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Abstract The possibility based clustering algorithm PCM
was first proposed by Krishnapuram and Keller to overcome
the noise sensitivity of algorithm FCM (Fuzzy C-Means).
However, PCM still suffers from the following weaknesses:
(1) the clustering results are strongly dependent on parameter
selection and/or initialization; (2) the clustering accuracy is
often deteriorated due to its coincident clustering problem;
(3) outliers can not be well labeled, which will weaken its
clustering performances in real applications. In this study,
in order to effectively avoid the above weaknesses, a novel
enhanced PCM version (EPCM) is presented. Here, at first
a novel strategy of flexible hyperspheric dichotomy is pro-
posed which may partition a dataset into two parts: the main
cluster and auxiliary cluster, and is then utilized to construct
the objective function of EPCM with some novel constraints.
Finally, EPCM is realized by using an alternative optimi-
zation approach. The main advantage of EPCM lies in the
fact that it can not only avoid the coincident cluster problem
by using the novel constraint in its objective function, but
also has less noise sensitivity and higher clustering accuracy
due to the introduction of the strategy of flexible hypersphe-
ric dichotomy. Our experimental results about simulated and
real datasets confirm the above conclusions.
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1 Introduction

As an important data processing technique, clustering has
been widely utilized in a variety of fields, such as data mining,
pattern recognition, image processing and so on. By cluste-
ring the objects may be partitioned into different subgroups
and in the same subgroup the objects are as compact as pos-
sible while the objects in different subgroups are as disperse
as possible. Generally, clustering algorithms may be clas-
sified into the following categories: hierarchical clustering,
partition-based clustering, density-based clustering and grid-
based clustering (Zhang and Pal 2002, Chung et al. 2006, Jian
2005, Bezdek 1981, Sato et al. 1997, Dave and Krishnapuram
1997, Dave and Sen 2002, Wang et al. 2005, 2006, Deng and
Wang 2005). Especially, the partition-based clustering algo-
rithms which partition the objects with some membership
matrices (fuzzy matrix) are most widely and deeply studied.

One of the most widely used fuzzy clustering algorithms
is FCM (Fuzzy C-Means). FCM assigns the fuzzy member-
ships of data points (objects) to the clusters. In FCM, the
fuzzy memberships of data points only represent the rela-
tive degrees of data points belonging to their clusters. So
the fuzzy memberships of FCM cannot always represent the
proper degrees of data points belonging to their clusters,
especially in noise environment Krishnapuram and Keller
(1993). To overcome this weakness, Krishnapuram and Kel-
ler (1993, 1996) proposed a new clustering algorithm named
PCM (Possibilistic C-Means). PCM relaxes the column sum
constraint of fuzzy membership matrix in FCM and intro-
duces a possibilistic partition matrix, so that possibilistic
memberships may reflect the typicalities of data points to
their clusters well. Compared with FCM, PCM can effectively
eliminate the influence of noise and outliers on clustering
results. However, firstly the price PCM pays for its free-
dom to ignore noisy points is that PCM is very sensitive to
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initializations, and often results in the coincident cluster
problem (Zhang and Yeung 2004, Barni et al. 1996). Secondly,
typicalities, i.e., possibilistic memberships, are very sensitive
to the choices of the additional parameters of PCM, which
directly decide the clustering accuracy. Finally, the outliers
cannot be labeled accurately which will reduce the clustering
performance in real applications.

Nowadays, several improved PCM algorithms have been
proposed to overcome the weaknesses of the original PCM
algorithm (Gustafson and Kessel 1979, Timm et al. 2001,
Timm and Kruse 2002, Timm et al. 2004, Zhang and Yeung
2004, Yang and Wu 2006, Pal et al. 2005). In Timm et al.
(2001, 2004), Timm and Kruse (2002), proposed two possi-
bilistic fuzzy clustering algorithms that can avoid the coinci-
dent cluster problem of PCM by adding an inverse function
of the distances between cluster centers in PCM’s objective
function, which acts as a repulsive force and keeps the clus-
ters separate (avoids coincident clusters). In Timm and Kruse
(2002) and Timm et al. (2004), used the same concept to
modify the objective function as used in Gustafson and Kes-
sel’s clustering algorithm Gustafson and Kessel (1979). In
Pal et al. (2005), combined the objective functions of PCM
and FCM into a new objective function and presented an
improved version, called PFCM, which can be interpreted as
PCM and FCM, respectively, in some special cases where
some proper parameters are adopted. So, PFCM can inhe-
rit the merits of both clustering algorithms. In Zhang and
Yeung (2004), introduced fuzzy membership of FCM into
PCM’s objective function and presented an improved PCM
clustering algorithm to overcome the coincident cluster pro-
blem of PCM. In Barni et al. (1996), Yang et al. presented
an unsupervised possibilistic clustering algorithm PCA and
proved it to be more robust than PCM. Although these impro-
ved PCM clustering algorithms can partially overcome the
drawbacks of PCM, particular attentions must be often paid
to adjust some parameters and are not easy for real appli-
cations. Furthermore, they still have no ability to label the
outliers accurately.

In this paper, we propose a novel improved PCM cluste-
ring algorithm called EPCM (Enhanced PCM). EPCM has
the following two main features:

(1) It introduces the strategy of flexible hyperspheric dicho-
tomy to avoid estimating the parameter ηi in PCM and its
variants, which has an important influence on the cluste-
ring results In our method, two new variables are intro-
duced to play similar roles as parameter ηi , while they
can be adaptively updated with some learning rules such
that the new clustering algorithm has fewer parameters
and can easily be used in real applications. Moreover, this
strategy will help EPCM label the outliers accurately and
improve the clustering accuracy.

(2) It imposes a novel constraint on the objective function.
Unlike other improved PCM algorithms Zhang and
Yeung (2004), Yang and Wu (2006), Pal et al. (2005),
which often introduce the constraints of FCM’s objective
function into their objective functions, our new algorithm
introduces a novel constraint. In the adopted objective
functions in Zhang and Yeung (2004), Pal et al. (2005),
there are two partition matrices that are used to aim to
avoid the coincident cluster problem. These two parti-
tion matrices play the roles of the fuzzy and possibilistic
partitions, respectively. However, only a partition matrix
is needed in our new objective function.

In summary, the proposed EPCM not only inherits the
merits of PCM, but also weakens the coincident cluster and
parameter sensitivity problem of PCM. Especially, EPCM
has no any parameter needed to be adjusted by hand and
can effectively label outliers of a dataset, which will result
in higher clustering performance. So it is more available for
real applications. Our experimental results demonstrate the
above advantages of EPCM. The rest of this paper is orga-
nized as follows. Both FCM and PCM are briefly introdu-
ced and discussed in Sect. 2; Then, the detailed descriptions
of EPCM is presented in Sect. 3; In Sect. 4, the clustering
performances of EPCM on several experiments are reported
by comparing it with several typical possibilistic clustering
algorithms; Sect. 5 concludes this paper.

2 FCM and PCM algorithm

The most widely used fuzzy clustering algorithm is FCM
(Fuzzy C-Means). Its objective function can be described as
follows.

JFC M (U, V; X) =
C∑

i=1

N∑

j=1

um
i j ∗ d2(x j , vi )

0 ≤ ui j ≤ 1, i = 1, 2, . . . , C; j = 1, 2, . . . , N
C∑

i=1

ui j = 1, j = 1, 2, . . . , N (1)

N∑

j=1

ui j > 0, i = 1, 2, . . . , C

where U = [ui j ]C×N denotes the fuzzy partition matrix, ui j

denotes the fuzzy membership, V = [
v1 v2 . . . vC

]
denotes

C cluster centers (prototypes), X = {x1, x2, . . . , xN }denotes
the dataset, d(x j , vi ) denotes the distance measure, e.g., the
most commonly used Euclidean distance. Optimal partitions
U∗ of X are taken from pairs (U∗, V∗) that are local mini-
mum of JFC M . In FCM, ui j , vi can be updated using the
following (2):
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ui j =
(

C∑

k=1

(
di j

dk j

)2/(m−1)
)−1

,

i =1, 2, . . . ,C; j =1, 2, . . . ,N

vi =
∑N

j=1 um
i j x j

∑N
j=1 um

i j

, i =1, 2, . . . , C

(2)

In FCM, the fuzzy membership of data point x j is inver-
sely proportional to the distance between x j and the cluster
center vi , and the sum of the memberships of x j to all cluster
centers is 1. Therefore, if data point x j keeps the equal dis-
tance from two cluster centers, the membership of this data
point in each cluster will be the same. This situation will
give rise to the following problem: Given the cluster number
C = 2, if noisy point x j in the dataset is far but equidis-
tant from two cluster centers, then FCM will give the same
membership, i.e. 0.5, to each cluster. Obviously it seems far
more natural that such a point should be given very low mem-
berships belonging to these two clusters. To overcome this
problem, Krishnapuram and Keller (1993, 1996) proposed
an improved clustering algorithm called PCM (Possibilistic
C-Means). The objective function of PCM reads

JPC M (U, V; X) =
C∑

i=1

N∑

j=1

um
i j d

2(x j , vi )

+
C∑

i=1

ηi

N∑

j=1

(1−ui j )
m

0 ≤ ui j ≤ 1, i = 1, 2, . . . , C, j = 1, 2, . . . , N

N∑

j=1

ui j > 0, i = 1, 2, . . . C

(3)

where U = [ui j ]C×N denotes possibilistic partition matrix,
ui j denotes the possibilistic membership. ui j , vi can be
updated using the following (4):

ui j =
⎛

⎝1+
(

d2
i j

ηi

)1/(m−1)
⎞

⎠
−1

,

i =1, 2, . . . , C; j =1, 2, . . . , N

vi =
∑N

j=1 um
i j x j

∑N
j=1 um

i j

, i = 1, 2, . . . , C

(4)

where ηi (i = 1, 2, . . . , C) is a scale parameter and in
Krishnapuram and Keller (1996) it is suggested to be:

ηi = K

∑N
j=1 um

i j ∗ d2(x j , vi )
∑N

j=1 um
i j

(5)

where K > 0 and in general K = 1.
PCM relaxes the column sum constraint of the member-

ship matrix in FCM, so that the sum of each column of PCM

partition matrix satisfies the looser constraint. In other words,
each element of one column of PCM partition matrix might
be any number between 0 and 1, as long as at least one of
them is positive. The element value of PCM partition matrix
is often interpreted as the typicality of a data point associa-
ted with one cluster rather than its relative membership to the
cluster in FCM. The advantage of PCM compared with FCM
is its capability in identifying outliers in dataset and weake-
ning the influence of outliers and noise on clustering results.
However, as pointed out by Barni et al. (1996), the price
PCM pays for its freedom to ignore noisy points is that PCM
is very sensitive to initializations, and it sometimes generates
the coincident clusters. Moreover, the typicalities, i.e. possi-
bilistic memberships, are very sensitive to the choices of the
additional parameters ηi needed by PCM. As analyzed in Pal
et al. (2005), the above weakness of PCM are derived from
the facts: (1) The relaxed column sum constraint of PCM
makes different clusters be independent, so that PCM tends
to generate identical clusters, i.e., the coincident cluster pro-
blem. (2) The strong sensitivity of possibilistic memberships
to parameters ηi makes PCM very brittle to initialization and
index parameter m. So these two aspects of PCM deserve
further studying.

3 Enhanced possibilistic clustering algorithm EPCM

3.1 The strategy of hyperspheric dichotomy HD

In this subsection, we first present a strategy called hyper-
spheric dichotomy (HD), which can be utilized to partition
a dataset into the main part and auxiliary part. Then in next
subsection we further explore its adaptive version.

The strategy of hyperspheric dichotomy is based on the
following objective function:

JH D(UI , UO , vI ; X)=
N∑

j=1

um
I, j d

2
I, j (vI , x j )+

N∑

j=1

um
O, j R2

uI, j + uO, j = 1

(6)

where UI = [uI, j ]1×N and UO = [uO, j ]1×N denote the
hypersphere dichotomy matrices, whose elements represent
the memberships of data point x j to the main part and auxi-
liary part of data set X , respectively. vI denotes the cluster
center of the main part; parameter R is a constant which
denotes the radius of the hypersphere. Optimal partitions U∗

I
of X are taken from (U∗

I , U∗
O , v∗

I ) that are local minimum of
JH D . If u∗

I, j > 0.5, then x j belongs to the main part (cluster),
otherwise, u∗

O, j > 0.5, x j belongs to the auxiliary part (clus-
ter). ui j , vI can be updated using the following (7) and (8):
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vI =
∑N

j=1 um
I, j x j

∑N
j=1 um

I, j

(7)

uI, j = d
− 2

m−1
j

d
− 2

m−1
j + R− 2

m−1

, uO, j = 1 − uI, j (8)

where dI, j = d
(
x j , vI

)
. Similar to FCM, we can easily derive

the corresponding HD based clustering algorithm using (7)
and (8).

For a dataset, we can partition it into the main part (clus-
ter) and the auxiliary part (cluster) by the above strategy. So
we may call the dichotomy procedure as hypersphere dicho-
tomy clustering (HDC). Now, let us discuss the relationship
between HDC and several existing clustering algorithms and
then reveal the interesting phenomenon why these algorithms
are sensitive to parameters. Here, we list two objective func-
tions associated with the clustering algorithms NC Dave and
Krishnapuram (1997) and PCM Krishnapuram and Keller
(1993).

JNC =
C∑

i=1

N∑

j=1

um
i j d

2
i j +

N∑

j=1

δ2

(
1 −

C∑

i=1

ui j

)m

(9)

JPC M =
C∑

i=1

N∑

j=1

um
i j d

2
i j +

C∑

i=1

N∑

j=1

ηi (1 − ui j )
m (10)

From (6), (9) and (10), we can easily find that if set C = 1
and set δ2 = R2, ηi = R2 respectively, then (9) and (10)
are equivalent to (1). So the parameters δ, ηi and R in dif-
ferent objective functions have similar influences on cluste-
ring results. From (8) it is easy to find that R is the partition
boundary of a dataset. If d j < R, then uI, j > 0.5, and x j is
within the hypersphere and belongs to the main part (clus-
ter) of the dataset, otherwise, uO, j > 0.5, and x j is beyond
the hypersphere and belongs to the auxiliary part (cluster).
So R has a serious influence on clustering results. Similarly,
the influences of parameters δ, ηi on the clustering results of
both NC and PCM can be revealed in a similar way.

From the above analysis we can see that it is not wise to
set some parameters such as δ, ηi and R before clustering. A
proper way should assume that we can obtain these parame-
ters adaptively, i.e., these parameters may be automatically
updated in the clustering approach. In the next subsection,
we will present an improved strategy of hyperspheric dicho-
tomy, called FHD (flexible HD), to achieve this goal.

3.2 The strategy of flexible hyperspheric dichotomy FHD

In order to avoid parameter R being inappropriately preset,
here we introduce a new concept of flexible hyperspheric
dichotomy (FHD). The FHD stems from the idea of the opti-
mal hyperplane classifier SVM (Support Vector Machine).

Fig. 1 The conceptual display of FHD

Figure 1 shows the principle of flexible hyperspheric dicho-
tomy. In Fig. 1, three hyperspheres share the same center.
The hypersphere with radius R corresponds the hypersphere
in Subsect. 3.1 and is taken as a partition boundary. Ano-
ther two hyperspheres with radius

√
SI and

√
SO , called the

inner/outer hyperspheres, respectively, give upper and lower
bounds of the partition boundary. Now the data points bet-
ween the inner and outer hyperspheres could be viewed as the
data points near the hyperspheric boundary, which are expec-
ted to be very little for good clustering, while the data points
within the inner hypersphere and beyond the outer should
belong to the main cluster and auxiliary cluster with high
memberships, respectively. So we propose a new objective
function (11) based on the concept of FHD:

JF H D =
N∑

j=1

um
I, j d

2
I, j +

N∑

j=1

um
O, j SI + (1 − α)

×
∑

j,d2
I, j>SI

um
I, j (d

2
I, j −SI )+α

∑

j,d2
I, j<SO

um
O, j (So−d2

I, j )

uI, j + uO, j = 1

(11)

where α is a free parameter, with range (0,1), SI and SO can
be defined as (12) and (13), which may be interpreted as the
scatter measures of both main cluster and auxiliary clusters
to the hypersphere center.

SI =
∑N

j=1 um
I, j ∗ d2

I, j∑N
j=1 um

I, j

(12)

SO =
∑N

j=1 um
O, j ∗ d2

I, j∑N
j=1 um

O, j

(13)

For the above (11), all their terms can be explained as follows:
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1. The first term makes all the data points in the main cluster
as near its main cluster center as possible.

2. The second term attempts to make all the data points in
the auxiliary cluster far from the inner hypersphere.

3. The third term assures uI, j intend to be 0 when data point
x j is beyond the inner hypersphere.

4. The fourth term assures uO, j intend to be 0 for all the data
points in the outer hypersphere.

The optimal partition U∗
I of X can be obtained from (U∗

I , U∗
O ,

v∗
I ) that is local minimum of JF H D by the following Theo-

rem 1.

Theorem 1 Given vI , SI and SO, the necessary conditions
of minimizing (11) are:

uI, j = (d2
I, j +(1 − α) · SDI, j )

−1
m−1

(d2
I, j +(1 − α) · SDI, j )

−1
m−1 +(SI +α · SDO, j )

−1
m−1

(14)

uO, j = 1 − uI, j (15)

where SDI, j and SDO, j are defined as

SDI,i = St (d2
I, j − SI ) (16)

SDO,i = St (SO − d2
I, j ) (17)

St (x) =
(

x x > 0
0 x ≤ 0

(18)

Proof When vI , SI and SO are given, we differentiate JF H D

with respect to uI, j and uO, j , and set these derivatives to zero.
Accordingly, (14) and (15) can be easily derived.

According to the above analysis, we give the FHD based
clustering algorithm as follows:

FHD based clustering algorithm

1 Given m (in general, 2), initialize the partition
matrices UI , UO ;

2 Compute the main cluster center vI using (7);
3 Estimate SI and SO using (12) and (13);
4 Update the partition matrices UI and UO using (14)

and (15);
5 If the difference of UI or UO in successive iterations is

less than a small threshold, then termination, other-
wise go to step 2.

With the above FHD based clustering algorithm, we can
easily get the optimal partition matrices UI and UO . Fur-
thermore, we give the following analysis to demonstrate the
feasibility of the proposed algorithm.

Let uI, j = uO, j , with (14) and (15) we can obtain

d2
I, j + (1 − α) · SDI, j = SI + α · SDO, j (19)

By integrating (16) and (17) together with (19), we get

dI, j =
√

SI + α · (SO − SI )
/

2 (20)

So, we can take the radius of the optimal partition hyper-
sphere as

Rα =
√

SI + α · (SO − SI )
/

2 (21)

With (21), there exists an obvious relationship between uI, j

and uO, j :

uI, j − uO, j

⎧
⎨

⎩

> 0 dI, j < Rα

= 0 dI, j = Rα

< 0 dI, j > Rα

(22)

Based on the above analysis, we can find that the FHD
based clustering algorithm can really avoid the issue that R
may be inappropriately preset. By introducing SI and SO , the
proposed algorithm can effectively obtain the optimal radius
Rα of the partition hypersphere, where Rα plays the same
role as R in the concept of HD, i.e., the clustering strategy
of PCM. So FHD can weaken the influence of initialization
in this way.

From (21), we may see that the optimal Rα is dependent on
parameter α, where 0 ≤ α ≤ 1. The selection of parameter α

has some influence on the clustering results of the proposed
algorithm. Here, we will first give an intuitive observation
for the influence of parameter α on the clustering results by a
simulation experiment. The simulation experiment is carried
on a one-dimensional dataset (called dataset I here), which
contains 4,000 data points and is generated from the probabi-
lity distribution shown in Fig. 2. The probability distribution
is the synthesis of two normal distributions with the same
prior probability of 0.5, one of which is with mean of 0.2 and
standard deviation of 0.08, and the other of which is with
mean of 0.7 and standard deviation of 0.1. So the position
of the valley between two peaks in Fig. 2 is at 0.43, i.e., the
position of the ideal boundary point between two cluster data
points.

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

Fig. 2 The probabilistic distribution of artificial dataset I
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Fig. 3 The change curve of the objective function

Figure 3 shows the relationship between the objective
function and the iteration number of the FHD based clus-
tering algorithm when α = 0.4. In fact, we will gain more
similar curves for different α in interval (0, 1). Table 1 reveals
the clustering result of dataset I with differentα, where S∗

I and
S∗

O are
√

SI and
√

SO respectively, and S∗
I may be approxi-

mately interpreted as the standard deviations of the main part
of the dataset obtained by the proposed algorithm. In Table 1,
P is the partition boundary point of two subgroups, which is
obtained with P = vI + Rα when vI reaches the left peak
of Fig. 2, otherwise P = vI − Rα when vI reaches the right
peak of Fig. 2.

Table 1 shows that although Rα becomes bigger when α

increases from 0.01 to 0.9, the corresponding tendency is very
small. The obtained main cluster center vI is near 0.2 or 0.7,
which are very in accordance with the real cluster centers.
From Table 1, we can find the best boundary partition point
is obtained with α = 0.3, the relative error of which is only
2%. Meanwhile, we can see that the relative error between S∗

I
and the standard deviation of the main cluster is only 3.75%.

Therefore, the selection of parameter α has some influence
on the clustering results. However, its selection is much easier

Table 1 The partition results of FHD on dataset I with different α

α vI Rα S∗
I S∗

O P

0.01 0.7051 0.0410 0.0278 0.4256 0.6641

0.05 0.1977 0.0890 0.0476 0.4779 0.2867

0.1 0.1992 0.1238 0.0573 0.4940 0.3230

0.2 0.2014 0.1728 0.0685 0.5063 0.3742

0.3 0.2040 0.2104 0.0770 0.5115 0.4144

0.4 0.2074 0.2422 0.0853 0.5141 0.4496

0.5 0.6905 0.2676 0.0989 0.5070 0.4229

0.6 0.2171 0.2951 0.1038 0.5149 0.5122

0.7 0.2240 0.3174 0.1145 0.5133 0.5414

0.8 0.2328 0.3372 0.1256 0.5101 0.5700

0.9 0.2438 0.3543 0.1397 0.5051 0.5981

than the determination of R in the HD based clustering
algorithm where we must determine R appropriately before
clustering. This is not a trivial task due to the big range
of R. However, since α ∈ (0, 1) and even if α falls in a
comparatively big interval, the obtained clustering results
are still rational (see the clustering results in Table 1, where
α ∈ [0.2, 0.6]) such that we can easily determine α. In other
words, an uneasy determination problem about R is success-
fully transformed into a comparatively easy determination
problem about α in the above way. Furthermore, an adap-
tive estimation method about α will be introduced in the
following subsection.

3.3 Enhanced possibilistic C-Means clustering algorithm
EPCM

In this subsection, we propose a novel enhanced possibilis-
tic c-means (EPCM) clustering algorithm by extending the
strategy of FHD. EPCM may be viewed as a generalization
of the above FHD based clustering algorithm. The objective
function of EPCM is formulated as follows:

JE PC M (UI , UO , VI ; X)

=
C∑

i=1

N∑

j=1

um
I,i j d2

I,i j +
C∑

i=1

N∑

j=1

um
O,i j SI,I

+ (1 − αi )

C∑

i=1

N∑

j=1

um
I,i j St (d2

I,i j − SI,i )

+ αi

C∑

i=1

N∑

j=1

um
O,i j St (SO,i − d2

I,i j )

s.t.

⎧
⎪⎨

⎪⎩

uI,i j + uO,i j = 1 i = 1, 2, . . . , C; j = 1, 2, . . . , N
C∑

i=1
uI,i j ≤ 1 j = 1, 2, . . . , N

(23)

where αi is free parameter; UI , UO denote the partition
matrices associated with the main and auxiliary clusters, res-
pectively; VI = [vI,1 vI,2 . . . vI,C ] are the centers of the
main clusters, SI,i and SO,i are the extensions of SI and SO

in (11) and can be defined respectively using (24) and (25),
respectively.

SI,i =
∑N

j=1 um
I,i j d

2
I,i j∑N

j=1 um
I,i j

(24)

SO,i =
∑N

j=1 um
O,i j d

2
I,i j∑N

j=1 um
O,i j

(25)

In (23), a new constraint
∑C

i=1 uI,i j ≤ 1 is introduced to
avoid the coincident cluster problem of PCM. As revealed in
Pal et al. (2005), the reason of the coincident cluster problem
occurring in PCM is the independence of each cluster. To
overcome this problem, the fuzzy partition matrix U f uzzy =
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[u f uzzy
i j ] is introduced into PCM Zhang and Yeung (2004),

Pal et al. (2005), where the constraint
∑C

i=1 u f uzzy
i j = 1

makes different clusters to exclude with each other. In sum-
mary, all the current PCM and its variants employ a fuzzy
partition matrix to overcome the coincident cluster problem
and a possibilistic matrix to weaken the influence of out-
liers and noises. However, by imposing a novel constraint∑C

i=1 uI,i j ≤ 1, our algorithm can effectively solve these
two problems simultaneously with only a partition matrix,
because this new constraint not only makes different clusters
to exclude with each other but can also weaken the influence
of outliers and noises.

Now, let us discuss the implementation of EPCM. First,
(23) can be simplified as follows:

JE PC M (UI , VI ; X)

=
C∑

i=1

N∑

j=1

um
I,i j d

2
I,i j +

C∑

i=1

N∑

j=1

(1 − uI,i j )
m SI,i

+ (1 − αi )

C∑

i=1

N∑

j=1

um
I,i j St (d2

I,i j − SI,i )

+ αi

C∑

i=1

N∑

j=1

(1 − uI,i j )
m St (SO,i − d2

I,i j )

s.t.
C∑

i=1
uI,i j ≤ 1 j = 1, 2, . . . , N

(26)

i.e.,

JE PC M (UI , VI ; X)

=
C∑

i=1

N∑

j=1

um
I,i j

(
d2

I,i j + (1 − αi )St
(

d2
I,i j − SI,i

))

+
C∑

i=1

N∑

j=1

(1 − uI,i j )
m

(
SI,i + αi St

(
SO,i − d2

I,i j

))

s.t.
C∑

i=1
uI,i j ≤ 1 j = 1, 2, . . . , N

(27)

Second, the following Theorem 2 can help us derive the
optimization procedure of EPCM.

Theorem 2 Given VI,i , SI,i and SO,i , and set m = 2, the
optimal UI can be obtained by the following procedure of
determining the optimal UI (its Matlab implementation can
be seen in Appendix II).

Proof See the Appendix I.

Procedure of determining the optimal UI

1 Set

Ai j = d2
I,i j + (1 − αi ) · St (d2

I,i j − SI,i ),

Bi j = SI,i + αi · St (SO,i − d2
I,i j )

UI, j =
C∑

i=1

Bi j

Ai j + Bi j
;

2 If UI, j ≤ 1, then uI,i j = Bi j
Ai j +Bi j

and terminate this
procedure, otherwise, go to 3;

3 Let L j = 2
(∑C

i=1
1

Ai j +Bi j

)−1
(UI, j − 1);

4 If L j ≤ 2 × min
i

{Bi j }, then go to 5, otherwise, go

to 6;

5 Calculate uI,i j = Bi j −L j
/

2
Ai j +Bi j

, then terminate this pro-
cedure;

6 Obtain the values of the variables that satisfy the fol-
lowing conditions using certain greedy algorithm,

L j = 2 ·
⎛

⎝
C∑

i=1

1

Ai j + Bi j
−

∑

i∈(
∏

j)

1

Ai j + Bi j

⎞

⎠
−1

·
⎛

⎝UI, j −
∑

i∈(
∏

j)

Bi j

Ai j + Bi j
− 1

⎞

⎠

∏
j = {i |UI,i j = 0}

uI,i j = St

(
Bi j − L j/2

Ai j + Bi j

)
i = 1, 2, . . . , C

s.t. L j > 0

Then terminate this procedure.

Based on the above Theorem 2, we can get the updating
rules on UI and UO . Moreover, similar to the above HD based
clustering algorithm, we directly adopt the following update
rule on cluster centers VI,i :

vI,i =
∑N

j=1 um
I,i j x j

∑N
j=1 um

I,i j

(28)

Now, except for the cluster number C, only parameter
α = [α1, α2, . . . , αC ]T must be assigned by hand in EPCM.
Here, we present a clustering validity index function on α to
estimate the optimal α. In general, an effective fuzzy cluste-
ring strategy attempts to assign the elements of the partition
matrix UI to 0 or 1. From the procedure of determining the
optimal UI , we know that uI,i j may be taken as the function
of α. So we can propose the following clustering validity
index function on α to estimate the optimal α.

J (α) =
C∑

i=1

N∑

j=1

g(uI,i j (α)) (29)
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g(x) = (1 − |2x − 1|)γ (30)

where g(·) is the function of uI,i j and the parameter γ is
usually set to be 2 . The shape of g(x) in the interval x ∈ [0, 1]
with parameter γ = 2 is illustrated in Fig. 4. It can be
easily found that when uI,i j approximates 1 or 0 the value
of g(uI,i j ) approximates 0. Thus, the minimum of J (α) cor-
responds to an optimal α.

Based on the above discussion, we can get an optimal α

by minimizing (29). Furthermore, in order to avoid an inap-
propriate α, we introduce (31) and (32) as the constraints of
(29). It is interesting that these two constraints may also help
us avoid the coincident cluster problem in some sense.

SI,i + (SO,i − SI,i ) ∗ αi/2 ≤ min{||vI,i − vI,k ||2
−SI,k, k �= i} ∀i (31)

0.05 ≤ αi ≤ 0.6 ∀i (32)

where the upper and lower boundaries of α in (32) can be
slightly adjusted according to the practical requirements. The
above upper and lower boundaries are obtained based on our
experimental results.

In terms of the above analysis, we now give the complete
description of EPCM as follows:

Algorithm EPCM

1 Use FCM to obtain an initial fuzzy partition U; let
UI = U and UO = 1 − U;

2 Compute VI using (28) and update SI,i , SO,i using
(24) and (25);

3 Minimize the index function (29) with the constraints
(31) and (32) to obtain the optimal parameter α =
[α1, α2, . . . , αC ]T ;

4 Repeat the following steps:
a) Use the above procedure of determining the opti-
mal UI to update UI and let UO = 1 − UI ;
b) Update the VI,i using (28) for all i ;
c) Update the SI,i and SO,i using (24) and (25) res-
pectively;

Until some termination conditions are satisfied.

In the above algorithm, in order to reduce unnecessary
computational burden only once optimal evaluation of α is
designed. In general, for EPCM and other PCM algorithms,
FCM is firstly utilized to get an initial partition such that
some parameters can be initially evaluated based on such a
partition. In previous PCM algorithms parameters can only
be evaluated one time because continuous parameter update
will result in unreasonable solutions. However in EPCM,
parameter α can be updated at each iteration step. Even so,
our experimental results about various applications demons-
trate that it is enough for us to evaluate parameter α only in
the initialization step such that unnecessary computational
burden can be reduced.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x

g(
x)

Fig. 4 The shape of g(x) at range [0,1]

Based on the above descriptions of EPCM, its computa-
tional complexity can be easily analyzed. It is obvious that
the space complexity of EPCM is O(N ), which is equivalent
to those of current possibilistic clustering algorithms. Intuiti-
vely, the time complexity of EPCM may be higher than those
of other similar algorithms because of the need of performing
a function minimization with constraints and a greedy algo-
rithm at each iteration step. Based on the implementation of
the adopted greedy algorithm “ ReguStep” given in appendix
II, we can deduce that its time complexity is not more than
O(L × N ×C × p), where C, N and L respectively represent
the number of cluster centers, the number of data points and
the step number of function “ ReguStep‘’, and p < 1 is a fac-
tor because the adopted greedy algorithm is needed only for
a few number of data points. For the procedure of the adopted
function minimization with constraints, its time complexity
depends on the number of the evaluations of the objective
function and the time complexity of the objective function.
In EPCM, the former is about several tens, and the latter is
O((L × C × p + M) × N ) (the time complexity of the pro-
cedure of determining the optimal UI is little higher than the
time complexity of the adopted greedy algorithm, and M is
less than 5). So, the time complexity of function minimiza-
tion is O(K ×(L×C×p+M)×N ), where K is about several
tens. Now, we can conclude that the total time complexity of
EPCM is O((K +T )×(L ×C × p+M)×N ), where T is the
execution number of step 4 in Algorithm EPCM, about seve-
ral tens too. Compared with other similar algorithms, whose
time complexities are about O(T × N × C), EPCM indeed
needs a more burden in the running time (about several times
than others’). However, it still keeps linearly proportional to
the number of data points.

4 Experimental studies

To investigate the performance of EPCM, we compare its
clustering results with FCM, PCM, UPCM Yang and Wu
(2006) and IPCM Zhang and Yeung (2004) on several
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Fig. 5 The clusters obtained by
EPCM on dataset II. a Original
dataset II;b dataset II with noises

datasets in this section. Here, three clustering performance
indexes are examined including the robustness of cluster cen-
ters to noises and outliers, the clustering accuracy and the
ability to avoid the coincident cluster problem and to label
the outliers accurately.

Experiment 1 In this experiment, we adopt the simulated
dataset II to examine whether EPCM can avoid the coincident
cluster problem or not, where the dataset is nearly the same as
that in Zhang and Yeung (2004). This dataset contains three
clusters and all the data points in each cluster are normally
distributed over the two-dimensional space. Their respec-
tive means are (1, 0), (3, 0) and (5, 0) and the correspon-

ding covariance matrices are

[
0.16 0

0 0.64

]
,

[
0.36 0

0 1.14

]
and

[
0.16 0

0 0.64

]
. There are 1,000 data points in the middle clus-

ter, and 500 data points in each of the other two clusters.
The cluster centers obtained by EPCM on dataset II can be
seen in Fig. 5a. Figure 5b shows the cluster centers obtained
from dataset II with 2,000 noisy points that are randomly and
uniformly distributed over the region [0, 6] × [−4, 4].

It is indicated in Zhang and Yeung (2004) that for the data-
set used in their experiments that has the same distribution
as our dataset II, the clustering results of PCM generated the
coincident clusters. Just like the IPCM, EPCM can effecti-
vely avoid this problem, as shown in Fig. 5.

Experiment 2 In this experiment, we use the same dataset
(dataset II) as in experiment 1 to evaluate the robust capability
of several clustering algorithms. To investigate the robustness

of the cluster centers obtained by these five possibilistic clus-
tering algorithms, we define the following robustness index
to measure the deviation between the obtained cluster centers
and the ideal cluster centers.

∆V = ‖VI − Videal‖F =
√√√√

C∑

i=1

N∑

j=1

(vi j − videal,i j )2

(33)

where VI denotes the cluster center matrix obtained by a
clustering algorithm, Videal denotes the ideal cluster center
matrix. The larger the value of ∆V is, the worse the obtained
clustering result is.

Table 2 shows the cluster centers and the corresponding
robustness indexes obtained by five algorithms on dataset II.
For this dataset II, only a valid cluster is obtained for PCM due
to its coincident cluster problem, so the clustering results of
PCM in Table 2 are omitted. It is clear that the cluster centers
obtained by EPCM are slightly inferior to IPCM (see two
bold values therein) and superior to other three algorithms.
That is to say, both EPCM and IPCM have the comparable
robust capability and are better than other three algorithms
in robustness to noises and outliers

Experiment 3 In this experiment, the simulated dataset III
that consists of an original dataset plus noises is presented.
The original dataset is generated from the probability distri-
bution in (34), whose shape is illustrated in Fig. 6, and the
noisy data is added with the number of 10% original data-
set points that are randomly and uniformly distributed on
the range [−0.5,1.5]. In this experiment, 1,500 data points

Table 2 The cluster centers
obtained by five algorithms on
dataset II

Cluster Centers ∆V

EPCM (1.0631, −0.0100) (4.9348, 0.0126) (2.9706, 0.0750) 9.99E-2

PCM – –

UPCM (1.0607, −0.0071) (2.9952, 0.1212) (4.9464, 0.0099) 1.46E-1

IPCM (1.0341, −0.0506) (2.9938, 0.0384) (4.9820, −0.0510) 8.20E-2

PFCM (4.6835, −0.0068) (2.9986, 0.0486) (1.3218, 0.0133) 4.54E-1
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Fig. 6 The shape of the probability distribution used to generate the
original dataset III

are generated for the original dataset and 150 noisy points is
added to form dataset III.

p(x) = 1

3
· 1

0.08
√

2π
exp

(
−1

2
.

(
x − 0.1

0.08

)2
)

+2

3
· 1

0.2
√

2π
exp

(
−1

2
.

(
x − 0.7

0.2

)2
)

(34)

So, the prior probabilities and conditional probabilities of
the two subgroups (represented with L cluster and R cluster
respectively) and noise in the dataset III may be expressed
as (35) and (36). Prior probabilities:

p(L) = 1/3.3, p(R) = 2/3.3, p(noise) = 0.1/1.1 (35)

Conditional probabilities:

p(x |L) = 1

0.08
√

2π
exp

(
−1

2

(
x − 0.1

0.08

)2
)

,

p(x |R) = 1

0.2
√

2π
exp

(
−1

2

(
x − 0.7

0.2

)2
)

p(x |noise) = 1/2, x ∈ [−0.5, 1.5] (36)

The cluster centers and the corresponding robustness
indexes obtained by five algorithms on dataset III can be
seen in Table 3 where the bold values mean the best results
and the same meaning will be kept in the following tables.

Table 3 shows that for dataset III the cluster centers obtai-
ned by PFCM are the worst; the result of EPCM is compa-
rable to those of PCM and UPCM, and inferior to that of
IPCM.

In many situations, as the essential task in cluster analy-
sis, the accuracy of cluster centers can be considered as a

Table 3 The cluster centers obtained by five algorithms on dataset III

EPCM PCM UPCM IPCM PFCM

Cluster 0.1048 0.1286 0.1105 0.1047 0.1256

Centers 0.6892 0.6852 0.7061 0.7043 0.7594

∆V 1.18E−2 3.22E − 2 1.21E−2 6.37E−3 6.46E−2

primary clustering performance index. Except for this, out-
liers should be labeled accurately if they appear in datasets.
Although several popular possibilistic clustering algorithms
have less sensitivity to noises and outliers, they cannot label
them accurately in their original versions. For these possibi-
listic clustering algorithms, the possibilistic partition matrix
is usually used to partition data points. Thus a new strategy
of partitioning data points should be introduced if we want
to label outliers well. In this paper, a reasonable strategy in
(37) is proposed.

x j ∈

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

outlier cluster if
C∑

i=1
ui j ≤ θ

the kth cluster if
C∑

i=1
ui j > θ and k = arg max

1≤i≤C
ui j

(37)

where θ is a threshold. Intuitively, θ should be different
for different possibilistic clustering algorithms and different
datasets, which will be detailedly examined in the following
experiments.

In order to exactly compare the influence of θ on clustering
performance, three clustering accuracy indexes in (38–40)
are considered and the experimental results obtained by these
five possibilistic clustering algorithms on dataset III are listed
in Table 4–6 respectively.

clustering accuracy of valid points

= the number of accurate partitioning valid points

the number of ideal valid points
(38)

clustering accuracy of outlier points

= the number of labeled outlier points

the number of ideal outlier points
(39)

total clustering accuracy

= the number of total accurate partitioning points

the number of all data points
(40)

To calculate the above three indexes, the ideal clustering
partition should be first analyzed. Based on the Bayesian
decision, assume that p(x) = ∑C

i=1 ωi pi (x) + ωn pn(x),
whereωi , ωn represent the prior probabilities of valid clusters
and outlier cluster respectively, and pi (·), pn(·) represent the

Table 4 The clustering accuracy of valid points obtained by five algo-
rithms on dataset III

θ

Algorithms 0.5 0.4 0.3 0.2 0.1 0

EPCM (%) 93.57 95.38 97.35 98.53 99.11 99.25

PCM (%) 81.45 85.85 89.81 93.18 96.21 96.21

UPCM (%) 73.90 79.14 85.01 88.63 90.95 95.33

IPCM (%) 40.21 47.66 57.35 69.79 88.72 97.08

PFCM (%) 78.85 88.35 90.97 93.13 94.59 94.59
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Table 5 The clustering accuracy of outlier points obtained by five algo-
rithms on dataset III

θ

Algorithms 0.5 0.4 0.3 0.2 0.1 0

EPCM (%) 100.0 100.0 100.0 100.0 83.24 0.00

PCM (%) 100.0 100.0 100.0 84.97 47.98 0.00

UPCM (%) 100.0 100.0 100.0 94.80 87.86 0.00

IPCM (%) 100.0 100.0 100.0 100.0 100.0 0.00

PFCM (%) 100.0 100.0 100.0 84.97 38.15 0.00

Table 6 The total clustering accuracy obtained by five algorithms on
dataset III

θ

Algorithms 0.5 0.4 0.3 0.2 0.1 0

EPCM (%) 94.15 95.80 97.59 98.66 97.66 90.23

PCM (%) 83.14 87.14 90.74 92.43 91.82 87.46

UPCM (%) 76.27 81.04 86.37 89.19 90.94 86.67

IPCM (%) 45.64 52.52 61.23 72.54 89.74 88.26

PFCM (%) 80.77 89.41 91.79 92.39 89.46 85.99

conditional probabilities of valid clusters and outlier cluster
respectively, then the ideal clustering partition of each data
point can be decided according to the following formula.

x j ∈
{

kth cluster ωk pk(xi ) ≥ ωn pn(xi )

outlier cluster ωk pk(xi ) < ωn pn(xi )
,

k = arg max
i

{ωi pi (x j )} (41)

From Tables 4 and 6, we can easily find that EPCM always
obtains the best clustering accuracy with different θ . From
Table 5, it is clear that outliers may be labeled fully accu-
rately at appropriate θ for all these possibilistic clustering
algorithms. So how to determine the optimal θ should be
studied in depth.

From the above three tables, we can also easily find that
when θ decreases the clustering accuracy of valid points will
increase while the clustering accuracy of outlier points will
decrease. On the other hand, the total clustering accuracy
will increase at first and then decrease when θ decreases. So
there exists a peak of the total clustering accuracy within the
range of θ .

Table 7 displays the highest accuracy and the correspon-
ding θ obtained by these possibilistic clustering algorithms

Table 7 The highest total clustering accuracy and the corresponding θ

obtained by five algorithms on dataset III

EPCM PCM UPCM IPCM PFCM

Accuracy (%) 98.70 95.00 93.98 96.08 93.82

θ 0.1525 0.1064 6.54E−4 0.0219 0.1245

on dataset III, from which the best total clustering accuracy
is still achieved by EPCM.

In order to observe how different θ affects the clustering
accuracy, the membership curves obtained by five algorithms
on dataset III with noises are presented in Fig. 7, where the
dashdotted curves denote the memberships of all the data
points belonging to two clusters and the real curves denote
the sum of memberships of all the data points to two clusters.

Now let us observe the possibilistic membership curves
shown in Fig. 7. Compared with these real curves in Fig. 7a–
e, i.e., the column sum curves of the possibilistic partition
memberships of data points belonging to different clusters,
we can easily find that the valley of EPCM is higher than
others, so the clustering accuracy of EPCM is higher than
those of other algorithms and insensitive to θ when it takes
a small value (e.g., θ < 0.5). Especially, we can see that
the real curve of EPCM is very similar with the distribution
curve of the dataset III, which really implies an appropriate
partition. The above analysis explains the reason for its higher
clustering accuracy.

Experiment 4 In this experiment, datasets X400 and X550
in Pal et al. (2005) are used to examine the clustering per-
formance of EPCM. X400 consists of two clusters with two-
dimensional standard normal distributions, whose centers are
[5.0 6.0]T and [5.0 12.0]T, and the number of data points of
every cluster is 200. X550 is generated by X400 added into
150 noises that are randomly and uniformly distributed on
[0, 15] × [0, 11]. Table 8 displays the cluster centers obtai-
ned by five algorithms on X400 and X550, where 	(	V)

is defined as the difference between the corresponding ∆V
obtained on X400 and X550. For these two datasets, EPCM
wins the best clustering centers.

Three clustering accuracy indexes are listed in Tables 9,
10, 11, respectively, and Table 12 displays the highest total
clustering accuracy and the corresponding θ obtained by five
algorithms on X400 and X550. From Tables 9, 10, 11, we
can find that the highest clustering accuracy is still achieved
by EPCM. Moreover, UPCM has the comparable clustering
accuracy with EPCM and is better than other algorithms.
Table 12 displays that all these algorithms can achieve the
highest total clustering accuracy with appropriate θ . In cur-
rent possibilistic clustering algorithms, θ is set to be 0, that is
to say, they only reduce the influence of noises and outliers on
clustering centers i.e., the clustering accuracy of valid points
are only involved such that the total clustering accuracy is not
improved. When θ is set to be 0, the total clustering accura-
cies obtained by these possibilistic clustering algorithms will
become lower. This poses such an interesting issue: “whether
a universal θ is available for plenty of datasets for each pos-
sibilistic clustering algorithms?” The next experiment will
give a negative answer and give a useful suggestion for the
selection of θ in five clustering algorithms.
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Fig. 7 The membership curves
obtained by different algorithms
on dataset III
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Experiment 5 With the same datasets as above, we use
the ranges of θ with different total clustering accuracies
to investigate the clustering results obtained by five
possibilistic clustering algorithms, which are shown in
Table 13.

From Table 13, we can easily discover the fact that it is an
impossible task to find a universal θ with which the highest
total clustering accuracies (e.g., >95%) on three datasets are
achieved simultaneously for five clustering algorithms. In
terms of our experimental results for many datasets, we give
the following suggestion about the range of θ for EPCM,
PCM, UPCM, IPCM and PFCM: θ ∈ [0.4,0.5], [0.3,0.4],
[0.1,0.2], [0.05,0.15], and [0.3,0.4] respectively, and the cor-
responding optimal values may be taken as 0.45, 0.35, 0.15,
0.1 and 0.35. Table 14 illustrates the total clustering accu-
racies obtained by five possibilistic clustering algorithms on
three datasets, in which EPCM still win the highest clustering
accuracy for all three datasets.

5 Application to image segmentation

In this section, we will apply EPCM to color peach shadow
image segmentations. Image segmentation is a fundamen-
tal and important research topic in image processing field
(Dong and Xie 2005, Cinque et al. 2004, Moghaddamzadeh
and Bourbakis 1997, Tobias and Seara 2002). Clustering is
one of the important image segmentation methods. The first
task of color image segmentation is to choose a feature space
to represent the pixels of an image. It is well known that
color images are usually stored and processed by the RGB
color space, but the RGB color space cannot often reflect the
visual difference of eyes to identify different colors. There-
fore, color images could usually be represented using some
other feature spaces such as YIQ, YUV, CIE, HIS (HSL,
HSB, HSV as mutants) and so on. In our experiments, the
HSV feature space proposed by A. R. Smith Moghaddamza-
deh and Bourbakis (1997) is adopted.
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Figure 8 shows original images and the corresponding
segmentation results using five clustering algorithms with
appropriate θ suggested in experiment 5. Let the cluster num-
ber C=3 and black pixels as outliers. Here, every peach
shadow image is mainly composed of three parts: peach,
background and shadow. Except for these, a lot of pixels
indicate other colors. To get a good segmentation result, clus-
tering algorithms should have robustness and high cluste-
ring accuracy because of the existence of outliers in original
images. From Fig. 8, we can find that the segmentation results
of EPCM for all four peach images are close to the results
obtained by human vision. While for other algorithms, not
all obtained results are good enough.

In summary, EPCM demonstrates higher clustering per-
formance than all other four possibilistic clustering algo-
rithms for this image segmentation application.

Table 15 show the average running time of five clustering
algorithms on the image datasets, where the size of an image
is 150×200. From this table, we can find that the time com-
plexity of EPCM is higher than other clustering algorithms’,
which is in accordance with the conclusions given in the
Sect. 3.3. However, we believe that such a time complexity
of EPCM is still acceptable in the case where the clustering
performance is more important.

6 Conclusions

In this study, to overcome the weaknesses of algorithm PCM,
we propose a novel possibilistic clustering algorithm EPCM.
The distinctive features can be concluded as follows.

(1) Due to the introduction of the strategy of flexible hyper-
spheric dichotomy, EPCM can use less parameter than
PCM. Thus, EPCM actually avoid these parameters’
influence on the clustering results.

(2) The objective function of EPCM with a novel constraint
can effectively overcome the coincident cluster problem
of PCM.

(3) EPCM can not only effectively weaken the influences of
noise and outliers in datasets and obtain robust cluster
centers, but can also take the effective strategy to label
them, which results in the higher total clustering accu-
racy than other possibilistic clustering algorithms. As we
may know well, to obtain better total clustering accuracy
is usually more important for the clustering results than
to obtain better cluster centers in real applications.

Although EPCM reveals better performances than PCM
and its variants in the above, it has some problems to be
further studied. For example, just like PCM, it is sensitive
to initialization sensitivity problem and cannot obtain very
satisfactory clustering results on non-ball distributed data-
sets. We will explore these open problems in near future.
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606 Z. Xie et al.

Fig. 8 The segmentation results for the peach images. The original images are arranged in the first row, and the second to seventh rows are the
corresponding segmentation results obtained by FCM, EPCM, PCM, UPCM, IPCM and PFCM, respectively
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Table 9 The clustering
accuracy of valid points
obtained by five algorithms on
X400 and X550

θ

Algorithms 0.5 0.4 0.3 0.2 0.1 0

EPCM (%) X400 100.0 100.0 100.0 100.0 100.0 100.0

X550 91.54 98.53 100.0 100.0 100.0 100.0

PCM (%) X400 72.00 86.02 94.50 99.50 100.0 100.0

X550 100.0 100.0 100.0 100.0 100.0 100.0

UPCM (%) X400 75.74 83.26 91.01 96.50 99.25 100.0

X550 93.32 98.78 100.0 100.0 100.0 100.0

IPCM (%) X400 33.25 46.75 61.25 83.26 99.25 100.0

X550 60.20 76.01 92.53 100.0 100.0 100.0

PFCM (%) X400 72.00 85.51 94.50 99.75 100.0 100.0

X550 100.0 100.0 100.0 100.0 100.0 100.0

Table 10 The clustering
accuracy of outliers labeled by
five algorithms on X400 and
X550

θ

Algorithms 0.5 0.4 0.3 0.2 0.1 0

EPCM (%) X400 — — — — — —

X550 97.81 94.89 86.13 75.18 51.82 0.00

PCM (%) X400 — — — — — —

X550 69.34 56.20 43.07 16.06 0.00 0.00

UPCM (%) X400 — — — — — —

X550 99.27 97.08 89.05 80.29 68.61 0.00

IPCM (%) X400 — — — — — —

X550 100.0 100.0 99.27 86.13 56.20 0.00

PFCM (%) X400 — — — — — —

X550 70.07 51.82 39.42 15.33 0.00 0.00

Table 11 The total clustering
accuracy obtained by five
algorithms on X400 and X550

θ

Algorithms 0.5 0.4 0.3 0.2 0.1 0

EPCM (%) X400 100.0 100.0 100.0 100.0 100.0 100.0

X550 93.09 97.63 96.54 93.81 88.00 75.09

PCM (%) X400 72.00 86.00 94.50 99.50 100.0 100.0

X550 92.36 89.09 85.81 79.09 75.09 75.09

UPCM (%) X400 75.77 83.25 91.00 96.50 99.25 100.0

X550 94.72 98.36 97.27 95.09 92.18 75.09

IPCM (%) X400 33.25 46.75 61.25 83.25 99.25 100.0

X550 70.18 82.00 94.00 96.54 89.09 75.09

PFCM (%) X400 72.00 85.50 94.50 99.75 100.0 100.0

X550 92.54 88.00 84.90 78.90 75.09 75.09
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Table 12 The highest total
clustering accuracy and the
corresponding θ obtained by five
algorithms on X400 and X550

EPCM PCM UPCM IPCM PFCM

X400 Accuracy (%) 100.0 100.0 100.0 100.0 100.0

θ [0,0.56] [0,0.17] [0,0.05] [0,0.08] [0,0.17]

X550 Accuracy (%) 97.64 95.09 98.73 97.45 94.73

θ 0.3581 0.6168 0.3719 0.2324 0.6181

Table 13 The ranges of θ with
different total clustering
accuracies on three datasets

Accuracy

Algorithms >95% >90% >85% >80% >70% >60%

EPCM Ds III [0,0.43] [0,0.63] [0,0.70] [0,0.76] [0,0.85] [0,0.91]

X400 [0,0.79] [0,0.87] [0,0.91] [0,0.95] [0,0.98] [0,0.99]

X550 [0,0.46] [0,0.56] [0,0.61] [0,0.68] [0,0.79] [0,0.86]

PCM Ds III [] [0,0.30] [0,0.43] [0,0.54] [0,0.63] [0,0.74]

X400 [0,0.29] [0,0.36] [0,0.41] [0,0.44] [0,0.51] [0,0.56]

X550 [0.61,0.63] [0.43, 0.78] [0.29, 0.85] [0.21, 0.90] [0,0.98] [0,1.0]

UPCM Ds III [] [0,0.13] [0,0.30] [0,0.39] [0,0.58] [0,0.72]

X400 [0,0.22] [0,0.32] [0,0.36] [0,0.44] [0,0.53] [0,0.63]

X550 [0.19,0.49] [0.06, 0.58] [0.01, 0.64] [0.01, 0.69] [0,0.77] [0,0.84]

IPCM Ds III [0.02,0.03] [0,0.09] [0,0.11] [0,0.14] [0,0.20] [0,0.28]

X400 [0,0.13] [0,0.16] [0,0.19] [0,0.21] [0,0.26] [0,0.31]

X550 [0.17,0.27] [0.11, 0.34] [0.07, 0.37] [0.05, 0.41] [0,0.50] [0,0.60]

PFCM Ds III [] [0,0.35] [0,0.45] [0,0.49] [0,0.61] [0,0.72]

X400 [0,0.29] [0,0.36] [0,0.40] [0,0.43] [0,0.51] [0,0.57]

X550 [] [0.45, 0.80] [0.32, 0.87] [0.22, 0.90] [0,0.99] [0,1.0]

Table 14 The total clustering accuracy obtained by five possibilistic clustering algorithms with appropriate θ on three datasets

EPCM (θ = 0.45)(%) PCM (θ = 0.35)(%) UPCM (θ = 0.15)(%) IPCM (θ = 0.1)(%) PFCM (θ = 0.35)(%)

Ds III 94.64 88.24 89.83 89.09 90.05

X400 100.0 90.50 98.25 99.25 91.25

X550 95.82 87.82 94.36 89.09 86.36

Table 15 The average running time of five clustering algorithms on the
image datasets

EPCM FCM PCM UPCM IPCM PFCM

13.04s 2.37s 3.52s 3.01s 6.84s 7.42s
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Appendix I: The proof of Theorem 2

Proof Given VI ,α, and m = 2, minimizing (27) can be
transformed into the problem of minimizing (A-1).

J (UI ; X) =
C∑

i=1

N∑

j=1

um
I,i j ∗ Ai j +

C∑

i=1

N∑

j=1

(1 − uI,i j )
m∗Bi j

s.t.

⎧
⎨

⎩

C∑
i=1

uI,i j ≤ 1 ∀ j

u I,i j ≥ 0 ∀i, j

(A-1)

where Ai j = d2
I,i j + (1 − αi ) · St (d2

I,i j − SI,i ), Bi j = SI,i +
αi · St (SO,i − d2

I,i j ).
Furthermore, it can be transformed into the following N

minimization problems:

J j (UI ; X) =
C∑

i=1

um
I,i j ∗ Ai j +

C∑

i=1

(1 − uI,i j )
m ∗ Bi j

s.t.

⎧
⎨

⎩

C∑
i=1

uI,i j ≤ 1

uI,i j ≥ 0 ∀i

(A-2)
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To obtain the necessary conditions of (A-2), we first construct
its Lagrangian function as follows.

JL , j (UI , L j , βi j ; X) =
C∑

i=1

um
I,i j ∗ Ai j +

C∑

i=1

(1 − uI,i j )
m

∗ Bi j −
C∑

i=1

βi j ∗ uI,i j + L j ∗
(

C∑

i=1

uI,i j − 1

)

s.t.

{
βi j ≥ 0 ∀i
L j ≥ 0

(A-3)

Now the constraints on uI,i j are released. To differentiate
(A-3) with respect to uI,i j (please note: m = 2), we have

uI,i j = (Bi j + βi j/2 − L j/2)

Ai j + Bi j
, i = 1, 2, . . . , C (A-4)

By substituting (A-4) into (A-3), we obtain

JL , j (L j , βi j ; X)

=
C∑

i=1

(
Bi j + (βi j − L j )/2

Ai j + Bi j

)2

· Ai j

+
C∑

i=1

(
Ai j + (L j − βi j )/2

Ai j + Bi j

)2

· Bi j

−
C∑

i=1

βi j ·
(

Bi j + (βi j − L j )/2

Ai j + Bi j

)

+ L j ·
(

C∑

i=1

(
Bi j + (βi j − L j )/2

Ai j + Bi j

)
− 1

)
(A-5)

We differentiate (A-5) with respect to βi j, L j , and set their
derivatives to be zero. Then we obtain

L j =2 ∗
(

C∑

i=1

1

Ai j +Bi j

)−1

∗
(

C∑

i=1

Bi j +βi j/2

Ai j +Bi j
−1

)

(A-6)

βi j = L j − 2 ∗ Bi j ∀i (A-7)

To get the necessary condition on uI,i j of minimizing
(A-2), we first introduce the following lemmas and corol-
laries that will help us prove this theorem.

Lemma A-1 When (A-2) reaches its extremum, if L j > 0,
then (A-6) holds; if βij> 0,then βi j = L j − 2 ∗ Bi j .

Proof of Lemma A-1 If L j �= 0, we can easily obtain (A-6)
by the Lagrangian method. Similarly, we can easily derive:
βi j = L j − 2 ∗ Bi j , if βij > 0.

Lemma A-2 When (A-2) reaches its extremum, if βi j> 0,
then uI,i j = 0; if L j > 0, then

∑C
i=1 uI,i j − 1 = 0.

Proof of Lemma A-2 Assume that when (A-2) reaches its
extremum, βi j> 0 and uI,i j > 0 holds, there must exist β ′

i j >

βi j or β ′
i j < βi j in a small adjacent domain of βi j which satis-

fies J j (β
′
i j ) < J j (βi j ) or J j (β

′
i j ) > J j (βi j ). This is contrary

to the assumption. Therefore, if βi j> 0 uI,i j = 0 holds. Simi-
larly, we can prove that if L j > 0, then

∑C
i=1 uI,i j − 1 = 0

when (A-2) reaches its extremum.

Lemma A-3 When (A-2) reaches its extremum, if L j = 0,
then βi j = 0, i = 1, 2, . . . , C.

Proof of Lemma A-3 Assume that when (A-2) reaches its
extremum, if L j = 0 then ∃i βi j > 0 holds. From (A-7)
we know βi j = L j − 2 ∗ Bi j ∀i . Due to L j = 0 and Bi j >

0, βi j = L j − 2 ∗ Bi j < 0 ∀i . This is contrary to the
assumption. Therefore if L j = 0, there must be βi j = 0.

Based on the above three lemmas, we discuss the neces-
sary condition on uI,i j of minimizing (A-2) in different cases.

The necessary condition uI,i j of minimizing (A-2) without

any constraints is uI,i j = Bi j
Ai j +Bi j

. Let UI, j = ∑C
i=1

Bi j
Ai j +Bi j

.

Because there is
∑C

i=1ui j = ∑C
i=1

Bi j
Ai j +Bi j

= UI, j at this
situation, we can infer the following corollaries.

Corollary A-1 if UI, j ≤ 1, the necessary condition on uI,i j

of minimizing (A-2) can be written as

uI,i j = Bi j

Ai j + Bi j
.

Now, let us discuss the case of UI, j > 1. When UI, j > 1, we
can derive the following corollaries.

Corollary A-2 When (A-2) reaches its extremum, if UI, j >

1, then L j > 0.

Proof of corollary A-2 Assume that when (A-2) reaches its
extremum, if UI, j > 1 L j = 0 holds. From lemma A-3,

we obtain βi j = 0. So we can have uI,i j = Bi j
Ai j +Bi j

and
∑C

i=1 ui j =∑C
i=1

Bi j
Ai j +Bi j

= UI, j > 1, which is contrary to

the constraint
∑C

i=1 ui j ≤ 1 in (A-2). Therefore the assump-
tion is wrong and corollary A-2 holds.

Corollary A-3 Let ς = 2∗
(∑C

i=1
1

Ai j +Bi j

)−1 ∗ (UI, j −1),

if UI, j > 1 and ς < 2Bi j ∀ i , the necessary condition of
minimizing (A-2) is

u I,i j = (Bi j − ς/2)

Ai j + Bi j
∀i.

Proof of corollary A-3 From corollary A-2 and lemma A-1,
we know that if UI, j > 1 then L j> 0 and L j = 2 ∗(∑C

i=1
1

Ai j +Bi j

)−1∗
(∑C

i=1
Bi j +βi j /2
Ai j +Bi j

− 1
)

= ς+2∗
(∑C

i=1

1
Ai j +Bi j

)−1∗
(∑C

i=1
βi j /2

Ai j +Bi j

)
. Here, assume that there exists

a βk j > 0 k ∈ K , K = {1, 2 . . . C}. Then from the
Lemma A-1, we obtain βk j = L j − 2 ∗ Bkj k ∈ K . Due to∑C

i=1 ai · xi/
∑C

i=1 ai ≤ max{xi }, we have L j ≤ ς + 2 ∗
max{βk j/2}, k ∈ K .
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Furthermore, we have

βk j = L j − 2Bkj ≤ ς + max{βk j } − 2Bkj , k ∈ K .

From the given condition ς < 2Bi j ∀ i , we have

βk j < max{βk j }, k ∈ K .

This results in a contrary conclusion. So there must βi j =
0 ∀i and L j = ς . Therefore, we obtain

uI,i j = (Bi j − L j/2)

Ai j + Bi j
= (Bi j − ς/2)

Ai j + Bi j
.

From corollary A-2, we immediately have the following
corollary :
Corollary A-4 if UI, j > 1 and ς < 2Bi j ∀ i , the necessary
condition on uI,i j of minimizing (A-2) can be written as

uI,i j = (Bi j − ς/2)

Ai j + Bi j
.

Corollary A-5 Let ς = 2 ∗
(

C∑
i=1

1
Ai j +Bi j

)−1

∗ (UI, j − 1),

if UI, j > 1 and ∃i ς ≥ 2 ∗ Bi j , the necessary condition
on uI,i j of minimizing (A-2) is the solution of the following
equations:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

L j = 2 ∗
(

C∑
i=1

1
Ai j +Bi j

− ∑
i∈(

∏
j)

1
Ai j +Bi j

)−1

∗
(

UI, j − ∑
i∈(

∏
j)

Bi j
Ai j +Bi j

− 1

)
∏

j = {k|uI,k j = 0}

uI,i j = St
(

Bi j −L j /2
Ai j +Bi j

)
∀i

s.t. L j > 0

Where St (x) =
{

x x > 0
0 x ≤ 0

.

Proof of corollary A-5 For the condition ∃iς ≥ 2 ∗ Bi j , we
know ∃k βk j > 0 . Form lemma A-2, we get uI,k j = 0. By
integrating (A-4) and (A-6) together with (A-7), we have

L j = 2 ∗
⎛

⎝
C∑

i=1

1

Ai j +Bi j
−

∑

i∈(
∏

j)

1

Ai j +Bi j

⎞

⎠
−1

∗
⎛

⎝UI, j −
∑

i∈(
∏

j)

Bi j

Ai j+Bi j

−1

⎞

⎠
∏

j = {k|uI,k j =0},

Meanwhile, in terms of Lemma A-2 and (A-4), we have

uI,i j = St

(
Bi j − L j/2

Ai j + Bi j

)
∀i.

So, Corollary A-5 is proved.

Based on the above Corollaries A-1, A-3 and A-5, the
proof of Theorem 2 can be immediately derived.

Appendix II: The Matlab@ implementation of the proce-
dure of determining the optimal UI

%% A Matlab@ implementation of the procedure of %% The greedy algorithm used to seek the solution to
%% determining the optimal UI %% equation listed in step 6 of %% Procedure of
%% A and B represent the A and B respectively determining the optimal UI

function U =UpdateU(A,B) function U_I=ReguStep(U_I,U,s)
s=1./(A+B); U =B.*s; sd=logical(U_I>0);
lambda=(sum(U,1)-1)./(sum(s,1)); alpha=(sum(U.*sd,1)-1)./sum(s.*sd,1);
lambda=max(lambda,0); U_I=(U-s.*repmat(alpha,size(U,1),1)).*sd;
U_I=U-s.*repmat(lambda,size(A,1),1); ind=find(min(U_I,[],1)<0);
ind=find((min(U_I,[],1))<0); if ∼isempty(ind)
if ∼isempty(ind) U_new(:,ind)=ReguStep(U_I(:,ind),U(:,ind),s(:,ind));

U_I(:,ind)=ReguStep(U_I(:,ind),U (:,ind),s(:,ind)); end
end return;
U =U_I;
return;
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