
Soft Comput (2009) 13:321–331
DOI 10.1007/s00500-008-0332-x

FOCUS

A data embedding scheme for color images based on genetic
algorithm and absolute moment block truncation coding

Chin-Chen Chang · Yi-Hui Chen · Chia-Chen Lin

Published online: 27 May 2008
© Springer-Verlag 2008

Abstract Recently, embedding a large amount of secret
data into gray-level and color images with low distortion
has become an important research issue in steganography. In
this paper, we propose a data embedding scheme by using
a well-known genetic algorithm, block truncation code and
modification direction techniques to embed secret data into
compression codes of color images to expand the variety of
cover media. In the scheme, the common bitmap generation
procedure of GA-AMBTC has been modified to speed up the
hiding procedure. Two embedding strategies are proposed to
hide secret data into the common bitmap and the quantiza-
tion values in each block of the cover image. Experimental
results confirm that the proposed scheme can provide high
data capacity with acceptable image quality of the stego-
images. Moreover, the compression ratio of the scheme is
exactly the same as that of GA-AMBTC so that attackers
cannot detect any trace of hidden data from the size of the
modified compressed result.

Keywords Data embedding · Steganography · Genetic
algorithm · Block truncation code · Modification direction

C.-C. Chang (B)
Department of Information Engineering and Computer Science,
Feng Chia University, 100 Wenhwa Rd., Seatwen,
Taichung 40724, Taiwan, R.O.C.
e-mail: ccc@cs.ccu.edu.tw

C.-C. Chang · Y.-H. Chen
Department of Computer Science and Information Engineering,
National Chung Cheng University, Chiayi 621, Taiwan, R.O.C.
e-mail: chenyh@cs.ccu.edu.tw

C.-C. Lin
Department of Computer Science and Information Management,
Providence University, Taichung 43301, Taiwan, R.O.C.
e-mail: mhlin3@pu.edu.tw

1 Introduction

Due to the emergence and flourishing of network technolo-
gies, the Internet has become a very popular means of
communication. Although data can be transmitted over the
Internet without geographic restriction, the transmitted data
are at risk. While legitimate senders and receivers can easily
transmit information, malicious attackers can easily grab or
tamper transmitted data from the Internet, especially valuable
data, such as military maps and circuit diagrams. Therefore,
security has become an increasingly important issue.

The two kinds of techniques that are generally used to
protect data are cryptography and data hiding. In the former
technique, the digital data or secret data are encrypted by the
sender to become ciphers using a public key cryptography
system such as RSA (Rivest et al. 1978). Then, the sender
transmits the ciphers to the receiver side over the Internet.
Later, the receiver can decrypt the ciphers by using a corre-
sponding secret key to obtain the correct data. However, the
ciphers are usually meaningless, so attackers may further test
these data because they appear suspicious.

In the data hiding technique, the senders embed the secret
data into a digital media called the cover image, such as the
“Mona Lisa,” to become a stego-image. Then the senders
send this stego-image to the receiver side. Later, receivers
can retrieve the secret data from the digital media. Because
the stego-image is often imperceptible and statistically unde-
tectable to attackers, the embedded secret information can be
transmitted securely over the Internet.

Once data embedding is used for secret transmissions, two
crucial requirements must be satisfied. One is minimizing
the degradation in image quality after secret data is embed-
ded. The other is making the hiding capacity of cover media
as large as possible. Basically, the image quality of stego-
image and hiding capacity are tradeoffs, so that higher hiding

123

322 C.-C. Chang et al.

capacity often causes greater distortion in the cover medium,
and vice versa. There is currently many literatures on not only
embedding large amounts of secret data into cover images but
also on obtaining stego-images of reasonable image quality
(Bender et al. 1996; Chan and Cheng 2004; Chang et al. 2003,
2006; Chuang and Chang 2006; Cox et al. 1997; Du and Hsu
2003; In et al. 1999; Konstantinides et al. 1999; Lin and Tai
1998; Lu et al. 2000; Lu and Sun 2000; Nasrabadi and King
1988; Pai and Ruan 2006; Pan et al. 2004; Pfitzman 1996;
Rivest et al. 1978; Shie et al. 2006; Shieh et al. 2004; Tai
et al. 1998; Zhang and Wang 2006; Lee and Chen 2000).

Up to now, data embedding techniques can be roughly
divided into three categories: the spatial-domain manner
(Bender et al. 1996; Chan and Cheng 2004; Chang et al.
2003; Walker 1996), the frequency-domain manner (Du and
Hsu 2003; In et al. 1999; Nasrabadi and King 1988) and
the compression-domain manner (Cox et al. 1997; Lu et al.
2000; Rivest et al. 1978). For the spatial-domain manner,
secret data are mixed directly into the distributed pixels. The
least significant bit (LSB) (Bender et al. 1996; Chan and
Cheng 2004; Chang et al. 2003; Walker 1996; Wang et al.
2001) is the general approach to hide the secret information
into the LSBs of each pixel of a cover image directly owing
to their lower distortion in image quality. For the frequency-
domain manner, the cover image must first be transformed
into frequency coefficients by using a frequency-oriented
mechanism such as discrete Fourier transformation (DFT)
(Walker 1996), discrete cosine transformation (DCT) (Chen
et al. 1999), discrete wavelet transformation (DWT) (Mun-
teanu et al. 1999), and so on. Later, the secret data are com-
bined with the relative coefficients in the frequency-form
image. Because the human eye is more sensitive to the lower-
frequency band, secret data are often embedded in the higher-
frequency band to obtain reasonable degradation (Du and
Hsu 2003; In et al. 1999; Nasrabadi and King 1988). For the
compression-domain manner, the secret data are embedded
into the compression codes. Recently, the compression codes
generated by well-known image compressions such as JPEG
(Hu and Chang 1999; Kim 1992; Kamstra and Henk 2005),
vector quantization (VQ) (Cox et al. 1997; Lu et al. 2000;
Rivest et al. 1978), block truncation coding (BTC) (Chang
and Hu 1999; Chen and Tai 1999; Hsu and Wu 1999) and
similar methods are used for data embedding to extend the
variety of cover images.

Lin and Wang (1999) embedded secret data into VQ com-
pressed images. In their approach, a codeword in a code-
book can find its similar codeword to become a similar pair,
and therefore a codebook can be broken down into sev-
eral similar pairs. Then these similar pairs are assigned to
two sub-codebooks titled the “0-sub-codebook” and “1-sub-
codebook”, respectively. In this manner, each codeword in a
sub-codebook can always find one codeword from the other
sub-codebook that is the most similar and vice versa. Later,

the codeword obtained by computing the least Euclidean
distance from “0-sub-codebook” is selected to encode the
current block when the secret bit is 0. Conversely, the cur-
rent block is encoded by using the other codeword which is
in the same pair but belongs to “1-sub-codebook” when the
secret bit is 1.

Due to the fact that Lin et al.’s scheme only hides one bit
per block, Lu and Sun (2000) extended Lin et al.’s method
to partition the codebook into 2k sub-codebooks to embed
k bits into a single index. Du and Hsu (2003) proposed an
adaptive data hiding scheme that varied their hiding capac-
ity with the amount of secret data. The advantages of Lu and
Sun’s scheme include both an increase in capacity and reduc-
tion of cover image distortion; the weakness of their scheme
is that their embedding procedure is very time-consuming
(Shie et al. 2006), especially because the size of a secret bit
stream can be up to 64 kb.

To deal with this drawback, Shie et al. (2006) applied side
match vector quantization (SMVQ) (Kim 1992; Lin and Shie
2000) with the concept of prediction to propose an adap-
tive data hiding scheme. To maintain the visual quality of
the stego-images, Shie et al. used two thresholds, THvar and
THsmd, to adaptively select enough qualified smooth blocks
from the cover image to hide secret data. However, the image
quality of the stego-image in their scheme depends to a large
extent on the number of smooth blocks in a cover image.
Although larger thresholds allow a larger number of secret
data to be hidden, they also result in larger degradation of
a cover image. Chang et al. (2006) presented a reversible
data hiding technique for SMVQ. To achieve reversibility,
Chang et al. sorted the codebook and used adjacent indices
to approximate codewords for conveying secret messages.

In addition to the VQ compression domain, Chuang and
Chang (2006) proposed a data embedding scheme based on
BTC for gray scale images in 2006. In their scheme, they
first used a 4 × 4 BTC to compress a gray scale cover image
directly. Therefore, the output of BTC-encoded block con-
tains two quantization values and one bitmap. Then they pre-
defined a threshold to classify the type of each BTC-encoded
block as smooth or complex. Subsequently, they embedded
the secret data into the bitmap of the selected BTC-encoded
blocks. Although they proposed a new embedding scheme
for BTC compressed images, it was only designed for gray
scale images and the compression ratio was still approxi-
mately 0.25 bpp, which is the same as that of the original
BTC but less than those of BTC’s variants.

Because there are already several existing variants of BTC
such as AMBTC (Chen and Tai 1999) and GA-AMBTC (Tai
et al. 1998) which aim at improving the compression ratio
of BTC, in this paper, we propose a data hiding scheme for
color images based on GA-AMBTC to expand the variety
of cover media. To provide sufficient background knowl-
edge of the embedding scheme, the details of BTC, AMBTC,

123

A data embedding scheme for color images based on GA-AMBTC 323

and GA-AMBTC are described in Sect. 2. In addition to
GA-AMBTC, the concept of modification direction (Zhang
and Wang 2006) is applied to enhance hiding capacity of the
proposed scheme. The reason we chose GA-AMBTC is for
its effectiveness in improving the compression ratio of BTC.
The major reason modification direction is chosen is for its
low distortion after pixel modifications. Detailed descriptions
of the embedding and extracting phases appear in Sects. 3.1
and 3.2, respectively. Experimental results confirm that the
proposed scheme can provide good image quality, hiding
capacity and compression ratio.

The rest of this paper is organized as follows. In Sect. 2, the
BTC, AMBTC and GA-AMBTC data compression schemes
are described. The proposed data embedding scheme with
high hiding capacity, good image quality and high compres-
sion ratio is presented in Sect. 3. Several experimental results
are illustrated and discussed in Sect. 4. Finally, concluding
remarks as well as some suggestions for future work appear
in Sect. 5.

2 Related works

Block truncation coding (BTC) (Chuang and Chang 2006) is
a technique of block-by-block image compression. To encode
a block, BTC computes the average for the current block first
and then uses this average to produce a bitmap for the cur-
rent block. In the bitmap, the indicator 1 is notated when the
pixel value of this block is larger than the block’s average.
Otherwise, the indicator is denoted as 0. Subsequently, BTC
derives two quantization values, x̄0 and x̄1, by averaging the
pixels whose indicators are 0 and 1 in the bitmap, respec-
tively. Generally, for each block, the sender sends a bitmap
and two quantization values to the receiver. Later, the receiver
can decode a pixel with x̄0 when its corresponding indicator
is denoted as 0. Otherwise, the pixel is reconstructed by x̄1.

As an example, a block of the image is shown in Fig. 1a.
The average of this block x̄ is 124 and the corresponding bit-
map for this block is shown in Fig. 1b. The sender calculates
two quantization values as x̄0 and x̄1 when the corresponding
indicators of pixels are 0 and 1, respectively. In this example,

146 848997

150 9092122

150 99135142

147 143145156

1 000

1 000

1 011

1 111

146 969696

146 969696

146 96146146

146 146146146

146 848997

150 9092122

150 99135142

147 143145156

1 000

1 000

1 011

1 111

146 969696

146 969696

146 96146146

146 146146146

 Original image block Reconstructed image block Bitmap

(a) (b) (c)

Fig. 1 An example of BTC encoding and decoding: a Original image
block, b Bitmap, c Reconstructed image block

the value of x̄0 is 96 and x̄1 is 146. Then the sender sends the
bitmap, x̄0 and x̄1, to the sender side. Later, the receiver can
decode a block with x̄0 and x̄1, as shown in Fig. 1c, when the
indicators in this bitmap are 0 and 1, respectively.

In BTC encoding, eight bits are required for both x̄0 and x̄1

and 16 bits are requires for a bitmap so that a total of 32 bits
is required to represent an original image block. Therefore,
the compression ratio of BTC for each block is 32

16×8 = 0.25
bpp. To further improve the compression ratio of BTC by
reducing the bits of x̄0 and x̄1, an absolute moment block
truncation coding (AMBTC) (Bender et al. 1996) was pro-
posed. In AMBTC, the values of x̄0 and x̄1 can be composed
by Eqs. (1) and (2), respectively.

x̄0 = x̄ − mα

2(m − q)
, (1)

x̄1 = x̄ + mα

2q
. (2)

Here, m is the amount of pixels in each block; q is the amount
of the pixels when the indicator denoted as 1; x̄ is the aver-
age of all pixels in the block; and the values of x̄ and α are
defined as below, respectively.

x̄ =
∑m

i=1 xi

m
, (3)

α =
∑m

i=1 |xi − x̄ |
m

, (4)

where xi is the pixel value located at position i in the block.
In AMBTC, x̄ and α only require 6 and 4 bits, respectively.
A bitmap needs 16 bits. Therefore, if two quantization val-
ues x̄0 and x̄1 used in BTC are replaced with x̄ and α, the
compression ratio of AMBTC can be successfully reduced,
as shown in the formula 26

16×8 = 0.203. With this result, the
compression ratio of AMBTC is better than that of BTC.

If a color image is compressed by AMBTC, each pixel in
a color image can be broken into R, G and B planes. Each
plane needs two quantization values; therefore, three quanti-
zation pairs depicted as {R̄x, Rα}, {Ḡx, Gα} and {B̄x, Bα}
are generated for the R, G and B planes, respectively. Here,
R̄x, Ḡx and B̄x are averages of planes R, G and B, respec-
tively. The three corresponding coefficients of R̄x, Ḡx and
B̄x are Rα, Gα and Bα, respectively. Later, {R̄x0, R̄x1},
{Ḡx0, Ḡx1}, and {B̄x0, B̄x1} can be computed according to
{R̄x, Rα}, {Ḡx, Gα} and {B̄x, Bα} by using Eqs. (1) and
(2), respectively.

Because a pair of quantization values such as R̄x and R̄α

needs 10 bits and each bitmap for either R, G or B plane
requires 16 bits, the required total number of bits for encod-
ing a block of a color image is 78(= 3×10 + 3×16) bits. The
compression ratio can be computed as 30 + 48

16×8×3
∼= 0.203 bpp.

If three bitmaps for different planes for a block can be further
condensed into a common plane, the compression ratio can
be effectively reduced to 30 + 16

16×8×3
∼= 0.120 bpp.

123

324 C.-C. Chang et al.

Fig. 2 The flowchart of
GA-AMBTC

Initial mating pool Fitness (selection)

Max(Fitness) -
Avg (Fitness)

< Terminate Threshold
?

End

Max(Fitness) -
Avg (Fitness)
< Threshold

?

Yes Yes

Insert new
chromosomes into

mating pool

No No
Crossover

80%

Mutation 1%

Fig. 3 Example of crossover: a
Two original bitmaps, b Two
bitmaps after crossover

0

0

0

1

1 1 1

1 0 0

0 1 1

1 0 0

1

0

0

0

1 1 0

0 0 1

1 1 1

0 0 1

Replacement

Replacement

1

0

0 1 1

1 0 0

1 1 1

1 0 0

0

0

1 1 0

0 0 1

0

1

1 1 1

0 0 1

0

0

 Two original bitmaps

 Two bitmaps after crossover

(a)
(b)

To achieve this objective, an exhaustive search is usually
adopted to try all possible values of a condensed bitmap and
then to provide the least distortion. However, an exhaustive
search is time-consuming. For example, if a block is sized as
4 × 4, then the total number of combinations of its bitmap is
216. In addition, the generation of a common bitmap for each
block is independent. That means the exhaustive search has
to be performed repeatedly until all blocks in an image are
encoded. To speed up the generation of a condensed bitmap
for each block, Tai et al. (1998) proposed an improved version
called GA-AMBTC by using the genetic algorithm (GA). GA
is a kind of best searching algorithm that simulates biological
evolution to produce a similar optimal solution. GA is widely
used in various fields such as pattern recognition, decision
support and the nearest optimization problem.

In organism evolution, organisms with defective genes are
weeded out so that a species of organisms preserves its ben-
eficial genes for its descendants. Generally, better chromo-
somes will be produced for propagation after crossover or
mutation. In GA-AMBTC, the three bitmaps R, G and B of
a block can be reduced as a condensed bitmap to a block
which can be seen as the best chromosome after selection in
evolution. The flowchart of GA-AMBTC for a given block
is shown in Fig. 2.

Initially, four copies of the R, Gand B planes are put into a
mating pool. Then two fitness functions f and Pi are defined
to calculate the fitness values for better chromosome selec-
tion as shown in Eqs. (5) and (6). These fitness values can

determine whether a chromosome is preserved or not.

f = 1

MSEB
, (5)

Pi = f (Gi)k
∑N

j=1 f (Gi)k
. (6)

Here, MSEB is the distortion computed as Eq. (7); k is the
kth iteration; Gi is the preserved gene; and N is the amount
of preserved chromosomes in mating pool. A larger error
occurs while f is small but a larger Pi leads to a smaller
error. Therefore, a large Pi should be preserved.

MSEB =
∑

bi =0 (x̄0 − x j)
2 + ∑

bi =1 (x̄1 − x j)
2

m
, (7)

where B = {bi |bi ∈ {0, 1}, i = 1, 2, . . ., m}, m is the block
size; the two quantization values are x̄0 and x̄1 while indica-
tors in bitmap are 0 and 1, respectively; x j is the pixel value
located at position j of this block.

The average of all the f values and the maximum f
value in the mating pool are depicted as Avg(f) and Max(f),
respectively. Basically, GA-AMBTC will be terminated
when the difference between Max(f) and Avg(f)is less than
a predefined terminating threshold. Conversely, the contents
of the bitmaps are similar when the difference between
Max(f) and Avg(f)is larger than the terminating thresh-
old but less than the pre-defined threshold thsim. If this is
the situation, GA-AMBTC generates new chromosomes and

123

A data embedding scheme for color images based on GA-AMBTC 325

1 1 1

1 0 0

0

0

1 1 1

0 0 1

0

0

1 1 1

0 0 0

0

0

1 1 1

0 1 1

0

0

Original bitmap Bitmap after mutation

(a) (b)

Fig. 4 Example of the bitmap mutation: a Original bitmap, b Bitmap
after mutation

replaces 30% of the original chromosomes with new ones.
Otherwise, the chromosomes must cross over and mutate
within the mating pool.

During crossover, two bitmaps (chromosomes) as shown
in Fig. 3a are used to produce another two bitmaps as shown
in Fig. 3b. In Fig. 3a, 80% of the bits in the two bitmaps are
replaced with bits from each other to perform the crossover.
The production after crossover is shown in Fig. 3b.

During mutation, GA-AMBTC randomly selects 1% of
the bits in the original bitmap and changes the original value
of 1 with 0. Otherwise, GA-AMBTC changes them to 1. In
the example in Fig. 4, two marked bits are changed; the orig-
inal bitmap and the changed bitmap are shown in Fig. 4a, b,
respectively. If the difference between Max(f) and Avg(f)
is less than a pre-determined terminating threshold, the evo-
lution procedure is converged; the optimal bitmap will be
selected and outputted as the common bitmap for the R, G
and B planes.

3 Proposed scheme

In this section, a simple data embedding and extracting
scheme is presented based on GA-AMBTC to hide secret
data in GA-AMBTC compressed color images. To protect
secret bits, senders do not directly hide secret data sc in color
images. The secret data sc must be transformed into tempo-
rary secret data tc first by using an XOR operator before data

embedding. Subsequently, the encoder embeds the generated
tc into a GA-AMBTC color compressed image. In the trans-
formation, the encoder first uses a private key to produce a
random bit stream rc. Next, the temporary secret data tc is
generated by sc XOR rc. Note that the lengths of rc and tc
are the same as sc. The private key can be shared between
senders and receivers before transmitting other secret data
over the Internet.

Later, after receivers extract the temporary secret data tc
from compression codes by using the proposed extracting
strategy, they can use the same private key to generate the
random bit streams rc. Then the secret data sc can be restored
with tc XOR rc. The proposed scheme consists of two phases:
data embedding and extraction. For clarity, examples are
demonstrated in Sect. 3.3 to give detailed explanations of
the embedding and extracting procedures.

3.1 Embedding phase

On the sender side, a color image I serving as the cover
media is first divided into several non-overlapping blocks.
Then the encoder will scan all blocks of the color image I in
a raster-scanning order. The diagram of the embedding pro-
cedure is shown in Fig. 5. The encoder repeats the embedding
procedure until all blocks in a color image are processed.

As mentioned in the previous section, the compression
results of a block of a color image using GA-AMBTC are
the three quantization pairs {R̄x, Rα}, {Ḡx, Gα}, and {B̄x,

Bα} for the R, G and B planes, respectively, and a common
bitmap. In the embedding procedure, the proposed scheme
can derive the three block pairs {R̄x0, R̄x1}, {Ḡx0, Ḡx1} and
{B̄x0, B̄x1} for the R, G, and B planes by using Eqs. (1) and
(2). To hide temporary secret data tc in three block pairs
and a common bitmap, the embedding procedure is divided
into two phases (phase-1 and phase-2) with different embed-
ding strategies. In phase-1, the temporary secret data tc are
embedded into the common bitmap. In phase-2, the tempo-
rary secret data tc are embedded into three block pairs by
exploiting their modification directions (Chang et al. 2003).

All details of each process are stated below to clearly
describe the proposed methods. To further speed up the com-
mon bitmap generation of the R, Gand B planes for each
block, the traditional generation procedure of GA-AMBTC

Fig. 5 The diagram of the
proposed embedding procedure

A Modified Common

Bitmap Generation

Phase-1: Data Embedding by

Modifying the Common Bitmap

of the R, G and B Planes

Phase-2: Data Embedding

by Exploiting Modification

Direction

Input next block

Input the first
block in image I

The Modified Common
Bitmap

Three Modified
Quantization Pairs

output output

123

326 C.-C. Chang et al.

Fig. 6 Example of GA training
to generate a common bitmap
for a block, a R’s bitmap, b G’s
bitmap, c B’s bitmap, d The
common bits are reserved in the
bitmap, e Common bitmap
generated by our modified
procedure

1 1 1

1 0 0

0

0

1 1 1

0 0 1

0

0

1

0

0 1 1

1 0 0

1 1 0

0 0 1

0

1

0

0

0 1 1

1 0 1

0 1 0

0 0 1

0

0

R’s bitmap G’s bitmap B’s bitmap

0

1 1

0

1

0

0

1

0

0 1 1

1 0 1

1 1 0

0 0 1

0

1

 The common bits are reserved in the bitmap Common bitmap generated by our
 modified procedure

(a) (b) (c)

(e)(d)

has been modified in our scheme. The modified common
bitmap generation procedure is described in the following
paragraph.

3.1.1 A modified common bitmap generation

For an inputted block, the encoder can first apply AMBTC to
generate three bitmaps for the R, G and B planes. To enhance
compression performance, these three bitmaps have to be
condensed into a common bitmap. The best scenario for con-
densation is that the three bitmaps are exactly the same so
that a common bitmap can be generated without any effort.
Unfortunately, the best scenario does not occur frequently.
Mostly, the three bitmaps are partially similar. Therefore, in
traditional GA-AMBTC, all bits of these bitmaps must be
processed through selection, crossover and mutation to pro-
duce a single bitmap. In other words, even if some bits of
the three original bitmaps of the R, G, and B planes are the
same, GA-AMBTC still expands effort in processing them
to produce the common bitmap.

To speed up the generation of a common bitmap in GA-
AMBTC, in our modified procedure, bits which are exactly
the same in the three bitmaps are simply reserved in the com-
mon bitmap, and then GA is used to train the bits, which
are different in the three bitmaps of the R, G and B planes.
Examples of the bitmaps for the R, G and B planes are shown
in Fig. 6a, b, c, respectively. The marked bits, whose values
are the same, are located at the R, G and B planes. These

bits are reserved as shown in Fig. 6d. Then the residual bits,
which are in the white area, will be filled up by GA. The
final common bitmap of the R, Gand B planes for a block is
shown in Fig. 6e.

3.1.2 Phase-1: data embedding by modifying the common
bitmap of the R, G and B planes

In this phase, the encoder retrieves a temporary bit from tc
to hide it in the common bitmap, which is generated by the
modified common bitmap procedure for the current block.
According to the temporary secret bit value, the encoder mod-
ifies some bits to satisfy the embedding strategy. The embed-
ding strategy is straightforward. If the secret bit is 0, the
encoder has to make sure that the number of 0bits in the
common bitmap is more than the number of 1 bits by mod-
ifying some bits, which leads to less distortion. If the secret
bit is 1, the number of 1 bits in the common bitmap must be
more than the number of 0 bits.

Based on the proposed embedding principle, there are two
cases in which the common bitmap does not need to modify
any bits. The first case is when the embedded bit is 0 and
the number of 0 bits in the common bitmap is more than the
number of 1 bits. The second case is when the embedded bit
is 1 and the number of 1 bits in the common bitmap is more
than the number of 0 bits. For the remaining scenarios, the
modification of the common bitmap is required according
to the proposed embedding strategy. Usually, modification is

123

A data embedding scheme for color images based on GA-AMBTC 327

unavoidable. To maintain the image quality of a stego-image
after modifying the common bitmap, the caused distortion
measure of modification is measured in Eq. (8) and depicted
as Damt.

Damt =
1∑

i=0

{
(Rxamt − R̄xi)

2 + (Gxamt − Ḡxi)
2

+ (Bxamt − B̄xi)
2
}

, (8)

where 1 � amt � m; m is the amount of pixels in a block.
After measurement, the encoder sorts all Damt’s of all pos-
sible modifications in an ascendant order. A smaller Damt

means that the caused distortion is small when the bitmap is
modified. The modification which leads to the smallest dis-
tortion will be chosen by the encoder to modify the common
bitmap and embed one secret bit. For example, a secret bit
0 is assumed to be embedded into the bitmap as shown in
Fig. 6e. The number of 1 bits in the bitmap is 9, which is
more than the number of 0 bits. In order to embed 0 into this
block, two bits of 1 must be changed to 0 is in this bitmap.

3.1.3 Phase-2: data embedding by exploiting modification
direction

The encoder retrieves two temporary secret bits from tc and
then transforms these two bits into a secret decimal digit d.
Next, the encoder uses a block pair such as {R̄x0, R̄x1} to
compute F value by using Eq. (9).

F(g1, g2) =
[

2∑

j=1
g j × j

]

mod 5 , (9)

Here, g1 and g2 are the values of a block pair such as R̄x0 and
R̄x1, respectively. No modification is needed if a secret digit
d is equal to the calculated value F . If d �= F , the encoder
calculates s = d − F mod 5. If s is less than or equal to 2,
the value of gs is added by 1; otherwise, the value is g5−s

minus 1.
Because each block pair can hide two secret bits, three

block pairs such as {R̄x0, R̄x1}, {Ḡx0, Ḡx1} and {B̄x0, B̄x1}
for the R, G and B planes can hide six bits in total. In addi-
tion, by using Eqs. (3) and (4), the modified values of block
pairs can generate three quantization pairs as {R̄x, Rα}, {Ḡx,

Gα} and {B̄x, Bα} after data embedding. For example, by
using Eqs. (3) and (4), unknown {R̄x, Rα} can be computed
by two modified values of block pairs {R̄x0, R̄x1}. Subse-
quently, these three new quantization pairs can be transmitted
to the receiver side for decoding later.

3.2 Extracting phase

In our extracting phase, receivers are allowed to apply extract-
ing strategies to extract the secret data from the received data

and decode the image at the same time. The extracting phase
is broken into two phases, extracting phase-1 and extract-
ing phase-2, to extract the temporary secret data that were
embedded by embedding phase-1 and embedding phase-2,
respectively. The details of each phase are described below.

3.2.1 Phase-1: extracting hidden data from the common
bitmap of the R, G and B planes

In the phase-1 embedding strategy, senders embed the secret
data into the common bitmap of the R, G, and B planes by
justifying the amount of 0 bits and 1 bits in the common bit-
map. In this phase, the hidden bit can be easily determined
according to the amounts of 1 bits and 0 bits; that is, the hid-
den data is judged as 0 when the number of 0 bits is larger
than that of the number of 1 bits. Otherwise, the hidden data
is determined to be 1.

3.2.2 Phase-2: extracting hidden data from three
quantization pairs

In phase-2 data extracting phase, hidden data can be extracted
from three modified quantization pairs according to our
extracting strategies. First, receivers use the three received
quantization pairs {R̄x, Rα}, {Ḡx, Gα}, and {B̄x, Bα} to
reconstruct the three block pairs {R̄x0, R̄x1}, {Ḡx0, Ḡx1}and
{B̄x0, B̄x1} for each block by using Eqs. (1) and (2). Next,
the hidden data is extracted from a block pair by using Eq. (9).
Finally, the extracted secret data can be transformed into a
serial of binary numbers.

By repeating the phase-1 and phase-2 extracting phases
until all temporary secret data tc are retrieved and all blocks
are decoded, the receiver can use the same private key as the
sender to generate a serial number bit streams rc. Then, the
real secret data sc can be correctly extracted by calculating
tc XOR rc.

3.3 Examples of the phase-2 data embedding and phase-2
extracting phases

In our phase-1 data embedding phase, the sender can eas-
ily embed a secret bit into the common bitmap by justifying
the amounts of 1 bits and 0 bits. Moreover, the receiver can
simply judge the hidden bit by the amounts of 1 bits and 0
bits in the common bitmap in phase-1 data extracting phase.
Therefore, in this section, we only present a simple exam-
ple to demonstrate the phase-2 data embedding and phase
-2 data extracting phases. It is assumed that the bitmap gen-
erated by our modified common bitmap procedure appears
as shown in Fig. 7a and the values of the three block pairs
(R̄x0, R̄x1), (Ḡx0, Ḡx1) and (B̄x0, B̄x1) are 20, 50, 60, 80,

123

328 C.-C. Chang et al.

Three block pairs
1

0

0 1 1

1 0 1

1 1 0

0 0 1

0

1

Secret digits
0xR 1xR 0xG 1xG 0xB 1xB

0 20 50 60 80 30 65

1 21 50 61 80 31 65

2 20 51 60 81 30 66

3 20 49 60 79 30 64

4 19 50 59 80 29 65

digits such as 0,1,2, 3 and 4

 The common bitmap

 The modified block pairs for all potential secret

(a)

(b)

(c)

Fig. 7 Example of data embedding and extracting: a The common bit-
map, b Three block pairs, c The modified block pairs for all potential
secret digits such as 0, 1, 2, 3 and 4

30 and 65, respectively, as shown in Fig. 7b. In Fig. 7, it
is assumed that a secret digit is embedded into the block
pair (R̄x0, R̄x1). In Eq. (9), R̄x0and R̄x1 can be treated as
g1 and g2, respectively. According to the phase-2 data embed-
ding strategy, the sender first computes the F value by using
Eq. (9) and calculates (20 × 1 + 50 × 2) mod 5 = 0. If the
secret digit is 0 and it is equal to the F value, the pair (R̄x0,
R̄x1) does not need any modification. If the secret digit is 2,
in pair (R̄x0, R̄x1), the R̄x0 does not need any change but the
R̄x1 will be changed to 51 by computing g2 = g2 +1 to hide
the secret data 2. When the secret digit is 3, in (R̄x0, R̄x1)

pair, only R̄x0 needs to be modified to 49 by computing
g5−s − 1 = g5−3 − 1 = g2 − 1 = 49.

For clarification, Fig. 7c lists all possible embedding
results for these three block pairs using PHase-2 embedding
strategies. It is assumed six secret bits have been transformed
into three secret decimal digits 0, 3, 2, which are embedded
into the R, G and B planes, respectively. Therefore, the val-
ues of R̄x0, R̄x1, Ḡx0, Ḡx1, B̄x0 and B̄x1 are changed to 20,
50, 60, 79, 30 and 66, respectively, as shown in Fig. 7c. Sub-
sequently, by using Eqs. (1) and (2), the three correspond-
ing quantization pairs (R̄x, Rα), (Ḡx, Gα)and (B̄x, Bα) are
generated.

In the phase-2 data extracting phase, the decoder can com-
pute the three block-pairs (R̄x0, R̄x1), (Ḡx0, Ḡx1) and (B̄x0,

B̄x1) according to the values of (R̄x, Rα), (Ḡx, Gα) and
(B̄x, Bα) by Eqs. (1) and (2). Subsequently, the decoder can
simply retrieve the secret data by using Eq. (9). The extracted
data will be the same as the secret data listed in Fig. 7c.
Finally, the image is decoded according to the bitmap and
three block-pairs (R̄x0, R̄x1), (Ḡx0, Ḡx1)and (B̄x0, B̄x1) as
shown in Figs. 8a, b, c for the R, G and B planes, respectively.

50

20

20 50 50

50 20 50

50 50 20

20 20 50

20

50

79

60

60 79 79

79 60 79

79 79 60

60 60 79

60

79

66

30

30 66 66

66 30 66

66 66 30

30 30 66

30

66

R’s plane G’s plane B’s plane

(a) (b) (c)

Fig. 8 The decoded results for the R, G and B planes, a R’s plane,
b G’s plane, c B’s plane

4 Experimental results

In the following experiments, six images entitled “Lena”,
“Zelda”, “Baboon”, “F16”, “Boat” and “GoldHills” serve
as test images, as shown in Fig. 9. These test images are
512×512 color images. For portability, the proposed scheme
is implemented using Java. The simulation platform is Micro-
soft Windows XP, Pentium III with 1 GHz memory. Three
performance matrices are used to measure the performance
of the proposed hiding schemes: hiding capacity, image qual-
ity and compression ratio. The hiding capacity denotes the
amount of secret bits embedded in the image. The compres-
sion ratio indicates the bit rates after data compression. The
peak signal-to-noise ratio (PSNR) (Chang et al. 2006) defined
in Eq. (10) is used to evaluate image quality of a stego-image
generated by the proposed scheme.

PSNR = 10 log10
2552

MSE
dB. (10)

Here, 255 represents the maximum value of each pixel and the
MSE (mean square error) for an image is defined in Eq. (11).

MSE =
(

1

H × W

) H∑

i

W∑

j

(xi j − x ′
i j)

2. (11)

Here, the notations H and W represent the height and width
of an image, respectively; xi j is the pixel value of the coor-
dinate (x, y) in an original image, and x ′

i j is the pixel value
after embedding processing. Because all test images are color
image and a color image is composed of three planes, the
PSNRs of these three planes are averaged to obtain the PSNR
of a color image in the following experiments.

The image quality derived by AMBTC is shown in Table 1
for later comparison with the proposed scheme after data
embedding.

Generally, the higher the PSNR value of an image implies
the better the image quality. Conversely, the worse the image
quality of an image implies the lower its PSNR. In addition,
a high hiding capacity generally leads to low image quality.
However, the distortion of the stego-image caused by hidden
data may not be sensitive to the human visual system when

123

A data embedding scheme for color images based on GA-AMBTC 329

Fig. 9 Six test color images
with size in 512 × 512, a Lena,
b Zelda, c Baboon, d F16,
e Boat, f GoldHills

Table 1 The image quality (PSNRs) of AMBTC encoding

Images R’s plane G’s plane B’s plane Avg PSNR

Lena 35.57 34.01 32.5 34.02

Zelda 30.98 31.05 30.99 31.00

Baboon 25.94 25.99 27.32 26.41

F16 34.78 31.03 32.23 32.68

Boat 28.57 27.95 32.02 29.51

GoldHill 28.13 28.74 28.70 28.52

the PSNR value of the stego-image is larger than or equal to
30 dB.

In the first experiment, the performance of the scheme
is evaluated according to image quality, hiding capacity and
compression ratio. The related experimental results are
shown in Table 2.

From Table 2, it can be noted the compression ratio
provided by the proposed scheme is the same as that of

GA-AMBTC. The highest hiding capacity of the proposed
scheme with a color cover image size of 512×512 is 112 kb.
Although some PSNRs of the proposed scheme are less than
30 dB for “Zelda”, “Baboon”, “Boat” and “GoldHills,” the
average difference of PSNR between the ours and AMBTC is
still maintained at 3 dB. Moreover, the visual qualities of the
stego-images of “Lena”, “Zelda”, “Baboon”, “F16”, “Boat”
and “GoldHills” shown in Fig. 10a–e are very similar to the
original images, and the differences among them are not dis-
cernable to the human visual system.

To further evaluate the performance of the phase-2 embed-
ding strategy on image quality, the second experiment com-
pares PSNR values with and without performing phase-2
embedding. The related experimental results are listed in
Table 3. From Table 3, it can be seen that the largest distortion
caused by performing phase-2 data embedding is 0.07 dB,
which is very slight. For some special cases, such as “Lena,”
the PSNR of the R plane is 0.01 higher than it would have
been without performing phase-2 data embedding.

Table 2 The performance of
the proposed scheme Images R’s plane G’s plane B’s plane Avg PSNR Hiding Compression

capacity (kb) ratio (bpp)

Lena 33.39 32.33 30.70 32.14 112 0.120

Zelda 27.98 29.09 28.00 28.35 112 0.120

Baboon 23.52 24.08 24.34 23.98 112 0.120

F16 31.71 28.77 29.64 30.04 112 0.120

Boat 24.56 25.47 27.81 25.95 112 0.120

GoldHills 25.31 26.40 25.29 25.66 112 0.120

123

330 C.-C. Chang et al.

Fig. 10 Six stego-images, a
Lena PSNR = 32.14 dB,
b Zelda PSNR = 28.35 dB,
c Baboon PSNR = 23.98 dB,
d F16 PSNR = 30.04 dB, e Boat
PSNR = 25.95 dB, f GoldHills
PSNR = 25.66 dB

Table 3 PSNR comparisons
among setgo-images with and
without performing phase-2
embedding

Images After phase-2 data embedding Without phase-2 data embedding

R’s plane G’s plane B’s plane R’s plane G’s plane B’s plane

Lena 33.39 32.33 30.70 33.40 32.32 30.66

Zelda 27.98 29.09 28.00 27.97 29.09 28.01

Baboon 23.52 24.08 24.34 23.52 24.05 24.32

F16 31.71 28.77 29.64 31.66 28.70 29.65

Boat 24.56 25.47 27.81 24.51 25.45 27.72

GoldHills 25.31 26.40 25.29 25.66 26.37 25.28

The third experiment explores how much computation
time can be saved by using the modified common bitmap
generation procedure. The efficiency ratio can be calculated
as following formula.

Efficiency ratio = (reserved bits) / (the image size). (12)

The results indicate more efficiency with more reserved bits.
Table 4 lists the reserved bits, processing bits and the effi-
ciency ratio, respectively. As can be seen, for the best scenario
such as “Lena,” there are 183,459 bits of R, G and B planes
are the same. If these bits are skipped and the residual bits are
processed, up to 69% of the computation time can be saved.
Therefore, more time is saved with more reserved bits.

Table 4 The efficiency of our modified common bitmap generation

Images Reserved bits Processing bits Efficiency ratio

Lena 183459 78685 0.699

Zelda 176586 85558 0.674

Baboon 151281 110863 0.577

F16 165616 96528 0.631

Boat 132723 129421 0.506

GoldHills 170867 91277 0.651

5 Conclusions

In this paper, a scheme is proposed based on GA-AMBTC
and modification direction to design a simple data embedding

123

A data embedding scheme for color images based on GA-AMBTC 331

scheme for color images. The sender hides the secret data into
GA-AMBTC compressed result and transmits the modified
compressed result to the receiver side. Receivers can later
directly extract secret data and decode images by using sim-
ple extracting procedures. In general, the proposed scheme
has three advantages. First, even when secret data are embed-
ded into the GA-AMBTC’s compressed result, the modified
compressed result is the same size as it would have been with-
out modification. Therefore, the modified compressed result
does not appear suspicious to potential attackers. Second, by
performing a GA-AMBTC decoding procedure, the modified
compressed result can still be used to reconstruct an image so
that attackers cannot determine it contains secret data. Third,
the data extraction procedure is efficient because the hidden
data can be extracted directly from the modified compressed
result without prior decompression. As an additional benefit,
the experimental results illustrate that the proposed scheme
maintains a satisfying image quality at a high embedding
capacity using a high compression ratio.

References

Bender W, Gruhl D, Morimoto N, Lu A (1996) Techniques for data
hiding. IBM Syst J 35(3&4):313–336

Chan CK, Cheng LM (2004) Hiding data in images by simple LSB
substitution. Pattern Recognit 37(3):469–474

Chang CC, Hsiao JY, Chan CS (2003) Finding optimal least-
significant-bit substitution in image hiding by dynamic program-
ming strategy. Pattern Recognit 36(7):1583–1593

Chang CC, Hu YC (1999) Hybrid image compression methods based
on vector quantization and block truncation coding. Opt Eng
38(4):591–598

Chang CC, Lin CY, Wang YZ (2006) New image steganographic meth-
ods using run-length approach. Inform Sci 176(22):3393–3408

Chang CC, Tai WL, Lin CC (2006) A reversible data hiding scheme
based on side match vector quantization. IEEE Trans Circuits Syst
Video Technol 16(10):1301–1308

Chen B, Latifi S, Kanai J (1999) Edge enhancement of remote image
data in the DCT domain. Image Vis Comput 17(12):913–921

Chen WJ, Tai SC (1999) A genetic algorithm approach to multilevel
absolute moment block truncation coding. IEICE Trans Fundam
Electron Commun Comput Sci E82-A(8):1456–1462

Chuang JC, Chang CC (2006) Using a simple and fast image com-
pression algorithm to hide secret information. Int J Comput Appl
28:1735–1743

Cox IJ, Kilian J, Leigiton T, Shamoon T (1997) Secure spread spec-
trum watermarking for multimedia. IEEE Trans Image Process
6(12):1673–1687

Du WC, Hsu WJ (2003) Adaptive data hiding based on VQ compressed
images. IEE Proc Vis Image Signal Process 150(4):233–238

Hsu CT, Wu JL (1999) Hidden digital watermarks in images. IEEE
Trans Image Process 8(1):58–68

Hu YC, Chang CC (1999) Quadtree-segmented image coding schemes
using vector quantization and block truncation coding. Opt Eng
39(2):464–471

In J, Hsiarani S, Kossentini F (1999) On RD optimized progressive
image coding using JPEG. IEEE Trans Image Process 8(11):1630–
1638

Kamstra LH, Henk JAM (2005) Reversible data embedding into images
using Wavelet t-techniques and sorting. IEEE Trans Image Process
14(12):2082–2090

Kim T (1992) Side match and overlap match vector quantizers for
images. IEEE Trans Image Process 1(2):170–185

Konstantinides K, Bhaskaran V, Beretta G (1999) Image sharpening in
the JPEG domain. IEEE Trans Image Process 8(6):874–878

Lee YK, Chen LH (2000) High capacity image steganographic model.
IEE Proc Vis Image Signal Process 147(3):288–294

Lin SD, Shie SC (2000) Side-match finite-state vector quantization with
adaptive block classification for image compression. IEICE Trans
Inform Syst E83-D(8):1671–1678

Lin YC, Tai SC (1998) A fast linde-buzo-gray algorithm in image vec-
tor quantization. IEEE Trans Circuits Syst II: Analog Digit Signal
Process 45(3):432–435

Lu CS, Huang SK, Sze CJ, Liao HYM (2000) A new watermarking
technique for multimedia protection. In: Ling G, Jan L, Kung SY
(eds) Multimedia image and video processing, Chap. 18. CRC
Press, Boca Raton, pp 507–530

Lu ZM, Sun SH (2000) Digital image watermarking technique based
on vector quantization. Electron Lett 36(4):303–305

Lin YC, Wang CC (1999) Digital images watermarking by vector quan-
tization. In: Proceedings of 9th National Computer Symposium,
Taichung, Taiwan, pp 76–87

Munteanu A, Cornelis J, Auwera GVD, Cristea P (1999) Wavelet image
compression—the quadtree coding approach. IEEE Trans Technol
Biomed 3(3):176–185

Nasrabadi NM, King RA (1988) Image coding using vector quantiza-
tion: a review. IEEE Trans Commun 36(8):957–971

Pai YT, Ruan SJ (2006) Low power block-based watermarking algo-
rithm. IEICE Trans Inform Syst E89-D(4):1507–1514

Pan JS, Huang HC, Jain LC (2004) Intelligent watermarking tech-
niques. World Scientific Publishing Company, Singapore

Pfitzman B (1996) Information hiding terminology, Information Hiding:
First International Workshop. Springer Lecture Notes in Computer
Science, Cambridge, UK, vol 1174, pp 347–350

Rivest R, Shamir A, Adleman L (1978) A method for obtaining dig-
ital signatures and public-key cryptosystems. Commun ACM
21(2):120–126

Shie SC, Lin SD, Fang CM (2006) Adaptive data hiding based on
SMVQ prediction. IEICE Trans Inform Syst E89-D(1):358–362

Shieh CS, Huang HC, Wang FH, Pan JS (2004) Genetic watermark-
ing based on transform domain techniques. Pattern Recognit
37(3):555–565

Tai SC, Chen WJ, Cheng PJ (1998) Genetic algorithm for single bit-
map AMBTC coding of color images. Opt Eng 37(9):2483–2490

Walker JS (1996) Fast Fourier transforms, 2nd edn. CRC Press, Boca
Raton, FL

Wang RZ, Lin CF, Lin JC (2001) Image hiding by optimal LSB substi-
tution and genetic algorithm. Pattern Recognit 34(3):671–683

Zhang XP, Wang SZ (2006) Efficient steganographic embedding by
exploiting modification direction. IEEE Commun Lett 10(11):1–3

123

	A data embedding scheme for color images based on geneticalgorithm and absolute moment block truncation coding
	Abstract
	1 Introduction
	2 Related works
	3 Proposed scheme
	3.1 Embedding phase
	3.2 Extracting phase
	3.3 Examples of the phase-2 data embedding and phase-2 extracting phases

	4 Experimental results
	5 Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

