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Abstract The grey model GM(1,1) is a popular forecasting
method when using limited time series data and is success-
fully applied to management and engineering applications.
On the other hand, the reliability and validity of the grey
model GM(1,1) have never been discussed. First, without
considering other causes when using limited time series data,
the forecasting of the grey model GM(1,1) is unreliable, and
provide insufficient information to a decision maker. There-
fore, for the sake of reliability, the fuzzy set theory was
hybridized into the grey model GM(1,1). This resulted in the
fuzzy grey regression model, which granulates a concept into
a set with membership function, thereby obtaining a possible
interval extrapolation. Second, for a newly developed product
or a newly developed system, the data collected are limited
and rather vague with the result that the grey model GM(1,1)
is useless for solving its problem with vague or fuzzy-input
values. In this paper the fuzzy grey regression model is veri-
fied to show its validity in solving crisp-input data and fuzzy-
input data with limited time series data. Finally, two examples
for the LCD TV demand are illustrated using the proposed
models.

Keywords Grey model GM(1,1) · Forecasting · Fuzzy
regression model · Fuzzy grey regression model

1 Introduction

The time series model is a popular method for the forecast-
ing of economic, marketing, as well as social problems that
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require at least 50 and preferably 100 observations. How-
ever, it is sometimes impossible to collect 50 data or more for
forecasting a new product demand or a new system develop-
ing in today’s rapidly changing socio-economic situations.
Therefore, other forecasting models have been developed
to cope with the problem when collected data is limited
and violates the basic assumption of normal distribution of
standard statistical models. The grey model with first-order
differential equation and one dependent variable model is
referred to as the grey model GM(1,1) (Deng 1986, 1989)
and was introduced in management and engineering appli-
cations for solving limited time series data. For example,
Hsu and Wen (2000) hybridized the grey model GM(1,1) and
applied it to a multi-objective programming model to fore-
cast airline city-pair passenger traffic; Lin and Yang (2003)
applied the grey model GM(1,1) to forecast the output value
of Taiwan’s optoelectronics industry; Hsu and Chen (2003)
improved the grey model GM(1,1) to forecast the power
demand of Taiwan; Chiao and Wang (2002) provided a
practical method to improve the lifetime of fluorescent
lamps; and Hsu (2003) applied three types of residual
modification models to revise the grey model GM(1,1) and
forecast the short-term demand in the integrated circuit indus-
try. It is obvious that the grey model GM(1,1) is a good
method to use in the forecasting with limited time series
data. However, without considering other causes, the relia-
bility of the forecasting point-estimations obtained from the
grey model GM(1,1) are not stable when we take another
sampling, and it does not provide sufficient information to
a decision maker. In addition, when it comes to validity, a
newly developed product or a newly developed system, the
data collected are usually limited and rather vague, with the
result that the validity of the grey model GM(1,1) becomes
useless for solving a problem using vague or fuzzy-input
values.
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Zadeh (1965) introduced the concept of the fuzzy set
theory, rather then use the point estimation in the conven-
tional probability theory. Also, he used the fuzzy set theory
to granulate a concept into a set with membership function
thereby decreasing the amount of data required. Tanaka et al.
(1982) extended this idea, and introduced the fuzzy regres-
sion in his proposal of a non-parameter approach for evaluat-
ing the relation between independent variables and dependent
variables. Kim et al. (1996) showed that its forecasting error
was better than that of statistical regression if the collected
data were smaller by simulation and in comparison with those
two models. In addition, fuzzy regression models have been
applied to various problems such as forecasting and engi-
neering. In forecasting, Watada (1992) used fuzzy regres-
sion for time series analysis; Chang (1997) showed that the
fuzzy regression model could be better explained in seasonal
analysis; Tseng et al. (2001) stated that Watada’s method
had a large forecasting error, and proposed the fuzzy ARIMA
(Auto-Regressive Integrated Moving Average) method to
obtain a reliable forecasting interval. The lags of the differ-
enced series appearing in the forecasting equation are called
“auto-regressive” terms, lags of the forecast errors are called
“moving average” terms, and a time series which needs to
be differenced in order to be made stationary is said to be an
“integrated” version of a stationary series. Tsaur et al. (2002)
used two independent variables of preceding periodical data
and index of time to show the pattern of the seasonal vari-
ation; Tsaur (2003) showed that the fuzzy regression model
could be used to forecast the demand of internet users under
different product life cycles. In engineering, Chang et al.
(1996) used the fuzzy linear regression model to analyze a
typical ergonomics problem, and showed that these types of
analyses could accurately represent the experimental data;
Funga et al. (2006) used an asymmetric fuzzy linear regres-
sion to estimate the functional relationships for product plan-
ning based on quality function deployment by integrating the
least-squares regression into fuzzy linear regression, and pro-
posed a hybrid linear programming model in order to cope
with the typical vagueness or imprecision of functional rela-
tionships in a product under a fuzzy environment; Abdalla
and Buckley (2007) apply fuzzy Monte Carlo method to a
certain fuzzy linear regression problem to estimate the best
solution, and find that the best solution is a vector of trian-
gular fuzzy numbers for the fuzzy coefficients in the model.
In addition, they use a quasi-random number generator to
produce random sequences of these fuzzy vectors which uni-
formly fill the search space.

However, for the fuzzy ARIMA model it is still necessary
to collect a lot of data to derive the parameters of ARIMA
(p,d,q), otherwise the model cannot work. In this study, for
reliability under limited time series, the fuzzy set theory is
hybridized into the grey model GM(1,1) to obtain the fuzzy
grey regression model, and to granulate a concept into a set

with membership function, thereby obtaining the possibly
interval extrapolation. Next, the fuzzy grey regression model
is verified to show its validity in solving crisp-input data
or fuzzy-input data with limited time series data. Finally,
two examples for LCD TV demand are illustrated by our
proposed models. The rest of this paper is organized as fol-
lows. Section 2 reviews the grey model GM(1,1) and the
fuzzy regression model. In Sect. 3, the fuzzy grey regression
model for solving limited data is constructed. Two examples
are illustrated in Sect. 4, and finally, conclusions are drawn
in Sect. 5.

2 Reviewing the grey model GM(1,1) and the fuzzy
regression model

2.1 Grey model GM(1,1)

If an original time series set f0 is defined as

f0 = { f 0
t

∣
∣
∣ t ∈ 1, 2, . . . , n} (1)

where t denotes the number of data observed in period t , then
the AGO value f 1

t of the original time series f 0
t is obtained

as

f 1
t =

(
t

∑

k=1

f 0
k

)

t = 1, 2, . . ., n. (2)

The grey model GM(k, N ) (Deng 1986, 1989) is defined as
Eq. (3) where k stands for the kth-order derivative of the
dependent variables F1

t , and N stands for N variables (i.e.
one dependent variable F1

t and N − 1 independent variables
X1

1(t), X1
2(t), . . . , X1

N−1(t)).

dk F1
t

dtk
+ a1

dk−1 F1
t

dtk−1 + · · · + ak−1
d F1

t

dt
+ ak F1

t

= b1 X1
1(t) + b2 X1

2(t) + · · · + bN−1 X1
N−1(t) (3)

where a1, a2, . . ., ak and b1, b2, . . ., bN−1 are unknown para-
meters. If k = 1 and N = 1, then the grey model GM(1,1)
with first-order differential equation and one dependent vari-
able model can be constructed as

d F1
t

dt
+ aF1

t = b, t = 1, 2, . . ., n (4)

where a represents the unknown developed parameter, b rep-
resents the unknown grey controlled parameter, and F1

t is the
dependent variable with AGO input value f 1

t . For solving

model (4), the derivative d F1
t

dt for the dependent variable is
represented as

d F1
t

dt
= lim

h→0

F1
t+h − F1

t

h
, ∀t ≥ 1. (5)
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Because the collected data is a set of time-series, we
assume the sampling time interval between period t and t+1

to be one unit. Then, the derivative d F1
t

dt can be approxi-
mated to be the difference between two successive periods of
F1

t and F1
t+1, defined as an inverse accumulated generating

operation (IAGO) variable F0
t+1 as

d F1
t

dt
≈ F1

t+1 − F1
t

1
= F1

t+1 − F1
t = F0

t+1, ∀t ≥ 1 (6)

for the original (t + 1)-th time series data f 0
t+1,∀t ≥ 1. In

order to have a more steady value for the dependent variable
F1

t ,∀t ≥ 1, the second part of model (4) is suggested as the
average of two successive periods of F1

t and F1
t+1,∀t ≥ 1

(Deng 1986, 1989). Then, we can rewrite model (4) as

F0
t+1 = a

[

−1

2
(F1

t+1 + F1
t )

]

+ b, ∀t ≥ 1. (7)

If t = 1, 2, . . . , n−1, then (7) can be rewritten into matrix
form as
⎡

⎢
⎢
⎣

F0
2

F0
3

. . .

F0
n

⎤

⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎣

− 1
2 (F1

2 + F1
1 ) 1

− 1
2 (F1

3 + F1
2 ) 1

. . . .

− 1
2 (F1

n + F1
n−1) 1

⎤

⎥
⎥
⎥
⎦

[

a
b

]

. (8)

By applying the least square method with input data sets f1

and f0, the parameters of a and b in matrix â can be solved
as

â =
[

a
b

]

= (BTB)−1BTF0 (9)

where matrices F0 =

⎡

⎢
⎢
⎣

f 0
2

f 0
3

. . .

f 0
n

⎤

⎥
⎥
⎦

, B =

⎡

⎢
⎢
⎣

− 1
2 ( f 1

2 + f 1
1 ) 1

− 1
2 ( f 1

3 + f 1
2 ) 1

. . . .

− 1
2 ( f 1

n + f 1
n−1) 1

⎤

⎥
⎥
⎦

and BT are the transpose of matrix B. Then, the differential
equation of model (4) can be solved to obtain the estimated
value f̂ 1

t+1 for the dependent variable F1
t ,∀t ≥ 1 as

f̂ 1
t+1 =

(

f 0
1 − (b/a)

)

e−at + (b/a), ∀t ≥ 1. (10)

Finally, the estimated value f̂ 0
t+1 for the IAGO variable F0

t+1
is obtained as

f̂ 0
t+1 = f̂ 1

t+1 − f̂ 1
t , ∀t = 1, 2, . . . , n. (11)

Therefore, by inputting the time series f 0
1 , f 0

2 , . . . , f 0
n

into the grey model GM(1,1), it can obtain the extrapolative
value of f̂ 0

2 , f̂ 0
3 , . . . , f̂ 0

n , and f̂ 0
n+1.

2.2 The fuzzy regression model

The fuzzy regression was first introduced by Tanaka et al.
(1982). It is an alternative approach to evaluating the rela-

tionship between independent variables and the dependent
variable. The basic model assumes a fuzzy regression equa-
tion as follows

Ỹi = Ã0 + Ã1 Xi1 + · · · + ÃN Xi N = ÃXi (12)

where Xi = [1, Xi1, . . . , Xi N ]T is a vector of independent

variables for the i-th data;
[

Ã0, Ã1, . . . , ÃN

]

is a vector of

the fuzzy parameters presented in the form of symmetric
triangular fuzzy numbers denoted by Ã j = (α j , c j ), j =
0, 1, . . ., N , with its membership function described as (13)
below where α j is its central value and c j is its spread value.

µ Ã j
(a j ) =

⎧

⎪⎨

⎪⎩

1 − |α j −a j |
c j

, α j − c j ≤ a j ≤ α j + c j ,

∀ j = 0, 1, . . . , N
0, otherwise

(13)

By applying the Extension Principle (Zadeh 1965), the
derived membership function of fuzzy number Ỹi is shown
as (14)

u(Yi ) =

⎧

⎪⎨

⎪⎩

1− |Yi−Xi α|
cT |Xi | , Xi �= 0,

1, Xi = 0, Yi �= 0
0, Xi = 0, Yi = 0

∀i=1, 2, . . . , M

(14)

The aim of a fuzzy regression model is to find the narrow-
est fuzzy regression interval as described in (15) by requiring
that the membership degree of each observation Yi is at least
equal to the value h as shown in (16) below.

MIN
N

∑

j=0

[

c j

M
∑

i=1

∣
∣Xi j

∣
∣

]

(15)

1−
∣
∣Yi−X T

i α
∣
∣

cT |Xi | ≥ h, ∀i = 1, 2, . . . , M (16)

Therefore, the following linear programming model can
be obtained for solving the fuzzy regression equation:

MIN
N

∑

j=0

[

c j

M
∑

i=1

∣
∣Xi j

∣
∣

]

s.t.
N

∑

j=0

α j Xi j +(1−h)

N
∑

j=0

c j
∣
∣Xi j

∣
∣≥Yi , ∀i =1, 2, . . . , M

N
∑

j=0

α j Xi j − (1 − h)

N
∑

j=0

c j
∣
∣Xi j

∣
∣≤Yi , ∀i =1, 2, . . . , M

c ≥ 0, a ∈ �, Xi0 = 1, 0 ≤ h < 1; ∀i = 1, 2, . . . , M

(17)

Then, formula (12) can be rewritten as

Ỹi = (α0, c0) + (α1, c1)Xi1 + · · · + (αN , cN )Xi N (18)

Each value of the dependent variable can be estimated as a
fuzzy number Ỹi = (Y L

i , Y h=1
i , Y U

i ), i = 1, 2, . . . , M where
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the lower bound of Ỹi is Y L
i = (α − c)T Xi ; the center value

of Ỹi is Y h=1
i = αT Xi ; the upper of Ỹi is Y U

i = (α + c)T Xi

and cT = (c0, c1, . . . , cN ), αT = (α0, α1, . . . , αN ).
The degree of fitness of the estimated fuzzy regression

equation Ỹi = Ã0 + Ãi Xi to the given data Yi is measured
by index h with Y h

i = {Yi | uỸi
(Yi ) ≥ h}. The value of h

is a membership degree which requires that the collected
data are included in the derived fuzzy regression interval
at least to the degree h. Moskowitz and Kim (1993) pro-
posed that if one is confident with the collected data, then
a smaller value h is assigned, otherwise, a larger value h
should be given. Besides, Moskowitze and Kim also sug-
gested that “If the solution for a fuzzy regression model is
obtained as Ã j,h1 = (α∗

j , c∗
j ), then the solution is changed

into Ã j,h2 = (α∗
j ,

1−h1
1−h2

c∗
j ) when the confidence value h is

adjusted from h1 to h2”.

3 Fuzzy grey regression model

In this section, for the purpose of reliability, we first hybridize
the fuzzy set theory into the grey model GM(1,1) in Sect. 3.1
to evaluate the fuzzy relationship between dependent and
independent variables, and granulate a concept into a set with
membership function, thereby obtaining the possible interval
extrapolation. Second, for a newly developed product or a
newly developed system the data collected are limited and
rather vague such that the grey model GM(1,1) is useless for
solving a problem with vague or fuzzy-input values.

Therefore, the fuzzy grey regression model is verified in
Sect. 3.2 to show its validity in solving fuzzy-input data under
limited time series data.

3.1 Fuzzy grey regression model with crisp-input
and fuzzy-output model

For a limited time series set f0 = { f 0
t

∣
∣ t ∈ 1, 2, . . . , n}, an

AGO time series set f1 = { f 1
t

∣
∣ t ∈ 1, 2, . . . , n} is obtained as

f 1
t = ∑t

k=1 f 0
k . In this study, in order to forecast with limited

time series data, we first hybridize the fuzzy set theory into
the grey model GM(1,1) to obtain the fuzzy grey regression
model using limited data. Then, the fuzzy grey regression
model with crisp-input and fuzzy-output value is constructed
as per Definition 1 by fuzzyfying the grey model GM(1,1) of
Eq. (7).

Definition 1 The fuzzy grey regression model with crisp-
input and fuzzy-output value is defined as F̃0

t+1 = Ã0 +
Ã1 F1

t ,∀t ≥ 1, where the fuzzy parameters Ã0 and Ã1 are
fuzzy sets on the product space of the parameter for mapping
the input AGO time series f 1

t of the independent variable
F1

t to the fuzzy-output value of the fuzzy dependent variable
F̃0

t+1.

ai ai+ciai-ci

1

)(~ xu
iA

x

Fig. 1 The membership function of fuzzy parameter Ãi

For the sake of simplicity, we define the fuzzy parameters
Ã0 = (a0, c0) and Ã1 = (a1, c1) in the fuzzy grey regres-
sion model as symmetrical triangular fuzzy numbers with
central values a0, a1, and spread values c0, c1, respectively.
Besides, their figure and membership functions are formu-
lated in Fig. 1 and Eq. (19)

u Ãi
(x) =

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

1 − (ai −x)
ci

, ai − ci ≤ x ≤ ai

1 − (x−ai )
ci

, ai ≤ x ≤ ai + ci

0, otherwise.

, ∀i = 0, 1

(19)

By applying the Extension Principle, the derived membership
function of the fuzzy-output value of F̃0

t+1 is shown as (20)

u( f 0
t+1) =

⎧

⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1 −
∣
∣ f 0

t+1−(

a0+a1 f 1
t
)∣
∣

c0+c1 f 1
t

,
(

a0 + a1 f 1
t

) − (

c0 + c1 f 1
t

)

≤ f 0
t+1 ≤ (

a0 + a1 f 1
t

)

+ (

c0 + c1 f 1
t

)

0, o.w.

(20)

The aim of a fuzzy grey regression model is to find the
narrowest regression interval by requiring that the member-
ship degree of each observation f 0

t+1is at least equal to the
value h as shown in (21) below with 0 ≤ h < 1.

1 −
∣
∣ f 0

t+1 − (

a0 + a1 f 1
t

)∣
∣

c0 + c1 f 1
t

≥ h, ∀t = 1, 2, 3,…, n − 1.

(21)

Finally, in order to obtain the minimum fuzzy relation in
the fuzzy grey regression model, it is necessary to require the
spread values of the fuzzy-output value F̃0

t+1,∀t =
1, 2, 3, . . . , n − 1 to be as small as possible. Based on this
objective, we can obtain the following linear programming
model
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Min
n−1∑

t=1
(c0 + c1 f 1

t )

f 0
t+1 ≥ a0 − (1 − h)c0 + (a1 − (1 − h)c1) ∗ ( f 1

t )

f 0
t+1 ≤ a0 + (1 − h)c0 + (a1 + (1 − h)c1) ∗ ( f 1

t )

a0, a1 ∈ R, c0, c1 ≥ 0, 0 ≤ h < 1,∀t = 1, 2, . . . , n − 1

(22)

By solving the linear programming model (22), the fuzzy
parameters Ã0 = (a0, c0) and Ã1 = (a1, c1) can be solved.
The equation of the fuzzy grey regression model is obtained
as F̃0

t+1 = (a0, c0) + (a1, c1)F1
t . This equation provides a

forecasting interval constructed by each estimated fuzzy out-

put F̃0
t+1 =

(

F0,L
t+1, F0,ht =1

t+1 , F0,U
t+1

)

t = 1, 2, . . . , n where

F0,L
t+1 = (a0 − c0) + (a1 − c1) · f 1

t is the lower bound of

F̃0
t+1; F0,ht =1

t+1 = a0 + a1 · f 1
t is the center value of F̃0

t+1,

and F0,U
t+1 = (a0 + c0) + (a1 + c1) · f 1

t is the upper bound of

F̃0
t+1.

Therefore, by the crisp-input values f 0
1 , f 0

2 , . . . , f 0
n , the

extrapolative fuzzy-output values ˆ̃F0
2 ,

ˆ̃F0
3 , . . . ,

ˆ̃F0
n , and

ˆ̃F0
n+1 can be obtained to granulate a concept into a set with

membership function.

3.2 Fuzzy grey regression model with fuzzy-input
and fuzzy-output model

If an original fuzzy time series set f̃
0 = { f̃ 0

t

∣
∣
∣ t ∈ 1, 2, . . . , n}

with central value f 0
t , and spread value e0

t ,∀t ∈ 1, 2, . . . , n

is collected, then an AGO fuzzy time series set f̃
1 = { f̃ 1

t

∣
∣
∣ t ∈

1, 2, . . . , n} is obtained with central value f 1
t = ∑t

k=1 f 0
k ,

and spread value e1
t = ∑t

k=1 e0
k ∀t ∈ 1, 2, . . . , n, by the

concept of fuzzy addition. Then, the fuzzy grey regression
model with fuzzy-input and fuzzy-output value is constructed
as per Definition 2 by fuzzyfying the grey model GM(1,1) of
Eq. (7).

Definition 2 The fuzzy grey regression model with fuzzy-
input and fuzzy-output value is defined as F̃0

t+1 = Ã0 +
Ã1 F̃1

t ,∀t ≥ 1, where the fuzzy parameters Ã0 and Ã1 are
fuzzy sets on the product space of the parameter for mapping
the AGO fuzzy time series f̃ 1

t of the fuzzy independent vari-
able F̃1

t to the fuzzy-output value of fuzzy dependent variable
F̃0

t+1.

For the sake of simplicity, we define the fuzzy parame-
ters Ã0 = (a0, c0) and Ã1 = (a1, c1) in the fuzzy grey
regression model as symmetrical triangular fuzzy numbers
with central values a0, a1, and spread values c0,c1, respec-
tively. By interval arithmetic, as in Fig. 2, a requirement
of the maximum degree of fit h between the fuzzy-output
value F̃0

t+1 and the fuzzy-input value f̃ 0
t+1 = ( f 0

t , e0
t ) is

presented as [ f̃ 0
t+1]h ⊂ [F̃0

t+1]h (Tanaka et al. 1982) with

1

Membership function of 0
1

~
+tF

Membership function of 0
1

~
+tf

0
1+tf

L
t

L
t fF 0

1
0

1 ++
0

1
0

1
U

t
U

t Ff ++
0

1+tF

ht

Fig. 2 The relation between membership functions of fuzzy -input and
fuzzy-output values

0 ≤ h < 1,∀t = 1, 2, 3, . . ., n − 1. Then, we can derive

f 0
t+1 − (1 − h)e0

t ≥ a0 − (1 − h)c0 + (a1 − (1 − h)c1)

∗( f 1
t − (1 − h)e1

t ) (23)

f 0
t+1 + (1 − h)e0

t ≤ a0 + (1 − h)c0 + (a1 + (1 − h)c1)

∗( f 1
t + (1 − h)e1

t ). (24)

Finally, in order to obtain the minimum fuzzy relation in
the fuzzy grey model GM(1,1), it is necessary to require the
spread values of the fuzzy-output value F̃0

t+1,∀t = 1, 2, 3,

. . . , n −1 to be as small as possible. Based on this objective,
we can obtain the following linear programming model:

Min
n − 1∑

t=1
(c0 + a1e1

t + c1 f 1
t )

f 0
t+1 − (1 − h)e0

t ≥ a0 − (1 − h)c0

+(a1 − (1 − h)c1) ∗ ( f 1
t − (1 − h)e1

t )

f 0
t+1 + (1 − h)e0

t ≤ a0 + (1 − h)c0 + (a1 + (1 − h)c1)

∗( f 1
t + (1 − h)e1

t )

a0, a1 ∈ R, c0, c1 ≥ 0, 0 ≤ h < 1,∀t = 1, 2, . . . , n − 1

(25)

By solving the linear programming model (25), the fuzzy
parameters Ã0 = (a0, c0) and Ã1 = (a1, c1) can be solved.
The equation of the fuzzy grey regression model is obtained
as F̃0

t+1 = (a0, c0) + (a1, c1)F̃1
t . This equation provides

a forecasting interval constructed by each estimated fuzzy-

output value F̃0
t+1 =

(

F0,L
t+1, F0,ht =1

t+1 , F0,U
t+1

)

, ∀t = 1, 2,

. . . , n where F0,L
t+1 = (a0 − c0) + (a1 − c1) · ( f 1

t − e1
t ) is the

lower bound of F̃0
t+1; F0,ht =1

t+1 = a0 + a1 · f 1
t is the center

value of F̃0
t+1 , and F0,U

t+1 = (a0 + c0) + (a1 + c1) · ( f 1
t +

e1
t ) is the upper bound of F̃0

t+1. Finally, by the fuzzy-input

values f̃ 0
1 , f̃ 0

2 , . . . , f̃ 0
n , the extrapolative fuzzy-output values

ˆ̃F0
2 ,

ˆ̃F0
3 , . . . ,

ˆ̃F0
n , and ˆ̃F0

n+1 can be obtained. Therefore, the
fuzzy grey regression model verified its validity for solving
fuzzy-input data under limited time series data.
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Furthermore, the value h is referred to as the degree of fit
between the fuzzy-input values and the extrapolative fuzzy-
output values of the fuzzy grey regression model, which thus
determines the range of the possible distributions of the pro-
posed model. That is, the value h is subjectively selected by a
decision maker as a membership degree which requires that
the collected data are included in the derived fuzzy interval
to at least the degree h. Moskowitz and Kim (1993) proposed
that if one is confident with the collected data, then a smaller
value h can be assigned, otherwise a larger value h should
be given. When h increases, the spread of the fuzzy-output
value becomes wider. Tanaka and Watada (Tsaur et al. 2002)
suggested that h = 0 when the data set is sufficiently large,
and to use a comparatively higher h as the size of the data set
becomes smaller. Bardossy et al. (1990) selected the value for
h according to the decision maker’s belief in the model, gen-
erally recommending an h value between 0.5 and 0.7. With
the property of h, the resultant forecasting interval provides
more flexibility for a decision maker.

4 Illustrated examples

Since 1998, the growth of the TFT-LCD industry in Taiwan
has been more rapid than the growth in the semiconductor
industry. The initial application of TFT-LCD was in the note-
book, but it is now also applied to PC and TV monitors. Dis-
play Search (Optotech 2005) reported that LCD TV demand
has surged worldwide, with all regions enjoying at least 41%
sequential growth. Topology research institute (2005) pre-
dicted that LCD TV will have a 50% market share in the
TV industry by 2008 if the LCD TV price can be reduced
through lower panel costs and new capacity optimization.
In order to get a larger market share, TFT-LCD companies
have been forecasting future demand in the LCD TV market
and planning a new generation of production line for large
size panels. However, it is difficult to collect the world-wide
sales of different sizes of LCD TVs so we roughly collected
the secondary data from some research institutes. Because
the collected time series data is limited and the secondary
data collected from different research institutes is vague, the
fuzzy grey regression model as proposed in Sect. 3 is a good
method to forecast the future demand of LCD TV for the
time period 2002 to 2005.

4.1 Example 1 for crisp-input LCD TV demand

The secondary data of LCD TV demand with crisp-input
value is shown in the second row of Table 1. By inputting
the values of LCD TV sales into the model (22) and setting
the value h as 0, 0.3, 0.5, and 0.7, respectively, as per the
suggestions of Tanaka et al, and Bardossy et al, the solutions
of the fuzzy parameters are obtained in Table 2. Next, the

Table 1 The sales of LCD TVs per year (unit: ten thousand)

Year 2001 2002 2003 2004

LCD TV Sales 81 150 393 870

Table 2 The solutions for the variables

Variable a0 a1 c0 c1

Solution with value h = 0 64.65 1.33 22.05 0

Solution with value h = 0.3 64.65 1.33 31.5 0

Solution with value h = 0.5 64.65 1.33 44.11 0

Solution with value h = 0.7 64.65 1.33 73.52 0

extrapolative fuzzy-output LCD TV demand is estimated and
shown in Table 3, with a lower and upper value for each year.

A better forecasting model means that it has a smaller esti-
mated error and can use the training data to obtain a more
accurate extrapolative value (compared to the testing value).
The central value of the fuzzy-output LCD TV demand is
used for defuzzying the fuzzy-output values of column 1
and column 3 in Table 3. Then we find that the fuzzy grey
regression model has the smallest forecasting error among the
grey model GM(1,1), Watada’s model, and the linear regres-
sion model, with a estimated error MAPE (Mean Absolute
Percentage Error, MAPE) of 29.44% from year 2002 to 2004.
In addition, the testing data of the year 2005 for the LCD TV
demand shows that the proposed model extrapolates the LCD
TV demand in 2005 to be between 20,296,200 units (lower
value under h = 0) and 20,737,200 units (upper value under
h = 0), which matches the possible demand forecasting of
some research institutes. For example, it is believed that the
LCD TV demand in 2005 was more than 20,000,000 units.
The comparison results are plotted in Figs. 3 and 4.

In Fig. 3, the linear regression model forecasting value for
the 2005 LCD TV demand is 10,260,000, and the grey model
GM(1,1) forecasting value for the 2005 LCD TV demand is
16,698,000 which does not fit the rapid increasing LCD TV
demand in 2005. In Fig. 4, based on the empirical results of
this example, we found that the predictive capability of the
fuzzy grey regression model is rather encouraging and that
the possible interval of the fuzzy grey regression model is
narrower than Watada’s interval. For example, for the fore-
casting demand in 2002, the lower bound and upper bound
of the proposed model are 1,503,300 and 1,944,300 whereas
the lower bound and upper bound in Watada’s model are
1,261,824 and 3,399,960, a range that is too wide for a deci-
sion maker to make a decision on under such an uncertain
environment. We also found that Watada’s model is a fuzzy
linear regression model that cannot fit the rapid increas-
ing LCD TV demand. However, our proposed model is a
piecewise model which can more reliably forecast a rapidly
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Table 3 The extrapolative value ˆ̃F0
t with different models (unit: ten thousand)

Forecasting value Fuzzy grey regression Grey model Watada’s Fuzzy regression Linear regression
model with value h=0 GM(1,1) model with value h=0 model

ˆ̃F0
2002 (150.33,194.43) 156.13 (126.1824, 339.996) 243

ˆ̃F0
2003 (349.83,393,93) 343.99 (389.0736, 602.994) 504

ˆ̃F0
2004 (872.52,916.62) 757.89 (651.9648, 865.992) 765

ˆ̃F0
2005 (2029.62, 2073.72) 1669.80 (914.856, 1128.99) 1026

MAPE 23.12% 29.44% 94.37% 101.16%

Fig. 3 Comparison results between linear regression model and grey
model GM(1,1)

Table 4 The sales of LCD TVs per year (unit: ten thousand)

Year 2001 2002 2003 2004

LCD TV Sales (81, 8) (150, 12) (393, 16) (870, 20)

increasing demand. These evidences show that the perfor-
mance of the fuzzy grey regression model is better than that
of the grey model GM(1,1), the linear regression model and
Watada’s fuzzy regression model under limited information.

4.2 Example 2 for the fuzzy-input LCD TV demand

In this example, we revised the collected secondary data in
Table 1 into fuzzy data by adding the spread value, as shown
in Table 4. For example, the LCD TV demand in 2001 is
listed as (81, 8) which means that the central value is 81 and

the spread value is 8 to express fuzzy number
∼
81. We know

that the grey model GM(1,1) and the statistical regression
model are not used for analyzing fuzzy-input data. In order to
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Fig. 4 Comparison results between fuzzy regression model and fuzzy
grey regression model

analyze the fuzzy-input data and transfer to useable informa-
tion, we use the fuzzy grey regression model for forecasting
the LCD TV demand, and compare to Watada’s model. By
inputting the fuzzy-input values of the LCD TV sales into
the model (25) and by setting the value h as 0, 0.3, 0.5, and
0.7, respectively, as per the suggestions of Tanaka et al, and
Bardossy et al, then the solutions of the fuzzy parameters
can be obtained in Table 5. Next, the LCD TV demand can
be estimated, as shown in Table 6, as a fuzzy-output value
with a lower and upper value for each year. The results show
that the proposed model extrapolates the LCD TV demand in
2005 to be between 20,251,110 units (lower value at h = 0)
and 22,048,610 units (upper value at h = 0), which matches
the possible demand forecasting of some research institutes.
Figure 5 shows that Watada’s fuzzy regression model has
a larger forecasting interval than the fuzzy grey regression
interval, and Watada’s model remains a linear trend captur-
ing the future demand, while the fuzzy grey regression model
is a piecewise trend that fits the rapidly increasing LCD TV
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Table 5 The solutions for the variables

Variable a0 a1 c0 c1

Solution with value h = 0 49.5311 1.3825 12.4553 0

Solution with value h = 0.3 40.2435 1.4239 0 0.0616

Solution with value h = 0.5 39.7807 1.4262 0 0.0727

Solution with value h = 0.7 40.8943 1.4241 0 0.0818

Table 6 The extrapolative values ˆ̃F0
t with different models (unit: ten

thousand)

Forecasting value Fuzzy grey regression Tanaka’s Fuzzy regression
model with value h=0 model with value h=0

ˆ̃F0
2002 (137.9983, 185.0289) (110.1544, 356)

ˆ̃F0
2003 (328.7833, 408.9939) (377.0316, 623)

ˆ̃F0
2004 (849.9858, 974.4364) (643.9088, 890)

ˆ̃F0
2005 (2025.111, 2204.861) (910.786, 1157)

demand. For example, in the forecasting demand of 2002,
the lower bound and upper bound of the proposed model
were 1,379,983 and 1,850,289, while the lower bound and
upper bound in Watada’s model was 1,101,544 and 3,560,000
which is too wide for a decision maker to make a decision
on under an uncertain environment. In addition, as per the
forecasting demand in some research institutes, the fore-
casting interval (20,251,110, 22,048,610) in the fuzzy grey
regression model is more precise forecasting for the LCD TV
demand in 2005 than Watada’s fuzzy regression model.

4.3 Discussions and analysis

It is evident that the reliability and validity of the fuzzy grey
regression model were examined successfully. By using the
collected limited time series data, we obtained the possible
forecasting interval for the LCD TV demand. In addition, we
found that when the collected LCD TV demand is fuzzy-input
time series data, then the proposed fuzzy grey regression
model can still be used for forecasting, and the forecasting
intervals are narrower allowing the decision maker to easily
determine the trend of future LCD TV demand. In short,
our proposed method can be used to assist managers in the
LCD TV industry to understand the possible interval in the
macro-economic environment.

Although the basic concept of the grey model GM(1,1)
and the fuzzy set theory is used to formulate the fuzzy grey
regression model, the output of the fuzzy grey regression
model requires fewer observations than the linear regression
model. There are several situations for which the fuzzy grey
regression model appears to be the most appropriate tool,
such as:
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Fig. 5 Comparison results between Watada’s fuzzy regression model
and fuzzy grey regression model

(i) Fuzzy grey regression model can provide the decision
makers the best- and worst-possible situations.

(ii) The required observations are as little as four.

A comparison of four kinds of time-series methods is shown
in Table 7.

5 Conclusion

In this paper, based on the basic concepts of the grey model
GM(1,1) and Tanaka’s fuzzy regression model, we proposed
a new method (the fuzzy grey regression model) and applied
it to forecasting the LCD TV demand for showing the reliabil-
ity and validity of the proposed method. From the examples
it is evident that the proposed method not only makes good
forecasts but also provides the decision makers with the best
and worst-possible scenarios. The performance of the fuzzy
grey regression model is better than the linear regression
model, the grey model GM(1,1) and Watada’s fuzzy regres-
sion model. Although Display Search, iSuppli, and PIPA
research institutes collected sufficient information from the
LCD TV market, in general, they could have made more pre-
cise forecasts. Using limited data with uncertain information,
and by using the fuzzy grey regression model we were able to
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Table 7 Comparison of four kinds of methods

Grey Model GM(1,1) Linear Regression Model Watada’s Fuzzy Regression
Model

Fuzzy Grey Regression Model

Apply a one-order AGO to assem-
ble the collected time series data
and obtain internal regularity in
order to manage the disorga-
nized original data

A functional relationship between
independent variables and the
dependent variable.

The relationship between the
independent variables and the
dependent variable is a fuzzy
function

The relationship between the
input AGO variable and the output
variable is a fuzzy function

Point estimation. Provides confidence interval. Provides possibility interval. Provides possibility interval.

Limited time series data Under the assumption of Normal
distribution, at least 20 or more
observations are preferable

This model is seldom used to solve
limited time series data

Limited time series data

forecast the LCD TV demand with crisp-input or fuzzy-input
data, such that the TFT-LCD producers can use it to plan their
new generation plant expansion and strengthen their compet-
itive edge, meet new and ongoing challenges, and maximize
their profit in the LCD TV market.
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