
Soft Comput (2007) 11:1065–1078
DOI 10.1007/s00500-007-0164-0

ORIGINAL PAPER

Learning classifier systems: a survey

Olivier Sigaud · Stewart W. Wilson

Published online: 29 March 2007
© Springer-Verlag 2007

Abstract Learning classifier systems (LCSs) are rule-
based systems that automatically build their ruleset. At the
origin of Holland’s work, LCSs were seen as a model of the
emergence of cognitive abilities thanks to adaptive mecha-
nisms, particularly evolutionary processes. After a renewal
of the field more focused on learning, LCSs are now
considered as sequential decision problem-solving systems
endowed with a generalization property. Indeed, from a
Reinforcement Learning point of view, LCSs can be seen as
learning systems building a compact representation of their
problem thanks to generalization. More recently, LCSs have
proved efficient at solving automatic classification tasks. The
aim of the present contribution is to describe the state-of-
the-art of LCSs, emphasizing recent developments, and focus-
ing more on the sequential decision domain than on automatic
classification.

Keywords Learning classifier systems · Reinforcement
learning · Generalization

1 Introduction

All learning classifier systems (LCSs)1 have in common that
they are rule-based systems able to automatically build the
ruleset they manipulate. Invented in 1975 by John Holland
(Holland 1975), these systems are paradoxically less famous
than genetic algorithms (GAs) though GAs were originally

O. Sigaud (B)
Université Pierre et Marie Curie - Paris 6, 4 Place Jussieu,
75252 Paris Cedex 05, France
e-mail: Olivier.Sigaud@lip6.fr

S. W. Wilson (B)
Prediction Dynamics, Concord, MA 01742, USA
e-mail: wilson@prediction-dynamics.com

a sub-part of LCSs. However, during the past several years
LCS research has gained more visibility, giving rise to the
opportunity of publishing a general presentation for a wide
scientific audience. The goal of this paper is to offer an over-
view of the fundamental aspects of LCSs and of the recent
developments they are giving rise to.

In order to reach that goal, we first present the two mech-
anisms on which they rely, namely GAs and reinforcement
learning (RL). Then we provide a brief history of LCS
research intended to highlight the emergence of three families
of systems: strength-based LCSs, accuracy-based LCSs, and
anticipatory LCSs (ALCSs). Afterward, in Sect. 4, we pres-
ent everything that is common to all systems of these three
families, from their representation formalism to their funda-
mental mechanisms. The next three sections are dedicated
to the particular aspects of each family, focusing particularly
on the most recent theoretical and applied extensions. We
devote particular effort to the accuracy-based family whose
main member, XCS, is the most studied LCS at this time.
Finally, we try to highlight what seem to be the most prom-
ising lines of research given the current state of the art, and
we conclude with the available resources that can be con-
sulted in order to get a more detailed knowledge of these
systems.

2 Background

2.1 Genetic algorithms

First, we briefly present GAs (Holland 1975; Booker et al.
1989; Goldberg 1989), which are freely inspired from the

1 The term Learning was added around 2000 so as to clearly distinguish
this research line from other, unrelated, systems that classify.

123

1066 O. Sigaud, S. W. Wilson

neo-darwinist theory of natural selection. These algorithms
manipulate a population of individuals representing possible
solutions to a given problem. GAs rely on four analogies with
their biological counterpart: they use a code, the genotype or
genome, simple transformations operating on that code, the
genetic operators, the expression of a solution from the code,
the genotype-to-phenotype mapping, and a solution selection
process, the survival of the fittest. The genetic operators are
used to introduce some variations in the genotypes. There are
two classes of operators: crossover operators, which create
new genotypes by recombining sub-parts of the genotypes of
two or more individuals, and mutation operators, which ran-
domly modify the genotype of an individual. The selection
process extracts the genotypes that deserve to be reproduced,
upon which genetic operators will be applied.

A GA manipulates a set of arbitrarily initialized geno-
types which are selected and modified generation after gen-
eration. Those which are not selected are eliminated. A utility
function, or fitness function, evaluates the interest of a phe-
notype with regard to a given problem. The survival of the
corresponding solution or its number of offspring in the next
generation depends on this evaluation.

The offspring of an individual are built from copies of its
genotype to which genetic operators are applied. As a result,
the overall process consists in the iteration of the following
loop:

1. select ne genotypes according to the fitness of corre-
sponding phenotypes,

2. apply genetic operators to these genotypes to generate
offspring,

3. build phenotypes from these new genotypes and evaluate
them,

4. go to 1.

If some empirical conditions that we will not detail here
are fulfilled, such a process gives rise to an improvement of
the fitnesses of the individuals over the generations.

Since research on GAs is now a field in itself, we will
not survey it in this paper. Though GAs are at their root,
LCSs have made limited use of the important extensions of
this field. As a consequence, in order to introduce the GAs
used in LCSs, it is only necessary to describe the following
aspects:

– One must classically distinguish between the one-point
crossover operator, which cuts two genotypes into two
parts at a randomly selected place and builds a new geno-
type by inverting the sub-parts from distinct parents, and
the multi-point crossover operator, which does the same
after cutting the parent genotypes into several pieces.
Historically, most early LCSs were using the one-point
crossover operator. Recently, a surge of interest on the

discovery of complex ‘building blocks’ in the structure
of input data led to a more frequent use of multi-point
crossover.

– One must also distinguish between generational GAs,
where all or an important part of the population is renewed
from one generation to the next, and steady state GAs,
where individuals are changed in the population one by
one without notion of generation. Most LCSs use a steady-
state GA, since this less disruptive mechanism results in
a better interplay between the evolutionary process and
the learning process, as explained below.

2.2 Markov decision processes and reinforcement learning

The second fundamental mechanism in LCSs is RL. In order
to describe this mechanism, it is necessary to briefly pres-
ent the Markov decision process (MDP) framework and the
Q-learning algorithm, which is now the learning algorithm
most used in LCSs. This presentation is as succinct as pos-
sible; the reader who wants to get a deeper view is referred
to Sutton and Barto (1998).

2.2.1 Markov decision processes

A MDP is defined as the collection of the following elements:

– a finite set S of discrete states s of an agent;
– a finite set A of discrete actions a;
– a transition function P : S × A → Π(S) where Π(S)

is the set of probability distributions over S. A particu-
lar probability distribution Pr(st+1|st , at) indicates the
probabilities that the agent reaches the different st+1 pos-
sible states when he performs action at in state st ;

– a reward function R : S × A→ R which gives for each
(st , at) pair the scalar reward signal that the agent receives
when he performs action at in state st .

The MDP formalism describes the stochastic structure of a
problem faced by an agent, and does not tell anything about
the behavior of this agent in its environment. It only tells
what, depending on its current state and action, will be its
future situation and reward.

The above definition of the transition function implies a
specific assumption about the nature of the state of the agent.
This assumption, known as the Markov property, stipulates
that the probability distribution specifying the st+1 state only
depends on st and at , but not on the past of the agent. Thus
P(st+1|st , at) = P(st+1|st , at , st−1, at−1, . . . , s0, a0). This
means that, when the Markov property holds, a knowledge of
the past of the agent does not bring any further information
on its next state.

123

Learning classifier systems: a survey 1067

The behavior of the agent is described by a policy π giving
for each state the probability distribution of the choice of all
possible actions.

When the transition and reward functions are known
in advance, dynamic programming (DP) methods such as
policy iteration (Bellman 1961; Puterman and Shin 1978)
and value iteration (Bellman 1957) efficiently find a policy
maximizing the accumulated reward that the agent can get
out of its behavior.

In order to define the accumulated reward, we introduce
the discount factor γ ∈ [0, 1]. This factor defines how much
the future rewards are taken into account in the computation
of the accumulated reward at time t as follows:

Rcπ (t) =
Tmax∑

k=t

γ (k−t)rπ (k)

where Tmax can be finite or infinite and rπ (k) represents the
immediate reward received at time k if the agent follows
policy π .

DP methods introduce a value function V π where V π (s)
represents for each state s the accumulated reward that the
agent can expect if it follows policy π from state s. If the
Markov property holds, V π is solution of the Bellman equa-
tion (Bertsekas 1995):

∀s ∈ S, V π (s) =
∑

a

π(st , at)
[

R(st , at)

+γ
∑

st+1

P(st+1|st , at)V π (st+1)
]

(1)

Rather than the value function V π , it is often useful to
introduce an action-value function Qπ where Qπ (s, a) rep-
resents the accumulated reward that the agent can expect if it
follows policy π after having done action a in state s. Every-
thing that was said of V π directly applies to Qπ , given that
V π (s) = maxa Qπ (s, a). The corresponding optimal func-
tions are independent of the policy of the agent; they are
denoted V ∗ and Q∗.

2.2.2 Reinforcement learning

Learning becomes necessary when the transition and reward
functions are not known in advance. In such a case, the agent
must explore the outcome of each action in each situation,
looking for the (st , at) pairs that bring it a high reward.

The main RL methods consist in trying to estimate V ∗ or
Q∗ iteratively from the trials of the agent in its environment.
All these methods rely on a general approximation technique
in order to estimate the average of a stochastic signal received
at each time step without storing any information from the
past of the agent. Let us consider the case of the average
immediate reward. Its exact value after k iterations is

Ek(s) = (r1 + r2 + · · · + rk)/k

Furthermore,

Ek+1(s) = (r1 + r2 + · · · + rk + rk+1)/(k + 1)

thus

Ek+1(s) = k/(k + 1)Ek(s)+ rk+1/(k + 1)

which can be rewritten:

Ek+1(s) = (k + 1)/(k + 1)Ek(s)− Ek(s)/(k + 1)

+rk+1/(k + 1)

or

Ek+1(s) = Ek(s)+ 1/(k + 1)[rk+1 − Ek(s)].
Formulated that way, we can compute the exact average

by merely storing k. If we do not want to store even k, we can
approximate 1/(k + 1) with α, which results in Eq. 2 whose
general form is found everywhere in RL:

Ek+1(s) = Ek(s)+ α[rk+1 − Ek(s)] (2)

The parameter α, called learning rate, must be tuned
adequately because it influences the speed of convergence
towards the exact average.

We do not detail all of the RL method relying on this esti-
mation principle. We only give the update equation of the
Q-learning algorithm, which is the following:

Q(st , at)← Q(st , at)+ α[rt+1 + γ max
a

Q(st+1, a)

−Q(st , at)] (3)

3 Brief history of LCS

3.1 Pittsburgh versus Michigan

LCSs were invented by Holland (1975) in order to model
the emergence of cognition based on adaptive mechanisms.
They consist of a set of rules called classifiers combined with
adaptive mechanisms in charge of evolving the population of
rules. The initial goal was to solve problems of interaction
with an environment such as the one presented in Fig. 1, as
was described by Wilson as the “Animat problem” (Wilson
1985).

In the context of the initial research on LCSs, the emphasis
was put on parallelism in the architecture and evolutionary
processes that let it adapt at any time to the variations of
the environment (Golberg and Holland 1988). This approach
was seen as a way of “escaping brittleness” (Holland 1986)
in reference to the lack of robustness of traditional artificial
intelligence systems faced with problems more complex than
toy or closed-world problems.

This period of research on LCSs was structured by the con-
troversy between the so-called “Pittsburgh” and “Michigan”

123

1068 O. Sigaud, S. W. Wilson

F

0

0

0

111

1

1

1

[r]

01010111 001

Local perception

Input interface

reinforcement

Output interface

Chosen action
: turn right

Decision system

Fig. 1 Representation of an interaction problem. The agent senses
a situation as a set of attributes. In this example, it is situated in
a maze and senses either the presence (symbol 1) or the absence
(symbol 0) of walls in the eight surrounding cells, considered clock-
wise starting from the north. Thus, in the above example it senses
[01010111]. This information is sent to its input interface. At each
time step, the agent must choose between going forward [f], turning
right [r] or left [l]. The chosen action is sent through the output
interface

approaches. In Smith’s approach (Smith 1980), from the
University of Pittsburgh, the only adaptive process was a
GA applied to a population of LCSs in order to choose from
among this population the fittest LCS for a given problem.

By contrast, in the systems from Holland and his PhD
students, at the University of Michigan, the GA was com-
bined since the very beginning with an RL mechanism and
was applied more subtly within a single LCS, the population
being represented by the set of classifiers in this system.

Though the Pittsburgh approach is becoming more pop-
ular again currently, (Llorà and Garrell 2002; Bacardit and
Garrell 2003; Landau et al. 2005), the Michigan approach
quickly became the standard LCS framework, the Pittsburgh
approach becoming absorbed into the wider evolutionary
computation research domain.

The first concrete implementation of Michigan style LCS,
called “CS1”, was published by Holland and Reitman (1978).
This first, rather complex model is described in Fig. 2. The
GA creates new classifiers from the existing ones. The fit-
ness of a classifier is measured by its capacity to propose
an efficient action in adequate situations. This efficacy itself
is evaluated by a RL algorithm called Bucket Brigade
(Holland et al. 1986).

The presence of an internal message list can emulate mem-
ory mechanisms when a message is kept on the list over
several time steps. But some of the mechanisms have proved
difficult to design, among them the internal message suppres-
sion process and the interactions between classifier
evaluation and the evolution of the population (Wilson and
Goldberg 1989).

Given the difficulty of obtaining reliably convincing
performance with diverse versions of these systems, LCS
research became less active in the 1980s. An historical

... ...

...

...

...

Input interface

Output interface

[Condition] part
Internal classifier list

evolutionary
process

Message list

[Action] part

Fig. 2 Architecture of Holland’s CS1 system, after Booker et al.
(1989). The input interface produces messages which are added to the
internal message list. A set of production rules called “classifiers” is
applied to these messages to produce new messages by firing rules
whose [Condition] part matches with the original messages. Some mes-
sages are sent to the output interface, giving rise to actions

overview of the extension of these systems was published in
Wilson and Goldberg (1989).

3.2 The renewal

The first important evolution in the history of LCS research is
correlated to the parallel progress in RL research, particularly
with the publication of the Q-learning algorithm (Watkins
1989).

Classical RL algorithms such as Q-learning rely on an
explicit enumeration of all the states of the system. But, since
they represent the state as a collection of a set of sensations
called “attributes”, LCSs do not need this explicit enumera-
tion thanks to a generalization property that we will describe
later on. This generalization property has been recognized as
the distinguishing feature of LCSs with respect to the clas-
sical RL framework. Indeed, it led Lanzi to define LCSs as
RL systems endowed with a generalization capability (Lanzi
2002).

An important step in this change of perspective was the
analysis by Dorigo and Bersini of the similarity between the
Bucket Brigade algorithm (Holland 1986) used so far in
LCSs and the Q-learning algorithm (Dorigo and Bersini
1994). At the same time, Wilson published a radically sim-
plified version of the initial LCS architecture, called ZCS2

(Wilson 1994), in which the list of internal messages was
removed.

ZCS defines the fitness or strength of a classifier as the
accumulated reward that the agent can get from firing the
classifier, giving rise to the “strength-based” family of LCSs.

2 Zeroth-level Classifier System.

123

Learning classifier systems: a survey 1069

As a result, the GA eliminates classifiers providing less
reward than others from the population.

After ZCS, Wilson invented a more subtle system called
XCS (Wilson 1995), in which the fitness is bound to the
capacity of the classifier to accurately predict the reward
received when firing it, while action selection still relies on
the expected reward itself. XCS appeared very efficient and is
the starting point of a new family of “accuracy-based” LCSs.

Finally, two years later, Stolzmann proposed an anticipa-
tory LCS called ACS (Stolzmann 1998; Butz et al. 2000)
giving rise to the “anticipation-based” LCS family. As we
will show, this third family is quite distinct from the other
two. Its scientific roots come from research in experimen-
tal psychology about latent learning (Tolman 1932; Seward
1949). More precisely, Stolzmann was a student of Hoffmann
(Hoffmann 1993) who built a psychological theory of learn-
ing called “Anticipatory Behavioral Control” inspired from
Herbart’s work (Herbart 1825).

The extension of these three families is at the heart of mod-
ern LCS research. Before closing this historical overview, we
must add that, after a second survey of the field (Lanzi and
Riolo 2000), a further important evolution is taking place.
Even if the initial impulse in modern LCS research was based
on the solution of sequential decision problems, the excel-
lent results of XCS on data mining problems (Bernadó et al.
2001) have given rise to an important extension of researches
towards automatic classification problems, as exemplified by
Booker (2000) or Holmes (2002).

4 Fundamental aspects

In order to present model-free RL methods in the context of
mdps, let us adopt the viewpoint of Lanzi (Lanzi 2002), who
proposes a nice framework that defines LCSs as RL systems
with generalization properties.

A simple implementation of the Q- learning algorithm
consists in building a table called Q-table which contains
〈s, a, p〉 triples, where s and a represent the state and action
of the agent, and p the current estimate of the long term
reward that the agent can expect from this (s, a) pair. The
process consists in adding an entry to the table each time
the agent carries out a new state-action pair, and updating
the value of p corresponding to the action performed in the
current state according to Eq. 3.

The problem with this tabular representation is that the
table can grow to a very large size. As Lanzi (2002) clearly
explains, in order to avoid this problem, one must use a differ-
ent representation endowed with a generalization capability.
In practice, this can be done by using 〈c, a, p〉 triples where
the c elements do not stand for one single state anymore, but
rather for a condition which will cluster together all states
for which this condition holds.

LCSs are characterized by their specific way of repre-
senting the conditions c and by the processes they call upon
for finding conditions giving rise to both compact and effi-
cient representations. We will detail these features in the next
section.

4.1 Classifier formalism

An LCS is composed of a population of classifiers. Each
classifier is a triple 〈c, a, p〉 containing a [Condition] part,
an [Action] part, and an estimation of the expected accumu-
lated reward that the agent can get if it fires this classifier.

Formally, the [Condition] part of classifiers is a list of
tests. There are as many tests as attributes in the problem
description, each test being applied to a specific attribute. In
the most common case where the test specifies a value that
an attribute must take for the [Condition] to match, the test is
represented just by this value. There exists a particular test,
denoted “#” and called “don’t care”, which means that the
[Condition] of the classifier will match whatever the value
of the corresponding attribute. At a more global level, the
[Condition] part of a classifier matches if all its tests hold
in the current situation. In such a case, the classifier can be
fired.

The first LCSs only used Boolean tests. In that case, each
test takes its value from {0, 1, #}. More recently, several
systems have been extended to deal with nominal values.3

or continuous values4 In the continuous case, a test gener-
ally specifies an interval in which the value of the attribute
must lie so that the [Condition] part matches. There are also
LCSs in which the tests are expressed as a symbolic condition
called “S-expression” (Ahluwalia and Bull 1999; Lanzi and
Perrucci 1999). In the boolean and nominal case, the general-
ization property of LCSs relies on the # symbol. Thanks to #
symbols in the [Condition] part of classifiers, two input situ-
ations are considered equivalent with respect to a given clas-
sifier if the specified (non-#) values in the condition match
the corresponding attributes of the two situations. In the con-
tinuous case, a test is more general than another if the speci-
fied interval of the first contains the specified interval of the
second.

After describing the representation manipulated by LCSs,
we must present their mechanisms. The general goal is to
design an RL system; thus there will be at its heart an action
selection mechanism relying on the value of all actions in
different situations. Furthermore, these systems are endowed
with a generalization capability which relies on classifier
population evolution mechanisms in order to reach a sat-
isfactory level of generality. We present both categories of
mechanisms in the next sections and we will show afterward

3 For instance, MACS (Gérard et al. 2005).
4 For instance, XCSF (Wilson 2001).

123

1070 O. Sigaud, S. W. Wilson

that families of systems can be distinguished by the way they
deal with interactions between these mechanisms.

4.2 Action selection

The set of classifiers whose [Condition] part matches the
current situation is called the “match-set” and denoted [M].
Furthermore, we denote by [A]—the “action-set”—the set
of classifiers in [M] which advocate the action a that is actu-
ally chosen. Given the generalization property of classifiers,
the [Condition] part of several classifiers can match at the
same time, while they do not necessarily specify the same
action. Thus, LCSs must contain an action selection mech-
anism which chooses the action executed given the list of
classifiers in [M]. In order to benefit from RL properties,
this mechanism must use the expected accumulated reward
of each classifier, but it must also include some trade-off
between exploration and exploitation. When presenting the
different LCSs, we will describe the different action selection
and classifier evaluation mechanisms.

4.3 Classifier population evolution

Ensuring that each classifier reaches the ideal generalization
level is a crucial concern in LCSs. The system must find a
population which covers the state space as compactly as pos-
sible, without being detrimental to the optimality of behavior.
The mechanisms responsible for this property differ from one
system to the other, but they all rely on adding and deleting
classifiers.

In strength-based and accuracy-based systems, general-
ization and specialization of classifiers are caused by a GA
which evolves the classifiers’ [Condition] parts. Compact-
ness emerges from the competition between classifiers and
the fact that the population is limited. In the case of antici-
pation-based systems, more deterministic generalization and
specialization heuristics are used, even if a GA is at work

in the generalization process in ACS2. We will describe the
various classifier creation and deletion mechanisms once we
have presented the three main families of modern LCSs.

5 Strength-based systems: ZCS

5.1 Presentation

Strength-based LCSs are the simplest ones. Each classifier
contains only one evaluation variable which is both its esti-
mation of the accumulated reward brought by its firing and
its fitness for the population evolution process. The most
typical strength-based LCS is ZCS. It works with a classifier
population of fixed size P . A general view of the interaction
between an agent controlled by ZCS and its environment is
shown in Fig. 3.

5.2 Action selection

In ZCS, once [M] is determined, the selection of the fired
action is based on a roulette wheel (Goldberg 1989) mech-
anism which induces some exploration. Indeed, instead of
always firing the action specified by the strongest classifier
in [M], each classifier has a probability to be fired depend-
ing on its relative strength with respect to the strength of all
other classifiers in [M], and one classifier is chosen randomly
based on these probabilities.

5.3 Classifier evaluation

The reward propagation mechanism in ZCS is close to the
original Bucket Brigade algorithm (Holland 1986), but
it differs by the fact that there is no bidding process. More
precisely, there is a three-step process. First, all classifiers
which advocated the action at−1 chosen at the previous time
step share equally a fraction γ.α of the sum of the values of

0.5

0.6

[#10#0#1#]

[#1010##1]

[10###101]

[0#10#0#0]

[010]

[100]

[#10##1#1] [001]

[001]

[001]

001

Condition

[01010111]

[#10##1#1] [001]0.7 0.7

0.1

0.8

Input interface Output interface
reinforcement

C
la

ss
if

ie
r

lis
t

Chosen classifier

Action Quality

Fig. 3 In a strength-based LCS, classifiers are composed of a [Condi-
tion] part, an [Action] part, and a value that is both the classifier fitness
and its estimation of expected reward. Among the classifiers, the system
selects those whose [Condition] part matches the current situation and

chooses one classifier in that set with a roulette wheel mechanism. The
corresponding action is executed (in the example, the agent executes
[001]

123

Learning classifier systems: a survey 1071

classifiers in [A]. Second, all classifiers in [A] share equally
a fraction α of the reward rt received for executing at . Last,
the value of all classifiers in [M] which do not belong to [A]
is reduced with a tax τ . This mechanism is closer to Sarsa
(Sutton 1996) than to Q-learning (Watkins 1989).

5.4 Classifier creation and deletion

In ZCS, the evolution of the classifier population is driven by
a GA and a covering operator.

– At each time step, there is a probability p of running the
GA. If it is run, the GA uses a roulette wheel mecha-
nism based on fitness to choose two classifiers from the
global population. Two offspring of these classifiers are
generated thanks to a one-point crossover operator and a
mutation operator. The initial fitness of the offspring is
the average of the fitness of their parents. They replace in
the population two classifiers chosen by a roulette wheel
mechanism based on the inverse of the fitness.

– The covering operator is called each time [M] is empty or
only contains classifiers whose fitness is Φ times weaker
than the average fitness of the global population. The
operator adds to the population a new classifier matching
the current situation, whose action is chosen randomly
and whose initial fitness is equal to the average fitness of
the population. Each test in the [Condition] part can take
the # value with a 33% probability.

5.5 Parameters

For ZCS parameters, Bull and Hurst (2002) gives the follow-
ing default values: population size P = 400, initial fitness
S0 = 20.0, learning rate α = 0.2, discount factor γ = 0.71,
tax τ = 0.1, GA firing rate p= 0.25, crossover rate Pc = 0.5,
mutation rate Pm = 0.002, covering operator firing rate
Φ = 0.5.

5.6 Recent evolution

At the time of writing this survey, the last publication about
ZCS internal processes dates back to 2002 (Bull and Hurst
2002), which can be interpreted as a decline of research on
strength-based LCSs in favor of accuracy-based LCSs. How-
ever, more general works on the strength-based approach are
still being published (Bull 2004a, 2005).

Before this drop of interest, ZCS was extended in two
directions in order to solve problems where the Markov prop-
erty does not hold: the addition of internal registers (Cliff and
Ross 1994) and addition of a classifier-chaining mechanism
(Tomlinson and Bull 1998). We will describe these exten-

sions more accurately in the context of XCS, to which they
have also been applied.

Moreover, ZCS has been used in several applications. In
particular, Bull (Bull 1998, 1999) used it to represent trading
agents in a simplified market, Cao (Cao et al. 1999, 2001)
used it to control traffic junction simulations and Miramontes
Hercog (Miramontes Hercog and Fogarty 2002) used it to
solve classical collective behavior benchmarks.

The main drawback of ZCS is that overly general clas-
sifiers can be sustained in the population and can result in
the system taking suboptimal actions. Consider a classifier
that can fire (matches) both for an optimal action close to
some reward and a suboptimal action far from a reward. Its
strength will be the average between a high expected value
and a low expected value. Unfortunately, this average can be
higher than the expected reward of a more specialized clas-
sifier specifying the optimal action far from the reward. As
a result, the GA will only keep the first classifier while the
second would be more useful for efficient behavior far from
the goal.

Bull and Hurst (2002) shows on a toy problem that, given
well-chosen parameters this problem can be overcome, but
this paper did not completely rescue ZCS, because XCS pro-
poses a more elegant solution to the same problem. This fact
can be seen as the reason for the preference for accuracy-
based over strength-based LCSs.

6 Accuracy-based systems: XCS

6.1 Presentation

XCS, invented by Wilson (Wilson 1995) 1 year after ZCS,
has been the most studied and applied LCS for several years
(Kovacs 2002). The important research efforts concerned
with this system have resulted in much improvement in both
its performance and in understanding the reasons for this per-
formance. The reader can find in Butz and Wilson (2002) a
detailed algorithmic description of XCS and in Butz et al.
(2004) a synthesis of its underlying mechanisms and their
interactions.

The central idea in XCS consists in decoupling the RL
process and the population evolution process by introduc-
ing a fitness function that is not proportional to the expected
reward, but to the accuracy of the prediction of this reward.
The classifiers that survive in the population are no longer
necessarily those predicting a large reward, but those accu-
rately predicting the reward they receive, be it large or small.
As a consequence, an important difference between ZCS and
XCS is that the second keeps in its population classifiers fir-
ing far from a source of positive reward, thus predicting a
small reward, given that they do so accurately. As a result,
XCS covers the state space more efficiently than ZCS.

123

1072 O. Sigaud, S. W. Wilson

Moreover, the generalization process in XCS groups
together in the same [Condition] part situations for which the
expected reward is similar. Otherwise, the prediction could
not be accurate. To learn more about the comparison between
both families, we refer to Kovacs (2004).

Beyond this first difference, the processes in XCS differ
significantly from those of ZCS. We will describe them more
precisely in the following sections.

6.2 Action selection

Studies of XCS describe different ways of dealing with the
compromise between exploration and exploitation. In fact,
XCS (as well as, in principle, ZCS) is neutral with respect to
action selection, and any of the methods seen in RL apply.
Among these, we can mention ε-greedy, alternation of pure
exploration trials and pure exploitation trials, or the roulette
wheel process also used in ZCS. The choice of the executed
action can be done by treating each classifier separately, or
by grouping together all classifiers advocating for the same
action in prediction arrays.

6.3 Classifier evaluation

The classifier evaluation algorithm is closer in spirit to
Q-learning than to Bucket Brigade. It relies on the esti-
mation update process described in Eq. 2. The local RL pro-
cess, applied only to the classifiers of [A], is the following:

– the expected reward p is updated given the immediate
reward received r in the following way: p←p+β(r− p),

– then the prediction error corresponding to this expectancy
is updated: ε ← ε + β(|r − p| − ε)

– the raw prediction accuracy is derived: k ={
1 if ε < ε0

α(ε
ε0

)−ν otherwise
where ν > 0.

– the relative prediction accuracy is computed with respect
to its value for other classifiers of [A]: k′ = k∑

x∈A kx

– finally, the fitness f of classifiers is derived: f ← f +
β(k′ − f)

In sequential decision problems, Butz obtained a significant
performance improvement by replacing the algorithm above
by a gradient descent technique (Butz et al. 2003a).

6.4 Classifier creation and deletion

As in ZCS, the creation of classifiers relies both on a GA and
a covering operator. But, in contrast with ZCS, in XCS the
GA is applied in [A] rather than in the global population. This
induces a competition between classifiers matching the same

situations rather than a global competition. The GA is run
each θG A time steps. The parents are chosen according to a
roulette wheel process with a probability proportional to their
fitness. Recently, Butz (Butz et al. 2003b) obtained a signifi-
cant performance improvement using tournament selection
instead of roulette-wheel, in both single-step classification
tasks and in multi-step, sequential decision tasks.

Two offspring of the chosen parents are inserted in the
global population, after the application of a mutation opera-
tor that can be either non-directional or guided by the current
input. Mutation is said to be “guided” when one test cannot
mutate toward a value different from the corresponding value
in the current input.

The covering operator adds classifiers when some actions
are absent from [M]. These classifiers specify the missing
actions, and their [Condition] part matches the current input,
after generalization by adding some # tests with a probability
P# for each test.

In XCS, the global population size is bounded. When new
classifiers are added, if the size limit is reached, a corre-
sponding number of classifiers must be deleted. The deletion
process is based on an estimation of the average size of the
action sets in which each classifier is involved. A classifier is
selected by a roulette wheel process based on this estimation
and deleted. In order to estimate the average size of the action
sets in which a classifier is involved, the estimation process
updates an estimator as according to the classical technique
described by equation (2) each time the classifier is involved
in an action set: as = as + β(si ze − as) where si ze is the
size of the current action set.

Two additional processes control the population size in
XCS.

– Given that the creation of classifiers can generate classi-
fiers identical to already existing ones, then rather than
keeping several identical classifiers in the population,
which would not be efficient from a memory and compu-
tation time viewpoint, XCS uses a notion of macro-clas-
sifier which associates to each classifier a numerosity N
corresponding to the number of exemplars in the popula-
tion. The population size bound is reached if the sum of
numerosities is higher than the bound.

– There is an optional subsumption process which favors
generalization of classifiers within the population. Each
time a new classifier is created, this process checks
whether the population contains a sufficiently accurate
classifier which subsumes (is logically more general than)
the new classifier. If such a classifier exists, instead of add-
ing the new one to the population, the numerosity of the
more general classifier is augmented. Though it favors
generalization, this additional process is computationally
costly. As a result, it is not always used in typical exper-
iments with XCS.

123

Learning classifier systems: a survey 1073

6.5 Parameters

The standard parameter values in XCS are the following: pop-
ulation size P = 800 or P = 2000 depending on the prob-
lem, learning rate and estimation rate α = 0.1 and β = 0.2,
GA firing interval θGA = 25, crossover rate ξ = 0.8, muta-
tion rate µ = 0.04, probability of # in covering P# = 0.6.
See Butz and Wilson (2002) for a more detailed parameter
description.

6.6 Recent evolution

Some recent improvements in XCS have already been
described in the previous sections, namely the incorpora-
tion of tournament selection in the GA (Butz et al. 2003b)
and the gradient descent approach to classifier evaluation
(Butz et al. 2003a). We must add that, very recently, Butz and
collaborators (Butz et al. 2006) have shown that importing
recent techniques from the evolutionary computation liter-
ature to efficiently detect building blocks (Goldberg 1989)
in the [Condition] part of classifiers can improve the perfor-
mance of XCS when such building blocks are present in the
structure of the problems.

Further, other extensions result in an increased application
domain for XCS. The oldest of these extensions are devoted
to problems where the Markov property does not hold. In par-
ticular, the perceptual aliasing problem, where two or more
different underlying states of the environment have the same
appearance to the system, is the most studied.

The two main ways of dealing with this problem are clas-
sifier chaining and internal register management. In the first
case, implemented in CXCS (Tomlinson and Bull 2000) after
ZCCS (Tomlinson and Bull 1998) which relied on ZCS, the
system chains classifiers leading up to an ambiguous situa-
tion so as to avoid deciding in the ambiguous context.

In the second case, implemented in XCSM and XCSMH
(Lanzi 1998) after ZCSM (Cliff and Ross 1994) which relied
on ZCS, classifiers incorporate in the [Condition] part some
additional tests on the value of an internal register, and this
value is modified by additional information in the [Action]
part. The adaptive mechanisms must make sure that the value
of the internal register reliably discriminates between differ-
ent aliased situations. For a more detailed description of all
mechanisms dedicated to the solution of the perceptual ali-
asing problem in LCSs, see Landau and Sigaud (2006).

Other extensions of XCS deal with continuous state and
reward spaces. With XCSR, Wilson (2000) proposed to
represent continuous state spaces with tests checking if the
real number corresponding to the value of an attribute is
included in an interval in R. In XCSR, the intervals are
coded with two real numbers representing the center of the
interval and the spread around this center. Later, Stone and
Bull (2003) showed that this representation was inducing

a bias detrimental to the generality of the system and pro-
posed another representation where the real numbers specify
the bounds of the interval in any order. In parallel, Wilson
(2004) proposed an extension of XCS to the management of
rewards that are a continuous function of a continuous state.

In line with these works about continuous representations,
one of the most active research trends in the domain of XCS
extension results from Wilson’s theoretical account of XCS
as a generic function approximator. The resulting system,
XCSF (Wilson 2001), is at the heart of several studies and
extensions, one of the most recent being Lanzi et al. (2006).

7 Anticipation-based systems: ALCSs

7.1 Presentation

Although they share a number of common characteristics
with standard LCSs, ALCSs deviate from the classical frame-
work on one fundamental point. Instead of [Condition]→
[Action] classifiers, they manipulate [Condition] [Action]→
[Effect] classifiers. The [Effect] part represents the expected
effect (next state) of the [Action] part in all situations that
match the [Condition] part of the classifier. Such a set of clas-
sifiers constitutes what is called in the RL literature a model
of transitions. Since they learn a model of transitions, ALCSs
are an instance of model-based RL5 architecture, a category
of systems whose prototype is the Dyna architecture (Sutton
1990). As a result, ALCSs can be seen as combining two cru-
cial properties of RL systems. Like Dyna architectures, they
learn a model of transitions, which endows them with antic-
ipation and planning capabilities and speeds up the learning
process. Like classical LCSs, they are endowed with a gener-
alization property, which lets them build much more compact
models than tabular Dyna architectures (Gérard and Sigaud
2003).

Historically, it seems that Riolo (1991) was the first to pub-
lish an LCS endowed with an explicit anticipation capabil-
ity. His system, CFSC2, was directly inspired by the original
LCS architecture of Holland and Reitman (1978) with inter-
nal messages.

The first ALCS designed after Wilson’s simplifications
of the original LCS architectures (see Sect. 3) was ACS
(Stolzmann 1998; Butz et al. 2000). Central to ACS, the
anticipatory learning process (ALP) algorithm is the formal
counterpart of Hoffmann’s psychological theory of Antici-
patory Behavioral Control (Hoffmann 1993). ACS was later
extended by Butz to become ACS2 (Butz 2002). In paral-
lel, Gérard proposed YACS (Gérard et al. 2002) and MACS
(Gérard et al. 2005).

5 Or indirect RL.

123

1074 O. Sigaud, S. W. Wilson

In ACS, ACS2 and YACS, the [Effect] part of each clas-
sifier tells which attributes do change and which do not.
To represent that, the [Effect] parts can contain a “=” sym-
bol, which means that the corresponding attribute does not
change. For instance, applied to the situation [1031], the
classifier [#0#1] [0] [=10=] predicts that the situa-
tion resulting from the application of action [0] will be
[1101]. Applied to [2011], it predicts [2101]. This
formalism is able to represent regularities such as “when the
agent perceives a wall to the north, whatever it perceives in
any other direction, going north does not produce any sen-
sory change”, which is represented by the following classi-
fier: [1#######] [North] [========].

By contrast, MACS can represent regularities between
different attributes with a classifier such as [#1#######]
[East] [1????????], where the “?” symbol means
that the classifier cannot predict the value of the considered
attribute. The addition of this new symbol results in the capac-
ity to predict separately the value of different attributes at the
next time step. In the case of MACS, the authors chose to
predict the value of one attribute only in each [Effect] part.

Experimental results on model compactness and conver-
gence speed of MACS have shown that it builds a slightly
more compact model than YACS, which builds models four
times more compact than ACS (Gérard et al. 2005). Fur-
thermore, MACS builds this model three times faster than
YACS, and nine times faster than ACS in number of time
steps. Thanks to these improvements, MACS can deal with
much more complex problems than the other ALCSs. Off-
setting this is that the algorithmic description of MACS is
more complex. Furthermore, some heuristics in MACS are
designed for deterministic problems rather than stochastic
ones. As a result, the application domain of MACS is more
restricted.

In the following sections, we focus on the processes of
MACS, showing in what respect they differ from those of
the other systems.

7.2 Action selection

ACS, ACS2 et YACS use classical solutions to deal with
the exploration versus exploitation trade-off. By contrast, in
order to efficiently explore large size problems, MACS com-
bines three criteria:

– the agent first chooses actions bringing more information
about the transitions that have not been tried enough;

– then, if the best actions are equivalent with respect to the
first criterion, it chooses actions bringing more external
reward, as any RL system does;

– finally, if the best actions are equivalent with respect to
the first and second criteria, it chooses actions that have

not been tried for the longest time, so as to handle non-
stationary environments as efficiently as possible.

7.3 Classifier evaluation

In MACS, an immediate reward function and an iterative
propagation process are associated with all criteria defined
above. The propagation process converges to the expected
reward only if the model of transitions is accurate enough.
This is why MACS favors exploration first. The architec-
ture of MACS clearly distinguishes two aspects of classifier
evaluation:

– first, the values corresponding to the three previous cri-
teria are associated with each (situation, action) pair;

– second, classifiers themselves incorporate some accuracy
indicators driving the population evolution process as
described hereafter.

7.4 Classifier creation and deletion

In order to obtain a model of transitions as general, accu-
rate and compact as possible, ALCSs generally rely on the
combination of two heuristics:

– a specialization heuristic is applied to inaccurate
classifiers;

– a generalization heuristic is applied to overspecialized
classifiers.

When appropriate, the combination of both heuristics
results in the convergence of the population to a maximally
general and accurate set of classifiers.

For the specialization process, all ALCSs rely on the same
idea: when a general classifier oscillates between correct and
incorrect predictions, it is too general and must be special-
ized. Its [Condition] part must be modified so as to match only
in situations where its prediction is correct. ACS, ACS2 and
YACS randomly choose a # test and change it into a special-
ized test, whereas MACS uses a further heuristic to efficiently
choose the most appropriate # test to be specialized.

The generalization process is more complex. In ACS and
ACS2, a GA is used to replace specific classifiers with more
general ones. In YACS and MACS, a more complex
algorithm relies on the estimated accuracy of classifiers to
determine rationally if generalization will result in an
improvement or not. We refer to the papers on each of these
systems for a more detailed description of these processes
and the corresponding parameters.

123

Learning classifier systems: a survey 1075

7.5 Recent evolution

In YACS and MACS, the systems were looking for the
optimal generalization rate only in the model of transitions,
without generalizing the reward model or the value function
model. The last two models are represented by a table giving
a value for each encountered state, which is detrimental to the
compactness argument in favor of these systems. Recently,
Butz and Goldberg (2003) proposed XACS which also gen-
eralizes the value function in ACS2, by using XCS.

The most active research trend in this domain consists in
trying to extend XCS in order to endow it with explicit antic-
ipatory capabilities, but there is no convincing result so far.
In addition, the natural continuation of ALCS research relies
in the Factored MDP domain, as we will describe in the next
section.

8 Trends and future directions

The modern LCS research community is still small, but
rapidly expanding. This expansion should result in a bet-
ter exploitation of the suitability of LCS for application in
complex real-world problems, due to their high power of
expression combined with a very readable formalism for
the human expert. Indeed, quite paradoxically, there have
been few publications about industrial applications of LCSs.
Note that Bull (2004b) is dedicated to this question, however.
Moreover in France, several specific LCS architectures have
been used to solve complex sequential decision problems in
video games (Sanza 2001; Sanchez 2004; Robert 2005). Fur-
thermore, as we mentioned in the introduction of this paper,
outstanding results of XCS on automatic classification prob-
lems (Bernadó et al. 2001) have induced an important applied
research effort in the data mining domain (Holmes 2002).

In more theoretical directions, two important trends can
be distinguished. First, the numerous research works dedi-
cated to the improvement of XCS are combined with theoret-
ical investigations which improve the understanding of the
efficiency of its underlying mechanisms. Such investigations
benefit from parallel progress in the theoretical analysis of
evolutionary approaches (Poli and Langdon 1998), but this
research trend is far from exhausted (Drugowitsch and Barry
2006).

Second, on the RL side, the recent discovery of the Fac-
tored MDP framework (Boutilier et al. 1995) raises a seri-
ous hope of convergence between the LCS community and
the much wider RL community. Indeed, in this theoretical
framework, the state is represented as a collection of random
variables (Boutilier et al. 2000), which exactly corresponds
to the LCS representation formalism, each test of the [Condi-
tion] part corresponding to one random variable (Sigaud et al.

2004). The generalization property of LCSs is equivalent to
the factorization property of the new theoretical framework.

But, whereas research on Factored MDPs is restricted to
the resolution of planning problems, with the model of tran-
sitions being given in advance, LCSs and particularly ALCSs
do learn the model of transitions simultaneously with deter-
mining an optimal policy. Thus they solve true RL prob-
lems. Directly inspired by previous work in ALCSs, Degris
et al. have recently published some work about learning the
model of transitions in the standard Factored MDP frame-
work (Degris et al. 2006a,b), which may constitute a step
towards the convergence of both research trends and should
give rise to further research efforts in the future.

9 Conclusion

In this paper, we have presented LCS, which add to the clas-
sical RL framework the possibility of representing the state
as a vector of attributes and finding a compact expression
of the representation so induced. Their formalism conveys
a nice interaction between learning and evolution, which
makes them a class of particularly rich systems, at the inter-
section of several research domains. As a result, they profit
from the accumulated extensions of these domains.

We hope that this survey has given to the interested reader
an appropriate starting point to investigate the different
streams of research that underlie the rapid evolution of LCS.
In order to further study the different topics treated here, new
resources have become available since Kovacs (2002), which
surveyed the field in 2001. In particular, a key starting point
is the website dedicated to the LCS community, which can
be found at the following URL: http://lcsweb.cs.bath.ac.uk/.

A more detailed view of recent extensions can be found in
the proceedings of the IWLCS workshops (Lanzi et al. 2000,
2001, 2002a,b; Stolzmann et al. 2002) and GECCO confer-
ences (Banzhaf et al. 1999; Whitley et al. 2000; Spector et al.
2001; Langdon et al. 2002; Cantu-Paz et al. 2003; Deb et al.
2004; Beyer et al. 2005), which bring together each year most
of the work dedicated to this research domain.6

References

Ahluwalia M, Bull L (1999) A genetic programming-based
classifier system. In: Banzhaf W, Daida J, Eiben AE, Garzon
MH, Honavar V, Jakiela M, Smith RE (eds) (1999) Proceedings
of the 1999 genetic and evolutionary computation conference
workshop program. Morgan Kaufmann, San Francisco, pp 11–18

6 The GECCO 2006 proceedings and the IWLCS 2006 and combined
2003–2005 proceedings were not yet published at the time we finished
this survey.

123

1076 O. Sigaud, S. W. Wilson

Bacardit J, Garrell JM (2003) Evolving multiple discretizations with
adaptive intervals for a Pittsburgh rule-based learning classifier
system. In: Cantú-Paz E, Foster JA, Deb K, Davis D, Roy R, O’Re-
illy U-M, Beyer H-G, Standish R, Kendall G, Wilson S, Harman M,
Wegener J, Dasgupta D, Potter MA, Schultz AC, Dowsland K,
Jonoska N, Miller J (eds) Genetic and evolutionary computation—
GECCO-2003. pp 1818–1831. Springer, Berlin

Banzhaf W, Daida J, Eiben AE, Garzon MH, Honavar V, Jakiela
M, Smith RE (eds) (1999) Proceedings of the 1999 genetic and
evolutionary computation conference workshop program. Morgan
Kaufmann, San Francisco

Bellman RE (1957) Dynamic programming. Princeton University
Press, Princeton

Bellman RE (1961) Adaptive control processes: a guided tour. Prince-
ton University Press, Princeton

Bernadó E, Llorà X, Garrel JM (2001) XCS and GALE: a compara-
tive study of two learning classifer systems with six other learning
algorithms on classification tasks. In: Lanzi P-L, Stolzmann W,
Wilson SW (eds) Proceedings of the fourth international work-
shop on Learning Classifer Systems

Bertsekas DP (1995) Dynamic programming and optimal control.
Athena Scientific, Belmont

Beyer H-G, O’Reilly U-M, Arnold D, Banzhaf W, Blum C, Bonabeau
E, Cantú Paz E, Dasgupta D, Deb K, Foster J, de Jong E, Lipson
H, Llora X, Mancoridis S, Pelikan M, Raidl G, Soule T, Tyrrell
A, Watson J-P, Zitzler E (eds) (2005) Proceedings of the genetic
and evolutionary computation conference, GECCO-2005. ACM,
Washington

Booker L, Goldberg DE, Holland JH (1989) Classifier systems and
genetic algorithms. Artif Intell 40(1–3):235–282

Booker LB (2000) Do we really need to estimate rule utilities in classi-
fier systems? In: Lanzi P-L, Stolzmann W, Wilson SW (eds) Learn-
ing classifier systems. From foundations to applications, vol. 1813
of Lecture Notes in Artificial Intelligence, pp 125–142. Springer,
Berlin

Boutilier C, Dearden R, Goldszmidt M (1995) Exploiting structure in
policy construction. In: Proceedings of the fourteenth international
joint conference on artificial intelligence (IJCAI-95), Montreal, pp
1104–1111

Boutilier C, Dearden R, Goldszmidt M (2000) Stochastic dynamic
programming with factored representations. Artif Intell 121(1):
49–107

Bull L (1998) On ZCS in multi-agent environments. Lect Notes Com-
put Sci 1498:471–479

Bull L (1999) On using ZCS in a simulated continuous double-auction
market. In: Banzhaf W, Daida J, Eiben AE, Garzon MH, Honavar
V, Jakiela M, Smith RE (eds) Proceedings of the 1999 genetic and
evolutionary computation conference workshop program. Morgan
Kaufmann, San Francisco, pp 83–90

Bull L (2004a) A simple payoff-based learning classifier system.
In: Yao X, Burke E, Lozano JA, Smith J, Merelo-Guervós JJ,
Bullinaria JA, Rowe J, Tino P, Kabán A, Schwefel H-P (eds)
Proceedings of parallel problem solving from nature (PPSN VIII).
Springer, Heidelberg

Bull L (ed) (2004b) Applications of learning classifier systems.
Springer, Heidelberg

Bull L (2005) Two simple learning classifier systems. In: Bull L,
Kovacs T (eds) Foundations of learning classifier systems.
Springer, Heidelberg

Bull L, Hurst J (2002) ZCS redux. Evol Comput 10(2):185–205
Butz M, Kovacs T, Lanzi PL, Wilson SW (2004) Toward a theory

of generalization and learning in xcs. IEEE Trans Evol Comput
8(1):28–46

Butz M, Pelikan M, Llorà X, Goldberg DE (2006) Automated global
structure extraction for eeffective local building block processing
in XCS. J Evol Comput (to appear)

Butz MV (2002) An algorithmic description of ACS2. In: Lanzi P-L,
Stolzmann W, Wilson SW (eds)Advances in learning classifier sys-
tems, vol 2321 of Lecture Notes in Artificial Intelligence. Springer,
Berlin, pp 211–229

Butz MV, Goldberg DE (2003) Generalized state values in an anticipa-
tory Learning Classifier System. In Butz MV, Sigaud O, Gérard P
(eds) LNAI 2684: anticipatory behavior in adaptive learning sys-
tems. Springer, Heidelberg, pp 281–301

Butz MV, Goldberg DE, Lanzi PL (2003a) Gradient descent meth-
ods in learning classifier systems: improving XCS performance in
multistep problem. Technical report 2003028, IlliGAL

Butz MV, Goldberg DE, Stolzmann W (2000) Introducing a genetic
generalization pressure to the Anticipatory Classifier Systems
part I: Theoretical approach. In: Whitley LD, Goldberg DE,
Cantú-Paz E, Spector L, Parmee IC, Beyer H-G (eds) (2000) Pro-
ceedings of the genetic and evolutionary computation conference
(GECCO00). Morgan Kaufmann, San Francisco, pp 34–41. Also
Technical Report 2000005 of the Illinois Genetic Algorithms
Laboratory

Butz MV, Sastry K, Goldberg DE (2003b) Tournament selection: stable
fitness pressure in XCS. In: Cantú-Paz E, Foster JA, Deb K, Davis
D, Roy R, O’Reilly U-M, Beyer H-G, Standish R, Kendall G,
Wilson S, Harman M, Wegener J, Dasgupta D, Potter MA, Schultz
AC, Dowsland K, Jonoska N, Miller J (eds) Genetic and evolution-
ary computation—GECCO-2003, vol 2724 of LNCS. Springer,
Berlin, pp 1857–1869

Butz MV, Wilson SW (2002) An algorithmic description of XCS. J Soft
Comput 6(3–4):144–153

Cantu-Paz E, Foster JA, Deb K, O’Reilly U-M, Beyer H-G, Standish R,
Kendall G, Wilson S, Harman M, Weneger J, Dasgupta D, Potter
MA, Schultz AC, Dowsland KA, Jonoska N, Miller J (eds) (2003)
Proceedings of the 2003 genetic and evolutionary computation
conference workshop program, Chicago. Springer, Berlin

Cao YJ, Ireson N, Bull L, Miles R (1999) Design of a traffic junction
controller using a classifier system and fuzzy logic. In Reusch B
(ed) Proceedings of the sixth international conference on compu-
tational intelligence, theory and applications (6th fuzzy days), vol
1625 of LNCS. Springer, Berlin, pp 342–353

Cao YJ, Ireson N, Bull L, Miles R (2001) An evolutionary intelligent
agents approach to traffic signal control. Int J Knowl based Intell
Eng Syst 5(4):279–289

Cliff D, Ross S (1994) Adding memory to ZCS. Adapt Behav 3(2):101–
150

Deb K, Poli R, Banzhaf W, Beyer H-G, Burke E, Darwen P, Dasgupta
D, Floreano D, Foster JA, Harman M, Holland O, Lanzi P-L,
Spector L, Tettamanzi A, Thierens D, Tyrrell A (eds) (2004)
Proceedings of the 2004 genetic and evolutionary computation
conference workshop program, Seattle. Springer, Berlin

Degris T, Sigaud O, Wuillemin P-H (2006a) Chi-square tests driven
method for learning the structure of factored mdps. In: Proceed-
ings of the 22nd uncertainty in artificial intelligence conference
(UAI’2006). MIT, Massachussetts, pp 122–129

Degris T, Sigaud O, Wuillemin P-H (2006b) Learning the structure
of factored markov decision processes in reinforcement learning
problems. In: Proceedings of the 23rd international conference on
machine learning (ICML’2006). CMU, Pensylvania, pp 257–264

Dorigo M, Bersini H (1994) A comparison of Q-learning and clas-
sifier systems. In: Cliff D, Husbands P, Meyer J-A, Wilson SW
(eds) From animals to animats 3 MIT, Cambridge, pp 248–
255

Drugowitsch J, Barry A (2006) Towards convergence of learning clas-
sifier systems value iteration. Technical report CSBU-2006-03,
Department of Computer Science, University of Bath

Gérard P, Meyer J-A, Sigaud O (2005) Combining latent learning
with dynamic programming in MACS. Euro J Oper Res 160:
614–637

123

Learning classifier systems: a survey 1077

Gérard P, Sigaud O (2003) Designing efficient exploration with
MACS: Modules and function approximation. In: Proceedings
of the genetic and evolutionary computation conference 2003
(GECCO’03), Chicago. Springer, Berlin, pp 1882–1893

Gérard P, Stolzmann W, Sigaud O (2002) YACS: a new learning clas-
sifier system with anticipation. J Soft Comput Spl Issue Learn
Classif Syst 6(3-4):216–228

Golberg DE, Holland JH (1988) Guest editorial: genetic algorithms
and machine learning. Mach Learn 3:95–99

Goldberg DE (1989) Genetic algorithms in search, optimization,
machine learning. Addison Wesley, Reading

Herbart JF (1825) Psychologie als Wissenschaft neu gegründet auf
Erfahrung, Metaphysik und Mathematik. Zweiter, analytischer
Teil. August Wilhem Unzer, Koenigsberg, Germany

Hoffmann J (1993) Vorhersage und Erkenntnis [Anticipation and Cog-
nition]. Hogrefe, Göttingen

Holland JH (1975) Adaptation in natural and artificial systems: an
introductory analysis with applications to biology, control, artifi-
cial intelligence. University of Michigan Press, Ann Arbor

Holland JH (1986) Escaping brittleness: the possibilities of general-
purpose learning algorithms applied to parallel rule-based systems.
In: Machine learning, an artificial intelligence approach (vol II).
Morgan Kaufmann, San Francisco

Holland JH, Holyoak KJ, Nisbett RE, Thagard PR (1986) Induction.
MIT, Cambridge

Holland JH, Reitman JS (1978) Cognitive systems based on adaptive
algorithms. Pattern Direct Infer Syst 7(2):125–149

Holmes JH (2002) A new representation for assessing classifier per-
formance in mining large databases. In: Stolzmann W, Lanzi P-L,
Wilson SW (eds) IWLCS-02. Proceedings of the international
workshop on learning classifier systems, LNAI, Granada. Springer,
Berlin

Kovacs T (2002) Learning classifier systems resources. J Soft Comput
6(3-4):240–243

Kovacs T (2004) Strength or accuracy: credit assignment in learning
classifier systems. Springer, Berlin

Landau S, Sigaud O (2006) A comparison between ATNoSFERES and
LCSs on non-Markov problems. Inform Sci (to appear)

Landau S, Sigaud O, Schoenauer M (2005) ATNoSFERES revisited.
In: Beyer H-G, O’Reilly U-M, Arnold D, Banzhaf W, Blum C,
Bonabeau E, Cantú Paz E, Dasgupta D, Deb K, Foster J, de Jong
E, Lipson H, Llora X, Mancoridis S, Pelikan M, Raidl G,
Soule T, Tyrrell A, Watson J-P, Zitzler E (eds) Proceedings of the
genetic and evolutionary computation conference, GECCO-2005,
Washington. ACM, pp 1867–1874

Langdon WB, Cantu-Paz E, Mathias K, Roy R, Davis D, Poli R,
Balakrishnan K, Honavar V, Rudolph G, Wegener J, Bull L, Potter
MA, Schultz AC, Miller JF, Burke E, Jonoska N (eds) (2002) Pro-
ceedings of the genetic and evolutionary computation conference,
GECCO 2002, New York. Morgan Kaufmann, San Francisco

Lanzi P-L (1998) Adding memory to XCS. In: Proceedings of the IEEE
conference on evolutionary computation (ICEC98). IEEE Press

Lanzi P-L (2002) Learning classifier systems from a reinforcement
learning perspective. J Soft Comput 6(3–4):162–170

Lanzi P-L, Loiacono D, Wilson S, Goldberg DE (2006) Classifier pre-
diction based on tile coding. In: Proceedings of the 2006 genetic
and evolutionary computation conference workshop program
(GECCO 2006). Seattle, Washington, pp 1497–1504

Lanzi P-L, Perrucci A (1999) Extending the representation of classifier
conditions part ii: from messy coding to s-expressions. In: Banzhaf
W, Daida J, Eiben AE, Garzon MH, Honavar V, Jakiela M, Smith
RE (eds) Proceedings of the genetic and evolutionary computa-
tion conference (GECCO 99), Orlando. Morgan Kaufmann, San
Francisco, pp 345–352

Lanzi P-L, Riolo RL (2000) A roadmap to the last decade of learning
classifier systems research (from 1989 to 1999). In: Lanzi P-L,

Stolzmann W, Wilson SW (eds) Learning classifier systems: from
foundations to applications. Springer, Heidelberg, pp 33–62

Lanzi P-L, Stolzmann W, Wilson SW (eds) (2000) Learning classifier
systems. From Foundations to Applications, vol 1813 of Lecture
Notes in Artificial Intelligence. Springer, Berlin

Lanzi P-L, Stolzmann W, Wilson SW (Eds.) (2001) Advances in learn-
ing classifier systems, vol 1996 of Lecture Notes in Artificial Intel-
ligence. Springer, Berlin

Lanzi P-L, Stolzmann W, Wilson SW (eds) (2002a) Advances in learn-
ing classifier systems, vol 2321 of Lecture Notes in Artificial Intel-
ligence. Springer, Berlin

Lanzi P-L, Stolzmann W, Wilson SW (eds) (2002b) Proceedings
of the international workshop on learning classifier systems
(IWLCS2002), Granada

Llorà X, Garrell JM (2002) Co-evolving different knowledge repre-
sentations with fine-grained parallel learning classifier systems.
In: Langdon WB, Cantu-Paz E, Mathias K, Roy R, Davis D, Poli
R, Balakrishnan K, Honavar V, Rudolph G, Wegener J, Bull L,
Potter MA, Schultz AC, Miller JF, Burke E, Jonoska N (eds) Pro-
ceeding of the genetic and evolutionary computation conference
(GECCO2002). Morgan Kaufmann, San Francisco

Miramontes Hercog L, Fogarty TC (2002) Co-evolutionary classifier
systems for multi-agent simulation. In: Fogel DB, El-Sharkawi
MA, Yao X, Greenwood G, Iba H, Marrow P, Shackleton M (eds)
Proceedings of the 2002 congress on evolutionary computation
CEC2002. IEEE Press, pp 1798–1803

Poli R, Langdon WB (1998) Schema theory for genetic program-
ming with one-point crossover and point mutation. Evol Comput
J 6(3):231–252

Puterman ML, Shin MC (1978) Modified policy iteration algorithms
for discounted markov decision problems. Manage Sci 24:1127–
1137

Riolo RL (1991) Lookahead planning and latent learning in a Classifier
System. In Meyer J-A, Wilson SW (eds) From animals to animats:
proceedings of the first international conference on simulation of
adaptative behavior. MIT, Cambridge, pp 316–326

Robert G (2005) MHiCS, une architecture de Sélection de l’Action
Motivationnelle et Hiérarchique à Systèmes de Classeurs pour Per-
sonnages Non Joueurs Adaptatifs. PhD thesis, Laboratoire d’In-
formatique de Paris 6

Sanchez S (2004) Mécanismes évolutionnistes pour la simulation com-
portementale d’acteurs virtuels. PhD thesis, Université de Siences
Sociales Toulouse 1, Toulouse

Sanza C (2001) Evolution d’entités vituelles cooperatives par systèmes
de classifieurs. PhD thesis, Université Paul Sabatier, Toulouse

Seward JP (1949) An experimental analysis of latent learning. J Exp
Psychol 39:177–186

Sigaud O, Gourdin T, Wuillemin P-H (2004) Improving MACS thanks
to a comparison with 2TBNs. In: Proceedings of the genetic
and evolutionary computation conference, GECCO’04. Springer,
Berlin, pp 810–823

Smith SF (1980) A learning system based on genetic algorithms. PhD
thesis, Department of Computer Science, University of Pittsburg,
Pittsburg

Spector LD, GE, Wu A, Langdon WB, Voigt HM, Gen M (eds) (2001)
Proceedings of the genetic and evolutionary computation confer-
ence (GECCO01). Morgan Kaufmann, San Francisco

Stolzmann W (1998) Anticipatory classifier systems. In Koza J,
Banzhaf W, Chellapilla K, Deb K, Dorigo M, Fogel DB, Garzon
MH, Goldberg DE, Iba H, Riolo R (eds) Genetic programming.
Morgan Kaufmann, San Francisco, pp 658–664

Stolzmann W, Lanzi P-L, Wilson SW (eds) (2002) Proceedings
of the international workshop on learning classifier systems
(IWLCS2003), Chicago

Stone C, Bull L (2003) Towards learning classifier systems for con-
tinuous-valued online environments. In: Cantú-Paz E, Foster JA,

123

1078 O. Sigaud, S. W. Wilson

Deb K, Davis D, Roy R, O’Reilly U-M, Beyer H-G, Standish R,
Kendall G, Wilson S, Harman M, Wegener J, Dasgupta D, Potter
MA, Schultz AC, Dowsland K, Jonoska N, Miller J (eds) Genetic
and evolutionary computation—GECCO-2003. Springer, Berlin,
pp 1924–1925

Sutton RS (1990) Planning by incremental dynamic programming. In:
Proceedings of the eighth international conference on machine
learning, San Mateo. Morgan Kaufmann, San Francisco pp 353–
357

Sutton RS (1996) Generalization in reinforcement learning: successul
examples using sparse coarse coding. In: Touretzky DS, Mozer
MC, Hasselmo ME (eds) Advances in neural information process-
ing systems: proceedings of the 1995 conference. MIT, Cambridge
pp 1038–1044

Sutton RS, Barto AG (1998) Reinforcement learning: an introduction.
MIT, Cambridge

Tolman EC (1932) Purposive behavior in animals and men. Appletown,
New York

Tomlinson A, Bull L (1998) A corporate classifier system. In: Eiben
AE, Bäck T, Shoenauer M, Schwefel H-P (eds) Proceedings of the
fifth international conference on parallel problem solving from
nature—PPSN V, no. 1498 in LNCS, Springer, Berlin pp 550–559

Tomlinson A, Bull L (2000) CXCS. In: Lanzi P-L, Stolzmann W,
Wilson SW (eds) Learning classifier systems: from foundations
to applications. Springer, Heidelberg, pp 194–208

Watkins CJCH (1989) Learning with delayed rewards. PhD thesis,
Psychology Department, University of Cambridge, England

Whitley LD, Goldberg DE, Cantú-Paz E, Spector L, Parmee IC,
Beyer H-G (eds) (2000) Proceedings of the genetic and evolution-
ary computation conference (GECCO00). Morgan Kaufmann, San
Francisco

Wilson SW (1985) Knowledge growth in an artificial animat. In:
Grefenstette JJ (Ed.) Proceedings of the 1st international confer-
ence on genetic algorithms and their applications (ICGA85), pp
16–23. LE. Associates

Wilson SW (1994) ZCS, a zeroth level classifier system. Evol Comput
2(1):1–18

Wilson SW (1995) Classifier fitness based on accuracy. Evol Comput
3(2):149–175

Wilson SW (2000) Get real! XCS with continuous-valued inputs. In:
Lanzi P-L, Stolzmann W, Wilson SW (eds) LNAI 1813: From
foundations to applications. Springer, Berlin, pp 209–220

Wilson SW (2001) Function approximation with a classifier system.
In: Spector L, D GE, Wu A, Langdon WB, Voigt HM, Gen M (eds)
Proceedings of the genetic and evolutionary computation confer-
ence (GECCO01). Morgan Kaufmann, San Francisco, pp 974–981

Wilson SW (2004) Classifier systems for continuous payoff envi-
ronments. In: LNCS 3103: learning classifier systems. Springer,
Heidelberg, pp 824–835.

Wilson SW, Goldberg DE (1989) A critical review of classifier sys-
tems. In: Proceedings of the third international conference on
genetic algorithms, Los Altos, California. Morgan Kaufmann, San
Francisco, pp 244–255

123

	Learning classifier systems: a survey
	Abstract
	Introduction
	Background
	Genetic algorithms
	Markov decision processes and reinforcement learning
	Markov decision processes
	Reinforcement learning
	Brief history of LCS
	Pittsburgh versus Michigan
	The renewal
	Fundamental aspects
	Classifier formalism
	Action selection
	Classifier population evolution
	Strength-based systems: ZCS
	Presentation
	Action selection
	Classifier evaluation
	Classifier creation and deletion
	Parameters
	Recent evolution
	Accuracy-based systems: XCS
	Presentation
	Action selection
	Classifier evaluation
	Classifier creation and deletion
	Parameters
	Recent evolution
	Anticipation-based systems: ALCSs
	Presentation
	Action selection
	Classifier evaluation
	Classifier creation and deletion
	Recent evolution
	Trends and future directions
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

