-1500-1000. We can remark that the
solutions found by MA are better than those found by GA.

From Tables 2, 3, 4, 5 and 6, it can be seen that GA usually
fails to find good solutions to the WDP problems for all the
checked instances. MA showed a same behavior, it always
outperforms GA in both solution quality and efficiency for
the different groups of instances.

Figures 5 and 6 confirmed the effectiveness of MA when
compared to GA. MA succeeds to find better solutions than

123

A memetic algorithm for the optimal winner determination problem 913

Table 5 MA versus GA on some of the REL-1500-1500 instances

Instances GA MA

t sol t sol

in601 1489.40 73665.13 110.62 99044.32

in602 1810.56 76006.38 114.18 98164.23

in603 1685.07 71585.28 110.71 94126.96

in604 1627.37 71958.50 110.60 103568.86

in605 1634.68 71348.06 122.40 102404.76

in606 1656.29 72505.09 107.79 104346.07

in607 1625.37 72162.60 113.26 105869.44

in608 1625.46 76189.79 109.15 95671.77

in609 1581.18 71664.87 111.12 98566.94

in610 1572.06 72393.14 120.17 102468.60

in611 1513.62 73978.10 107.98 98974.64

in612 1383.70 73874.42 122.81 106056.07

in613 1520.17 74326.29 120.14 93289.85

in614 1238.04 68594.13 122.51 97510.72

in615 1596.39 73182.27 108.67 101770.70

in616 1449.82 77085.42 109.65 100169.53

in617 1467.43 78579.03 114.98 100653.88

in618 1373.21 71538.31 120.71 102378.27

in619 1491.25 72949.51 115.00 97306.30

in620 1334.39 75816.58 115.79 102951.68

Table 6 MA versus GA on some of the REL-1500-1000 instances

Instances GA MA

t sol t sol

in501 1624.84 64961.36 107.82 79132.03

in502 1707.18 56954.75 108.71 80340.76

in503 1450.79 59161.13 114.15 83277.71

in504 1662.53 59691.51 116.11 81903.02

those of GA in less CPU time. This difference in perfor-
mances between MA and GA is due mainly to the inherent
premature convergence of the GA algorithm.

The effectiveness of MA is due to the good combination
between diversification and intensification which allows a
better exploration of the search space and then locate good
solutions.

3.3.2 Comparison of MA with Casanova and SAGII

Table 7 shows the results of Casanova, SAGII and MA on
some WDP instances where sol corresponds to the solution
quality found by each algorithm and t to the CPU time of the
algorithm given in second.

 40000

 50000

 60000

 70000

 80000

 90000

 100000

 110000

 120000

 REL-500-1000 REL-1000-1000 REL-1000-500 REL-1000-1000 REL-1500-1500

m
ea

n
re

ve
nu

e

GA
MA

Fig. 5 A comparison of the solution quality between GA and MA

 0

 500

 1000

 1500

 2000

 REL-500-1000 REL-1000-1000 REL-1000-500 REL-1000-1500 REL-1500-1500

C
P

U
 ti

m
e

in
 s

ec
on

d

GA
MA

Fig. 6 A comparison of CPU time between GA and MA

The numerical results show that MA performs better than
Casanova. It finds better solutions with less CPU time on all
the checked instances.

The SAGII method has a good performance and is better
than MA on some of the instances, and MA is better than
SAGII on some other instances. They seem to be comple-
mentary and in average their performances compare on these
instances.

3.3.3 A further comparison of MA with Casanova
and SAGII

Here we summarizes the results of the methods on the 500
instances of the five groups.

Table 8 (respectively Table 9) shows the numerical results
where the column µX corresponds to the arithmetic average
revenue obtained by the method X on the 100 instances of

123

914 D. Boughaci et al.

Table 7 Casanova, SAGII and
MA on some WDP instances

Instances Casanova SAGII MA

sol t sol t sol t

in202 52048.73 113.55 86179.64 45.19 90464.19 106.68

in208 51340.27 111.16 83500.82 44.80 83667.76 101.29

in227 54998.44 117.16 86747.23 44.58 83667.76 101.29

in207 51003.39 132.92 88513.37 44.58 91033.51 100.90

in501 53992.12 164.94 85101.43 71.05 79132.03 107.82

in525 58365.02 164.66 88086.29 67.56 85143.13 109.96

in593 58527.76 171.72 82046.16 69.03 80304.07 106.89

in594 55821.04 171.80 82341.22 68.11 86112.90 103.56

in600 56001.82 174.25 83772.91 67.09 82555.91 95.46

in664 65543.41 161.11 104346.07 90.73 102905.25 123.81

in688 64962.00 166.88 106056.08 90.95 103742.53 114.81

in694 70140.69 170.56 105699.93 91.09 108114.12 107.87

in699 65026.40 171.70 103252.95 90.42 103762.70 120.71

in700 62404.80 160.98 105462.71 91.22 101510.20 117.42

Table 8 MA versus Casanova
Test set #ins Casanova MA δ%

Time µ Time µ

REL-500-1000 100 119.46 37053.78 159.30 66544.93 44.32

REL-1000-500 100 57.74 51248.79 38.30 73562.89 30.33

REL-1000-1000 100 111.42 51990.91 96.37 84199.99 38.25

REL-1000-1500 100 168.24 56406.74 105.66 80173.42 29.64

REL-1500-1500 100 165.92 65661.03 113.31 101035.52 35.01

Table 9 MA versus SAGII Test set #ins SAGII MA δ%

Time µ Time µ

REL-500-1000 100 38.06 64922.02 477.22 67520.23 3.9

REL-1000-500 100 24.46 73922.10 101.12 74149.49 0.3

REL-1000-1000 100 45.37 83728.34 281.63 84926.39 0.5

REL-1000-1500 100 68.82 82651.49 297.35 80805.98 −0.2

REL-1500-1500 100 91.78 101739.64 321.27 102234.80 0.4

each group, the column time gives the average time in second
and δ is given by the expression (µM A − µCasanova)/µM A

(respectively (µM A − µS AG I I)/µM A).
We recall that SAGII uses the pre-processor that had been

used in Guo et al. (2006) and Sandholm et al. (2001). This
pre-processing phase usually reduce the search space and
improves the efficiency of the method. We believe that adding
a such pre-processing to MA should improve its efficiency.

The results of Table 8 show that MA finds better solu-
tions than Casanova in shorter time and we can see that the
difference between the performance of MA and Casanova
is even great. MA always gives a 29–44% improvement to
Casanova.

To compare MA with SAGII, we have increased the
parameter values of MA as follows: we consider a collection
C of five high quality individuals and 10 diversified ones, a
population of 500 individuals, a number of 500 generations
and 500 iterations for the local search process. The results
are given in Table 9.

Although the sophisticate Branch and Bound and the pre-
processing tools used in SAGII, we can see that MA improves
slightly (0.2–4%) in solution quality the SAGII method. But
SAGII remains efficient on these instances and is faster than
MA.

To further illustrate the results of Tables 8 and 9, we consi-
der the comparative curves of Fig. 7 to show and confirm the

123

A memetic algorithm for the optimal winner determination problem 915

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 100000

 110000

 120000

REL-500-1000 REL-1000-500 REL-1000-1000 REL-1000-1500 REL-1500-1500

m
ea

n
re

ve
nu

e

Casanova
SAGII
MA

Fig. 7 A comparison of the solution quality of Casanova, SAGII and
MA

effectiveness of our approach in reaching good quality solu-
tions for the checked instances. These curves confirm that
MA significantly outperforms Casanova on all the checked
instances and we observe a slight improvement in favor of
MA when comparing it to SAGII.

In overall, the memetic approach outperforms significantly
both GA and Casanova on almost all of the checked instances
of the WDP problem.

We also remarked that MA compares well with SAGII in
average and produces quite similar results in terms of the
solution quality. The effectiveness of the memetic approach
is due to the good combination of diversification and intensi-
fication that leads to a better exploration of the search space.

4 Review of related works

Several methods have been proposed to solve the winner
determination problem, among them the primary contribu-
tion of Thomas Sandholm (Sandholm 2006). These methods
can be divided into two categories: exact and inexact methods.

The exact algorithms, given enough time, permit to find
an optimal solution and prove its optimality. The well known
exact algorithms for the WDP are based on the Branch-
and-Bound method (Sandholm et al. 2001; Sandholm and
Suri 2000; Fujishima et al. 1999).

The inexact methods, given enough time, may find optimal
solutions, but they cannot be used to prove the optimality of
any solution they find. In general, the inexact methods are
based on heuristics or metaheuristics and they are shown to
be useful in searching solutions for very large instances.

Several exact algorithms to search optimal solutions for
the WDP problem have been developed. Among them,
the iterative deepening A∗ (Sandholm 1999), the branch-
on-items (BoI) (Sandholm and Suri 2000), the branch on

bids (BoB) (Sandholm and Suri 2000), and the combinato-
rial auctions BoB (CABoB) (Sandholm et al. 2001). These
methods can find reasonable optimal allocation with hun-
dreds of items. The combinatorial auction structural search
(CASS) is a branch-and-bound algorithm for the WDP
proposed by Fujishima et al. (1999). Leyton-Brown et al.
(2000b) proposed combinatorial auctions multi-unit search
(CAMUS) which is a new version of the CASS for
determining the optimal set of bids in general multi-unit com-
binatorial auctions. Rothkopf et al. (1998) used a dynamic
programming approach to solve the problem, Nisan (2000)
proposed a linear programming method and Andersson et al.
(2000) proposed another exact algorithm based on integer
programming. Holland and O’sullivan used constraint pro-
gramming to solve a particular Vickrey combinatorial auction
(Holland and O’sullivan 2004).

On other hand, different inexact methods are studied for
the WDP. Among them Casanova (Hoos and Boutilier 2000)
and the hybrid simulated annealing (Guo et al. 2004, 2006).
Casanova is a stochastic local search method proposed by
Hoos and Boutilier (2000). The principle of the method can
be summarized as follows: the algorithm starts with an empty
allocation where all items are assigned to a dummy bid and all
real bids are unsatisfied. Then, it performs a certain number of
local steps that consists in selecting unsatisfied bids to include
in the current allocation and in removing any conflicting bids
that are originally in the allocation. At each step, the bids are
selected as follows: the method selects with a probability wp
(walk probability) an unsatisfied bid and with a probability
1 − wp, it selects a bid ‘greedily’ by ranking all the bids
according to their bid profit divided by the number of items
covered by the bid in decreasing order. Therefore, either the
highest ranked bid B1 or the second highest bid B2 is included
into the allocation. Otherwise it inserts B2 with a probability
np (novelty probability) and B1 with a probability 1 − np as
it is done in the adaptNovelty for the satisfiability problem
(Hoos 2002).

Recently, a new heuristic based on the hybrid simulated
annealing, SAGII (Guo et al. 2006) is proposed to find nearly
optimal solutions to the WDP problem. The results are very
competitive and the new method outperforms dramatically
the Casanova method. The proposed simulated annealing
method for the WDP makes use of a pre-processing and three
local moves. The first move is a Branch-and-Bound applied
to a subset of items and bids of the current allocation. The
second move is a greedy local search used to find unselec-
ted bids which do not conflict with bids that are already in
the current allocation and which have a larger greedy value.
The greedy value corresponds to the bid profit. To discard
conflicting bids, an additional penalty function is introdu-
ced. The third move is “1-2 exchange” that randomly picks
one or two unselected bids to be added into the current allo-
cation and removes any conflicting bids that are originally

123

916 D. Boughaci et al.

in the current allocation. The method starts with an empty
allocation. Then the pre-processing runs once to exclude bids
that can lead to suboptimal solutions. The pre-processing
may speed up the method. The Branch-and-Bound run with
a probability p1 = 0.2. The greedy move is applied with a
probability p2 = 0.07, and the “1–2 exchange” move run
with a probability 1 − p1 − p2. The process that includes
the Branch-and-Bound, the greedy and the “1–2 exchange”
moves is repeated until the maximal a number of iterations
is reached. For more details about auctions and the WDP, the
reader can refer to (McAfee and McMillan 1987; Sandholm
2006; Vries de and Vohra 2003.

5 Conclusion

A memetic algorithm MA for the winner determination pro-
blem (WDP) is proposed in this paper and its different com-
ponents were described. The method MA uses a random key
encoding mechanism to generate feasible combinations of
bids. The proposed algorithm incorporates a novel selection
strategy and a specific crossover operator. The resulting algo-
rithm is enhanced by using a stochastic local search (SLS)
component. Our objective is to achieve a good compromise
between intensification and diversification in the search pro-
cess. The combination of the intensification and the diversi-
fication strategies leads to a better exploration of the search
space and increases the probability to find good solutions.
The proposed method is evaluated on several realistic ins-
tances and compared with GA, SAGII and Casanova. The
obtained results are very encouraging.

To improve our algorithm on quality, new features will
be integrated into the proposed algorithm such as the com-
bination of MA and a Branch-and-Bound exact method. Our
purpose here, is to find a good compromise when combining
exact approaches with inexact ones. To improve on time,
pre-processors will be added to exclude bids that can lead to
suboptimal solutions.

References

Andersson A, Tenhunen M, Ygge F (2000) Integer programming for
combinatorial auction winner determination. In: Proceedings of
4th international conference on multi-agent systems. IEEE Com-
puter Society Press, New York, pp 39–46

Bean JC (1994) Genetics and random keys for sequencing and optimi-
zation. ORSA J Comput 6(2):154–160

Boughaci D, Drias H (2005) Taboo Search as an Intelligent Agent for
Bid Evaluation. Int J Internet Enter Manage (IJIEM) 3(2):170–186

Boughaci D, Drias H, Benhamou B (2004) Solving Max-SAT problems
using a mimetic evolutionary metaheuristic. In: Proceedings of
2004 IEEE CIS 2004, pp 480–484

Burke E, Cowling P, DeCausmaecker Berghe GV (2001) A meme-
tic approach to the nurse rostering problem. Appl Intell 15(3):
199–214

Caponio A, Cascella GL, Neri F, Salvatore N, Sumner M (2007)
A fast adaptive memetic algorithm for online and offline control
design of pmsm drives. IEEE Trans Syst Man Cybern B 37(1):
28–41

Collins J, Sundareswara R, Gini M, Mobasher B (2000) Bid selection
strategies for multi-agent contracting in the presence of scheduling
constraints. In: Moukas A, Sierra C, Ygge F (eds) Agent-mediated
electronic commerce II. Lecture Notes in AI, vol 1788. Springer,
Heidelberg

Dawkins R (1976) The selfish gene. Oxford University Press, Oxford
Franca PM, Mendes A, Moscato P (2001) A memetic algorithm for the

total tardiness single machine scheduling problem. Eur J Oper Res
132(1):224–242

Fujishima Y, Leyton-Brown K, Shoham Y (1999) Taming the computa-
tional complexity of combinatorial auctions: optimal and approxi-
mate approaches. In: Sixteenth international joint conference on
artificial intelligence, pp 48–53

Guo Y, Lim A, Rodrigues B, Zhu Y, (2004) Heuristics for a
brokering set packing problem. In: Proceedings of eighth inter-
national symposium on artificial intelligence and mathematics,
pp 10–14

Guo Y, Lim A, Rodrigues B, Zhu Y (2006) Heuristics for a bidding
problem. Comp Oper Res 33(8):2179–2188

Hart William E, Krasnogor N, Smith JE (eds) (2005) Recent Advances
in Memetic Algorithms. In: Series: studies in fuzziness and soft
computing, vol 166

Holland A , O’sullivan B (2004) Towards fast vickrey pricing using
constraint programming. Artif Intell Rev 21(3–4):335–352

Hoos HH (2002) An Adaptive Noise Mechanism for WalkSAT. In: Pro-
ceedings of the 19 th national conference on artificial intelligence
AAAI/IAAI 2002, pp 655–660

Hoos HH, Boutilier C (2000) Solving combinatorial auctions using
stochastic local search. In: Proceedings of the 17th national confe-
rence on artificial intelligence, pp 22–29

Lau HC, Goh YG (2002) An intelligent brokering system to support
multi-agent web-based 4th-party logistics. In: Proceedings of the
14th international conference on tools with artificial intelligence,
2002, pp 54–61

Ishibuchi H, Narukawa K (2004) Some issues on the implementation
of local search in evolutionary multi-objective optimization. Proc
GECCO 1:1246–1258

Ishibuchi H, Yoshida T, Murata T (2003) ’Balance between genetic
search and local search in memetic algorithms for multi-objective
permutation flowshop scheduling. IEEE Trans Evolut Comput
7(2):204–223

Leyton-Brown K, Pearson M, Shoham Y (2000a) Towards a universal
test suite for combinatorial auction algorithms. In: ACM confe-
rence on electronic commerce, pp 66–76

Leyton-Brown K, Tennenholtz M, Shoham Y (2000b) An algorithm
for multi-unit combinatorial auctions. In: Proceedings of the 17th
national conference on artificial intelligence, Austin, Games-2000,
Bilbao, and ISMP-2000, Atlanta

McAfee R, McMillan PJ (1987) Auctions and bidding. J Econ Lit
25:699–738

Moscato P (1989) On evolution, search, optimization, genetic algo-
rithms and martial arts: towards memetic algorithms. In: Caltech
concurrent computation program, C3P Report 826

Neri F, Toivanen J, Cascella G, Yew-Soon Ong (2007) An adaptive
multimeme algorithm for designing HIV multidrug therapies.
IEEE/ACM Trans Comput Biol Bioinf 4(2):264–278

Nisan N (2000) Bidding and allocation in combinatorial auctions. In:
Proceedings of ACM conference on electronic commerce (EC’00).
ACM SIGecom, ACM Press, Minneapolis, October, pp 1–12

123

A memetic algorithm for the optimal winner determination problem 917

Ong YS, Lim MH, Zhu N, Wong KW (2006) Classification of adaptive
memetic algorithms: a comparative study. IEEE Trans Syst Man
Cybern B 36(1):141–152

Ong YS, Krasnogor N, Ishibuchi H (eds) (2007) Special Issue on Meme-
tic Algorithms. IEEE Trans Syst Man Cybern B 37(1)

Rothkopf MH, Pekee A, Ronald M (1998) Computationally mana-
geable combinatorial auctions. Manag Sci 44(8):1131–1147

Sandholm T (1999) Algorithms for optimal winner determination in
combinatorial auctions. Artif Intell 135(1–2):1–54

Sandholm T (2006) Optimal winner determination algorithms. In:
Cramton P et al (ed) Combinatorial auctions. MIT Press,
Cambridge

Sandholm T, Suri S, (2000) Improved optimal algorithm for combi-
natorial auctions and generalizations. In: Proceedings of the 17th
national conference on artificial intelligence, pp 90–97

Sandholm T, Suri S, Gilpin A, Levine D (2001) CABoB: a fast optimal
algorithm for combinatorial auctions. In: Proceedings of the inter-
national joint conferences on artificial intelligence, pp 1102–1108

Tang M, Yao X (2007) A memetic algorithm for VLSI floorplanning.
IEEE Trans Syst Man Cybern B 37(1):62–69

Tang J, Lim MH, Ong YS (2007) Diversity-adaptive parallel memetic
algorithm for solving large scale combinatorial optimization pro-
blems. Soft Comput 11(9):873–888

Vries de S, Vohra R (2003) Combinatorial auctions a survey. INFORMS
J Comput 15:284–309

Zhou Z, Ong YS, Lim MH, Lee BS (2007) Memetic algorithm using
multi-surrogates for computationally expensive optimization pro-
blems. Soft Comput 11(10):957–971

123

	A memetic algorithm for the optimal winnerdetermination problem
	Abstract
	1 Introduction
	1.1 The problem formalization
	1.2 The proposed methodology

	2 The new memetic algorithm for the WDP problem
	2.1 The principle
	2.2 The memetic algorithm components

	3 Computational experiments
	3.1 Benchmarks
	3.2 Parameters tuning
	3.3 Experimental results

	4 Review of related works
	5 Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

