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Abstract In this paper, we study the lattice structure of
some fuzzy algebraic systems such as (G-)fuzzy groups,
some fuzzy ordered algebras and fuzzy hyperstructures. We
prove that under suitable conditions, these structures form a
distributive or modular lattice.
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1 Introduction and preliminaries

In the first half of the nineteeth century, George Boole’s
attempt to formalize propositional logic led to the concept
of Boolean algebras. While investigating the axiomatics of
Boolean algebras at the end of the nineteeth century, Charles
S. Peirce and Ernst Schröder found it useful to introduce the
lattice concept that is a partially ordered set (P,≤) in which
for all x, y ∈ P , inf{x, y} and sup{x, y}, denoted by ∧ and
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∨, respectively, exist. Independently, Richard Dedekind’s
research on ideals of algebraic numbers led to the same dis-
covery. (Boolean) Distributive lattices, i.e., a lattice L sat-
isfies (x ∨ y) ∧ z = (x ∧ z) ∨ (y ∧ z), (or equivalently
(x ∨ y) ∧ z ≤ x ∨ (y ∧ z)) for all x, y, z ∈ L , have played
a many faceted role in the development of lattice theory and
it is one of the most extensive and most satisfying chapters
of lattice theory. Also, distributive lattices have provided the
motivation for many results in general lattice theory. Dede-
kind also introduced modularity, i.e., a lattice L satisfies
x ≥ z ⇒ x ∧ (y ∨ z) = (x ∧ y) ∨ z,∀x, y, z ∈ L , for
all x, y ∈ L , a weakend form of distributivity.

The study of BC K -algebras was initiated by Imai and
Iséki (1966) as a generalization of the concept of set-the-
oretic difference and propositional calculi. Iséki posed an
interesting problem, whether the class of BCK-algebras is a
variety. In connection with this problem, Komori introduced
in (Komori 1984) a notion of BCC-algebras, as a general-
ization of BCK-algebras, and proved that the class of all
BCC-algebras is not a variety. Dudek (1992) introduced a
dual form of BCC-algebras that was introduced by Komori.

Hyperstructure theory was introduced in 1934 by Marty
(1934) at the eighth congress of Scandinavian Mathematic-
iens. He apply the theory to groups and introduced the con-
cept of a hypergroup that is a nonempty set H together with
a function ◦ : H × H → P(H) \ {∅}, so called binary
hyperoperation, that satisfies:

Associativity (x ◦ y) ◦ z = x ◦ (y ◦ z)
Reprocuctive rule x ◦ H = H ◦ x = H.

Some mathematiciens apply hyperstructure theory to other
subjects of classical pure mathematics and introduced the
notions of hyperring, hyperfield, hypermodule and so on. In
Jun et al. (2000), applied the hyperstructures to BCK-alge-
bras, and introduced the notion of a hyper BCK-algebra (and
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also weak hyper BCK-ideal) which is a generalization of
BCK-algebra.

Now, in this paper, we study the lattice structure of the set
of all ideals of some ordered algebras, as mentioned in the
abstract.

2 Lattice structure on (G-)fuzzy subgroups
of a (G-)group

Definition 2.1 (Rosenfeld 1971) Let (G, ·) be a group and
µ be a fuzzy subset of G. We say that µ is a fuzzy subgroup
of G if for all x, y ∈ G:

(i) µ(x · y) ≥ µ(x) ∧ µ(y),
(ii) µ(x−1) = µ(x).

Moreover, if for all x, y ∈ G we have µ(x · y) = µ(y · x),
then µ is called a fuzzy normal subgroup of G.

Lemma 2.2 (Rosenfeld 1971; Thomas 1997) Let (G, ·) be
a group. Then

(i) if µ is a fuzzy subgroup of G and µ(x) < µ(y), then
µ(x · y) = µ(x) = µ(y · x), for all x, y ∈ G.

(ii) if Fnt is the set of all fuzzy normal subgroups with the
same tip “t” (i.e., µ(e) = ν(e), for all µ, ν ∈ Fnt ) of
G and µ, ν ∈ Fnt , then

µ ∨ ν(x) =
∨

x=y·z
µ(y) ∧ ν(z)

for all x ∈ G.

Theorem 2.3 (Fnt ,∨,∩) is a modular lattice.

Proof By virtue of Lemma 2.2 and that the intersection of any
family of fuzzy normal subgroups with the same tip t of G is a
fuzzy normal subgroup with the same tip t of G, (Fnt ,∨,∩)

is a lattice. For modularity, let µ, ν, η ∈ Fnt be such that
µ ≥ η. We have to prove that µ ∧ (ν ∨ η) = (µ ∧ ν) ∨ η.
The inequality µ∧ (ν ∨ η) ≥ (µ∧ ν)∨ η is obvious. Hence,
it is enough to prove that µ ∧ (ν ∨ η) ≤ (µ ∧ ν) ∨ η. Now,
by contrary, suppose that it does not hold. Then there exists
x ∈ G such that

(µ ∧ (ν ∨ η))(x) > ((µ ∧ ν) ∨ η)(x)

i.e.,

µ(x) ∧
∨

x=y·z
(ν(y) ∧ η(z)) >

∨

x=y·z
((µ ∧ ν)(y) ∧ η(z)).

Hence,

µ(x) >
∨

x=y·z
((µ ∧ ν)(y) ∧ η(z)) (1)

and∨

x=y·z
(ν(y) ∧ η(z)) >

∨

x=y·z
((µ ∧ ν)(y) ∧ η(z)). (2)

This implies that, there exist y0, z0 ∈ G such that x = y0 · z0

and

ν(y0) ∧ η(z0) >
∨

x=y·z
((µ ∧ ν)(y) ∧ η(z))

≥ µ(y0) ∧ ν(y0) ∧ η(z0). (3)

Let a = ν(y0)∧η(z0). Hence, by (3), we have a > µ(y0)∧a.
Now, if µ(y0) ∧ a = a, then a > a, which is impossible.
Hence, µ(y0) ∧ a = µ(y0) and so

µ(y0) ∧ ν(y0) ∧ η(z0) = µ(y0). (4)

By (4), η(z0) ≥ µ(y0). If µ(y0) = η(z0), then by (3),

ν(y0) ∧ η(z0) > µ(y0) ∧ ν(y0) ∧ η(z0) = ν(y0) ∧ η(z0)

which is a contradiction. So η(z0) > µ(y0). Moreover, by
(1) we have

µ(x) > µ(y0) ∧ ν(y0) ∧ η(z0) = µ(y0).

Thus

µ(y−1
0 ) = µ(y0) < µ(x) = µ(y0 · z0)

and so by Lemma 2.2(i),

µ(y0) = µ(y−1
0 ) = µ(y−1

0 · y0 · z0) = µ(z0).

This implies that η(z0) > µ(y0) = µ(z0) which is a contra-
diction, because η ≤ µ. Therefore, (Fnt ,∩,∨) is a modular
lattice. �

Definition 2.4 (Soleimaninasab and Mashinchi 2004) Let G
be a nonempty set. Then:

(i) G together with an operation · : G × G → G by
(a, b) �→ a · b, called multiplication, is called a gen-
eralized group or briefly, G-group if it satisfies the
following conditions:

(a) (x · y) · z = x · (y · z), for all x, y, z ∈ G,
(b) for all x ∈ G there exists a unique element

e(x) ∈ G such that x · e(x) = e(x) · x = x ,
(c) for all x ∈ G there exists x−1 ∈ G such that

x · x−1 = x−1 · x = e(x),
(ii) A nonempty subset H of G-group G is called a G-sub-

group if it itself is a G-group,
(iii) A fuzzy subset A of G-group G is called a G-fuzzy sub-

group if and only if A(x · y−1) ≥ A(x) ∧ A(y), for all
x, y ∈ G.

Theorem 2.5 Let G f be the set of all G-fuzzy subgroups of
G-group G, A ∧ B = A ∩ B and

A ∨ B =
⋂

α∈�

{Aα : Aα ∈ G f and A, B ≤ Aα},

for all A, B ∈ G f , where� is an indexed set. Then (G f ,∨,∧)

is a modular lattice.
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Proof It is easy to see that A ∧ B = A ∩ B ∈ G f , for all
A, B ∈ G f . Also, it is obvious that

A ∨ B =
⋂

α∈�

{Aα : Aα ∈ G f and A, B ≤ Aα} ∈ G f .

Moreover, by some modifications we can check that ∨ and
∧ satisfy the axioms of a lattice. So, G f is a lattice. Now, we
show that G f is modular. For this, let A, B, C ∈ G f be such
that A ≥ C . It is clear that (A ∧ B) ∨ C ≤ A ∧ (B ∨ C). So,
it is enough to prove that A ∧ (B ∨ C) ≤ (A ∧ B) ∨ C . Let

X = {Aβ ∈ G f : A ≤ Aβ}, Y = {Aα ∈ G f : B, C ≤ Aα},
Z = {Aα ∈ G f : A ∩ B ≤ Aα, C ≤ Aα}
and α, β ∈ �. Hence, X ⊆ {Aβ ∈ G f : A ∩ B ≤ Aβ} and
since A ≥ C , then X ⊆ {Aα ∈ G f : C ≤ Aα}. This implies
that X ⊆ Z .

Similarly, Y ⊆ {Aα ∈ G f : C ≤ Aα} and since A ∩ B ≤
B, then Y ⊆ {Aα ∈ G f : A ∩ B ≤ Aα} and so Y ⊆ Z . Now,
since A ∈ G f , then

A =
⋂

β∈�

{Aβ ∈ G f : A ≤ Aβ}.

Hence,

A ∩ (B ∨ C) = A ∩
⋂

α∈�

{Aα ∈ G f : B, C ≤ Aα}

=
⋂

β∈�

{Aβ ∈ G f : A ≤ Aβ} ∩
⋂

α∈�

×{Aα ∈ G f : B, C ≤ Aα}
=

⋂

(α,β)∈�×�

{Aβ ∈ G f : A ≤ Aβ} ∩

×{Aα ∈ G f : B, C ≤ Aα}
≤

⋂

(α,β)∈�×�

{Aα ∈ G f : A ∩ B ≤ Aα, C ≤ Aα}

= (A ∩ B) ∨ C.

Hence, A ∧ (B ∨ C) = A ∩ (B ∨ C) ≤ (A ∩ B) ∨ C =
(A ∧ B) ∨ C , says that G f is a modular lattice. �


3 Lattice structure on weak normal F-subpolygroups
of an F-polygroup

Definition 3.1 (Zahedi and Hasankhani 1996) Let P be a
nonempty set, I = [0, 1], I p the set of all functions from P
into I , I P∗ = I P \ {0} and 0 be zero function on I = [0, 1].
Then,

• by an F-hyperoperation “∗” on P we mean a function from
P × P to I P∗ ,

• let “∗” be an F-hyperoperation on P. Then (P, ∗) is called
an F-polygroup iff

(i) (x ∗ y) ∗ z = x ∗ (y ∗ z),
(ii) there exists an element e ∈ P such that

x ∈ supp(x ∗ e ∩ e ∗ x), ∀x ∈ P
(iii) for each x ∈ P there exists a unique element x ′ ∈ P

such that
e ∈ supp(x ∗ x ′ ∩ x ′ ∗ x)

(iv) z ∈ supp(x ∗ y) ⇒ x ∈ supp(z ∗ y−1) ⇒ y ∈
supp(x−1 ∗ z), ∀x, y, z ∈ P

where for fuzzy subset µ of nonempty set X , suppµ = {x ∈
X : µ(x) > 0}.
Definition 3.2 (Zahedi and Hasankhani 1996) Let P be an
F-polygroup and H be a nonempty subset of P . Then, H
is called an F-subpolygroup of P if x ∈ H implies that
x−1 ∈ H and supp(x ∗ y) ⊆ H , for all x, y ∈ H . Moreover,
H is called a weak normal F-subpolygroup of P if H is an
F-subpolygroup of P and x ∗ H ∗ x−1 ≤ χH , for all x ∈ P .

Theorem 3.3 (Zahedi and Hasankhani 1996) Let H and K
be F-subpolygroups of an F-polygroup P and H ⊗ K =⋃

x∈H,y∈K

supp(x ∗ y). Then:

(i) H⊗K is an F-subpolygroup of P if and only if H⊗K =
K ⊗ H,

(ii) if K is a weak normal F-subpolygroup of P, then H⊗K
is an F-subpolygroup of P,

(iii) if H and K are weak normal F-subpolygroups of P,
then H ⊗ K is a weak normal F-subpolygroup of P.

Theorem 3.4 Let Fwn be the set of all weak normal
F-subpolygroups of an F-polygroup P. Then (Fwn,⊗,∩)

is a modular lattice.

Proof We first show that Fwn is a lattice. For this let H, K ∈
Fwn . It is easy to see that H ∧ K = H ∩ K ∈ Fwn . More-
over, by Theorem 3.3(iii), H ⊗K ∈ Fwn . Now, we prove that
H ∨ K = H ⊗ K . Let x ∈ H . Since e ∈ K , then supp(x ∗
e) ⊆ H ⊗ K . Moreover, by Theorem 3.3(iii), supp(e ∗ x) ⊆
K ⊗ H = H ⊗ K and so x ∈ supp(x ∗ e ∩ e ∗ x) =
supp(x ∗ e) ∩ supp(e ∗ x) ⊆ H ⊗ K . Hence, H ⊆ H ⊗ K .
Similarly, we can show that K ⊆ H ⊗ K . Now, let L ∈ Fwn

be such that H, K ⊆ L and x ∈ H ⊗ K . Thus there exist
h ∈ H and k ∈ K such that x ∈ supp(h ∗ k), and since
L is an F-subpolygroup of P containing H and K , then
supp(h∗k) ⊆ L . This implies that x ∈ L and so H ⊗K ⊆ L .
Hence, H ∨ K = H ⊗ K . Theorefore Fwn is a lattice. For
modularity, let H, K , L ∈ Fwn be such that H ⊇ L . We
have to prove that H ∩ (K ⊗ L) = (H ∩ K ) ⊗ L . But
the relation H ∩ (K ⊗ L) ⊇ (H ∩ K ) ⊗ L , is clear. So, it
remains to show that H ∩ (K ⊗ L) ⊆ (H ∩ K )⊗ L . Now, let
x ∈ H ∩ (K ⊗ L). Hence, x ∈ H and x ∈ supp(k ∗ l), for
k ∈ K and l ∈ L and so k ∈ supp(x ∗ l−1) ⊆ H , because
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742 R. A. Borzooei et al.

x ∈ H and l−1 ∈ L ⊆ H . Thus k ∈ H ∩ K . This implies
that x ∈ supp(k ∗ l) ⊆ (H ∩ K )⊗ L . Hence, H ∩(K ⊗ L) ⊆
(H ∩ K ) ⊗ L . Thus, H ∩ (K ⊗ L) = (H ∩ K ) ⊗ L and so
Fwn is modular. �


4 Lattice structure on fuzzy hyperideals of a hyperring

Definition 4.1 (Corsini and Leoreanu 2003) (i) Let (H, ◦)

be a hypergroup. Then:

(i) An element e ∈ H is called an identity if for all a ∈ H ,
a ∈ (a ◦ e) ∩ (e ◦ a).

(ii) If H has an identity, then for a ∈ H the element a′ ∈ H
is called an inverse of a if there exists an identity e ∈ H
such that e ∈ (a ◦ a′) ∩ (a′ ◦ a).

(iii) H is called canonical if it is commutative (i.e., a ◦ b =
b ◦ a, for all a, b ∈ H ), has an identity and every ele-
ment has an inverse.

(ii) A hyperring is a hypergstructure (R,+, ·, 0) where,
(R,+) is a canonical hypregroup, (R, ·) is a semigroup
endowed with a two-sided absorbing element 0 and the prod-
uct is distributive on addition. A nonempty subset S of a
hyperring (R,+, ·) is said to be a hyperideal if (S,+) is a
canonical subhypergroup and for all x ∈ S and r ∈ R we
have r x, xr ∈ S.

Definition 4.2 (Corsini and Leoreanu 2003) Let µ be a fuzzy
subset of a hyperring (R,+, ·). Then, µ is said to be a fuzzy
hyperideal of R if for all x, y ∈ G,
∧

z∈x+y

µ(z) ≥ µ(x) ∧ µ(y), µ(−x) ≥ µ(x) and µ(x · y)

≥ µ(x) ∨ µ(y).

Lemma 4.3 Let (H, ◦) be a hypergroupoid and µ and ν be
fuzzy subsets of H and

(µ ◦ ν)(z) =
∨

z∈x◦y

(µ(x) ∧ ν(y)).

Then for all t ∈ [0, 1), (µ◦ν)t> = µt> ◦νt> , where for fuzzy
subset µ of H, µt> is defined by µt> = {x ∈ H : µ(x) > t}.
Proof Let z ∈ H . Then:

z ∈ (µ ◦ ν)t> ⇔
∨

z∈x◦y

(µ(x) ∧ ν(y)) > t

⇔ ∃x0, y0 ∈ H ; z ∈ x0 ◦ y0 and µ(x0)

> t, ν(y0) > t

⇔ ∃x0, y0 ∈ H ; z ∈ x0 ◦ y0 and x0 ◦ y0

⊆ µt> ◦ νt>

⇔ z ∈ µt> ◦ νt>.

�


Lemma 4.4 Let ρ be a fuzzy subset of a hyperring R. Then
ρ is a fuzzy hyperideal of R if and only if for all t ∈ [0, 1),
ρt> �= ∅ is a hyperideal of R.

Proof Let ρ be a fuzzy hyperideal of R and x, y ∈ ρt> ,
for t ∈ [0, 1). Then ρ(x) > t and ρ(y) > t and so for all
u ∈ x + y, we have

ρ(u) ≥
∧

z∈x+y

ρ(z) ≥ ρ(x) ∧ ρ(y) > t.

This implies that u ∈ ρt> and so x + y ⊆ ρt> . By a similar
argument, we can show that −x ∈ ρt> . Now, let u ∈ ρt>

and r ∈ R. Then, ρ(u) > t and so ρ(ru) ≥ ρ(r) ∨ ρ(u) >

ρ(r) ∨ t ≥ t , which implies that ru ∈ ρt> . Similarly, ur ∈
ρt> . Hence, ρt> is a hyperideal of R.

Conversely, let for t ∈ [0, 1), ρt> �= ∅ be a hyperideal
of R and ρ(x) ∧ ρ(y) = t . Thus x, y ∈ ρt and so for all
s ∈ [0, t) we have x, y ∈ ρs> . Hence, x + y ⊆ ρs> and so
for all z ∈ x + y, we have ρ(z) > s, for all s ∈ [0, t). Thus
ρ(z) ≥ t , for all z ∈ x + y and so
∧

z∈x+y

ρ(z) ≥ t = ρ(x) ∧ ρ(y).

Similarly, we can show that ρ(−x) ≥ ρ(x), for all x ∈ R.
Now, let ρ(x) ∨ ρ(y) = t , for x, y ∈ R. Then, ρ(x) ≥ t or
ρ(y) ≥ t . Let ρ(x) ≥ t . Then for all s ∈ [0, t), ρ(x) > s, i.e.,
x ∈ ρs> and since ρs> is a hyperideal of R, then x · y ∈ ρs> .
Hence, ρ(x · y) > s, for all s ∈ [0, t) and so ρ(x · y) ≥ t =
ρ(x) ∨ ρ(y). Therefore, ρ is a fuzzy hyperideal of R. �

Theorem 4.5 Let Fi be the set of all fuzzy hyperideals of
R with the same tip “t”. Then (Fi ,+,∩) is a distributive
lattice, where for all µ, ν ∈ Fi ,

(µ + ν)(z) =
∨

z∈x+y

(µ(x) ∧ ν(y)).

Proof Let µ, ν ∈ Fi . We first show that µ+ν ∈ Fi . For this,
by Lemma 4.4, it is enough to prove that for all t ∈ [0, 1),
(µ + ν)t> �= ∅ is a hyperideal of R. Since µ and ν are
fuzzy hyperideals of R, then by Lemma 4.4, µt> �= ∅ and
νt> �= ∅ are hyperideals of R. Now, we prove that µt> + νt>

is a hyperideal of R. For this, let x, y ∈ µt> + νt> , for
x, y ∈ R. Then, there exist u1, u2 ∈ µt> and v1, v2 ∈ νt>

such that x ∈ u1 + v1 and y ∈ u2 + v2 and so x + y ⊆
(u1 + v1) + (u2 + v2) = (u1 + u2) + (v1 + v2). By defi-
nition,

∧
a∈u1+u2

µ(a) ≥ µ(u1) ∧ µ(u2) > t , which shows
that u1 + u2 ⊆ µt> . Similarly, v1 + v2 ⊆ νt> and hence,
x + y ⊆ µt> + νt> . By a similar way, we can show that
−x ∈ µt> +νt> , for all x ∈ µt> +νt> . Now, let x ∈ µt> +νt>

and r ∈ R. Then, there exist u ∈ µt> and v ∈ νt> such that
x ∈ u + v. Now, r x ∈ r(u + v) = ru + rv and µ(ru) ≥
µ(r) ∨ µ(u) > µ(r) ∨ t ≥ t , which implies that ru ∈ µt> .
Similarly, rv ∈ νt> and so r x ∈ µt> +νt> . Similarly, we can
show that xr ∈ µt> + νt> . Thus, µt> + νt> is a hyperideal
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Lattice structure on some fuzzy algebraic systems 743

of R and so by Lemma 4.3, (µ + ν)t> is a hyperideal of R.
Thus, by Lemma 4.4, µ + ν is a fuzzy hyperideal of R.

Now, we prove that µ + ν = µ ∨ ν. Let z ∈ R. Since
z ∈ z + 0 = 0 + z and ν(0) = µ(0) ≥ µ(x), for all x ∈ R,
then we have

(µ + ν)(z) =
∨

z∈x+y

(µ(x) ∧ ν(y)) ≥ µ(z) ∧ ν(0) = µ(z).

Similarly, (µ+ ν)(z) ≥ ν(z) and so µ+ ν is an upper bound
for µ and ν.

Now, let η be a fuzzy hyperideal of R containing µ and
ν and z ∈ R. Then there exist x, y ∈ R such that z ∈ x +
y, e.g., we can choose x = z and y = 0. Hence, η(z) ≥∧

u∈x+y η(u) ≥ η(x) ∧ η(y) and so for all x, y ∈ R such
that z ∈ x + y we have

η(z) ≥
∨

z∈x+y

(η(x) ∧ η(y)) ≥
∨

z∈x+y

(µ(x) ∧ ν(y))

= (µ + ν)(z).

So, µ∨ν = µ+ν. Also, this implies that µ+µ = µ, for all
µ ∈ Fi . Now, for distributivity, we prove that τ ∩ (ρ +σ) =
(τ ∩ ρ) + (τ ∩ σ), for all ρ, σ, τ ∈ Fi . Let z ∈ R. Then:

((τ ∩ ρ) + (τ ∩ σ))(z) =
∨

z∈x+y

((τ ∩ ρ)(x) ∧ (τ ∩ σ)(y))

=
∨

z∈x+y

(
(τ (x) ∧ ρ(x)) ∧ (τ (y) ∧ σ(y))

)

=
∨

z∈x+y

(
(τ (x) ∧ τ(y)) ∧ (ρ(x) ∧ σ(y))

)

=
( ∨

z∈x+y

(τ (x) ∧ τ(y))
)

∧
( ∨

z∈x+y

(ρ(x) ∧ σ(y))
)

= (τ + τ)(z) ∧ (ρ + σ)(z)

= τ(z) ∧ (ρ + σ)(z)

= (τ ∩ (ρ + σ))(z).

Hence, τ∩(ρ+σ) = (τ∩ρ)+(τ∩σ). Therefore, (Fi ,+,∩)

is a distributive lattice. �


5 Lattice structure on fuzzy ideals of a BC K -algebra

Definition 5.1 (Meng and Jun 1994) (i) By a BCK-algebra
we mean a nonempty set X endowed with a binary operation
“ ∗ ” and a constant “ 0 ” satisfies the following conditions:

(BCK1) (x ∗ z) ∗ (y ∗ z) ≤ x ∗ y,
(BCK2) (x ∗ y) ∗ z = (x ∗ z) ∗ y,
(BCK3) x ∗ y ≤ x ,
(BCK4) x ≤ y and y ≤ x imply x = y,

for all x, y, z ∈ X , where “ ≤ ” is defined by x ≤ y if and
only if x ∗ y = 0, for all x, y ∈ X .

(ii) Nonempty subset I of BC K -algebra X is said to be
an ideal of X if 0 ∈ I and x ∗ y ∈ I and y ∈ I imply x ∈ I ,
for all x, y ∈ X .

(iii) Fuzzy subset µ of BC K -algebra X is said to be a fuzzy
ideal of X if µ(0) ≥ µ(x) and µ(x) ≥ µ(x ∗ y) ∧ µ(y), for
all x, y ∈ X .

Note 5.2 (Meng and Jun 1994) Let X be a BC K -algebra.
Then,

(i) the following statements hold:
(a) x ≤ y implies that x ∗ z ≤ y ∗ z, for all x, y, z ∈ X .
(b) 0 ∗ x = 0,
(c) x ∗ x = 0,
(d) it is easy to check that fuzzy subset µ of X is a

fuzzy ideal if and only if for all t ∈ [0, 1], the level
subset µt = {x ∈ X : µ(x) ≥ t} �= ∅ is an ideal
of X ,

(e) let µ be a fuzzy subset of X . Then,
⋂

µ⊆ν

ν, where ν

is a fuzzy ideal of X , is a fuzzy ideal of X , too.
We denote it by [µ], that is [µ] = {ν : µ ⊆
ν, and ν is a fuzzy ideal of X}.

Lemma 5.3 Let µ be a fuzzy subset of BC K -algebra X.
Then µ is a fuzzy ideal of X if and only if

(x ∗ y) ∗ z = 0 implies that µ(x) ≥ µ(y) ∧ µ(z) (5)

for all x, y, z ∈ X.

Proof Let µ be a fuzzy ideal of X , (x ∗ y) ∗ z = 0, for
x, y, z ∈ X and µ(y) ∧ µ(z) = t . Thus µ(y) ≥ t and
µ(z) ≥ t and so y, z ∈ µt . Now, since (x ∗ y) ∗ z = 0 ∈ µt

and by Note 5.2(ii), µt is an ideal of X , then x ∗ y ∈ µt .
Similarly, since y ∈ µt , then x ∈ µt and so

µ(x) ≥ t = µ(y) ∧ µ(z).

Conversely, let the condition (5) holds. Since (0∗ x)∗ x = 0,
for all x ∈ X , then µ(0) ≥ µ(x) ∧ µ(x) = µ(x), for all
x ∈ X . Moreover, since by (BCK2), for all x, y ∈ X we
have

(x ∗ (x ∗ y)) ∗ y = (x ∗ y) ∗ (x ∗ y) = 0,

then by hypothesis, µ(x) ≥ µ(x ∗ y) ∧ µ(y), which implies
that µ is a fuzzy ideal of X . �


Corollary 5.4 Let µ be a fuzzy subset of BC K -algebra X.
Then µ is a fuzzy ideal of X if and only if

(· · · ((x ∗ a1) ∗ a2) ∗ · · · ) ∗ an = 0 implies that µ(x)

≥ µ(a1) ∧ µ(a2) ∧ · · · ∧ µ(an)

for all x, a1, a2, . . . , an ∈ X.

Proof The proof follows from Lemma 5.3, by induction
on n. �
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Lemma 5.5 Let µ and ν be fuzzy ideals of BC K -algebra X
and

η(x) = ∨{µ ∪ ν(a1) ∧ µ ∪ ν(a2) ∧ · · · ∧ µ ∪ ν(an) :
(· · · ((x ∗ a1) ∗ a2) ∗ · · · ) ∗ an = 0,

for some a1, a2, . . . , an ∈ X}
Then η = [µ ∪ ν] and so [µ ∪ ν] = µ ∨ ν.

Proof We have to prove that η is a fuzzy ideal of X . For this,
by Lemma 5.3, it is enough to show that if (x ∗ y) ∗ z =
0, then η(x) ≥ η(y) ∧ η(z). Let x, y, z ∈ X be such that
(x ∗ y) ∗ z = 0 and ε > 0. Since, y ∗ y = 0, then there exist
a1, a2, . . . , an ∈ X such that

(. . . ((y ∗ a1) ∗ a2) ∗ · · · ) ∗ an = 0

and

η(y) − ε < µ ∪ ν(a1) ∧ µ ∪ ν(a2) ∧ · · · ∧ µ ∪ ν(an).

Similarly, there exist b1, b2, . . . , bm ∈ X such that (· · · ((z ∗
b1) ∗ b2) ∗ · · · ) ∗ bm = 0 and

η(z) − ε < µ ∪ ν(b1) ∧ µ ∪ ν(b2) ∧ · · · ∧ µ ∪ ν(bm).

Now, since (x ∗ y) ∗ z = 0 and so x ∗ y ≤ z, then by Note
5.2(i)(a), we have

((· · · ((x ∗ b1) ∗ b2) ∗ · · · ) ∗ bm) ∗ y

= (· · · (((x ∗ y) ∗ b1) ∗ b2) ∗ · · · ) ∗ bm

≤ (· · · ((z ∗ b1) ∗ b2) ∗ · · · ) ∗ bm = 0.

This implies that ((· · · ((x ∗ b1) ∗ b2) ∗ · · · ) ∗ bm) ∗ y = 0
and so (· · · ((x ∗b1)∗b2)∗ · · · )∗bm ≤ y. Similarly, by Note
5.2(i)(a),

(· · · ((((· · · ((x ∗ b1) ∗ b2) ∗ · · · ) ∗ bm) ∗ a1) ∗ a2) ∗ · · · )
∗an ≤ (· · · ((y ∗ a1) ∗ a2) ∗ · · · ) ∗ an = 0.

Hence,

(· · · ((((· · · ((x ∗ b1) ∗ b2) ∗ · · · ) ∗ bm) ∗ a1) ∗ a2)

∗ · · · ) ∗ an = 0

and so by (BCK2),

(· · · ((((· · · ((x ∗ a1) ∗ a2) ∗ · · · ) ∗ an) ∗ b1) ∗ b2)

∗ · · · ) ∗ bm = 0.

Thus,

η(x) ≥ µ ∪ ν(a1) ∧ · · · ∧ µ ∪ ν(an)

∧ µ ∪ ν(b1) ∧ · · · ∧ µ ∪ ν(bm)

> (η(y) − ε) ∧ (η(z) − ε)

= (η(y) ∧ η(z)) − ε.

Therefore, η(x) ≥ η(y) ∧ η(z). Now, since x ∗ x = 0, then
µ(x) ≤ µ ∪ ν(x) ≤ η(x). Hence, µ ≤ η. Similarly, ν ≤ η,

which shows that η is an upper bound for µ and ν. Now, let
τ be a fuzzy ideal of X containing µ and ν and x ∈ X . Thus,

η(x) = ∨{µ ∪ ν(a1) ∧ µ ∪ ν(a2) ∧ · · · ∧ µ ∪ ν(an) :
(· · · ((x ∗ a1) ∗ a2) ∗ . . . ) ∗ an = 0,

for some a1, a2, . . . , an ∈ X}
≤ ∨{τ(a1) ∧ τ(a2) ∧ · · · ∧ τ(an) :

(· · · ((x ∗ a1) ∗ a2) ∗ . . . ) ∗ an = 0,

for some a1, a2, . . . , an ∈ X}
≤ ∨τ(x) by Corollary 5.4

= τ(x).

Therefore, η = [µ ∪ ν] and so µ ∨ ν = [µ ∨ ν]. �

Theorem 5.6 Let FI (X) be the set of all fuzzy ideals of
BC K -algebra X. Then (FI (X),∨,∩) is a distributive
lattice.

Proof By Lemma 5.5 and that the intersection of any two
fuzzy ideal of X is again a fuzzy ideal of X , (FI (X),∨,∩)

is a lattice. For distributivity, it is enough to show that for all
µ, ρ, σ ∈ FI (X),

µ ∧ (ρ ∨ σ) ≤ (µ ∧ ρ) ∨ (µ ∧ σ).

Because, the converse inequality is obvious. Let µ, ρ, σ ∈
FI (X), x ∈ X and ε > 0. Then there exist a1, a2, . . . , an ∈
X , such that

(· · · ((x ∗ a1) ∗ a2) ∗ · · · ) ∗ an = 0

and

ρ ∨ σ(x) < ε + ∧(ρ ∪ σ(a1), ρ ∪ σ(a2), . . . , ρ ∪ σ(an)).

We observe that a1, a2, . . . , an always exist, because x ∗ x =
0 holds in any BC K -algebra and we can choose a1 = x ,
a2 = · · · = an = 0. Now, by the definition of ρ ∪ σ we
have ρ ∪ σ(ai ) < ρ(ai ) + ε or σ(ai ) + ε. Without loss of
generality, we can suppose that

ρ ∪ σ(a1) < ρ(a1) + ε

...

ρ ∪ σ(ai ) < ρ(ai ) + ε

ρ ∪ σ(ai+1) < σ(ai+1) + ε

...

ρ ∪ σ(an) < σ(an) + ε.

Because, if ρ∪σ(a j ) < σ(a j )+ε, for j ∈ {1, 2, . . . , i}, then
we can restrict the set {1, 2, . . . , i} to a set I = {1, 2, . . . , l}
⊆ {1, 2, . . . , i} and rearrange a′

i s such that for all j ∈ I ,
ρ ∪ σ(a j ) < ρ(a j ) + ε. Hence,

ρ ∨ σ(x) < 2ε + ∧(ρ(a1), . . . , ρ(ai ), σ (ai+1), . . . , σ (an))
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and so

µ ∧ (ρ ∨ σ)(x) < 2ε + ∧(µ(x) ∧ ρ(a1), . . . ,

µ(x) ∧ ρ(ai ), µ(x) ∧ σ(ai+1), . . . , µ(x) ∧ σ(an)).

Now, let

bn = (· · · ((x ∗ a1) ∗ a2) ∗ · · · ) ∗ an−1

bn−1 = ((· · · ((x ∗ a1) ∗ a2) ∗ · · · ) ∗ an−2) ∗ bn

...

b1 = (· · · ((x ∗ bn) ∗ bn−1) ∗ · · · ) ∗ b2.

Hence,

(· · · ((x ∗ b1) ∗ b2) ∗ · · · ) ∗ bn = ((· · · ((x ∗ bn) ∗ bn−1)

∗ · · · ) ∗ b2) ∗ b1 = b1 ∗ b1 = 0.

Moreover, from the above equalities we deduce that bi ≤ x ,
for all i ∈ {1, 2, . . . , n} and since µ is a fuzzy ideal of X ,
then µ(x) ≤ µ(bi ), for all i ∈ {1, 2 . . . , n}. Also,

bn ∗ an = ((· · · ((x ∗ a1) ∗ a2) ∗ · · · ) ∗ an−1) ∗ an = 0

which implies that bn ≤ an . Similarly, for all i ∈{1, 2, . . . , n}
we have bi ≤ ai and so ρ(ai ) ≤ ρ(bi ), for all i ∈{1, 2,. . . ,n}.
Thus,

µ(x) ∧ ρ(a1) ≤ µ(b1) ∧ ρ(b1)

...

µ(x) ∧ ρ(ai ) ≤ µ(bi ) ∧ ρ(bi )

µ(x) ∧ σ(ai+1) ≤ µ(bi+1) ∧ σ(bi+1)

...

µ(x) ∧ σ(an) ≤ µ(bn) ∧ σ(bn)

and so

µ ∧ (ρ ∨ σ)(x) < 2ε + ∧(µ ∧ ρ(b1), . . . , µ ∧ ρ(bi ),

µ ∧ σ(bi+1), . . . , µ ∧ σ(bn)).

Obviously,

µ ∧ ρ(bi ) ≤ ((µ ∧ ρ) ∪ (µ ∧ σ))(bi )

≤ [(µ ∧ ρ) ∪ (µ ∧ σ))(bi )

and similarly,

µ ∧ σ(bi ) ≤ [(µ ∧ ρ) ∪ (µ ∧ σ))(bi ).

So,

µ ∧ (ρ ∨ σ)(x) < 2ε +
n∧

i=1

[(µ ∧ ρ) ∪ (µ ∧ σ))(bi )

≤ 2ε + [(µ ∧ ρ) ∪ (µ ∧ σ))(x).

Since ε is arbitrary, then

µ ∧ (ρ ∨ σ) ≤ (µ ∧ ρ) ∨ (µ ∧ σ).

Thus,

µ ∧ (ρ ∨ σ) = (µ ∧ ρ) ∨ (µ ∧ σ)

which shows that (FI (X),∨,∩) is distributive. �


6 Lattice structure on fuzzy ideals of a BCC-algebra

We first give some preliminaries about BCC-algebras.

Definition 6.1 (Dudek 2000; Dudek and Jun 1999; Dudek
and Zhang 1998) Let G be a nonempty set. Then,

(i) algebra (G, ∗, 0) of type (2,0) is said to be a BCC-alge-
bra if it satisfies the following axioms:
(1) ((x ∗ y) ∗ (z ∗ y)) ∗ (x ∗ z) = 0,
(2) 0 ∗ x = 0,
(3) x ∗ 0 = x ,
(4) x ∗ y = 0 and y ∗ x = 0 imply x = y,
for all x, y, z ∈ G.
Any BCC-algebra may be viewed as a partially ordered
set with the order “ ≤ ” defined by

x ≤ y iff x ∗ y = 0

which has the following properties:
(a) x ∗ y ≤ x .
(b) x ≤ y implies that x ∗ z ≤ y ∗ z and z ∗ y ≤ z ∗ x .
for all x, y, z ∈ G.

(ii) Nonempty subset I of BCC-algebra G is said to be a
BCC-ideal if 0 ∈ I and (x ∗ y)∗ z ∈ I and y ∈ I imply
that x ∗ z ∈ I .
It is well-known that any BCC-ideal of a BCC-algebra
is a BC K-ideal.

(iii) BCC-algebra G is said to be positive implicative if for
all x, y, z ∈ G

(x ∗ y) ∗ z = (x ∗ z) ∗ (y ∗ z).

(iv) Fuzzy subset µ of BCC-algebra G is said to be a fuzzy
BCC-ideal if µ(0) ≥ µ(x), for all x ∈ G and µ(x∗z) ≥
µ((x ∗ y) ∗ z) ∧ µ(y), for all x, y, z ∈ G.
It is easy to see that if µ is a fuzzy BCC-ideal of
BCC-algebra G and x ≤ y, then µ(x) ≥ µ(y), for
all x, y ∈ G.

Lemma 6.2 (Dudek and Jun 1999; Dudek et al. 2001) Let
µ be a fuzzy subset of BCC-algebra G. Then µ is a fuzzy
BCC-ideal of G if and only if for all t ∈ [0, 1), µt> = {x ∈
G : µ(x) > t} �= ∅ is a BCC-ideal of G.

Lemma 6.3 (Dudek and Jun 1999) (i) In a BCC-algebra
every fuzzy BCC-ideal is a fuzzy BC K -ideal.
(ii) In a BC K -algebra every fuzzy BC K -ideal is a fuzzy
BCC-ideal.

Lemma 6.4 Let µ be a fuzzy BCC-ideal of BCC-algebra
G. Then

(· · · ((x ∗ a1) ∗ a2) ∗ · · · ) ∗ an = 0 implies that µ(x)

≥ µ(a1) ∧ µ(a2) ∧ · · · ∧ µ(an)
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for all x, a1, a2, . . . , an ∈ G.

Proof The proof is similar to the proof of Corollary 5.4. �

Lemma 6.5 Every positive implicative BCC-algebra is a
BC K -algebra.

Proof By Corollary 1 of Dudek (1992), it is enough to prove
that x ∗ (x ∗ y) ≤ y, for all x, y ∈ G. For this, let x, y ∈ G.
Then,

(x ∗ (x ∗ y)) ∗ y = (x ∗ y) ∗ ((x ∗ y) ∗ y)

= (x ∗ y) ∗ ((x ∗ y) ∗ (y ∗ y))

= (x ∗ y) ∗ ((x ∗ y) ∗ 0)

= (x ∗ y) ∗ (x ∗ y) = 0

and so x ∗ (x ∗ y) ≤ y, completes the proof. �

Lemma 6.6 Let µ and ν be fuzzy BCC-ideals of positive
implicative BCC-algebra G. Then fuzzy subset

η(x) = ∨{µ ∪ ν(a1) ∧ µ ∪ ν(a2) ∧ · · · ∧ µ ∪ ν(an) :
(· · · ((x ∗ a1) ∗ a2) ∗ · · · ) ∗ an = 0,

for some A1, a2, . . . , an ∈ G}.
is the fuzzy BCC-ideal of G generated by µ ∪ ν and so
µ ∨ ν = [µ ∪ ν].
Proof Since by Lemma 6.3(i), µ and ν are fuzzy BC K -ide-
als of G and by Lemma 6.5, G is a BC K -algebra, then by
Lemma 5.5, η is a fuzzy BC K -ideal of G. Hence, by Lemma
6.3(ii), η is a fuzzy BCC-ideal of G. Moreover, similar to
the proof of Lemma 5.5, [µ ∪ ν] = η = µ ∨ ν. �

Theorem 6.7 Let G be positive implicative BCC-algebra
and FI (G) be the set of all fuzzy BCC-ideals of G. Then
(FI (G),∨,∩) is a distributive lattice.

Proof Since, by Lemma 6.5, G is a BC K -algebra, then the
proof follows from Theorem 5.6. �


7 Lattice structure on fuzzy weak hyper BC K -ideals
of a hyper BC K -algaebra

Definition 7.1 (Jun and Xin 2001; Jun et al. 2000) (i) By a
hyper BC K -algebra we mean a nonempty set H endowed
with a hyperoperation “◦” and a constant 0 that satisfies the
following axioms:

(HK1) (x ◦ z) ◦ (y ◦ z) � x ◦ y,
(HK2) (x ◦ y) ◦ z = (x ◦ z) ◦ y,
(HK3) x ◦ H � {x},
(HK4) x � y and y � x imply x = y,

for all x, y, z ∈ H , where x � y is defined by 0 ∈ x ◦ y. In
such case, we call “�” the hyperorder on H .

(ii) The set S(H) = {x ∈ H : x ◦ x = {0}} is called the
BCK-part of H .

(iii) Hyper BC K -algebra H is said to be quasi alternatively
hyper BC K -algebra of type 1 if (x◦y)◦y = x◦(y◦y),
for all x, y ∈ H .

(iv) Nonempty subset I of hyper BC K -algebra H is said
to be a weak hyper BCK-ideal if 0 ∈ I and x ◦ y ⊆ I
and y ∈ I imply x ∈ I , for all x, y ∈ H .

(v) Fuzzy subset µ of hyper BC K -algebra H is called fuzzy
weak hyper BCK-ideal if µ(0) ≥ µ(x) and µ(x) ≥
(

∧

a∈x◦y

µ(a)) ∧ µ(y), for all x, y ∈ H .

Lemma 7.2 Let µ be a fuzzy subset of hyper BC K -algebra
H and for all t ∈ [0, 1],
µt = {x ∈ H : µ(x) ≥ t} and µt> = {x ∈ H : µ(x) > t}.
Then the following statements are equivalent:

(i) µ is a fuzzy weak hyper BC K -ideal of H,
(ii) µt �= ∅ is a weak hyper BC K -ideal of H, for all t ∈

[0, 1],
(iii) µt> �= ∅ is a weak hyper BC K -ideal of H, for all

t ∈ [0, 1).

Proof (i) ⇒ (ii) See Jun and Xin (2001).
(ii) ⇒ (iii) By the definition of µt> we have

µt> = {x ∈ H : µ(x) > t} =
⋃

s∈(t,1]
{x ∈ H : µ(x) ≥ s}

=
⋃

s∈(t,1]
µs .

Now, let µt> �= ∅, for t ∈ [0, 1). Then for some s ∈ (t, 1],
µs �= ∅ and since by (ii), 0 ∈ µs , then 0 ∈ µt . Let x◦y ⊆ µt>

and y ∈ µt> , for x, y ∈ H . Then, for all a ∈ x ◦ y, there
exists s ∈ (t, 1] such that a ∈ µs . Since the set {s : s ∈ (t, 1]}
is a chain, then the set {µs : s ∈ (t, 1]} is a chain and so there
exists s1 ∈ (t, 1] such that a ∈ µs1 , for all a ∈ x ◦ y, which
implies that x ◦ y ⊆ µs1 . Also, since y ∈ µt> , then there
exists s2 ∈ (t, 1] such that y ∈ µs2 . Now, µs1 ⊆ µs2 or
µs2 ⊆ µs1 . W.L.O.G, let µs2 ⊆ µs1 . Then x ◦ y ⊆ µs1 and
y ∈ µs1 and since, µs1 is a weak hyper BC K -ideal of H ,
then x ∈ µs1 ⊆ µt> . Thus, µt> is a weak hyper BC K -ideal
of H .

(iii) ⇒ (i) It is easy to see that µ(0) ≥ µ(x), for all x ∈ H .
Now, let
( ∧

a∈x◦y

µ(a)

)
∧ µ(y) = t,

for x, y ∈ H . Then for all a ∈ x ◦ y, µ(a) ≥ t and µ(y) ≥ t .
This implies that for all s ∈ [0, t), µ(a) > s and µ(y) > s.
Hence, a ∈ µs> and so x ◦ y ⊆ µs> . Also y ∈ µs> , for all
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s ∈ [0, t). Thus by (iii), x ∈ µs> and so µ(x) > s, for all
s ∈ [0, t), which implies that µ(x) ≥ t . Hence,

µ(x) ≥
( ∧

a∈x◦y

µ(a)

)
∧ µ(y).

Therefore, µ is a fuzzy weak hyper BC K -ideal of H . �

Lemma 7.3 Let µ be a fuzzy weak hyper BC K -ideal of
hyper BC K -algebra H. Then

(· · · ((x ◦ a1) ◦ a2) ◦ · · · ) ◦ an = {0} implies that µ(x)

≥ µ(a1) ∧ µ(a2) · · · ∧ µ(an),

for all x, a1, . . . , an ∈ H.

Proof We prove the lemma by induction on n. Let n = 2,
(x ◦a1)◦a2 = {0}, for x, a1, a2 ∈ H and µ(a1)∧µ(a2) = t .
Then a1 ∈ µt and a2 ∈ µt . Since (x ◦ a1) ◦ a2 = {0} ⊆ µt ,
a2 ∈ µt and by Lemma 7.2, µt is a weak hyper BC K -ideal
of H , then x ◦ a1 ⊆ µt . Similarly, we get x ∈ µt and so
µ(x) ≥ t = µ(a1) ∧ µ(a2). Now, let the lemma holds for
n = k − 1 and

(· · · ((x ◦ a1) ◦ a2) ◦ · · · ) ◦ ak = {0}
for a1, a2, . . . , ak ∈ H . Then by (HK2) we have

(· · · ((x ◦ ak) ◦ a1) ◦ · · · ) ◦ ak−1 = {0}.
Let u ∈ x ◦ ak . Then (· · · ((u ◦ a1) ◦ a2) ◦ · · · ) ◦ ak−1 = {0}
and so

µ(u) ≥ µ(a1) ∧ µ(a2) ∧ · · · ∧ µ(ak−1).

Hence,
∧

a∈x◦ak

µ(a) ≥ µ(a1) ∧ µ(a2) ∧ · · · ∧ µ(ak−1).

On the other hand, since µ is a fuzzy weak hyper BC K -ideal
of H , then

µ(x) ≥
( ∧

a∈x◦ak

µ(a)

)
∧ µ(ak) ≥ µ(a1) ∧ µ(a2) ∧ · · ·

∧ µ(ak−1) ∧ µ(ak).

Therefore, the induction is complete. �

Theorem 7.4 Let H be a hyper BC K -algebra and f be a
fuzzy subset of H that satisfies the BC K -part condition, i.e.,

∀x ∈ H \ S(H), f (x) = 0.

Then fuzzy subset µ which is defined by

µ(x) = ∨{ f (a1) ∧ · · · ∧ f (an) : (· · · ((x ◦ a1) ◦ a2) ◦ · · · )
◦an = {0}, for somea1, a2,. . . , an ∈ H}

is the fuzzy weak hyper BC K -ideal of H generated by f and
we denote it by [ f ]w.

Proof We have to prove that µ is a fuzzy weak hyper BC K -
ideal of H . For this, by Lemma 7.2, it is enough to prove that
µt> �= ∅ is a weak hyper BC K -ideal of H . Since, 0◦x = {0}
for all x ∈ H , then it is easy to see that µ(0) ≥ µ(x), for all
x ∈ H . Now, let x ◦ y ⊆ µt> and y ∈ µt> , for x, y ∈ H and
t ∈ [0, 1). Then µ(y) > t and for all a ∈ x ◦ y, µ(a) > t
and so by the definition of µ,

∨{ f (a1)∧ · · ·∧ f (an) : (· · · ((a ◦ a1) ◦a2) ◦· · · )◦ an ={0},
for some a1, a2, . . . , an ∈ H} > t

and

∨{ f (b1)∧· · · ∧ f (bm) : (· · · ((y ◦ b1) ◦ b2)◦ · · · )◦ bm ={0},
for some b1, b2, . . . , bm ∈ H} > t.

Hence, there exist a1, a2, . . . , ak, b1, b2, . . . , bl ∈ H such
that

(· · · ((a ◦ a1) ◦ a2) ◦ · · · ) ◦ ak = {0}, ∀a ∈ x ◦ y (6)

(· · · ((y ◦ b1) ◦ b2) ◦ · · · ) ◦ bl = {0} (7)

and

f (a1) ∧ · · · ∧ f (ak) > t and f (b1) ∧ · · · ∧ f (bl) > t (8)

Now, let u ∈ (· · · ((x ◦ a1) ◦ a2) ◦ · · · ) ◦ ak . Then

u ◦ y ⊆ ((· · · ((x ◦ a1) ◦ a2) ◦ · · · ) ◦ ak) ◦ y

= ((· · · (((x ◦ y) ◦ a1) ◦ a2) ◦ · · · ) ◦ ak by (HK2)

=
⋃

a∈x◦y

(· · · ((a ◦ a1) ◦ a2) ◦ · · · ) ◦ ak

= {0} by (6)

which implies that u ◦ y = {0}. Hence,

(· · · ((u ◦ b1) ◦ b2) ◦ · · · ) ◦ bl

= ((· · · ((u ◦ b1) ◦ b2) ◦ · · · ) ◦ bl) ◦ {0}
= ((· · · ((u ◦ b1) ◦ b2) ◦ · · · ) ◦ bl) ◦ (· · · ((y ◦ b1) ◦ b2)

◦ · · · ) ◦ bl by (7)

� ((· · · ((u ◦ b1) ◦ b2) ◦ · · · ) ◦ bl−1) ◦ ((· · · ((y ◦ b1) ◦ b2)

◦ · · · ) ◦ bl−1 by (HK1)

...

� u ◦ y = {0}
and so

(· · · ((u ◦ b1) ◦ b2) ◦ · · · ) ◦ bl = {0}.
Since, u ∈ (· · · ((x ◦ a1) ◦ a2) ◦ · · · ) ◦ ak is arbitrary, then

(· · · (((· · · ((x ◦ a1) ◦ a2) ◦ · · · ) ◦ ak) ◦ b1) ◦ · · · ) ◦ bl = {0}.
Also, by (8) we have

f (a1) ∧ · · · ∧ f (ak) ∧ f (b1) ∧ · · · ∧ f (bl) > t.
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Hence,

µ(x) = ∨{ f (a1) ∧ · · · ∧ f (am) : (· · · ((x ◦ a1) ◦ a2) ◦ · · · )
◦am = {0},

for some a1, a2, . . . , am ∈ H}
> f (a1) ∧ · · · ∧ f (ak) ∧ f (b1) ∧ · · · ∧ f (bl)

> t.

This shows that x ∈ µt> . Hence, µt> is a weak hyper BC K -
ideal of H and so by Lemma 7.2, µ is a fuzzy weak hyper
BC K -ideal of H . Now, let x ∈ H . If x ∈ H \ S(H), then
by hypothesis, f (x) = 0 ≤ µ(x). Let x ∈ S(H). Then
x ◦ x = {0} and so

µ(x) = ∨{ f (a1) ∧ · · · ∧ f (an) : (· · · ((x ◦ a1) ◦ a2)

◦ · · · ) ◦ an = {0},
for some a1, . . . , an ∈ H}

≥ f (x).

Thus µ(x) ≥ f (x) and so f ⊆ µ. Now, let ν be a fuzzy
weak hyper BC K -ideal of H such that f ⊆ ν and x ∈ H .
Then

µ(x) = ∨{ f (a1) ∧ · · · ∧ f (an) : (· · · ((x ◦ a1) ◦ a2)

◦ · · · ) ◦ an = {0},
for some a1, . . . , an ∈ H}

≤ ∨{ν(a1) ∧ · · · ∧ ν(an) : (· · · ((x ◦ a1) ◦ a2)

◦ · · · ) ◦ an = {0},
for some a1, . . . , an ∈ H}

≤ ∨{ν(x)} by Lemma 7.3

= ν(x).

Therefore, µ = [ f ]w. �

Now, we have the following result.

Corollary 7.5 Let H be a hyper BC K -algebra and f and
g be fuzzy weak hyper BC K -ideals of H with the same tip
t (i.e., f(0)=g(0)) and that satisfy the BC K -part condition.
Then for all x ∈ H,

f ∨ g(x) = [ f ∪ g]w(x) = ∨{ f ∪ g(a1) ∧ · · · ∧ f

∪ g(an) : (· · · ((x ◦ a1) ◦ · · · ) ◦ an = {0}}.
Theorem 7.6 Let H be a quasi alternatively hyper BC K -
algebra of type 1 and Fw

p,t (H) be the set of all fuzzy weak
hyper BC K -ideals of H with the same tip t and that satisfy
the BC K -part condition. Then (Fw

p,t (H),∨,∩) is a distrib-
utive lattice.

Proof It is easy to see that the intersection of any two fuzzy
weak hyper BC K -ideals of H is again a fuzzy weak hyper
BC K -ideal of H and so µ ∧ ν = µ ∩ ν and by Corollary
7.5, µ ∨ ν = [µ ∪ ν]w. So, (Fw

p,t (H),∨,∩) is a lattice. For

distributivity, we prove that µ∧ (ν ∨σ) ≤ (µ∧ν)∨ (µ∧σ),
for all µ, ν, σ ∈ Fw

p,t (H). The converse is obvious. Let
µ, ν, σ ∈ Fw

p,t (H), x ∈ H and ε > 0. If x ∈ H \ S(H),
since µ satisfies the BC K -part condition, then µ(x) = 0
and so µ ∧ (ν ∨ σ)(x) = 0. Hence, the distributive inequal-
ity holds. Let x ∈ S(H). Then, x ◦ x = {0}. Hence, we can
choose a1, a2, . . . , an ∈ H such that

(· · · ((x ◦ a1) ◦ a2) ◦ · · · ) ◦ an = {0}
and

ν ∨ σ(x) < ε + ∧(ν ∪ σ(a1), . . . , ν ∪ σ(an)).

Similar to the proof of Theorem 5.6, we can show that

µ ∧(ν ∨ σ)(x) < 2ε+∧(µ(x) ∧ ν(a1), . . . , µ(x)∧ ν(ai ),

µ(x) ∧ σ(ai+1), . . . , µ(x) ∧ σ(an)).

Now, let µ(x) > µ(a j ), for some j ∈ {1, 2, . . . , n} and

u ∈ (· · · ((x ◦ a1) ◦ · · · ) ◦ a j−1) ◦ a j+1) ◦ · · · ) ◦ an .

Since H is a quasi alternatively hyper BC K -algebra of type
1, then

u ∈ u ◦ 0 ⊆ u ◦ (a j ◦ a j ) = (u ◦ a j ) ◦ a j

⊆ (((· · · ((x ◦ a1) ◦ · · · ) ◦ a j−1) ◦ a j+1) ◦ · · · )
◦ an) ◦ a j ) ◦ a j

= ((· · · ((x ◦ a1)◦ · · · ) ◦ · · · ) ◦ an) ◦ a j by (HK2)

= 0 ◦ a j = {0}
and so u = 0. This implies that

(· · · ((x ◦ a1) ◦ · · · ) ◦ a j−1) ◦ a j+1) ◦ · · · ) ◦ an = {0}.
By continuing this process, for each a j , j ∈ {1, 2, . . . , n},
such that µ(x) > µ(a j ), we can omit a j and by a new
arrangement we get that

(· · · ((x ◦ a′
1) ◦ · · · ) ◦ a′

k) ◦ b′
1) ◦ · · · ) ◦ b′

l = {0}
where {a′

1, . . . , a′
k} ⊆ {a1, . . . , ai }, {b′

1, . . . , b′
l}⊆ {ai+1, . . . , an}, µ(x) ≤ µ(a′

i ) and µ(x) ≤ µ(b′
i ), for

all i ∈ {1, . . . , k} ∪ {1, . . . , l}. Now,

∧ (µ(x) ∧ ν(a1), . . . , µ(x) ∧ ν(ai ), µ(x)

∧ σ(ai+1), . . . , µ(x) ∧ σ(an))

≤ ∧ (µ(a′
1) ∧ ν(a′

1), . . . , µ(a′
k) ∧ ν(a′

k), µ(b′
1)

∧ σ(b′
1), . . . , µ(b′

l) ∧ σ(b′
l))

and so

µ ∧ (ν ∨ σ)(x) < 2ε + ∧(µ(x) ∧ ν(a1), . . . ,

µ(x) ∧ ν(ai ), µ(x) ∧ σ(ai+1), . . . , µ(x) ∧ σ(an))

< 2ε + ∧(µ(a′
1) ∧ σ(a′

1), . . . , µ(a′
k) ∧ σ(a′

k),

µ(b′
1) ∧ ν(b′

1), . . . , µ(b′
l) ∧ ν(b′

l))

≤ 2ε + [(µ ∧ ν) ∪ (µ ∧ σ)]w(x).

Thus µ∧(ν∨σ) ≤ (µ∧ν)∨(µ∧σ). Hence, (Fw
p,t (H),∨,∩)

is a distributive lattice. �
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8 Conclusion

We prove that the set of all fuzzy (G-)subgroups of a
(G-)group and the set of all weak normal F-subpolygroups
of an F-polygrup form a modular lattice. Also, we show that
the set of all fuzzy hyperideals with the same tip “t” of a
hyperring is a distributive lattice and so is a modular lattice.
Moreover, the set of all fuzzy ideals of a BC K -algebra is a
distributive lattice. Finally, we prove that the set of all fuzzy
weak hyper BC K -ideals of a quasi alternatively hyper BC K -
algebra with the same tip “t” and that satisfy the BC K -part
condition forms a distributive lattice. But, there are an open
problem.

Open problem. Whether the set of all fuzzy hypersubal-
gebras of a hyperring and also the set of all fuzzy (strong)
hyper BC K -ideals of a hyper BC K -algebra forms a distrib-
utive lattice or even a modular lattice.
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