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Abstract Matrix games have been widely used in decision
making systems. In practice, for the same strategies players
take, the corresponding payoffs may be within certain ranges
rather than exact values. To model such uncertainty in matrix
games, we consider interval-valued game matrices in this
paper; and extend the results of classical strictly determined
matrix games to fuzzily determined interval matrix games.
Finally, we give an initial investigation into mixed strategies
for such games.

1 Introduction

1.1 Matrix game

Game theory had its beginnings in the 1920s, and signifi-
cantly advanced at Princeton University through the work of
John Nash Dutta (1999), Nash (1950, 1951), and Winston
(2004). The simplest game is a zero sum one involving only
two players. An m × n matrix G = {gi j }m×n may be used to
model such a two-person zero-sum game. If the row player
R uses his i th strategy (row) and the column player C selects
her j th choice (column), then R wins (and subsequently C
loses) the amount gi j . The objective of R is to maximize his
gain while C tries to minimize her loss.
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Example 1 A game is described by the matrix

G =
⎡
⎣

0 6 −2 −4
5 2 1 3

−8 −1 0 20

⎤
⎦ (1)

In the game above, the players R and C have three and
four possible strategies, respectively. If R chooses his first
strategy and C chooses her second, then R wins g12 = 6 (C
loses 6). If R chooses his third strategy and C chooses her
first, then R wins g31 = −8 (R loses 8, C wins 8). In this
paper we restrict our attention to such two-person zero-sum
games.

1.2 Strictly determined matrix game

If there exists a gi j in a classical m × n game matrix G such
that gi j is simultaneously the minimum value of the i th row
and the maximum value of the j th column of G then gi j is
called a saddle value of the game. If a matrix game has a sad-
dle value it is said to be strictly determined. It is well known,
Dutta (1999) and Winston (2004), that the optimal strategies
for both R and C in a strictly determined game are:

– R should choose any row containing a saddle value, and
– C should choose any column containing a saddle value.

A saddle value is also called the value of the (strictly deter-
mined) game. In (1), g23 is simultaneously the minimum of
the second row and the maximum of the third column. Hence
the game is strictly determined and its value is g23 = 1. The
knowledge of an opponent’s move provides no advantage
since the payoff will always be a saddle value in a strictly
determined game.
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1.3 Motivation for this work

Matrix games have many useful applications, especially in
decision making systems. However, in real world applica-
tions, due to certain forms of uncertainty, outcomes of a
matrix game may not be a fixed number even though the play-
ers do not change their strategies. Hence, fuzzy games have
been studied Garagic and Cruz (2003), Russell and Lodwick
(2002), Wu and Soo (1998). By noticing the fact that the pay-
offs may only vary within a designated range for fixed strat-
egies, we propose to use an interval-valued matrix, whose
entries are closed intervals, to model such kind of uncer-
tainty.

Throughout the rest of this paper we will use boldface
letters to denote (closed and bounded) intervals. For exam-
ple, x is an interval. Its greatest lower bound and the least
upper bound are denoted by x and x , respectively. We use
uppercase letters to denote general matrices. An boldface
upper case letter will represent an interval-valued matrix.

In this paper we assume that the intervals in the game
matrix G are closed and bounded intervals of real numbers,
and, for this investigation, represent uniformly distributed
possible payoffs.

Definition 2 Let G = {gi j } be an m × n interval-valued
matrix. The matrix G defines a zero-sum interval matrix game
provided whenever the row player R uses his i th strategy and
the column player C selects her j th strategy, then R wins and
C correspondingly loses a common x ∈ gi j .

Example 3 Consider the following interval game matrix:

G =
⎡
⎣

[0,1] [6, 7] [−2, 0] [−4,−2]
[5,6] [2, 7] [1, 3] [3, 3]

[−8,−5] [−1, 0] [0, 0] [20, 25]

⎤
⎦ (2)

In this game, if R chooses row one and C selects column two,
then R wins an amount x ∈ [6, 7] (C loses the same x that R
wins).

In this paper, we attempt to extend results of classical
matrix games into interval-valued games. In order to accom-
plish this, we will need to define fuzzy relational operators for
intervals in order to compare every pair of possible interval
payoffs from a rational game-play perspective. These rela-
tional operators for intervals will be developed in Sect. 2. We
then study crisply determined and fuzzily determined inter-
val games in Sects. 3 and 4. Since not all intervals games are
determined we begin an investigation of mixed strategies for
non-determined games. We describe a potential mapping of
such an interval game into an interval linear programming
problem in Sect. 5, and show how linear interval inequalities
can be solved under our definition in Sect. 6. We conclude
the paper with Sect. 7.

Fig. 1 Non-overlapping
intervals, x < y

2 Comparing intervals

In order to compare strategies and payoffs for an interval
game matrix, we need a notion of an interval ordering relation
that corresponds to the intuitive notion of a “better possible”
outcome/payoff. This will be done by defining the notion of
a non-empty interval x not being a better payoff than a non-
empty interval y, i.e. the notion that x is less than or equal
to y. Other approaches to relational orderings of intervals
have been developed and extended that define such order-
ings between some pairs of intervals. Fishburn defined in
Fishburn (1985) a concept of interval order corresponding to
a special kind of partially ordered set. His context is for the
study of the order of vertices in interval graphs. An interval
graph refers to a graph (X, ∼) whose points can be mapped
into intervals of a linearly ordered set such that, for all distinct
x and y, x ∼ y if and only if the intervals assigned to x and y
have a nonempty intersection. Allen’s paper Allen (1983) in
1983 listed 13 possible cases for the temporal relationships of
two time intervals. However, neither compares general inter-
vals nor models such a comparison in our game-theoretic
context. Unlike these models, we wish to make every pair of
our intervals comparable and to fuzzily quantify the notion
of “indifference” in our game-theoretic context except when
the two intervals are equal.

For the development of our relational operators in the
noted context we assume that a rational player will not prefer
an interval x as in Fig. 1 to interval y, as every possible payoff
value x ∈ x is less than every payoff value y ∈ y.

Similarly, we assume that in the case of the intervals in
Fig. 2 the player will not prefer interval x over y as no value
in x offers a payoff that is greater than what is available in
y and y offers no payoff that is less than what is allowed in
x. So by choosing interval y over x maximizes both the least
possible and greatest possible payoff.

Finally, in case x = y we assume that a rational player will
prefer neither over the other. So in these cases , using ≤ to
represent the relation “is not preferred to” we have x ≤ y in
the cases represented by Figs. 1 and 2, and each of x ≤ y and
y ≤ x for the case of equality. In these cases the preference
order exhibits the properties of a total order. Hence these
comparisons can be crisply defined as true and are consistent
with traditional interval comparison operators.

Fig. 2 Overlapping intervals

123



Studying interval valued matrix games with fuzzy logic 149

Fig. 3 Nested intervals

When x is completely contained in y as displayed in Fig. 3,
the notion of payoff preference become uncertain, as there
exists payoff values in y which are less than every possible
payoff in x as well as values in y which are greater than every
possible payoff in x. In this case a risk-adverse player may
(not necessarily will) prefer x to y as x contains the larg-
est worst possible actual payoff value, whereas a (rational)
risk-taking player may prefer y to x since y contains the
largest best possible actual payoff. However, for any single
game either player may also rationally decide that they are
indifferent to the two choices or will choose the other. In other
words, the interval payoff preference cannot be determined
with classical binary logic. This uncertainty, however, can be
well addressed with the theory of fuzzy logic developed by
Zadeh Zadeh (1965). Therefore we extend the previous crisp
preference comparisons with fuzzy membership.

Such a fuzzy membership extension might be expected to
be a continuous one in terms of holding one interval fixed and
moving the other in terms of its midpoint and width, but in the
presented context no such continuous extension is possible.
For if the widths of x and y are equal and the two intervals are
initially positioned as in Fig. 1, as x moves to the right, the
inequality x ≤ y is crisply true (having membership value 1
in a fuzzy context) until x = y, and is crisply false (having
membership value 0 in a fuzzy context) afterwards. Hence
no membership value of “x is not preferred to y” will allow
for a continuous extension.

To fuzzily quantify the uncertainty discussed above in
Fig. 3 we consider the case that the interval x is positioned
with it’s left endpoint the same as the left endpoint of y and
x ⊂ y. In this case a rational player will crisply prefer y over
x for the same reasons expressed in the analysis of Fig. 1
and 2. Hence x ≤ y crisply, and in terms of a fuzzy relational
operator the membership value of this relation is 1. On the
other hand, when x is positioned to share it’s right endpoint
with y, a rational player will crisply prefer x to y for the same
reason. Hence in this case the membership value of x ≤ y
is 0. We then define the fuzzy membership to be a linear
mapping from 1 to 0 as the interval x “moves” from right
to left. The corresponding fuzzy membership values of this
relation then can be associated with the notion of the degree
of risk-taking that a player may exhibit. However, this rela-
tionship is not a probabilistic one, but rather a possible one.
For example, a risk-adverse player facing a choice between
two such intervals with a x ≤ y membership value close to
1 may consider the risk of choosing y over x in spite of the
possibility of receiving an actual payoff less than every value
in x. On the other hand, a risk-taking player may choose y

Fig. 4 Nested intervals, x ≤ y
with membership value 1

2

over x with a small positive membership value of x ≤ y. The
linear map

f (x, y) = y − x

w(y) − w(x)
(3)

meets the requirement, where w(x) = x − x is the width of
the interval x.

As a special instance one can note that the membership
is 0.5 when the midpoints of x and y overlap. If one keeps
the interval y fixed, the midpoints of x and y equal and allow
the width of x to vary continuously, there is a pronounced
discontinuity in the membership values of x ≤ y when the
widths become equal. However, this discontinuity is not in
conflict with the measure of uncertainty of the comparison,
as by our definition there is uncertainty in the comparison at
all widths of x except when the intervals are equal (Fig. 4).

Summarizing the above discussion, we extend the crisp
comparison operator by defining the fuzzy comparison oper-
ator � for two closed and bounded intervals for the “not
preferred to” relationship as follow:

Definition 4 Let x and y two be nontrivial intervals. The
binary fuzzy operator � of x and y returns the membership
for ‘x is not preferred to y’ between 0 and 1 as:

x � y =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1 x < y;
1 x ≤ y ≤ x < y;

y − x

w(y) − w(x)
y < x < x ≤ y, w(x) �= w(y);

1 x = y, w(x) = w(y);
0 otherwise

(4)

One can define the dual fuzzy relation “is preferred to” in the
analogous way. We will use the symbol � to denote this dual
relationship as a reminder of the antisymmetry in the crisp
case. Therefore � can be defined in terms of � as follows:

Definition 5 The binary fuzzy operator � of two intervals
x and y is defined as: x � y = 1 if x = y; and x � y =
1 − (x � y) otherwise.

Definition 6 If the value of x � y is exactly one or zero,
then we say that x and y are crisply comparable. Otherwise,
we say that they are fuzzily comparable.

3 Crisply determined interval matrix game

In this section, we extend the concept of classical strictly
determined games to interval matrix games whose row and
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column entries are crisply comparable. In this case we will
use ≤ and ≥ in place of � and � to emphasize the crispness
of the appropriate interval comparisons.

Definition 7 Let G be a m ×n interval game matrix. If there
exists a gi j ∈ G such that gi j is simultaneously crisply less
than or equal to gik for all k ∈ {1, 2, . . . , n} and crisply
greater than or equal to gl j for all l ∈ {1, 2, . . . , m} then
the interval gi j is called a saddle interval of the game. An
interval matrix game is crisply determined if it has a saddle
interval.

By the definition above, to determine whether an interval
game matrix is crisply determined, one needs only to do the
following:

1. For each row (1 ≤ i ≤ m), find the entry gi j∗ that is
crisply less than or equal to all other entries in the i th
row.

2. For each column (1 ≤ j ≤ n), find the entry gi∗ j that
is crisply greater than or equal to all other entries in the
j th column.

3. Determine if there is an entry gi∗ j∗ that is simultaneously
the minimum of the i th row and the maximum of the j th
column.

4. If any of the above values cannot be found the game is not
crisply determined. Otherwise, it is a crisply determined
interval matrix game.

Example 8 Examining the interval game matrix (2), we
found that g14, g23, and g31 are the minimum of rows 1, 2,
and 3, respectively. And, g21, g12, g23 and g34 are the max-
imum of columns 1, 2, 3, and 4, respectively. Furthermore,
g23 is simultaneously the minimum of the 2nd row and the
maximum of the 3rd column. Hence, g23 = [1, 3] is a sad-
dle interval of the game matrix. This is a crisply determined
interval matrix game.

Mimicking the optimal strategy for a classical strictly
determined game, we have the optimum strategies for both R
and C in a crisply determined interval matrix game defined
as:

– R should choose any row containing a saddle interval,
and

– C should choose any column containing a saddle interval.

In this case the uniqueness of the saddle intervals can be
established.

Theorem 9 If an interval matrix game is crisply determined,
its saddle intervals are identical.

Proof Let G be a crisply determined interval game matrix,
and gi j and glk are saddle intervals. Then, gi j ≤ gik ≤ glk ,
and gi j ≥ gl j ≥ glk . Hence, gi j = glk . 
�

As in the classical case, the knowledge of an opponent’s
move provides no advantage since the payoff is assumed to
be uniformly distributed within a saddle interval in a strictly
determined interval game.

Definition 10 The value interval of a strictly determined
interval game is its saddle interval. A strictly determined
interval game is fair if its saddle interval is symmetric respect
to zero, i. e. in the form of [−a, a] for a ≥ 0.

From Example 8 we know that g23 is a saddle interval
of the matrix game (2). However, the midpoint of g23 is 2.
Hence, the game is unfair since the row player has an average
advantage of 2.

4 Fuzzily determined interval matrix games

For a general interval game matrix, the crisp comparability
may not be satisfied for all intervals in the same row (or col-
umn). Hence we now must extend interval comparability to
define the fuzzy memberships of an interval vi being a min-
imum and a maximum of an interval vector V; and then we
define the notion of a least and greatest interval in V.

Definition 11 Let V = {v1, v2, . . . , vn} be an interval vec-
tor. The fuzzy membership of vi being a least interval in V is
defined as µ(vi ) = min1≤ j≤n{vi ≺ v j }. And, a least interval
of the vector V is defined as an interval whose µ value is
largest, i.e. vi∗ = max1≤i≤n µ(vi ).

Likewise, the fuzzy membership of vi being a maximum
interval in V is ν(vi ) = min1≤ j≤n{vi � v j }. Similarly, a
greatest interval of the vector V is vi∗ = max1≤i≤n ν(vi ).

Example 12 Find the least and the greatest intervals for the
interval vector V = {[2, 5], [3, 7], [4, 5]}.
Solution We notice that v2 and v3 are not crisply compara-
ble. By Definition 11, we have µ([2, 5]) = 1, ν([2, 5]) = 0;
µ([3, 7]) = 0, ν([3, 7]) = 2

3 ; and µ([4, 5]) = 0, ν([4, 5]) =
1
3 . Hence, the least interval of the vector V is v1 = [2, 5] with
membership 1; and the greatest interval of V is v2 = [3, 7]
with membership 2

3 .
Notice, however, that unlike real valued games, the least

and/or greatest interval of a vector is not necessarily unique.
This can happen only when unequal intervals share the same
midpoint, as the next example shows.

Example 13 Given the interval vector V = {[2, 5], [3, 6],
[4, 5]} we find that the least interval of the vector V is v1 =
[2, 5] with membership 1. However, as ν([2, 5]) =
0, ν([3, 6]) = 1

2 , and ν([4, 5]) = 1
2 each of [3, 6] and [4, 5]

is a greatest interval with membership value 1
2 .
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Studying interval valued matrix games with fuzzy logic 151

Definition 11 provides us a way to fuzzily determine least
and greatest intervals for any interval vectors. We are now
able to define fuzzily determined interval matrix game as
follows:

Definition 14 Let G be an m × n interval game matrix. If
there is a gi j ∈ G such that gi j is simultaneously a least and
a greatest interval for the i th row and the j th column of G,
respectively, then G is a fuzzily determined interval game.
We also call such gi j a fuzzy saddle interval of the game with
its membership as min{µ(gi j ), ν(gi j )}.

It is obvious that the crisply determined interval game
defined in Definition 7 is just a special case of fuzzily deter-
mined interval game with 1 as its membership. The game
value of a fuzzily determined interval game can be reason-
ably defined as its fuzzy saddle interval with respect to its
membership.

For the convenience of computer implementations, we
summarize our discussion as the algorithm below.

Algorithm 15

1. Initialization:
(a) Input interval game matrix G = {gi j }m×n

(b) Initialize FuzzilyDetermined as false
2. Calculation:

(a) Evaluate µ(gi j ) and ν(gi j ) for all i = 1 to m and
j = 1 to n

(b) For each of i = 1 to m, find j∗ such that µ(gi j∗) =
max1≤ j≤n{µ(gi j )}. Note: j∗ depends on i

(c) For each of j = 1 to n, find i∗ such that ν(gi∗ j ) =
max1≤i≤m{ν(gi j )}. Note: i∗ depends on j

3. Checking: For each of i = 1 to m and corresponding j∗,
check if gi j∗ is also a greatest interval for the j∗ column.
If so,
(a) Update FuzzilyDetermined to true
(b) Record gi j∗ as a fuzzy saddle interval with its mem-

bership min{µ(gi j∗), ν(gi j∗)}.
4. Finding results:

(a) If FuzzilyDetermined is false, the interval
game is not fuzzily determined

(b) Otherwise, the interval game is fuzzily determined.
And, return the fuzzy saddle interval that has the
largest membership among all recorded fuzzy sad-
dle intervals. Note: the game is crisply determined
if the resulting membership is 1.

The concept of a fuzzily determined interval game in Defi-
nition 14 can be further generalized. For each gi j ∈ G, the
membership of gi j being simultaneously a least and a great-
est interval for the ith row and the jth column of G can be
defined as φ(gi j ) = min{µ(gi j ), ν(gi j )}. The entries of G
with the largest value of φ can be considered as fuzzy saddle

intervals. Therefore, for any interval game matrix, one can
find its fuzzy saddle intervals with the membership of the
largest value of φ. However, it may not make any practical
sense if the membership value is too small.

There are many applications of classical game theory to
problems in decision theory and finance. In particular, the
following is an example how interval Nash games may apply
to determine optimal investment strategies.

Example 16 Consider the case of an investor making a deci-
sion as to how to invest a non-divisible sum of money when
the economic environment may be categorized into a finite
number of states. There is no guarantee that any single value
(return on the investment) can adequately model the payoff
for any one of the economic states. Hence it is more realistic
to assume that each payoff lies in some interval.

For this example it is assumed that the decision of such an
investor can be modeled under the assumption that the eco-
nomic environment (or nature) is, in fact, a rational “player”
that will choose an optimal strategy. Suppose that the options
for this player are: strong economic growth, moderate eco-
nomic growth, no growth nor shrinkage, and moderate shrink-
age(negative growth). For the investor player the options are:
invest in bonds, invest in stocks, and invest in a guaranteed
fixed return account. In this case clearly a single value for the
payoff of either investment in bonds or stock cannot be real-
istically modeled by a single value representing the percent
of return. Hence a game matrix with interval payoff values
better represents the view of the game from both players’
perspectives.

Consider then the following interval game matrix for this
scenario, where the percentage of return is represented in
decimal form.

Bonds Stocks Fixed
Strong [0.11, 0.136] [0.125, 0.158] [0.045, 0.045]

Moderate [0.083, 0.122] [0.08, 0.11] [0.045, 0.045]

None [0.049, 0.062] [0.02, 0.042] [0.045, 0.045]

Negative [0.022, 0.03] [–0.04, 0.015] [0.045, 0.045]

The intervals in each row and column are strictly compa-
rable to each other, and using the techniques described earlier
one finds that the game is strictly determined, with the value
of the game the trivial interval [0.045, 0.045]. This corre-
sponds to the actions of those investors who do not have any
insight as to what the economy may do in a given time period
and who cannot take high risks.
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5 Toward optimal mixed strategies through linear
programming

As in the case of classical matrix games, there is no guaran-
tee that an interval valued matrix game is crisply or fuzzily
determined. For non-determined interval matrix game, one
needs to find an optimal mixed strategy for each player. For
non-determined interval valued matrix games we will assume
that these mixed strategies are represented by crisp probabil-
ity values, whose sum for each player is exactly equal to
one. Hence the goal is to describe a context in which each
player can choose an optimal mixed strategy from the set of
all possible mixed strategies.

In the classical zero-sum matrix game context the problem
of finding an optimal mixed strategy solution can be mapped
to an equivalent linear programming problem. We will now
investigate such a transformation for interval valued games
and present the resulting linear programming problems to be
solved.

Suppose G = (gi j ) is an m × n interval game matrix
and the column player C chooses column j as her strategy.
If P = [p1, p2, . . . , pm] is the row player’s mixed strategy
then the expected value for the row player, given C’s given
strategy, is the interval v defined

v = p1 · g1 j + p2 · g2 j + · · · + pm · gmj =
m∑

i=1

pi · gi j .

To find the row player’s optimal strategy we use the “max-
min” principle of traditional zero sum matrix games, namely
to find the largest minimum expected value/payoff. Hence
we need to find a “maximum” value v and the corresponding
mixed strategy P so that p1 ·g1 j + p2 ·g2 j +· · ·+ pm ·gmj � v
for each 1 ≤ j ≤ n. The corresponding system to solve is:

System 17 Maximize v subject to

x1 · g11 + x2 · g21 + · · · + xm · gm1 � v

x1 · g12 + x2 · g22 + · · · + xm · gm2 � v

...

x1 · g1n + x2 · g2n + · · · + xm · gmn � v

m∑
i=1

xi = 1

x1, x2, . . . , xm ≥ 0

As the entries of the game matrix G represents the gains to
the row player, the column player attempts to minimize her
losses. Therefore she attempts to find the smallest maximum
expected value, and the corresponding (dual) system for her
is:

System 18 Minimize v subject to

x1 · g11 + x2 · g12 + · · · + xn · g1n � v

x1 · g21 + x2 · g22 + · · · + xn · g2n � v

...

x1 · gm1 + x2 · gm2 + · · · + xn · gmn � v
n∑

i=1

xi = 1

x1, x2, . . . , xm ≥ 0

In the classical game theory context one can assume that
each of the payoffs are positive, as an appropriate linear shift
of the payoff values does not affect the characteristics of the
game. In the case of interval valued games a similar shift to
make each of the interval payoffs positive (i.e. the left end-
point of each interval entry in the game matrix is positive)
can be employed. This shift, as will be shown, does not affect
the characteristics of the game.

Theorem 19 Suppose G = (gi j ) is an m × n interval game
matrix and c > 0. The interval v is a row player’s opti-
mal mixed strategy expected value with strategy distribution
P = [p1, p2, . . . , pm] if and only if v + [c, c] is a corre-
sponding optimal value with strategy distribution P for the
row player in the game G′ = (gi j + [c, c]).

Proof If P = [p1, p2, . . . , pm] is a strategy distribution and
1 ≤ j ≤ n then

m∑
i=1

xi (gi j + [c, c]) =
m∑

i=1

(xi · gi j + xi · [c, c]) =
m∑

i=1

xi gi j

+[c, c]
m∑

i=1

xi =
m∑

i=1

xi gi j + [c, c].

Hence maximizing
∑m

i=1 xi (gi j + [c, c]) ≥ v is equiva-
lent to maximizing

∑m
i=1 xi gi j + [c, c] ≥ v. A similar result

follows immediately for the column player. 
�

Continuing, as the entries in G can be assumed to be pos-
itive, we have v > 0. However, the width of v in general can
vary. In order to “normalize” the width of v in order to investi-
gate a method for solving these interval systems we will now
assume that v is a trivial interval, i.e. the width of v is zero.
Hence v can be simultaneously viewed as an interval and real
number. Hence, in this case, dividing each of the inequalities
in System 19 by v and treating the resulting quotients xk

v as
a new real valued variable zk , we noticed that maximizing

v is equivalent to minimizing 1
v =

∑m
i=1 xi
v = ∑m

i=1 zi since∑m
i=1 xi = 1. Therefore System 17 can be converted into an

“interval” linear programming problem:
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System 20 Minimize z1 + z2 + · · · + zm subject to

z1 · g11 + z2 · g21 + · · · + zm · gm1 � 1

z1 · g12 + z2 · g22 + · · · + zm · gm2 � 1
...

z1 · g1n + z2 · g2n + · · · + zm · gmn � 1

z1, z2, . . . , zm ≥ 0

where the “1” is the interval [1, 1]. After this linear program-
ming problem is solved for the values z1, z2, . . . zm the final
values of x1, x2, . . . , xm and v can be quickly found.

To optimize her strategy the row player will attempt to find
a strategy distribution P∗ = [p∗

1, p∗
2, . . . , p∗

m] and a largest
value for v so that for any strategy distribution Q for the col-
umn player we will have P∗GQT � v for a fixed relational
membership value α, treating v as a trivial interval. In other
words, the row player must solve this system (for a fixed
relational membership value 0 < α ≤ 1).

In a similar fashion, the column player will attempt to find
a strategy distribution Q∗ = [q∗

1 , q∗
2 , . . . , q∗

n ] and a smallest
value for w ≥ 0 so that for any strategy distribution P for
the row player we will have PG(Q∗)T � w for the same
membership value α. Therefore the corresponding system
will be:

System 21 Maximize z1 + z2 + · · · + zm subject to

z1 · g11 + z2 · g12 + · · · + zn · g1n � 1

z1 · g21 + z2 · g22 + · · · + zn · g2n � 1
...

z1 · gm1 + z2 · gm2 + · · · + zn · gmn � 1

z1, z2, . . . , zn ≥ 0

When these systems are solved, the values of P∗, Q∗, v,
and w are determined.

If each interval gi j is interpreted as a trapezoidal fuzzy
number each of the two previous systems becomes a fuzzy
linear programming problem with a crisp objective function
and fuzzy constraints. Several techniques for solving such
fuzzy systems have been developed, including Fuller and
Zimmermann (1993). These techniques define the notion
of an (approximate) optimal solution in a fuzzy context.
However, it is still worthwhile to develop direct techniques
to solve interval linear programming problems, computing
exact interval solutions whenever possible. Hence we con-
tinue to address the development of such a general theory.

6 Solving interval inequalities

In order to solve the systems described in the previous section
we must determine techniques for solving interval inequali-
ties in general.

6.1 Simple inequalities

We will first consider the simplest case, namely to maximize
the real value z where z · x � y where each of x and y is
a positive interval. Clearly if both x and y are trivial inter-
vals then the maximum value of z is y

x . Now consider the
case when at least one is not trivial. As interval comparisons
require a fuzzy comparison operator, we will consider the
following restatement of this linear inequality problem:

System 22 Given 0 < α ≤ 1 and intervals x and y find the
maximum value of z where z · x � y with membership value
not less than α.

We will represent the relationship between z · x and y in
a planar context where an interval v is represented by the
ordered pair (m(v), w(v)) where m(v) is the midpoint of the
interval and w(v) is its width. Since this analysis considers
only positive intervals, i.e. m(v) < w(v), the corresponding
point in this coordinate system must lie below the diagonal
in Fig. 5 below.

As the mapping f (z) = z · x is linear, it is easy to see
that as z varies the interval z · x moves on the line from
(0, 0) through (m(x), w(x)). The dynamics of how the inter-
val z · x “moves through” the interval y has 3 general cases
that must be considered. To distinguish between these cases
consider the value of z where the midpoint of z · x equals to
the midpoint of y. This value can easily be computed to be
y+y
x+x , which will be denoted by c. One of three situations can
occur for the relationship of c · x to y: c · x ⊂ y and c · x �= y
(corresponds to the line from (0, 0) through (m(x), w(x))

in the above figure intersecting the vertical line containing
(m(y), w(y)) below that point), c · x = y (corresponds to the
points (0, 0), x and y being collinear in the above figure),
and y ⊂ c · x and c · x �= y (corresponds to the line from
(0, 0) through (m(x), w(x)) in the above figure intersecting
the vertical line containing (m(y), w(y)) above that point).

Consider the case that c ·x = y. Clearly z = c is the maxi-
mum value as c ·x ≤ y crisply, and if ε > 0 then (c+ε)x ≥ y
crisply so that (c + ε)x � y has membership value 0.

x

y

width

midpoint

Fig. 5 Graphical Representation of z · x ≺ y
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Next consider the case that y ⊂ c · x and c · x �= y. Hence
we see that cx < y and y < cx . As the membership values of
z ·x � y is non-increasing as z increases we need only find the
value of z such that the membership value of z ·x � y is equal

to α. Hence we to solve the equation
y−zx

(y−zx)+(zx−y)
= α for

z. Doing so one finds that z = y+α(y−y)

x+α(x−x)
. Therefore this is

the largest value of z that satisfies the initial inequality with
membership not less than α. Notice that in the special case of
α = 1 we get the optimal value z = y/x which corresponds
to the value where the left endpoints of z · x and y are equal,
which is where the crisp comparisons become fuzzy.

Considering the last case of c · x ⊂ y and c · x �= y, we
once again must find the value of z so that the membership
value of z · x � y. But as y properly contains z · x once the
left endpoint of the two intervals agree, the portion of the
interval y to the right of z · x must be considered. Hence in
a symmetrical fashion from the previous case the equation

y−zx
(zx−y)+(y−zx)

= α must be solved for z. Doing so gener-

ates the maximum value for z to be the expression
y−α(y−y)

x−α(x−x)
.

Therefore we arrive at the following theorem.

Theorem 23 If each of x and y is a positive interval and
0 < α ≤ 1 then there is a maximum value of the real valued
variable z such that z · x � y with fuzzy membership value
not less than α.

Example 24 Solve the fuzzy linear programming problem
for α = 0.9:

maximize z subject to

z[1, 2] � [3, 5]
z ≥ 0

The value of z so that the midpoints are equal is c =
3+5
1+2 = 8

3 . In this case [3, 5] is a proper subset of c[1, 2] =
[8/3, 16/3]. So the maximum value of z that satisfies the
inequality with the stated membership cut value is
z = 3+0.9(2)

1+0.9(1)
= 4.8

1.9 = 2.526315 · · · .

6.2 Extending to more general cases

Let each of z1 and z2 be a real-valued variable, each of x1,
x2, and y be a positive interval, and 0 < α ≤ 1. Consider the
interval inequality z1 ·x1 +z2 ·x2 ≺ y and the objective func-
tion z1 + z2. Let the interval binary operator � be defined as
x−y = [x−y, x−y]. If z1 is held constant between 0 and the
corresponding maximum value of c that satisfies c · x1 � y
(setting z2 = 0 and solving the resulting simpler case using
the fuzzy membership value α), then the maximum value of
z2 that satisfies the inequality z2 ·x2 � (y� z1 ·x1) using the
membership value α can be determined by the above algo-
rithm. The resulting value for z2, in each of the three cases,
is clearly a function of z1, call it z2max(z1)

. Hence the original

width

midpoint

[2, 3]

[4,8]

[1,2]

Fig. 6 x[1, 2] + y[2, 3] ≺ [4, 8]

objective function can be rewritten as z1 + z2max(z1)
, which

can be seen to be a continuous function of z1. Therefore the
objective function must obtain a maximum value on the inter-
val [0, c] which then can be used to determine the solution
to the initial interval linear programming problem.

The following is a simple example that illustrates this
approach.

Example 25 Solve the fuzzy linear programming problem
for α = 0.9:

maximize x + y subject to

x[1, 2] + y[2, 3] ≺ [4, 8]
z ≥ 0

Solution We first consider the inequality x[1, 2] ≺ [4, 8].
Note that the two intervals are collinear in the interval
midpoint-radius plane, so setting the two midpoints equal we
get c = 4. Therefore we must consider the resulting inequal-
ity y[2, 3] ≺ ([4, 8] � x[1, 2]) or y[2, 3] ≺ [4 − x, 8 − 2x]
for each x in [0, 4]. In the interval midpoint-radius plane the
interval [2, 3] lies below the line containing [1, 2] and [4, 8]
and hence the line containing (0, 0) and the interval [2, 3]
intersects the vertical line containing [4 − x, 8 − 2x] below
that point. See Fig. 6.

Therefore, for each value of x in [0, 4] the corresponding
value of y is

y = (8 − 2x) − 0.9(8 − 2x − (4 − x))

3 − 0.9(3 − 2)
v

= (2 − 0.9)(4 − x)

3 − 0.9
= 1.1(4 − x)

2.1
.

We must optimize the objective function x + y = x +
1.1(4−x)

2.1 on the interval [0, 4]. The derivative of this function
is 1 − 1.1

2.1 which is positive. Therefore the maximum value
of the objective function occurs when x = 4 and y = 0.

7 Conclusion

A model for crisply and fuzzily determined interval valued
Nash games has been developed using an appropriate fuzzy
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interval comparison operator. This model parallels the clas-
sical game context in a closely analogous way. Also, the the-
ory of optimal mixed strategies for interval valued games
has been introduced, once again mimicking the classical
model of converting the game into a linear programming
problem.

In order to use interval linear programming techniques
to find optimal mixed strategies in interval games, some
assumptions must be made relative to the expected value
interval v. Assuming that this interval is trivial generates cor-
responding linear programming problems that can be quickly
solved. However, as the expected value of the game corre-
sponds to a linear combination of the entries in the game
matrix, this assumption appears to be unrealistic. We are
continuing the work of extending the context to expected
value intervals of positive diameter.
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