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Abstract The paper presents an extension of the self-
organizing map (SOM) by embedding it into an evolutionary
algorithm to solve the Vehicle Routing Problem (VRP). We
call it the memetic SOM. The approach is based on the stan-
dard SOM algorithm used as a main operator in a population
based search. This operator is combined with other derived
operators specifically dedicated for greedy insertion moves,
a fitness evaluation and a selection operator. The main oper-
ators have a similar structure based on the closest point find-
ings and local moves performed in the plane. They can be
interpreted as performing parallels and massive insertions,
simulating the behavior of agents which interact continu-
ously, having localized and limited abilities. This self-orga-
nizing process is intended to allow adaptation to noisy data
as well as to confer robustness according to demand fluc-
tuation. Selection is intended to guide the population based
search toward useful solution compromises. We show that
the approach performs better, with respect to solution quality
and/or computation time, than other neural network applica-
tions to the VRP presented in the literature. As well, it sub-
stantially reduces the gap to classical Operations Research
heuristics, specifically on the large VRP instances with time
duration constraint.
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1 Introduction

In this paper we are concerned with the Vehicle Routing
Problem (VRP) (Christofides et al. 1979). The VRP is defined
on a set V = {v0, v1, . . . , vN } of vertices, where vertex v0 is
a depot at which are based m identical vehicles of capacity
Q, while the remaining N vertices represent customers, also
called requests or demands. A non-negative cost, or travel
time, is defined for each edge (vi , v j ) ∈ V × V . Each cus-
tomer has a non-negative demand qi and a non-negative ser-
vice time si . The VRP consists of designing a set of m vehicle
routes of the least total cost, each starting and ending at the
depot, such that each customer is visited exactly once by a
vehicle, the total demand of any route does not exceed Q,
and the total duration of any route does not exceed a preset
bound D. As it is the most often done in practice (Cordeau
et al. 2005; Laporte et al. 2000), we shall be concerned in this
paper with the Euclidean VRP, where each vertex vi has a
location in the plane, and where the travel cost is given by the
Euclidean distance d(vi , v j ) for each edge (vi , v j ) ∈ V ×V .
Then, the main objective of the problem is the total route
length.

This problem is one of the most widely studied problems
in combinatorial optimization. It has a central place for the
determination of efficient routes in distribution management.
The problem is NP-hard. Exact methods can only solve low
size problems with up to 50 customers efficiently (Toth and
Vigo 2001). Then, for large VRP instances, using heuristics
is encouraged in that they have statistical or empirical guar-
anty to find good solutions for possible large scale problems
with several hundreds of customers.

Since more than four decades, successive generations of
construction heuristics, improvement heuristics, and meta-
heuristics were developed by the Operations Research (OR)
community, to solve the VRP. Construction heuristics, as
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the well known (Clarke and Wright 1964) savings heuris-
tic, generate admissible solutions very quickly. Improvement
heuristics perform local operations starting from a first con-
structed initial solution. They are generally based on cus-
tomer movements and arc exchanges (Or 1976). For more
than a decade, researchers have turned to develop general
strategies, called metaheuristics, embedding problem ori-
ented local search operators. They generally encapsulate a
construction method followed by the application of one or
more improvements heuristics (local search). From stage to
stage, such heuristics were enriched reusing the past enhance-
ments to build new sophisticated neighborhood search struc-
tures.

For example, some of the most powerful metaheuristics
for the VRP, referred in the extensive surveys (Cordeau et al.
2005; Laporte et al. 2000; Gendreau et al. 2002; Golden et al.
1998), are the Tabu Search (Cordeau et al. 2001; Rochat and
Taillard 1995; Toth and Vigo 2003), simulated annealing,
and population based methods, such as evolutionary algo-
rithms (Mester and Bräysy 2005; Prins 2004), adaptive mem-
ory (Taillard et al. 2001) and ant algorithms (Reimann et al.
2004). Other methods can hybridize several metaheuristics
principles and/or previous heuristics into a common frame-
work. Such examples are the very powerful active guided
local search (Mester and Bräysy 2005), which is maybe the
overall winner approach considering both quality solution
and computation time, or the very recent variable neighbor-
hood search (Kytöjoki et al. 2007), which can address very
large instances and which performs very quickly. It is worth
noting that during the past decade most of the approaches
only solve large instances with up to 500 customers, using
the so-called Golden et al. (1998) benchmark problems. Very
large instances have been proposed recently by Li et al.
(2005), with 560–1200 customers, and at the date of fin-
ishing this paper by Kytöjoki et al. (2007) with up to 20000
customers.

Often Operations Research heuristics for the classical
VRP operate on graphs and consider a O(N 2) matrix to mem-
orize arc costs. This makes difficult the application to very
large instances on standard 32-bit workstations with 4 GB
memory. That’s why heuristics tend more or less to exploit
implicitly the Euclidean triangle inequality (Kytöjoki et al.
2007; Laporte et al. 2000). Almost all benchmark problems
for the VRP are Euclidean problems (Cordeau et al. 2005). As
stated in Johnson and McGeoch (1997, 2002), 2-Opt or k-Opt
heuristics work well on Euclidean problems, whereas the per-
formances rapidly decrease on general graph instances. As
well, the good performances on usual Euclidean benchmarks
corroborate the fact that geometric problems generally have
approximation algorithms (Arora 1998).

Hence, we focus on the Euclidean VRP and propose a
Euclidean solving approach. The method presented in this
paper takes its origin in neural networks (NN) visual patterns

that evolve and distort in the plane according to an underlying
data distribution. The neural network considered in this paper
is the self-organizing map (SOM) (Kohonen 2001), which
is often presented as a non-supervised learning procedure
performing a non-parametric regression that reflects topolog-
ical information of the input data. It can also be seen as a cen-
ter based clustering algorithm with topologic relationships
between cluster centers. The underlying concept, that we call
adaptive meshing, lets envisage the application to many spa-
tially distributed problems, as radio-mobile and terrestrial
transportation dimensioning, clustering k-median, and com-
bined center-based clustering and routing problems (Créput
et al. 2005; Créput and Koukam 2006, 2007a,b; Créput et al.
2000, 2007). For example, Créput and Koukam (2007a,b)
deal with an extension and combination of the Euclidean
k-median problem and classical VRP. It consists of position-
ing bus stops, called cluster centers, according to customer
locations (k-median problem) and generating vehicle routes
among bus-stops (VRP). Bus-stops define clusters where cus-
tomers are grouped and where they have to walk to take the
bus. Furthermore, Créput et al. (2007) is an extension of the
VRP with time windows (Solomon 1987) considering some
walking distances from customers to bus stops.

Separating the transportation network from the underlying
customer demands, rather than modeling routes by an order-
ing of customers as in classical heuristics, has several posi-
tive aspects. By preserving the density and the topology of a
data distribution, SOM allows the positioning of facilities in
accordance to the demand, respecting the inter-component
network architecture. Consequently, the approach has the
potential to deal with noisy or incomplete data, and with fluc-
tuating demand. Also, by choosing to dynamically compute
Euclidean distances, the spatial complexity of the approach is
maintained in O(N ), thus allowing application to very large
instances. Furthermore, continuous visual feedback during
simulations is naturally allowed.

Here, we are interested in solving the VRP by the means
of the adaptive meshing concept. To solve the combinatorial
optimization problem, we chose to combine self-organization
principles in evolution following hybridization of meta-heu-
ristics, as in Gambardella et al. (1999), Moscato (1999),
Moscato and Cotta (2003) and Boese et al. (1994). We pro-
vide an evolutionary framework which incorporates SOMs as
internal operators. The approach is called memetic SOM by
reference to memetic algorithms (Moscato 1999; Moscato
and Cotta 2003; Buriol et al. 2004; Merz and Freisleben
2001, 2002), which are hybrid evolutionary algorithms (EA)
incorporating a local search process. The self-organizing dis-
tributed process is intended to facilitate massively parallel
insertions in the plane and, theoretically, to confer robust-
ness according to demand fluctuations and network inju-
ries. On another hand, evolution is intended to efficiently
guide the population based search toward the useful solu-
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tion compromises. This massive and natural parallelism at
different levels differentiates the approach from classical
Operations Research heuristics which operate on graphs
(sequentially) and are often considered complex and diffi-
cult to implement. Furthermore, since the communication
times at the level of selection are relatively small, the long
running times of independent SOM processes favor parallel
execution of the method.

In the literature, many applications of neural networks
have addressed the traveling salesman problem (TSP). For
more information on this subject, we refer the reader to the
extensive survey of Cochrane and Beasley (2003). However,
extending SOM to the more complex VRP remains a dif-
ficult task. Few works were carried out trying to extend
SOM, or elastic nets, to the VRP. As far as we know, the
most recent approaches are Ghaziri (1996), Gomes and Von
Zuben (2002), Matsuyama (1991), Modares et al. (1999),
Schumann and Retzko (1995), Schwardt and Dethloff (2005)
and Vakhutinsky and Golden (1994). They are generally based
on a complex modification of the internal learning law, altered
by problem dependant penalties. Here, to apply SOM to the
VRP and to improve performances as well, the SOM execu-
tion interleaves with other processes, or operators, following
the evolutionary method. The standard SOM is a main oper-
ator embedded into an EA and combined with other greedy
insertion operators, fitness evaluation and selection opera-
tors. Then, operators can be designed independently and then
combined.

Evaluation of the proposed approach is performed against
neural networks and Operations Research heuristics. In the
former case, we compare the memetic SOM to the three
representative approaches of Ghaziri (1996), Modares et al.
(1999) and Schwardt and Dethloff (2005). Only these authors
have made a significant use of the publicly available
(Christofides et al. 1979) test problems. Other approaches
typically used just a few and specific test problems and are
hard to evaluate. We will mainly try to show that the
memetic SOM yields a substantial gain of accuracy in com-
parison to the previous SOM based approaches. Consider-
ing Operations Research heuristics, we use the Golden et al.
(1998) large test problems and compare the approach to
the Active Guided Evolution Strategy (AGES) (Mester and
Bräysy 2005), Granular Tabu Search (GTS) (Toth and Vigo
2003), Unified Tabu Search Algorithm (UTSA) (Cordeau
et al. 2001) and Very Large Neighborhood Search (VLNS)
(Ergun et al. 2003), which from our point of view cover the
range of heuristic performances. Memetic SOM does cer-
tainly not compete with the most powerful heuristics, which
benefit from the considerable effort spent over more than
thirty years, but we claim that it substantially reduces the
gap.

The paper is organized as follows. Section 2 introduces
the principle of the method, and Sect. 3 details the memetic

SOM approach. Section 4 reports experimental analysis of
the algorithm. Section 5 presents evaluations against SOM
based approaches and classical heuristics. Finally, the last
section is devoted to the conclusion and further research.

2 Method principle

Despite the lack of competitiveness of NN when compared
to OR heuristics, and according to Cochrane and Beasley
(2003), we believe that the reasons for continuing to study
NN for VRP, specifically the SOM, are the followings:

• The incremental development of NN may lead, over time,
to more competitive approaches for the VRP.

• SOM may become competitive in the future when mas-
sively parallel computer systems will become widely
available.

• The insights gained from studying SOM for VRP may
help to develop NN approaches for other problems, where
heuristics are not as well developed as are the OR heuris-
tics specifically dedicated to the VRP.

• Unlike Hopfield NN models (Smith 1996), which per-
form poorly on large size problems, SOM can be applied
to very large problems.

To illustrate the “philosophy” of the SOM behavior, an
example of a TSP tour construction, using a ring network,
is illustrated in Fig. 1 on the bier127 instance from TSP-
LIB (Reinelt 1991) at different steps of a long simulation
run. The network dispatches its vertices among customers
in a massively parallel manner. At the beginning, the local
moves are performed with a great intensity in order to let the
ring deploys toward cities starting from scratch (a). Then,
the intensity of moves slightly decreases in order to progres-
sively freeze the vertices near cities (b–c). At a final step,
customers have just to be assigned to their nearest vertex in
the ring in order to generate a final tour ordering.

The aim of the memetic SOM approach is to follow the two
metaphors of self-organization and evolution within a single
metaheuristic framework. Thus, to extend SOM applicabil-
ity to more complex problems, such as the VRP, it becomes
an operator embedded into an evolutionary algorithm. The
SOM is now a long run process applied to a population of
solutions. This process is interrupted at each cycle, called a
generation, by the application of several evolutionary opera-
tors. Interruption of SOM occurs in such a way that approx-
imately only O(N ) basic iterations are performed at each
generation, for a total of O(N ) generations made, N being
the problem size. The structure of the algorithm is similar to
the memetic algorithm, which is an evolutionary algorithm
incorporating a local search (Moscato 1999; Moscato and
Cotta 2003; Merz and Freisleben 2001; Krasnogor 2005).
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Fig. 1 A TSP tour construction by SOM using the bier127 instance

The main components of the method which are intended for
driving the search are:

• a Self-Organizing Map as a low level stochastic search,
• the problem-oriented operators interleaving with SOM,
• random perturbations with a decreasing intensity,
• a fitness evaluation,
• a population based strategy with selection operators,
• the use of intermediate non-admissible solutions,
• a search performed within two phases (construction,

improvement).

Here, no recombination, nor crossover, operator is con-
sidered. The method can be viewed as a top down approach
like the evolution strategies and evolutionary programming
(Bäck et al. 1991). In that cases, the recombination operator
often plays a secondary role, and can be seen as a large step
mutation to help to exit from local minima. On the contrary,
the genetic algorithms and genetic programming (Goldberg
1994) are sometimes presented as bottom up construction
methods, centered on a crossover, and based on the building
blocks hypothesis. The role of the recombination operator
is the matter of debates since a long time. However, it is
admitted that its effectiveness highly depends on the prob-
lem under consideration. Here, recombination is discarded in
a first attempt. Another difference of the memetic SOM with
the memetic algorithm is that local search runs are not inde-
pendent runs performed at each cycle to reach local minima,
as usual. The SOM is a (long) stochastic gradient descent
performed during the many generations allowed. The term
“local search” is used by analogy. Also, the memetic SOM is
based on a physical metaphor of self-organization in a space.
Whereas, the memetic algorithm is based on the metaphor of
learning. In Krasnogor (2005), the author presents different
applications of the memetic algorithm to either combinatorial
optimization problems or to numerical optimization prob-
lems. Our approach encompasses combinatorial and spatial
aspects as well. It hybridizes a spatial heuristic to solve a
Euclidean version of a combinatorial optimization problem.

Different approaches actually focus on the design of
“adaptive” memetic algorithms. In these cases, the mech-
anism generally deals with the adaptive choice of local search
operators. Examples are the meta-lamarkian methods,

hyperheuristics, or multi-memes approaches (Ong et al. 2006).
Such approaches operate at a meta level, independent of the
problem. The memetic SOM however put the emphasis on
the heuristic level, exploiting the adaptive nature of the local-
ized interactions performed at the level of the micro-compo-
nents of the problem. The aim is to provide a generic class
of metaheuristics suited for a wide range of spatially dis-
tributed problems. We applied the concept, called adaptive
meshing, to mobile communication systems (Créput et al.
2005; Créput and Koukam 2006). By using a honeycomb
adaptive mesh, the approach was able to deal with the posi-
tioning of antenna and traffic covering while encompassing
frequency allocation constraints through the preservation of
an hexagonal topology. The optimization approach is a stan-
dard memetic algorithm based on a specific local search
operator. Because of its many applications in learning, classi-
fication, and pattern recognition, and because of its properties
of self-organization, the SOM appeared to be a good candi-
date for implementing the adaptive meshing concept into the
context of terrestrial transportation. We already applied the
approach to non-standard problems, combining clustering
and vehicle routing in a unified way (Créput and Koukam
2007a,b; Créput et al. 2007).

An evaluation of the performances of a memetic algo-
rithm can be done by carefully measuring the improvement
carried out with regard to the embedded local search heuris-
tic. Designing a memetic algorithm which clearly dominates
its embedded heuristic, on both solution quality and com-
putation time simultaneously, seems not an easy task to do.
How important is the improvement carried out by a memet-
ic approach, allowing lesser computation time than the one
usually allowed for the embedded heuristic itself. That is
an important question. Memetic algorithms often encapsu-
late restarts of local search executions and then, are gener-
ally time consuming, specifically when dealing with large
size instances. This appears clearly in the applications to the
TSP (Merz and Freisleben 2002, 2001). Very few memetic
approaches really dominate the standard Lin and Kernighan
(LK) heuristic, specifically its recent implementation due
to Helsgaun (HLK) (Johnson and McGeoch 1997, 2002),
on both solution quality and computation time. From our
knowing, only the very recent hybrid genetic algorithm of
Nguyen et al. (2007) clearly outperforms the HLK heuristic.
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The memetic self-organizing map approach 1129

Fig. 2 Two phases algorithm applied on Golden et al. (1998) instances. Construction phase with instance no. 1 in a–d. Improvement phase with
instance no. 1 in e and f, no. 12 in g and no. 17 in h

Repeat niter  times.  
   1. Randomly extract a point  p  from the demand set.  
   2. Perform competition to select the winner vertex  n * according to  p . 
   3. Apply learning law to move the neurons within a neighborhood of  n *. 
   4. Slightly decrease learning rate  αα and radius  σ of neighborhood.  
End Repeat. 

Fig. 3 Self-organizing map algorithm

The approach already embeds the LK heuristic as a main
local search and incorporates some of the recent Helsgaun’s
enhancements as well. Following such an example, the goal
is to outperform the SOM based approaches allowing the
shortest possible running times, and to indirectly reduce the
gap to the OR heuristics.

The optimization process is divided into two phases, that
are, a construction phase followed by an improvement phase.
Figure 2 illustrates such a behavior on large scale problems of
the Golden et al. (1998) benchmark, showing the visual pat-
terns, which represent routes starting and ending at the depot,
moving and distorting in the plane. The construction phase
is illustrated in Fig. 2a–d. Two consecutive pictures show
the network as distorted by the SOM operator, followed by
the application of other evolutionary operators which gen-
erate an admissible (or near admissible) solution, at a given
generation. During the construction phase, the local moves
are performed with a great intensity to let the set of routes
deploys from scratch. Figure 2a–b presents the network at the
beginning of construction and (c–d) several generations later,
the intensity of moves vanishing. In Fig. 2e–h, the network
is shown at different steps of the improvement phase, illus-
trating how local perturbations, that are responsible for local
improvements, randomly affect some parts of the network at
each generation. The next section details the algorithm and
explains the role of each operator.

3 The evolutionary algorithm embedding
self-organizing maps

3.1 The Kohonen’s self-organizing map

The standard SOM (Kohonen 2001) algorithm operates on a
non-directed graph G = (A, E), called the network, where
each vertex n ∈ A is a neuron having a location wn = (x, y)

in the plane. The set of neurons A is provided with the
dG induced canonical metric dG

(
n, n′) = 1 if and only if(

n, n′) ∈ E , and with the usual Euclidean distance d(n, n′).
The training procedure structure is summarized in Fig. 3.

A given number of iterations niter are applied to a graph
network, the vertex coordinates being randomly initialized
into an area delimiting the data set. Here, the data set is the
set of demands, or customers. Each iteration follows four
basic steps. At each iteration t , a point p(t) ∈ �2 is ran-
domly extracted from the data set (extraction step). Then, a
competition between neurons against the input point p(t) is
performed to select the winner neuron n∗ (competition step).
Usually, it is the nearest neuron to p(t). Then, the following
learning law (triggering step):

wn(t + 1) = wn(t) + α(t).ht
(
n∗, n

)
.(p − wn(t)) (1)

is applied to n∗ and to all neurons within a finite neigh-
borhood of n∗ of radius σt , in the sense of the topological
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Fig. 4 A single SOM iteration with learning rate α and radius σ . a Initial configuration. b α = 0.9, σ = 4. c α = 0.9, σ = 1. d α = 0.5, σ = 4

Fig. 5 The generic memetic
loop embedding SOM

Initialize population with Pop individuals. 
g = 0 
While g < Gen

1. Apply a standard SOM operator (denoted SOM), with a given 
parameter setting, to each individual in population separately. /* 
niter iterations are performed at each generation, for each 
individual. */ 
2. Apply mapping operator MAPPING to each individual in population 
to assign each demand to a closest vertex, and then move vertices to 
demand locations. 
3. Apply fitness evaluation operator FITNESS to each individual in 
population.
4. Save the best individual encountered. 
5. Apply selection operator SELECT.
6. Apply elitist selection operator SELECT_ELIT.
7. Apply derived operators from the self-organizing map algorithm 
structure, chosen from the set {SOM, SOMVRP1, SOMVRP2, SOMDVRP},
separately to each individual in population. /* Such operators 
introduce perturbations or perform greedy insertion moves toward 
residual demands which are not yet already inserted in the network 
because of time duration constraint not satisfied. */ 
8. g = g + 1 

End while. 
Report best individual encountered. 

distance dG , using learning rate α(t) and function profile ht .
The function profile is given by the Gaussian:

ht
(
n∗, n

) = exp
(
−dG

(
n∗, n

)2/
σ 2

t

)
. (2)

Finally, the learning rate α(t) and radius σt are slightly
decreased as geometric functions of time (decreasing step).
To perform a decreasing run within tmax iterations, at
each iteration t coefficients α(t) and σt are multiplied by
exp

(
ln (xfinal/xinit)/tmax

)
, with respectively x = α and

x = σ, xinit and xfinal being respectively the values at start-
ing and final iteration.

Examples of a basic iteration with different learning rates
and neighborhood sizes are shown in Fig. 4. In our evolution-
ary algorithm, a SOM simulation becomes a main operator
specified by its running parameters

(
αinit, αfinal, σinit, σfinal,

tmax
)
.

3.2 Evolutionary loop and operators

A construction loop as well as an improvement loop is instan-
tiated based on the generic memetic loop structure presented
in Fig. 5. The memetic loop applies a set of operators to
a population of Pop individuals, at each iteration (called a
generation). A loop executes a fixed number of generations
Gen, proportional to the problem size N . The number of
individuals is constant. One individual encapsulates exactly
one solution, that is, a network where each vehicle is repre-

sented by an independent ring with 5 N/m vertices, m being
the number of vehicles, starting and ending at the depot.
The number of vertices by vehicle corresponds to the max-
imum number of customers a vehicle can visit. It has been
adjusted empirically to allow a good compromise between
number of customers visited, equilibration of route lengths
and computation speed.

The construction loop starts its execution with solutions
having randomly generated vertex coordinates into a rectan-
gle area containing demands. The improvement loop starts
with the best previously constructed solution, which is dupli-
cated in the new population. The main difference between
the construction and improvement loops is that the former
is responsible for creating an initial ordering from random
initialization. It follows that SOM processes embedded in the
construction loop have a larger initial neighborhood, propor-
tional to N . The improvement loop, however, is intended for
simply performing local improvements using SOM processes
with small neighborhoods. Thus, construction and improve-
ment loops play different roles and have a different compu-
tation time complexity. They are managed by a master loop
possibly controlling restart executions. The master loop is
presented in the next subsection and the parameter settings
are given in the experimental analysis section.

The main operator is the SOM algorithm. At each gen-
eration, a predefined number of SOM basic iterations, pro-
portional to problem size N , are performed letting the long
simulation run being interrupted and combined with the
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application of other operators. Such operators can be the
specialization of a SOM operator to perform request inser-
tions, or introduce perturbations, a mapping/assignment
operator for generating admissible orderings, a fitness evalu-
ation, and the selections at the population level. Operators can
be seen as interleaving processes, each one influencing the
search toward problem goals. Below is a detailed description
of these operators:

(1) Self-organizing map operator. It is the standard SOM
applied to the graph network. It is denoted by its name
and its internal parameters, as SO M

(
αinit, αfinal, σinit,

σfinal, tmax
)
. One or more instances of the operator, with

their own parameter values, can be combined. A SOM
operator is executed performing niter basic iterations
by individual, at each generation. Parameter tmax is the
number of iterations defining a long decreasing run
performed in the stated generation number Gen, for
each individual. Other parameters define the initial and
final intensity and neighborhood for the learning law,
as explained in the previous subsection. The operator
is used to deploy the network toward customers in con-
struction phase, or to introduce punctual moves to exit
from local minima in improvement phase.

(2) SOM derived operators. Two types of operators are
derived from the SOM algorithm structure in Fig. 3 for
dealing with the VRP. The first type has two versions.
The first operator, denoted SOMVRP1, is a standard
SOM restricted to be applied to a randomly chosen vehi-
cle, using customers already inserted into the vehicle/
route. It helps to eliminate the remaining crossing edges
in routes. The second operator, denoted SOMVRP2, is
a variant in order to help to exit from undesirable local
states. It is applied as above to a vehicle which, this
time, is chosen because it has a vertex closest to a ran-
domly chosen non-inserted customer. The non-inserted
customer is furthermore forced to be assigned to a next
closest vehicle, by moving its nearest vertex to the cus-
tomer location. This operator is applied with a small
probability at each generation. It has a negligible role
except on few large scaled difficult instances.
While capacity constraint is greedily tackled by the
mapping/assignment operator below, the second type
operator, denoted SOMDVRP, deals specifically with
the time duration constraint. It performs few greedy
insertion moves at each generation. Given a randomly
chosen customer that is not yet already assigned to a
vehicle, the competitive step selects to be the winner
the vehicle vertex for which the route time increase is
minimum, the route time duration constraint for that
vehicle being satisfied. The evaluation of the route time
increase is done moving the vertex to the customer loca-
tion and including the customer into the route.

(3) Mapping/assignment operator. This operator, denoted
MAPPING, generates a VRP solution by inserting cus-
tomers into routes and modifies the shape of the net-
work accordingly, at each generation. The operator first
greedily maps customers to the nearest vertex for which
the corresponding vehicle capacity constraint is satis-
fied, and to which no customer has been yet assigned.
The capacity constraint is then greedily tackled by the
customer assignment. Then, the operator moves the ver-
tices to the location of their assigned customer (if exist)
and regularly dispatches (by translation) other vertices
along edges formed by two consecutive customers in a
route. This results in a vehicle route where assigned ver-
tices alternate with the many more not assigned vertices.
At this stage, few customers are possibly not inserted
because of capacity constraint violation.

(4) Fitness operator, denoted FITNESS. Once the assign-
ment of customers to routes has been performed, this
operator evaluates a scalar fitness value for each indi-
vidual that has to be maximized and which is used by
the selection operator. Taking care of time duration con-
straint, the fitness value is sequentially computed fol-
lowing routes one by one and removing a customer from
the route if it leads to a violation of the time duration
constraint. The value returned is fitness = sat−10−5 ×
length, where sat is the number of customers that are
successfully assigned to routes, and length is the length
of the routes defined by the ordering of such customers
mapped along the rings. The value sat is then considered
as a first objective and admissible solutions are the ones
for which sat = N, N being the number of customers.

(5) Selection operators. Based on fitness maximization, the
operator denoted SELECT replaces replace worst indi-
viduals, who have the lowest fitness values in the popu-
lation, by the same number of bests individuals, which
have the highest fitness values in the population. An elit-
ist version SELECT_ELIT replaces the worst individu-
als by the single best individual encountered during the
current run.

3.3 Master loop

We are now going to describe the main program controlling
construction and improvement loops, possibly performing
restart executions. The master loop, as depicted in Fig. 6,
sequentially executes the two memetic loops to respectively
perform the construction and improvement phases. The con-
struction loop starts its execution with randomly generated
network patterns. The improvement loop starts with the best
previously constructed solution, which is duplicated in the
new population. Once an execution ended, the master loop
performs population movements. The process of construc-
tion, as well as improvement, can be repeated more than
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While (not NExec executions are performed or sat < N)
1. Initialize population with Pop randomly generated individuals 
2. Apply construction loop /* GenC generations are performed */ 
3. if (sat < N × 99.5/100) go to step 1. (one time max) 
4. Initialize population by duplicating the best constructed individual 
5. fitness’ = fitness /* memorize fitness of the best */
6. Apply improvement loop /* GenI generations are performed */ 
7. if (sat < N /*or fitness > fitness’*/) go to step 5. (four times max) 

End while 
Report best individual encountered 

Fig. 6 The master loop controlling restart executions

Table 1 Construction loop parameter setting

Pop = 50 individuals
GenC = N generations

Operator Internal SOM parameters Evolutionary parameters

αinit αfinal σinit σfinal tmax niter replace

1 SOM 0.5 0.5 2 × N/m 4 GenC × niter N/4 –

2 MAPPING – – – – – – –

3 FITNESS – – – – – – –

4 SELECT – – – – – – Pop/5

5 SELECT_ELIT – – – – – – Pop/10

6 SOMDVRP 1.0 1.0 0.5 0.5 – Min(N × 5/100, N − sat) –

one time depending on the number of constraints satisfied
(sat < N ), and possibly the fitness improvement carried out
(fitness > fitness′). A complete run executes both configura-
tions possibly several times (NExec), restarting from random
individuals at each time. Here, restarts are used as a usual
mechanism to augment accuracy and robustness, eliminat-
ing the probability to get non-admissible solutions.

3.4 Algorithm complexity

By the evolutionary dynamics, the goal is to make the clos-
est point assignment coincide to the right assignment, which
minimizes objectives and satisfies constraints. The algorithm
can be seen as a massive and parallel insertion method to
the nearest points. The SOM operators, as well as the map-
ping operator, are based on the such closest point findings.
Then, with a constant population size, a number of genera-
tions proportional to N , a SOM neighborhood proportional
to N , and N basic iterations performed by generation, N
being the problem size, the time complexity of the memetic
SOM is O(N 3) in the worst case. The memetic SOM space
complexity is O(N ), as usual for SOM. It is worth noting
that this space complexity allows dealing with very large
size instances, on standard computer workstations.

Here, to perform N closest point findings in expected
O(N ) time for uniform distributions, rather than O(N.log(N))
in the worst case (Preparata and Shamos 1985), we have
implemented the spiral search algorithm of Bentley et al.

(1980) based on a cell partitioning of the area. Thus, SOM
and mapping operators share a similar O(N ) expected time
complexity for the closest point findings by generation, for a
uniform distribution. We claim that this mechanism consider-
ably improves the nearest search performance with regards to
usual applications where a complete examination of neurons
is performed. The derived version SOMDVRP has a O(N )

time complexity by iteration, since it systematically inspects
all the O(N ) vertices. Also, it needs to be applied following
the mapping operator and fitness evaluation in order to use the
built assignment structures and access the few not yet inserted
demands.

4 Experimental analysis

In this section, we present the parameter setting of the algo-
rithm and perform some evaluations and analysis of the main
characteristics of the approach. We study the influence of the
population size and the role of the main algorithmic com-
ponents. Statistic analysis is performed based on confidence
intervals and t tests.

4.1 Parameter setting

The construction loop parameter setting is detailed in Table 1,
and the improvement loop parameter setting, in Table 2. The
operators are listed in the tables following their order of
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Table 2 Improvement loop parameter setting

Pop = 50 individuals
GenI = N generations

Operator Internal SOM parameters Evolutionary parameters

αinit αfinal σinit σfinal tmax prob niter replace

1 MAPPING – – – – – – – –

2 FITNESS – – – – – – – –

3 SELECT – – – – – – – Pop/5

4 SELECT_ELIT – – – – – – – Pop/10

5 SOMDVRP – – – – – – Min(N × 5/100, N − sat) –

6 SOM 0.9 0.5 2 × N/m (2 × N/m)/4 GenI × niter – 1 –

7 SOMVRP1 0.5 0.5 10 4 GenI × niter – N/m –

8 SOMVRP2 1.0 1.0 10 4 GenI × niter 0.1 (N/m)/4 –

application in a loop. The parameter Pop is the population
size; GenC and GenI are respectively the generation number
of the construction and improvement loop. Parameter val-
ues for the SOM operators and selections were adjusted after
a preliminary round of experiments. Most of the parame-
ter values depend on the main problem parameter, that is,
the problem size N , taking care of the number of vehicles m.
They are either constant values or set proportional to N , or to
the number of vertices by route fixed to 5 N/m. Such internal
parameter values are quite standard when dealing with SOM
for TSP or VRP.

The construction loop (Table 1) uses a SOM process with
an initial large neighborhood proportional to N , defined by
σinit and σfinal parameters, in order to deploy the network
ordering from random initialization of vertices. Improve-
ment loop (Table 2) operators have smaller neighborhoods,
and apply less iterations by generation, since intended for
local improvement. The SOM operator SOM in Table 2 per-
forms a single punctual move at each generation to help to
exit from local minima. The derived operators SOMVRP1
and SOMVRP2 work as stated in the previous section, to
locally regulate a route shape. The SOMVRP2 operator has
a low probability (prob = 0.1) of application at each gen-
eration. Its plays a subsidiary role and was added to deal
with few hardest large size instances. The SOMDVRP tries
to insert few residual and not yet satisfied customers at each
generation.

4.2 Performance with regard to population size

Starting with the parameter settings given in the previous
subsection, we apply the two loops in sequence, once each,
and study the influence of the population size Pop on the
fitness value. The generation numbers GenC and GenI are
adjusted in order to perform the same number of fitness eval-
uations, for each loop, and for each run. The tests are done

using the c10 instance with 200 customers of the Christofides
et al. (1979) benchmark. This test is the larger instance of the
test set. It encompasses both the capacity constraint and time
duration constraint. For each value of the Pop parameter, 10
runs are performed.

Figure 7a presents the progress plots of the fitness accord-
ing to the number of fitness evaluations carried out for four
population sizes from 1 to 100 individuals. The total num-
ber of fitness evaluations is fixed. Let N being the num-
ber of customers. The generation number of each loop is

Fig. 7 Performances of memetic SOM according to population size.
a Achieved fitness against the number of fitness evaluations. b Fitness
values, in 95% confidence intervals, at the last generation
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set to N for case Pop = 50, whereas it is set to N × 50
for Pop = 1, N × 5 for Pop = 10, and to N/2 for case
Pop = 100.

Figure 7b presents the sample mean at the last generation
in error bars. Error bars are 95% confidence intervals for the
mean. They are computed on the basis of standard devia-
tions over the 10 runs as follows. Assuming that the sample
mean µ̂ and standard deviation σ̂ for K = 10 replicates are
computed as

µ̂ = 1

K

K∑

k=1

yk ,

where yk, k = 1, . . . , 10, are the fitness values at the last
generation, and

σ̂ =
√√√√ 1

K − 1

K∑

k=1

(
yk − µ̂

)2

a confidence interval that would cover the true mean approx-
imately 95% of the time is

µ̂ ± tK−1,.025 · σ̂√
K

,

where tK−1,.025 is the classic Student’s t-statistic with α =
.025 and K-1 degrees of freedom.

The confidence level is α = .025 instead of α = .05
because the confidence interval is symmetric about µ̂, so
the total probability of including the true mean µ is .95, but
the probability of missing µ on either side of µ̂ is .025. For
K = 10 runs, tK−1,.025 = 2.262. It is worth noting that the
procedure for establishing confidence intervals and hypoth-
esis testing are almost identical. Both require the standard
error σ̂√

K
of the sample mean to define the width of a critical

region based on the Student distribution. It is a well known
result that whenever two confidence intervals do not overlap
(if the upper bound of one is below the lower bound of the
other) then a two-sample t test will say the means are differ-
ent, i.e. the null hypothesis will be rejected. In our experi-
ments, this means that a one-sided t test would reject the null
hypothesis at the significance level of α = 2.5%, or that a
two-sided t test would reject it at the α = 5% level. But the
converse being not true, we may explicitly run a two-sample
t test when two confidence intervals overlap.

The experimental results reported in Fig. 7 establish that
with the same computational cost in terms of number of eval-
uations carried out—except when population size is reduced
to a single individual—solutions tend to converge toward
overlapping target values. Since half of the simulation run
concerns each loop, we may note from Fig. 7a that the
improvement loop has no effect on the fitness value only
when Pop = 1. In that case, i.e. with inhibition of selec-
tion, the evolution process can be rather assimilated to local

search. As confirmed in Fig. 7b, these trials illustrate local
search limitation and cast a light on the improvements car-
ried out by the population based search. The case Pop = 50
seems to be the best performing case. This could be explained
by the number of generations which is more adequate for this
case than for the case Pop = 100.

4.3 Influence of main algorithmic components

We now turn to an analysis of the main algorithmic compo-
nents influence, for a fixed population size of 50 individu-
als. Here again, we use the Christofides, Mingozzi, and Toth
(CMT) c10 instance, performing 10 runs by test with a cho-
sen component being removed from the algorithm, and report
the mean values within confidence intervals. We use the algo-
rithm configuration with Pop = 50 of the previous subsec-
tion as a basis for comparison. Figure 8a presents progress
plots of the fitness according to the number of generations.
Figure 8b presents the mean fitness values obtained at the last
generation in 95% confidence intervals. Figure 8c presents
the mean route lengths, as well in 95% confidence intervals.

Clearly, selection operators have the greatest influence on
the algorithmic performance. Without any selection operator,
the algorithm behaves like executing 50 independent runs of
local search. In that case, about 196 demands only out of
a total of 200 are satisfied on average. This is slightly bet-
ter than performing a single very long run with Pop = 1,
as done in the previous subsection. But again, in that case,
the improvement phase (half of the run) has no effect on the
fitness value.

Also, the SOMDVRP operator, responsible for random
insertions according to time duration constraint plays an
important role. Removing this component yields to solution
with less than 200 customers successfully inserted, thus to
non-admissible solutions.

Removing the elitist selection, or SOMVRP1 operator
responsible for single route improvement, yields to fitness
values overlapping with the case Pop = 50. Then, in order
to decide whether these two operators play a significant role,
we need to look at the secondary fitness component, which
is the total route length, in fact the main VRP objective to
minimize. Figure 8c shows that removing the elitist selec-
tion has a non-negligible impact on the route length. Since
the confidence intervals overlap we performed a one sided
two-sample t test with the case Pop = 50. It yields a critical
value of 18.27 at the significance level α = 0.025 whereas
the difference of the sample means is 19.42. This indicates
that the case Pop = 50 performs better. However, remov-
ing the SOMVRP has a weaker impact on the route length.
In that case, a one-sided two-sample t test failed at reject-
ing the null hypothesis even at the α = 0.05 level. Thus,
we can not draw a firm conclusion about the utility of the
SOMVRP operator. This can be explained by the particular
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Fig. 8 Performances of memetic SOM removing algorithmic components. a Achieved fitness against the number of generations. b Fitness values
in 95% confidence intervals. c Route lengths in 95% confidence intervals

test case used, where the time duration constraint may play a
predominant role. Nevertheless, the Pop = 50 configuration
case wins in all cases, considering both fitness and length.
Finally, it should be noted that the fitness value tends to be
stable from around generation 180 to the end of the con-
struction phase, at generation 200, and that the improvement
loop starting at generation 200 plays a non-negligible role in
all cases, except when there is no selection, to “finalize” the
search.

5 Evaluation against NN and OR heuristics

In this section, we perform a comparative evaluation of the
memetic SOM against some of the most accurate Neural Net-
work and Operations Research approaches to the VRP of the
literature. We first present the context of the evaluations. We
explain the choice of the test problems and indicate how com-
putation times are evaluated, according to the different mate-
rials used. We also specify the number of runs and define what
are the values reported. We evaluate the approach on usual
small size instances. Then, we evaluate the performances on
the large size instances.

5.1 Description of the experimental context

Here, evaluation of the memetic SOM approach is done
against neural network algorithms and Operations Research
heuristics. We consider the three SOM based approaches of
Ghaziri (1996), Modares et al. (1999), and Schwardt and
Dethloff (2005) which provide comparative studies, and
report results for the well known Christofides et al. (1979)
benchmark problems, denoted CMT problems below. Other
neural network versions (Gomes and Von Zuben 2002;
Matsuyama 1991; Schumann and Retzko 1995; Vakhutinsky
and Golden 1994) are quite algorithmically similar or clearly
worse performing. Only Ghaziri (1996) addresses the time-
duration version of VRP and solves almost all the corre-
sponding CMT test cases.

We also evaluate the approach against some of the most
recent and representative Operations Research heuristics pre-
sented in Cordeau et al. (2005). In that case, we will focus
on the large size test problems of Golden et al. (1998). The
selected approaches have displayed the best performance
according to the literature, such as the Active Guided Evolu-
tion Strategy (AGES) (Mester and Bräysy 2005) and Granular
Tabu Search (GTS) (Toth and Vigo 2003), or are consid-
ered more simple and flexible but less performing, such as
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Table 3 Estimated performances of computers

Computer Performance estimated from Dongarra’s paper (Mflop/s) Estimated Dongarra’s factor

Sun Sparc 2 workstation 4 1/212

Pentium 200 MHz 38 1/22.3

Pentium III 733 MHz 138 1/6.2

Pentium IV 2000 MHz 781.7 1/1.1

AMD Athlon 2000 MHz 849.2 1

Table 4 Master loop parameter settings for the comparative evaluations

Algorithm configuration type GenC GenI NExec Criterion for stopping the improvement loop restarting

Fast N/2 N/2 1 sat = N

Medium fast N N 1 sat = N and fitness not improved

Medium long N N 5 sat = N and fitness not improved

Long N∗5 N∗5 5 sat = N and fitness not improved

the Unified Tabu Search Algorithm (UTSA) (Cordeau et al.
2001) and Very Large Neighborhood Search VLNS (Ergun
et al. 2003).

The proposed memetic SOM was programmed in Java and
run on an AMD Athlon 2000 MHz computer. To evaluate the
tradeoff between running time and solution quality against
other algorithms, one difficulty is that testing is done using
different computers. As done in many works, a rough indi-
cation of the machine’s relative speed may be derived from
the Mflop/s measure obtained by Dongarra (2006). Table 3
presents the estimated performances and Dongarra’s factors
used to convert CPU times of the different materials consid-
ered in this paper.

The master loop parameter setting which controls con-
struction and improvement memetic loops is detailed in
Table 4. Four configurations of the master loop are consid-
ered. They are defined to adjust computation time in accor-
dance with the other compared approaches. The adjusted
parameters are the generation number of each loop GenC
and GenI, the minimal number of restart runs NExec, and the
criterion for stopping the improvement loop restarts. All the
tests performed with the memetic SOM are done on a basis
of 10 runs per instance. For each test case, is reported the
percentage deviation, denoted “%PDM”, to the best known
optimal route length, of the mean solution value obtained, i.e.
%PDM = (mean length−best known) ×100/ best known.
Best known values are taken from Cordeau et al. (2005). The
average computation time is also reported, it is called “Sec”
when given in seconds or “Min” in minutes. Result values
for the other approaches, which are taken from the above ref-
erenced papers, are given under the same appellations, com-
putation times being normalized to our computer system.

As well, the widths of 95% confidence intervals for the
sample means are systematically reported in columns denoted

“±%WD”. For individual test problems the confidence
intervals are computed based on the standard deviation and
the 10 replicates as stated in section 4.2. Whereas, when deal-
ing with the sample means formed across different test prob-
lems, and as recommended in Rardin and Uzsoy (2001), we
estimate the error variance from the mean square for error
(M SE ) of a standard analysis of variance, i.e. the “mean
squares within”. Therefore, an approximate confidence inter-
val is given by

µ̂ ± tM ·(K−1),.025 ·
√

M SE

M · K
,

where

M SE = 1

M

M∑

i=1

σ̂ 2
i ,

M is the number of problems considered, and σ̂i is the stan-
dard deviation based on the K = 10 runs for a single test
problem.

5.2 Comparison with neural network approaches
on the most often used CMT instances

Numerical results on CMT instances are given in Table 5
and illustrated in the graph of Fig. 9. The proposed approach
is evaluated against the best performing neural network
approaches (Ghaziri 1996; Modares et al. 1999; Schwardt
and Dethloff 2005) found in the literature. The fourteen CMT
instances of the capacitated VRP are composed of two sub-
sets containing seven instances of each VRP types, with
(D subset) or without time duration constraint (C subset).
The first column “Name-size-veh” indicates the name, size
and number of vehicles of the instance. The second column
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Fig. 9 Comparison with neural network approaches on the CMT instances

indicates the best known values that were obtained initially
for a large part by Rochat and Taillard (1995) through a long
run. We used the two configurations “fast” and “long” of
the algorithm, as specified in previous section, to adjust the
computation time.

Approaches are mentioned in Table 5 using the name of
the method and/or the names of the authors and the date of
publication. Results for a given approach are reported in col-
umn “%PDM”, “±%WD” and column “Sec”. Results for
the Modares et al. approach are reported in column “%Best”
since they are best values obtained over 10 runs. Results in
Table 5, illustrated in Fig. 9, show the improvement car-
ried out by memetic SOM against earlier neural network
approaches.

Accuracy is substantially improved since the average devi-
ation to the best known value is reduced from roughly 5 to
3.39% on average for fast runs and to 1.20% for long runs.

Here, all CMT test cases are addressed successfully. Mod-
ares et al. (1999) and Schwardt and Dethloff (2005) do not
report computation time. Furthermore, they do not address
the time duration version of the problem. Only Ghaziri (1996)
deals with it, but forgetting to solve the c2 and c7 test cases
which are two of the hardest instances. Taking care of the
rough approximation performed when comparing computa-
tion times, memetic SOM looks like spending more time
than Ghaziri (1996) but clearly improves solution quality
and solves all the test cases. We can note that the 95% con-
fidence intervals stated in column “±%WD” do not include
other approaches means except in the case of the Modares
approach. We can note that the average PDM values of the
Ghaziri approach clearly fall outside of the intervals.

We also report in Table 5 results obtained by the
Clarke and Wright construction heuristic (Clarke and Wright
1964), available at VRP Web http://neo.lcc.uma.es/radi-aeb/
WebVRP/. Neural networks perform better than the construc-
tion heuristic, for more computation time. Finally, results
obtained by the UTSA approach (Cordeau et al. 2001) are
given in the two last columns. They illustrate the gap to
such a recent Operations Research heuristic. With roughly
27% more computation time, UTSA yields 0.56% of aver-
age deviation, whereas our approach yields 1.20%. Since

large instances are the ones which justify the use of
heuristics, we will now evaluate this gap more closely on
the larger instances of Golden et al. (1998).

5.3 Comparison with operations research heuristics
on large size instances

The results for the 20 test problems of Golden et al. (1998)
are reported in Table 6 and illustrated in Fig. 10. The bench-
mark contains height problems with time duration constraint
(D subset) and twelve problems without (C subset). Com-
parison is done against some of the recent heuristics pre-
sented in the review paper (Cordeau et al. 2005) that cover
the global range of metaheuristic performances. They are the
AGES (Mester and Bräysy 2005), GTS (Toth and Vigo 2003),
UTSA (Cordeau et al. 2001), and VLNS (Ergun et al. 2003)
approaches. We use the numerical results reported in Cordeau
et al. (2005). We have performed 10 runs per instance using
the two configurations of the memetic SOM “medium-fast”
and “medium-long”, to adjust computation time in accor-
dance to the compared approaches. As above, we report the
percent deviation of the mean solution (%PDM) according
to the best known value, the 95 % confidence interval for the
mean (±%WD), and the average computation time (Min) in
minutes.

From what we know, the AGES approach is, at the date of
writing, the overall winner considering both solution qual-
ity and computation time. Only the very recent approach
of Kytöjoki et al. (2007) mentions faster computation times
(0.003 min on a AMD Athlon64 3000+) but with lesser solu-
tion quality (1.98% deviation), for the same test problems.
AGES is however considered complicated (Cordeau et al.
2005). On the contrary, UTSA is recognized as to be sim-
ple (easy to understand and implement) and flexible (easy to
extend) but more time consuming.

Considering DVRP instances in Fig. 10a, deviation is clos-
est to the one of UTSA for slightly spending more compu-
tation time. For such instances, GTS yields worst quality
results but computes very quickly. Considering the CVRP
instances in Table 6, and Fig. 10b, memetic SOM is less
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Fig. 10 Comparison with operations research heuristics on Golden
et al. (1998) large size instances

performing on accuracy than all approaches, computation
times being comparable or lesser than the ones of UTSA and
VLNS. On all the tests, the proposed memetic SOM performs
better on average than VLNS considering both quality solu-
tion and computation time, the difference specifically com-
ing from the DVRP instances. It yields 3.42% of average
deviation to best known value in roughly 11 min, whereas
VLNS 3.76% in 22 min normalized to the same computer.
Also, memetic SOM yields 2.70% deviation in 39 min on
average, whereas UTSA yields 1.45% in 51 min. Again, the
95% confidence intervals in Table 6 clearly discriminate the
performances of the different approaches.

6 Conclusion

Overall, by incorporating the SOM into an evolutionary algo-
rithm, the approach extends and improves neural networks
to the VRP. Operators have a similar structure based on the
closest point findings and simple moves performed in the
plane in a massively parallel fashion. The evolutionary frame-
work adds another level of parallel computation and improves
accuracy as well. This differentiates the approach from clas-
sical heuristics which operate generally (and sequentially) on

graphs. The approach becomes nearly competitive with some
of the classical heuristics for large size problems. Applica-
tions to other routing problems within a dynamic and sto-
chastic context are questions to be addressed. Exploiting
the natural parallelism of the approach for multi-processor
implantations is also a key point to study in further work.
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