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Abstract As a commonly used technique in data
preprocessing, feature selection selects a subset of informa-
tive attributes or variables to build models describing data. By
removing redundant and irrelevant or noise features, feature
selection can improve the predictive accuracy and the com-
prehensibility of the predictors or classifiers. Many feature
selection algorithms with different selection criteria has been
introduced by researchers. However, it is discovered that no
single criterion is best for all applications. In this paper, we
propose a framework based on a genetic algorithm (GA)
for feature subset selection that combines various existing
feature selection methods. The advantages of this approach
include the ability to accommodate multiple feature selec-
tion criteria and find small subsets of features that perform
well for a particular inductive learning algorithm of inter-
est to build the classifier. We conducted experiments using
three data sets and three existing feature selection methods.
The experimental results demonstrate that our approach is a
robust and effective approach to find subsets of features with
higher classification accuracy and/or smaller size compared
to each individual feature selection algorithm.
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1 Introduction

Recent technological developments such as the Internet,
hyperspectral imagery, and microarrays have facilitated the
emergence of enormous amounts of multivariate data in vari-
ous applications such as gene expression array analysis, pro-
teomics, information retrieval, and text classification. These
applications that involve hundreds to thousands of attributes
or variables introduce a challenge to pattern classification or
prediction, which makes feature selection critical (Liu et al.
2002; Guyon et al. 2002; Guyon and Elisseeff 2003; Liu et al.
2005a).

Feature selection techniques study how to identify and
select informative (discriminative) features for building
models which can interpret data better. Feature selection can
reduce the computational cost by reducing dimensionality of
data, improve the prediction performance and the compre-
hensibility of the models by eliminating redundant and irrel-
evant (probable noise) features. Feature selection is different
from feature transformation (or feature extraction) which cre-
ates new features by combining the original features. On the
other hand, feature selection maintains the original mean-
ings of the selected features, which is desirable in some
domains.

Many feature selection algorithms have been proposed
in the literature. All these methods search for optimal or
near optimal subsets of features that optimize a given cri-
terion. Feature selection algorithms can be divided into two
categories based on whether the selection criterion depends
on the learning algorithm used to construct the classifier or
predictor. Filter methods utilize the intrinsic properties of
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the data to select subsets of features as a preprocessing step,
independently of the chosen classifier. Features are assessed
by their relevance or discriminant powers with regard to
targeted classes. On the other hand, wrapper methods uti-
lize the learning machine of interest to assess subsets of
features according to their predictive or classification per-
formance. Wrappers can often find small feature subset with
high accuracy because the features match well with the learn-
ing methods. However, wrappers typically require extensive
computation. It is argued that filters have better generaliza-
tion properties since it is independent of any specific learning
method. Among the proposed feature selection algorithms,
feature ranking approaches that score or rank features by cer-
tain ranking criterion and use rankings of features as the base
of selection mechanism are particularly attractive because
of their simplicity, scalability, and good empirical success.
Computationally, feature ranking is efficient since it requires
only the computation of n scores and sorting the scores.
Statistically, it is robust against overfitting because it intro-
duces bias but it may have considerably less variance (Guyon
and Elisseeff 2003; Hastie et al. 2001). Based on the ranks
of features, subsets of significant features can be selected to
build a predictor or classifier.

Different researchers have introduced varying feature
selection criteria. Some feature selection methods use crite-
ria based on statistics, such as χ2-statistics (Liu and Setiono
1995), T -Statistics (Liu et al. 2002), F-Statistics (Peng et al.
2005), MIT correlation (also known as signal-to-noise statis-
tic) Golub (1999), Fisher criterion (Furey et al. 2000), some
use information-theoretic criteria including information gain
(Liu 2004), mutual information (Guyon and Elisseeff 2003;
Peng et al. 2005), and entropy-based measure (Dash and
Liu 1999; Liu et al. 2005b). Some other approaches utilize
machine learning approaches, such as support vector
machines (SVMs) (Guyon et al. 2002; Weston et al. 2000;
Mao et al. 2005) decision trees (Breiman and Forest), and
evolutionary algorithm (Yang and Honavar 1998; Jirapech-
Umpai and Aitken 2005) for feature ranking or selection.

Since these criteria are very diverse and motivated by
various theoretic arguments, they may produce substantially
different outcomes when applied to same data set. It has been
pointed out that various selection criteria are biased with
respect to dimensionality and no single criterion is best for
all applications (Dy and Brodley 2004; Chuang et al. 2004).
Such phenomena are also supported in our experiments. As
a consequence, the performance of the classifiers built upon
these feature selection methods varies as well. This discor-
dance caused by various selection criteria makes the inter-
pretation of the data difficult. Moreover, it makes us hard to
decide which method is best fit for new unknown data sets.
Hence, exploring ways to combine multiple criteria or de-
velop multi-objective criteria seems a reasonable approach
to study.

Hsu et al. (2002) studied the behavior and relationship
between rank combination and score combination by intro-
ducing a concept called rank/score graph. They showed that
under certain condition rank combination outperforms score
combination. Chuang et al. (2004) applied rank combination
to combine different feature selection methods. The ranks of
features are combined by using a weighted sum (or average)
from each of the component rankings obtained from individ-
ual feature selection method. It is showed that the combina-
tion approach performs better than each individual feature
selection method in many cases.

In this paper, we propose a framework based on a
genetic algorithm (GA) for feature subset selection that com-
bines various existing feature selection methods. The goal is
to effectively utilize useful information from different feature
selection methods to select better feature subsets with smaller
size and/or higher classification performance in compari-
son with the existing methods. Multiple selection criteria are
combined by a genetic algorithm to improve feature subset
selection. The advantage of accommodating multiple selec-
tion criteria gives us the ability of finding such better feature
subsets. Our approach is also independent of the inductive
learning algorithm used to build the classifier. To evaluate our
method, we conducted experiments using three data sets and
three existing feature selection algorithms, that is, entropy-
based (Dash and Liu 1999), T -statistics, and SVM-recur-
sive feature elimination (RFE) (Guyon et al. 2002). These
existing algorithms are used to provide candidate features
for GA to select feature subsets. Our approach is applied
on two microarray data sets [colon cancer data (Alon et al.
1999) and prostate cancer data (Singh 2002) and ionosphere
database [28]. Experimental results show that our approach
is robust and effective in finding small subsets of informa-
tive features with higher classification accuracy and/or
smaller size compared to each individual feature selection
algorithm.

The rest of the paper is organized as follows. Section 2
describes our framework for hybrid feature selection. Sup-
port Vector Machine which is used as the classifier in our
experiments is briefly introduced in Sect. 3. Section 4
describes three existing feature selection algorithms used in
experiments. Section 5 compares our method with the three
feature selection algorithms with experimental results. Con-
clusions and discussions are presented in Sect. 6.

2 Our approach

The idea of our hybrid approach (shown in Fig. 1.) is to
absorb valuable outcomes from multiple feature selection
algorithms to find subsets of informative features that have
smaller size and/or better classification performance than
the individual algorithms. A genetic algorithm (GA) in the
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framework accomplishes the fusion of multiple feature
selection criteria. We limit ourselves to supervised feature
selection in this paper.

In the first stage, several existing feature selection meth-
ods are applied on a data set. Then the feature subsets pro-
duced by these methods are fed into the feature pool that
is used by the GA in the second stage. Then the GA will
try to search an optimal or near optimal feature subset from
this feature pool. Genetic algorithms can search a pool of
hypotheses (called population) containing complex interact-
ing parts. Each individual (hypothesis) of the current popu-
lation is evaluated according to a specified fitness function
(associated with an induction algorithm in here). A new popu-
lation is generated by applying genetic operations (selection,
crossover, and mutation). Our genetic algorithm is designed
to maximize classification accuracy and minimize the size of
feature subsets.

2.1 Feature pool

The feature pool is a collection of candidate features to be
selected by the genetic algorithm to find an optimal or near
optimal feature subset. Instead of using all features from the
original data, we take sets of features selected by multiple
feature selection algorithms to form the pool. Thus the fea-
ture pool contains valuable outcomes from different selection
criteria. Some feature selection algorithms can automatically
generate a subset of important features, while others produce
a mere ranking. In the latter case, we need to determine a
cut-off point for a ranked list of features to obtain a fea-
ture subset. Given a ranking of features, it is unclear how to
threshold the ranking to select only important variables and
to exclude those that is pure noise. One common practice is to

simply select the top-ranked features—say, top 20. A deficiency
of this simple approach is that it leads to the selection of a
redundant subset. Several recent studies have addressed such
redundancy (Peng et al. 2005; Yu and Liu 2003). Any combi-
nation or number of feature selection algorithms can be used
to generate the feature pool for input to the GA.

2.2 Representation of hypotheses

Each individual represents a feature subset. The individuals
are encoded by n-bit binary vectors. The bit with value 1 in
a vector represents the corresponding feature being selected,
while the bit with value 0 means the opposite.

2.3 Fitness function

The genetic algorithm is designed to optimize two objec-
tives: maximize classification accuracy of the feature subset
and minimize the number of features selected. To do so, we
define the following fitness function:

F = w ∗ c(x) + (1 − w) ∗ (1/s(x))

where x is a feature vector representing a feature subset
selected and w is a parameter between 0 and 1. The function
is composed of two parts. The first part is a weighted classi-
fication accuracy c(x) from the classifier and the second part
is weighted size s(x) of the feature subset represented by x .
For a given w, the fitness of an individual x is increased as
the classification accuracy of the x increases and decreased
as the size of x increases. Increasing the value of w means
that we give more priority on the classification accuracy over
the size. On the other hand, reducing the value of w will
give more penalties on the size of x . By adjusting w, we can
achieve a tradeoff between the accuracy and the size of the
feature subset obtained.

2.4 Induction algorithm

The genetic algorithm is independent of the inductive learn-
ing algorithm used by the classifier. Different induction algo-
rithms, such as Naïve Bayes, artificial neural network, and
decision trees can be flexibly incorporated into our method.
In this paper, we use SVM classifier (Burges 1998) in the
experiments.

2.5 Genetic operators

(1) Selection: Roulette wheel selection is used to probabi-
listically select individuals from a population for later
breeding. The probability of selecting individual hi is
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determined by:

P(hi ) = F(hi )
∑p

i=1 F(hi )

where F(hi ) is the fitness value of hi . The probabil-
ity that an individual will be selected is proportional to
its own fitness and is inversely proportional to the fit-
ness of the other competing hypothesis in the current
population.

(2) Crossover: we use single-point crossover operator. The
cross-over point i is chosen at random so that the first
i bits are contributed by one parent and the remaining
bits by the second parent.

(3) Mutation: each individual has a probability pm to mu-
tate. We randomly choose a number of n bits to be
flipped in every mutation stage.

3 Support vector machines

Support vector machines (SVMs) is a new generation learn-
ing system based on recent advances in statistical learning
theory (Burges 1998; Vapnik 1998). SVMs create a deci-
sion boundary (the maximal-margin separating hyperplane)
between the positive group and negative group and select
the most relevant examples involved in the decision process
(called support vectors). If the data is linearly separable, the
construction of the hyperplane is always possible. Otherwise,
SVMs can use kernels which nonlinearly map into a higher
dimensional feature space so that a separating hyperplane
can be found. We adopt linear SVM in this work:

K (xi , x j ) =< xi , x j > (1)

where xi and x j are two data instances in a d-dimensional
Euclidian space.

For a linear kernel SVM, the margin width can be calcu-
lated as the following:

w =
Ns∑

i=1

αi yi xi (2)

margin width = 2/‖w‖ (3)

where Ns is the number of support vectors, which are defined
to be the training samples with 0 < αi ≤ C . C is the penalty
parameter of the error term.

4 Feature selection methods

To evaluate our method, we adopt three feature selection
algorithms in the experiments, two filters (entropy-based,
T -statistics) and one wrapper (SVM–RFE) to form the

feature pool. All of the three methods generate a mere rank-
ing of features. We then pick a number of top-ranked fea-
tures from each ranking and input them into the feature pool.
The performances of the three algorithms are described in
Sect. 4.

4.1 Entropy-based feature ranking

The entropy-based method (Dash and Liu 1999) is based
on the fact that entropy is lower for orderly configurations
and higher for disorderly configurations. From this point of
view, it is assumed that removing an irrelevant feature would
reduce the entropy more than that for a relevant feature. The
algorithm ranks the features in descending order of relevance
by finding the descending order of the entropies after remov-
ing each feature one at a time. The entropy measure of a data
set of N instances is calculated as the following:

E = −
N∑

i=1

N∑

j=1

(si j × log si j + (1 − si j ) × log(1 − si j ))

(4)

Si j = e−α×Di j (5)

α = − ln 0.5

D
(6)

where Si j is the similarity measure based on distance
between two instances xi and x j with all numeric features
(similarity between two instances with nomial features is
measured using Hamming distance) and α is a parameter.
Di j is the Euclidean distance between the two instances. D
is the average distance among the instances. This method can
be used for unsupervised data since no class information is
needed.

4.2 T -statistics

T -statistics is a classical feature selection approach (Liu et al.
2002) which has proven effective. It assesses whether the
means of two groups are statistically different from each
other. Each sample is labeled with 1,−1. For each feature f j ,

the mean µ1
j (resp. µ−1

j ) and standard deviation δ1
j (resp. δ−1

j )
are calculated using only the samples labeled 1 (resp. − 1).
Then a score T ( f j ) can be obtained by Eq. (7).

T ( f j ) = |µ1
j − µ−1

j |
√

(δ1
j )

2

n1
+ (δ−1

j )2

n−1

(7)

Where n1 (resp. n−1) is the number of samples labeled as
1 (resp. −1). When making a selection, those features with
the highest scores are considered as the most discriminatory
features.
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4.3 SVM–RFE

Guyon et al. (2002) proposed a backward feature elimina-
tion algorithm by removing one “worst” gene (i.e., the one
that changed the objective or cost function J least after being
removed) at one time.

J = |w|2/2 (8)

in which w is calculated by Eq. (2), because only linear SVM
is adopted. The change of J caused by removing the i th fea-
ture is approximated by optimal brain damage (OBD) algo-
rithm (LeCun et al. 1990):

�J (i) = ∂ J

∂wi
�wi + ∂2 J

∂w2
i

(�wi )
2 (9)

At the optimum of J , the first order is neglected and the
second order becomes

�J (i) = (�wi )
2 (10)

Because removing the i th feature means �wi = wi , w
2
i is

taken as the ranking criterion. The feature with the smallest
w2

i is removed due to its smallest effect on classification. The
iterative procedure of RFE is as follows:

(1) train SVM with the training data
(2) compute the ranking criterion for all features
(3) remove the feature with smallest ranking criterion

5 Experiments

Microarray technology is having a significant impact on
molecular biology. By allowing the monitoring of expres-
sion levels of thousands of genes (features) in cells simul-
taneously, it leads to a more complete understanding of the
molecular variations among tumors and hence to a finer and
more reliable classification. Many fields including drug dis-
covery and toxicological research will certainly benefit from
the use of DNA microarray technology.

Two practical realities constrain the analysis of microarray
data (Somorjai et al. 2003). One is the “curse of dimension-
ality”: the number of features characterizing these data is in
the thousands or tens of thousands. The other is the “curse
of dataset sparsity”: the number of samples is comparatively
limited. These two curses are believed to significantly deteri-
orate the performance of a classifier. Therefore, it is important
to be able to remove redundant and irrelevant genes and find
a subset of discriminative genes for accurate diagnosis of
disease. In this work, we did the first two experiments using
two microarray data sets. The third experiment using a radar
database is in a different application domain.

Cross-validation procedure is commonly used to evaluate
the performance of a classifier. In k-fold cross-validation, the

data is divided into k subsets of (approximately) equal size.
We train the classifier k times, each time leaving out one of
the subsets from training, but using only the omitted subset
to compute the classification accuracy. Leave-one-out (LOO)
cross-validation (CV) is a special case of k-fold cross-vali-
dation where k equals the sample size. Leave-one-out cross-
validation (LOOCV) is used in our first experiment. With a
test data set available in Experiment 2, we use fivefold cross-
validation to obtain the training accuracy.

Our focus is on using a GA to improve classification accu-
racy and minimize the size of feature subsets in compari-
son with each individual feature selection algorithm, not on
comparing the effects of different induction algorithms (clas-
sifiers) on feature selection. Thus we only use SVM with
linear kernel as the classifier in the experiments. However, it
is flexible to incorporate different induction algorithms into
our hybrid approach. Moreover, since we are not focusing
on optimizing the performance of SVMs, no efforts has been
made to find the optimal parameters for SVM. In each exper-
iment, every feature subset is classified using the same linear
SVM with same parameters. To save time, the population
size and number of generations used in the experiments by
our genetic algorithm are relatively small. It is possible to
achieve better results if more iterations or larger population
size are allowed. All experiments are implemented in a PC
with Pentium 4 (2.4 GHz) and 512M RAM. All algorithms
are coded in C++ and Matlab R14.

5.1 Experiment 1

Colon cancer data set (Alon et al. 1999) contains 62 tissues
(samples) among which there are 40 tumor tissues and 22
normal tissues collected from colon-cancer patients. Gene
expression information of colon cancer on more than 6,500
genes were measured using oligonucleotide microarray and
2,000 of them with highest minimum intensity were extracted
to form a matrix of 62 tissues × 2,000 gene expression values.
For the sake of simplicity, we identify the genes (features)
with their column indexes in the matrix.

First, the three feature selection methods (Entropy-based,
T -statistics, and SVM-RFE) are applied to the data set and
three rankings of features are obtained. Next, we pick a num-
ber of top-ranked features (e.g., top-2 features, top-4 features,
etc.) to get a few feature subsets. Then, SVM classifies the
data set using these feature subsets. The classification accu-
racy of the feature subsets selected from the three rankings
is presented in Table 1.

We can see that SVM–RFE provides the highest accuracy
of the three except in the first case with a subset of top-2 fea-
tures. With a subset of top-16 features, SVM–RFE achieves
highest accuracy of 98.3% while the accuracies of the other
two are 64.5 and 88.7%, respectively. In general, T -statistics
gives acceptable performance. Entropy-based method purely
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Table 1 LOO Accuracy of entropy-based, T -statistic and SVM–RFE
on colon cancer data

Top features Entropy-based (%) T -statistic(%) SVM–RFE (%)

2 64.5 79.0 75.9

4 64.5 88.7 89.7

8 64.5 88.7 96.6

16 64.5 88.7 98.3

32 64.5 88.7 96.6

64 66.1 88.7 94.8

128 74.2 90.3 93.1

256 80.7 88.7 91.4

512 85.5 83.9 86.2

1024 83.9 80.7 84.5

2000 83.9 83.9 79.3

scores features based on the entropy value of the system with-
out considering the class information, which may explain its
worst classification performance of the three. However, it can
be used for unsupervised data and may be less prone to over-
fitting. SVM–RFE assesses features by tightly binding with
the classifier (SVM). It ranks features with the magnitude of
the weights of a linear discriminant classifier. We think that
this may account for the good performance of SVM–RFE
in the experiments. In our implementation, SVM–RFE takes
much more time than the others to rank the features because
it needs to train the SVM to do the ranking.

Due to the consideration of the cost of performing the
necessary clinical test and analysis, a small size of infor-
mative gene subset (e.g., no more than 20 genes) is usually
preferred for data analysis for a given accuracy. The top-20
genes ranked by the three algorithms on colon cancer data
set are presented in Table 2. It shows only two genes with
column index 14 and 1,423 are shared by T -statistics and
SVM–RFE and entropy-based has no common feature with
others in top-20 features. Besides the top-20 features, we
notice that the ranks of other features are also very different
in the three algorithms.

After the three rankings of features are obtained, we
choose a number of top-ranked genes from the rankings and
input them to the feature pool used by the GA. The classifica-
tion performances of the feature selection algorithms and the

domain knowledge can affect how the feature pool is formed.
The genetic algorithm uses the following parameter settings
in this experiment:

• Population size: 20–30
• Number of generations: 10
• Probability of crossover: 1
• Probability of mutation: 0.001

Table 3 shows the feature subsets selected by the GA and
the classification accuracy of the subsets on colon cancer
data. We test several feature pools (no more than 20 fea-
tures in total) with different values of parameter w in the
fitness function. Each feature pool contains a different num-
ber of top-ranked genes from the three methods. The results
demonstrate that the feature subsets selected by our GA can
accomplish the two goals: either achieve higher accuracy
with smaller size or equal accuracy with smaller size com-
pared to the feature subsets of the same size level selected by
the other three.

As we can see from the table, reducing w does affect the
size of feature subsets selected. Smaller values of w impose
more penalties on the size of the subsets being selected.
Therefore using smaller w tends to select smaller subsets.
In general, reducing w reduces the accuracy as well. How-
ever, there are a few exceptions in Table 3. For example,
in the (4, 8, 8) feature pool, the GA chooses a subset of 9
features reaching 100% accuracy with w = 0.75. This sub-
set is smaller than the one of 12 features with w = 0.85,
but their accuracies are the same (100%). In addition, the
subset obtains higher accuracy than the one of 10 features
with w = 0.8. These indicate that there may exist redun-
dancy, interaction and correlations between these features so
that the feature subset with smaller size can achieve higher
accuracy.

5.2 Experiment 2

We further test the three feature selection methods and our
GA on prostate cancer data (Singh 2002). The training set
contains 52 prostate tumor samples and 50 non-tumor (nor-
mal) prostate samples with 12,600 genes. An independent
set of testing samples is also available, which is from a

Table 2 Top-20 Features from entropy-based, T -statistics, and SVM–RFE on colon cancer data

Feature selection algorithms Top-20 Features

Entropy-based 169, 1451, 1430, 1538, 375, 445, 1277, 1660, 603, 761, 1055, 1150, 1697, 609, 1170, 825, 1590, 1910, 803, 1264

T -Statistics 493, 1423, 249, 377, 765, 245, 267, 66, 14, 822, 1772, 625, 897, 137, 1674, 111, 1635, 513, 1892, 286

SVM–RFE 175, 70, 14, 15, 1423, 1378, 115, 164, 1791, 110, 1024, 35, 206, 38, 3, 1976, 415, 65, 16, 1325

The numbers in bold are the common gene(s)/feature(s) selected by two methods
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Table 3 LOO Accuracy of GA on colon cancer data

w Feature pool∗ GA LOO Accuracy (%)

0.85 2, 4, 4 6 (14, 15, 70, 175, 249, 493) 96.6

4, 4, 4 7 (14, 15, 70, 175, 249, 377, 493) 96.6

4, 8, 8 12 (14, 15, 70, 164, 175, 245, 267, 377, 493, 1378, 1423, 1451) 100

0.8 2, 4, 4 3 (70, 175, 493) 91.9

4, 4, 4 4 (14, 70, 493, 1430) 93.5

4, 8, 8 10 (14, 15, 66, 70, 175, 245, 493, 1378, 1423, 1430) 98.4

0.75 2, 4, 4 2 (377, 1423) 88.7

4, 4, 4 3 (14, 377, 493) 91.9

4, 8, 8 9 (14, 15, 70, 175, 267, 493, 1430, 1451, 1538) 100

0.7 2, 4, 4 1 (377) 83.9

4, 4, 4 2 (249, 377) 91.9

4, 8, 8 3 (70, 267, 1451) 90.3

∗ The three numbers in a feature pool represent the number of top features selected from entropy-based, T -Statistics and SVM–RFE, respectively

Table 4 Training and testing accuracy of entropy-based, T -Statistic and SVM–RFE on prostate cancer data

Top features Training accuracy (%) Testing accuracy (%)

Entropy-based T -Statistics SVM–RFE Entropy-based T -Statistics SVM–RFE

2 59.8 76.5 84.3 73.5 97.1 73.5

4 59.8 78.4 86.3 73.5 97.1 70.6

8 61.8 86.3 96.1 73.5 88.2 73.5

16 62.8 83.3 100 73.5 88.2 85.3

32 63.7 89.2 100 73.5 88.2 94.1

64 64.7 90.2 100 73.5 76.5 91.2

128 63.7 91.2 99.0 73.5 91.2 91.2

256 63.7 93.1 95.1 73.5 82.4 91.2

512 67.7 93.1 95.1 76.5 82.4 91.2

1024 68.6 91.2 94.1 73.5 85.3 94.1

2048 71.6 91.2 93.1 73.5 88.2 94.1

4096 76.5 89.2 92.2 82.4 94.1 94.1

8192 87.3 90.2 91.2 97.1 97.1 94.1

12600 89.2 89.2 91.2 97.1 97.1 94.1

different experiment and has a nearly tenfold difference in
overall microarray intensity from the training data. The test-
ing set contains 34 samples (25 tumor and 9 normal samples).

Table 4 demonstrates the training accuracy and testing
accuracy from the three algorithms. SVM–RFE performs bet-
ter in terms of higher training accuracy. The highest testing
accuracy achieved by SVM–RFE is 94.1%, which is lower
that the highest accuracy (97.1%) obtained by the other two.
Again, we compare the top-20 features ranked from the three
methods in Table 5 and find out that no genes are shared by the
three. There are only two common genes (205 and 12,153)
shared by T -Statistics and SVM–RFE.

Since this data set is relatively large with 12,600 features,
we run the GA with smaller population size and fewer gen-
erations to reduce time consumption:

• Population size: 10
• Number of generations: 5
• Probability of crossover: 1
• Probability of mutation: 0.001

Table 6 presents the results of applying the GA on the pros-
tate cancer data. From all the cases in the table, the GA obtains
94.1% testing accuracy, which is the highest one that can be
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Table 5 Top-20 features from entropy-based, T -statistics, and SVM–RFE on prostate cancer data

Feature selection algorithms Top-20 features

Entropy-based 4234, 1058, 2789, 2474, 575, 4502, 6472, 12354, 5041, 3474, 727, 9994, 1585, 6365, 7249, 5823, 8052, 11401,

11926, 9926

T -Statistics 6185, 10138, 3879, 7520, 4365, 9050, 205, 5654, 3649, 12153, 3794, 9172, 9850, 8136, 7768, 5462, 12148, 9034,

4833, 8965

SVM–RFE 10234, 12153, 8594, 9728, 11730, 205, 11091, 10484, 12495, 49, 12505, 10694, 1674, 7079, 2515, 11942, 8058,

8658, 8603, 7826

The numbers in bold are the common gene(s)/feature(s) selected by two methods

Table 6 Training and testing accuracy of GA on prostate cancer data

w Feature pool∗ GA Training accuracy (%) Testing accuracy (%)

0.85 2, 4, 4 5 (4234, 6185, 7520, 8594, 10138) 93.1 94.1

4, 4, 4 7 (2474, 2789, 4234, 6185, 7520, 8594, 10234) 98.0 94.1

4, 8, 8 10 (205, 3879, 4234, 5654, 6185, 7520, 10138, 10234, 11091, 11730) 99.0 94.1

0.8 2, 4, 4 4 (3879, 6185, 9728, 10234) 92.2 94.1

4, 4, 4 6 (2474, 2789, 4234, 6185, 7520, 10234) 98.0 94.1

4, 8, 8 8 (205, 8594, 9728, 10234, 10484, 11091, 11730, 12153) 96.1 94.1

0.75 2, 4, 4 3 (6185, 10234, 12153) 89.2 94.1

4, 4, 4 3 (3879, 10234, 12153) 91.2 94.1

4, 8, 8 4 (205, 3879, 9728, 10234) 91.2 94.1

0.7 2, 4, 4 1 (6185) 85.3 94.1

4, 4, 4 2 (3879, 10234) 89.2 94.1

4, 8, 8 3 (205, 8594, 10138) 91.2 94.1

∗ The three numbers in a feature pool represent the number of top features selected from Entropy-based, T -statistics and SVM–RFE, respectively

reached by SVM–RFE. This testing accuracy is lower than
the one obtained by the two feature subsets (with top-2 and
top-4 features) selected by T -statistics. However the train-
ing accuracies of these two feature subsets from T -statistics
are very low. As to entropy-based method, although it can
also get 97.1% testing accuracy, it requires too many fea-
tures. By reducing the value of parameter w associated with
a feature pool, we can get a feature subset with smaller size.
From Table 4, we can see that for a given feature pool, the
accuracy is reduced as well in most cases when a smaller
w is used. All the feature subsets selected by the GA from
the feature pools achieve higher training accuracy than those
subsets with equal or the next larger size from all the three
methods.

5.3 Experiment 3

Ionosphere database [28] contains radar data collected by a
system in Goose Bay, Labrador. The targets were free elec-
trons in the ionosphere. “Good” radar returns are those show-
ing evidence of some type of structure in the ionosphere.
“Bad” returns are those that do not. Received signals were
processed using an autocorrelation function whose arguments

are the time of a pulse and the pulse number. There were 17
pulse numbers for the Goose Bay system. Instances in this
database are described by 2 attributes per pulse number, cor-
responding to the complex values returned by the function
resulting from the complex electromagnetic signal. There are
351 instances with 34 attributes in the database. This is a bi-
nary classification task to identify “good” radar and “bad”
radar.

Since the number of instances is relatively large, LOO
cross-validation will take a lot of time. Therefore, we use
fivefold cross-validation on this data set. The classification
accuracies are shown in Table 7. As we have mentioned be-
fore, we only use linear SVM to classify the data and did not
make effort to optimize the parameters of SVM. So the clas-
sification performances on this data set seem not very good in
general. A SVM with nonlinear kernels may achieve better
accuracies in this case. However, by using the same linear
SVM, we can still get a fair comparison of the three algo-
rithms. SVM–RFE provides the best performance in most
cases. It can achieve the highest accuracy among the three by
90.31% with a feature subset of top-8 features. T -Statistics
can reach its highest accuracy (87.18%) with only top-4
features.
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Table 7 Fivefold CV accuracy of entropy-based, T -Statistic and
SVM–RFE on ionosphere data

Top features Entropy-based (%) T -statistics (%) SVM–RFE (%)

2 74.93 82.05 74.93

4 76.07 87.18 87.18

8 83.48 85.47 90.31

16 83.48 87.18 90.31

32 86.61 86.61 86.89

34 86.04 86.04 86.04

Table 8 Top-20 features from entropy-based, T -statistics, and
SVM–RFE on ionosphere data

Feature selection Top-20 features
algorithms

Entropy-based 1, 15, 13, 19, 21, 17, 11, 10, 14, 23, 4, 12, 2, 6, 9,
7, 28, 25, 20, 5

T -statistics 3, 5, 1, 7, 9, 31, 33, 29, 21, 8, 15, 23, 14, 25, 13,
11, 12, 6, 16, 4

SVM-RFE 1, 8, 9, 23, 34, 6, 27, 31, 30, 19, 16, 22, 15, 3, 11,
5, 18, 25, 20, 7

The numbers in bold are the common gene(s)/feature(s) selected by
three methods

Although the number of features in this data set is very
small compared to the microarray data sets above, we find
out that the rankings of features are still various as shown in
Table 8. Here are the implementation details of the GA:

• Population size: 10
• Number of generations: 5
• Probability of crossover: 1
• Probability of mutation: 0.001

Table 9 shows the results of our approach on the data set.
It suggests the same trend, that is, a smaller w reduces the
size of feature subsets selected, which is demonstrated in the
previous two experiments as well. In the (4, 8, 8) feature pool,
the GA selects a subset of 8 features with 90.31%, which is
the highest accuracy that the three methods can achieve. With
the equal size of feature subset, SVM–RFE and T -Statistics
can only achieve 90.03 and 85.47%, respectively. Besides,
our approach finds several feature subsets of size 2, 3, and 4
with higher accuracies compared to the ones with equal or
larger size selected by the three methods.

6 Discussions and conclusions

Based on different selection criteria and theoretic arguments,
various feature selection methods often provide substantially
different outcomes when they are applied to same data set,

Table 9 Fivefold CV accuracy of GA on ionosphere data

w Feature pool∗ GA Accuracy (%)

0.9 2, 4, 4 6 (1, 5, 8, 9, 15, 23) 88.60

4, 4, 4 5 (1, 7, 8, 9, 23) 88.32

4, 8, 8 8 (1, 3, 8, 9, 23, 27, 31, 34) 90.31

0.85 2, 4, 4 4 (1, 5, 8, 9) 87.75

4, 4, 4 4 (1, 7, 8, 9) 88.32

4, 8, 8 8 (1, 6, 8, 9, 23, 27, 31, 34) 90.03

0.8 2, 4, 4 3 (1, 7, 8) 88.32

4, 4, 4 3 (1, 7, 8) 88.32

4, 8, 8 5 (1, 5, 7, 29, 31) 88.60

0.75 2, 4, 4 2 (1, 5) 88.03

4, 4, 4 2 (1, 5) 88.03

4, 8, 8 4 (1, 5, 15, 34) 87.75

∗ The three numbers in a feature pool represent the number of top
features selected from entropy-based, T-Statistics and SVM-RFE,
respectively

which is supported in our experiments. In the experiments
above, the rankings of features produced by the three fea-
ture selection methods are very different for the same data
sets. This inconsistency makes it difficult to interpret the data.
Although SVM–RFE shows better classification performance
in the experiments, it may be prone to overfitting because it
assesses features by tightly binding with the classifier (SVM).
On the other hand, T -Statistics, a filter method independent
of any classifier, selects features on the basis of their rel-
evance or discriminant powers with regard to the targeted
class. It may be less prone to overfitting and gives better gen-
eralization performance. Various selection criteria may be
biased in different aspects, which cause difficulty in deter-
mining which method is best fit for new unknown data sets.

In this work, we propose a combinatorial approach that
accommodates multiple selection criteria by a genetic
algorithm. The experimental results show that our method
is capable of finding feature subsets with better classification
performance and/or smaller size than each single individual
feature selection algorithm does. Besides this, the proposed
approach can find some important features that are underrated
by some individual algorithms. All of these suggest that our
approach might be a viable and feasible approach for fea-
ture selection. Additional experiments with our approach are
currently in progress.

The experimental results in this paper also demonstrate
that selecting a number of top-ranked features does not
necessarily obtain an optimal feature subset. A common
drawback among feature ranking algorithms is that they
implicitly assume that features are orthogonal to each other
and assess features in isolation. Features are ranked on the
basis of their individual predictive capabilities. Some features
with highest individual performance are selected. Thus they

123



120 F. Tan et al.

can only detect relations between a single feature and class
labels. The mutual information such as redundancy or com-
plementariness among features is ignored. In fact, top-ranked
features might be strongly related so that using two or more
of them may provide little added benefit, In addition, a fea-
ture is insignificant according to some feature ranking or
selection measurement can provide a significant performance
improvement when grouped with other features. These are
two well-appreciated issues (redundancy and multivariate
prediction) that tend to confound the feature selection (Liu
et al. 2005a). Some studies have addressed the redundancy
and dependency among features.

In the future, we will address the correlations by incorpo-
rating the correlation-based feature selection methods into
our approach. One way is to include such a method to con-
struct the feature pool for the genetic algorithm. Another way
is to design a fitness function that considers the correlations
between features.
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