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Abstract This paper proposes a new grammar-guided
genetic programming (GGGP) system by introducing
two original genetic operators: crossover and mutation,
which most influence the evolution process. The first,
the so-called grammar-based crossover operator, strikes
a good balance between search space exploration and
exploitation capabilities and, therefore, enhances
GGGP system performance. And the second is a gram-
mar-based mutation operator, based on the crossover,
which has been designed to generate individuals that
match the syntactical constraints of the context-free
grammar that defines the programs to be handled. The
use of these operators together in the same GGGP
system assures a higher convergence speed and less
likelihood of getting trapped in local optima than other
related approaches. These features are shown through-
out the comparison of the results achieved by the pro-
posed system with other important crossover and
mutation methods in two experiments: a laboratory prob-
lem and the real-world task of breast cancer prognosis.

Keywords Grammar-guided genetic programming ·
Crossover · Mutation · Breast cancer prognosis

1 Introduction

Genetic programming (GP) is a means of automatically
generating computer programs by employing operations
inspired by biological evolution (Koza 1992). First, the
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initial population is randomly generated, and then
genetic operators, such as selection, crossover, mutation
and replacement are executed to breed a population of
trial solutions that improves over time (Langdon and
Poli 2001). The crossover operator bears most responsi-
bility for the acceptable evolution of the genetic pro-
gramming algorithm, because it governs most of the
search process (evolution) (Escridge and Hougen 2004).
The mutation operator produces small random changes
in an individual to engender a new one and continue the
search process. This prevents the loss of genetic diver-
sity in the population, which is highly significant in the
genetic convergence process (Lee and Yao 2004).

Grammar-guided genetic programming (GGGP) is
an extension of traditional GP systems whose goals
are (Whigham 1996; Wong and Leung 1995) to provide
knowledge about the problem to be solved to simplify
the search space and solve the closure problem. This
problem involves always generating valid individuals
(points or possible solutions that belong to the search
space). This directly concerns the crossover and muta-
tion operators, which are the ones that generate new
individuals. To solve the closure problem, GGGP em-
ploys a context-free grammar (CFG), which establishes
a formal definition of the syntactical restrictions of the
problem to be solved and its possible solutions. Each
of the individuals handled by GGGP is a derivation
tree that generates and represents a sentence (solution)
belonging to the language defined by the CFG (O’Neil
and Ryan 2003; Manrique et al. 2005).

This paper proposes two new genetic operators for
the GGGP paradigm. First, a crossover operator, called
grammar-based crossover (GBC), boosts the explora-
tion capacity of the genetic system when ambiguous
grammars are used. This it does, because, unlike other
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crossover operators, any node of the second parent able
to generate valid offspring is eligible. The second oper-
ator, a mutation operator, called grammar-based muta-
tion (GBM), is able to generate new valid individuals by
randomly substituting an individual subtree for another
randomly generated subtree that may have a different
root.

The Sect. 7 shows that the use of these two opera-
tions jointly in a GGGP system provides faster conver-
gence speed and is less likely to get trapped in local
optima as compared with other commonly used cross-
over and mutation operators. Two experiments have
been carried out. The first is the genetic programming of
a laboratory problem. This test, which is not extremely
complex, shows up the above-mentioned features of the
proposed algorithms as compared with the others. The
second experiment shows the successful application of
the proposed GGGP system to the real-world problem
of breast cancer prognosis. It involves analyzing sus-
picious masses and microcalcifications in breast tissue
suspected of being carcinomas. The training and test
patterns have been extracted from a database of real
patients stored at a university hospital in Madrid.

2 Other related crossover and mutation operators

One of the first important GP crossover operators was
defined by Koza (KX) (1992). This approach randomly
swaps subtrees in both parent trees to generate the off-
spring. The main disadvantage of this operator is that
individuals grow in size and complexity during the evo-
lution process, which implies a very high computational
cost, detracting enormously from convergence speed
(Terrio and Heywood 2002). This effect is known as
bloat or code bloat and is produced by an excessive
exploration capability of the crossover (Manrique et al.
2006).

The strong context preservative crossover operator
(SCPC) was proposed to preserve the context in which
the subtrees appear in the parent trees and control the
code bloat (D’haesler 1994). To achieve this goal, we
have to define a system of coordinates for each of the
nodes of the parent trees. Only those nodes that have
the same coordinates are possible candidates to be cho-
sen for crossing (subtrees swapping). It may occur with
this approach that a parent subtree never changes posi-
tion, which makes it impossible to move certain building
blocks to other parts of the tree. This encourages build-
ing blocks to evolve in a specific region of the search
space independently, increasing the exploitation capa-
bility of the search process a lot and thus multiplying

the likelihood of getting trapped in local optima
(Barrios et al. 2003).

There are also studies about the origin of the bloat
phenomenon. Some research works state that there are
more large than small individuals with good fitness in the
search space. Therefore, large and well-adapted individ-
uals are highly likely to be selected for crossing
(Langdon and Poli 1997). Following this line of reason-
ing, it has been observed that the fitness of the indi-
viduals is penalized when large subtrees are eliminated;
however, this does not occur when the subtrees intro-
duced (called introns) do not improve the solution to
the problem to be solved (Soule and Foster 1998). The
notion of intron stems from microbiology and has been
translated to evolutionary computation, where introns
are segments of code within an individual that neither
add nor detract from its fitness. However, introns are on
the side of the convergence process as they improve the
likelihood of preserving well-adapted building blocks.
Recent studies report that the bloat phenomenon origi-
nates from the use of an inadequate crossover operator
that chooses deeper and deeper crossover nodes as the
algorithm evolves. This effect produces an offspring that
is larger than its parents (Luke 2000b). Current research
concerns the design of new algorithms capable of reg-
ulating tree growth (Panait and Luke 2004; Silva and
Almeida 2003).

One of the most representative crossover operators,
specially designed to prevent code bloat, is the Fair
crossover (Crawford-Marks and Spector 2002), which
is a modified version of the operator proposed by
Langdon (1999). The Fair crossover works as follows.
First, a crossover node in the first parent is selected ran-
domly, and the length l of the subtree from this crossover
node to the leaves is calculated. Then, a node from the
second parent is selected randomly, and the length of
the second subtree l2, is calculated. If l2 is in the range
[l − l/4, l + l/4], then the two subtrees are swapped.
Otherwise, a crossover node in the second parent is se-
lected randomly and the same check is run again. After n
unsuccessful attempts, the subtree whose length is closer
to the range [l − l/4, l + l/4] is selected as the crossover
node of the second parent. The advantage of this oper-
ator over Langdon’s crossover is that it yields similar
results in terms of code bloat limitation and is simpler
to implement. But both have two key disadvantages: (a)
the size distribution of the subtrees replaced in the pop-
ulation is not uniform, and (b) its exploration capability
is low because of an excessive control of tree size. This
slows down the system in its progress towards larger ar-
eas of the search space and, therefore, increases the time
it takes to find solutions to which it can converge.
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One of the most representative crossover operators
for working with GGGP was proposed by Whigham
(WX) (1995). It is still now in use because of its good
performance (Grosman and Lewin 2004; Hussain 2003;
Rodrigues and Pozo 2002). This operator, which assures
the generation of valid offspring, randomly chooses a
node representing a non-terminal symbol, called cross-
over node, from the first parent (derivation tree). Then,
another node labeled with the same non-terminal sym-
bol is selected in the second parent. Finally, both sub-
trees below the selected nodes are swapped. However,
this operator has the disadvantage of not properly
exploring the search space when ambiguous CFG are
used (Hoai and McKay 2002). In this case, there are
more non-terminal symbols, apart from the one selected
in the first parent, that can be selected in the second par-
ent to perform the crossing and generate valid offspring.

GGGP usually employs the Standard mutation oper-
ator, which substitutes the subtree whose root is the
mutation node for another subtree whose symbol in
the root node coincides with the one in the mutation
node (Wong and Leung 2000). This constraint on match-
ing non-terminal symbols has a negative impact on the
exploration capacity of the operator when an ambiguous
CFG is used.

3 Theoretical background

A context-free grammar G is defined as a string-rewiring
system comprising a 4-tuple G = (�N , �T , S, P)/�N ∩
�T = Ø, where �N is the alphabet of non-terminal sym-
bols, �T is the alphabet of terminal symbols, S represents
the start symbol or axiom of the grammar, and P is the
set of production rules, written in BNF (Backus-Naur
Form).

Based on this grammar, the individuals that are part
of the genetic population are defined as derivation trees,
where the root is the axiom S, the internal nodes con-
tain only non-terminal symbols and the external nodes
(leaves) contain only terminal symbols. A derivation
tree represents the series of derivation steps that gener-
ate a sentence, which is a possible solution to the prob-
lem. Therefore, an individual codifies a sentence of the
language generated by the grammar as a derivation tree.
A sentence is ambiguous if it can be obtained by differ-
ent derivation trees. A grammar G is ambiguous if any
sentence that belongs to the language defined by the
grammar is ambiguous.

G = (�N , �T , S, P) :

�N = {S, E, F, N}
�T = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, +, −, =}

Fig. 1 An individual representing the sentence 3 + 4 = 7 of the
grammar Eq. 1

P = {S ::= E = N; E

::= E + E|E-E|F + E|F − E|N; F ::= N

N :: = 0|1|2|3|5|6|7|8|9} (1)

As an example, which, for clarity’s sake, will be used
throughout this paper, a CFG is defined in Eq. 1. This
CFG represents arithmetic equalities with sums and sub-
tractions of one-digit integer numbers on the left side of
the equality and a one-digit integer number on the right
side.

Figure 1 shows the representation of the derivation
tree of the individual 3 + 4 = 7, which belongs to the
grammar G defined in Eq. 1.

The grammar is ambiguous because there are sen-
tences for which it is possible to find more than one
derivation tree. Figure 2 shows that sentence 3 + 4 = 7
can be obtained from two different derivation trees.

Any GGGP system is able to find solutions to any
problem whose syntactic restrictions can be formally
defined by a context-free grammar. An appropriate eval-
uation function F, should be defined. This provides a fit-
ness value for each of the possible solutions generated
to drive the search process. The input for F is any of the
individuals of the population, and its output provides
a fitness measure that indicates how good the solution
codified by the individual is for the problem at hand.

The evaluation function taken for the proposed exam-
ple calculates the absolute value of the difference
between the left and right sides of the expression so the
optimal solution has a fitness of 0, which is, for example,
the case of the individual 3 + 4 = 7.
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Fig. 2 Representation of two different derivations for the sen-
tence 3 + 4 = 7

4 The proposed GGGP system

The structure of the new GGGP system is shown in
Fig. 3 and consists of two modules: the evolution engine
and the evaluation. The input for the evolution engine
module is the grammar that defines the search space
of the problem. First, PCT2 is used to generate the
random initial population of trees, guaranteeing that
generated trees will be around an expected and previ-
ously established depth (Luke 2000a). This approach,
defined in the context of traditional genetic program-
ming, is designed to the fast creation of programs as
LISP-like program-trees of function nodes. This algo-
rithm always generates valid programs (trees) starting
from a function set F, divided into two disjoint sets:
terminals (leaf nodes) �T , and non-terminals (interior
nodes) �N . This algorithm has been easily adapted to the
proposed GGGP system by randomly (same selection

probability) executing the production rules defined in
the CFG.

Once we have the initial population, the evolution
engine module employs the genetic operators (selec-
tion, crossover, mutation and replacement) to search
for the optimal solution, successively generating popu-
lations whose individuals are more and more adapted to
the problem to be solved.

The selection operator employs the tournament
method. Then, the proposed GBC, detailed in Sect. 5,
is applied with a previously established probability to
engender two new individuals (derivation trees) from
two parents. GBM, detailed in Sect. 6, is applied to the
offspring with a given probability. Finally, the SSGA
(Grosman and Lewin 2004) replacement operator takes
the individuals in that population that represent the
worse solutions and replaces them with better-adapted
offspring.

The input for the evaluation module is an evalua-
tion function used to calculate the fitness of each of
the individuals generated and the mean fitness of the
entire population. To do so, a decodification process is
implemented. This process involves concatenating the
terminal symbols included in the leaves of the deriva-
tion tree to get the original sentence. The output of the
evaluation module is the fitness of each individual.

5 Crossover operator: grammar-based crossover

The grammar-based crossover operator (GBC) is a
general-purpose operator to solve problems with the
GGGP paradigm. GBC has three significant charac-
teristics: it prevents code bloat, provides an adequate
trade-off between search space exploration and exploi-
tation capabilities and, finally, is able to improve con-
vergence speed by taking advantage of the main feature
of ambiguous grammars: the existence of more than one

Fig. 3 The grammar-guided
genetic programming system
schema. The algorithms and
operators proposed are
represented as grey boxes
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Fig. 4 Two individuals that belong to the grammar of Eq. 1. The
nodes with non-terminal symbols are labeled with their respective
coordinates

derivation tree for a single sentence. All these charac-
teristics together provide GBC with a high convergence
speed in terms of number of generations needed to reach
the convergence and less likelihood of getting trapped
in local optima, what leads to better solutions.

As a result, GBC produces two new valid individuals
(derivation trees), starting from another two (parents)
taken from the population by means of thirteen steps
described below. An example is also given detailing the
steps of how to apply the proposed crossover operator
to two derivation trees, shown in Fig. 4. These trees cor-
respond to two individuals that belong to the grammar
of Eq. 1.

(1) Identify each of the nodes of the derivation trees
that contain non-terminal symbols, except the
root, by means of the tuple N = (Z, coord), where
Z is the non-terminal symbol and coord is the
coordinate of the node in the derivation tree.
This is the notation used by the SCPC crossover
operator. Label one of the two derivation trees as
first parent and create the NT set (non-terminals)
formed by the labeled nodes within this first par-
ent. Figure 4 shows the derivation trees labeled
with their node coordinates.

(2) If NT �= Ø, then select an element of this set
at random. This element is called crossover node
(CN1). If NT = Ø, then it is not possible to cross
the two parents in any other place except the root
node. This results in two new offspring that are
identical to the parents. For the proposed exam-
ple, suppose that CN1 = (E, (1, 1)), shaded grey
in Fig. 5, has been chosen at random.

Fig. 5 Crossover node (grey), parent node (arrow) and main der-
ivation (dashed line)

(3) Get the parent node of the crossover node. This
parent node has always a non-terminal symbol A,
since we are dealing with a CFG. This symbol is
the antecedent of one or more production rules of
the grammar. The consequents of all productions
whose antecedent is A are stored in the array R.
As shown in Fig. 5, the parent node of (E(1, 1))

has the non-terminal symbol E and the conse-
quents of all the production rules in which E is an
antecedent in the Eq. 1 grammar are stored in R.
Therefore, R = [E + E, E − E, F + E, F − E, N].

(4) Calculate the tuple T = (l, p, α), where α is the
consequent of the main derivation (A ::= α),
referred to as the derivation that produces the
parent node of CN1 in the first parent’s deriva-
tion tree. The length of the main derivation l, is
defined as the number of terminal and non-ter-
minal symbols included in α. And p is the position
of the crossover node in the main derivation. The
tuple is T = (3, 1st, E + E) in this case.

(5) Remove from the array R all those consequents
whose length is different from 1. Therefore, R =
[E + E, E − E, F + E, F − E] in the example.

(6) For each element of R, compare all its symbols
with those of the consequent of the main deriva-
tion except for the one whose position (p) is the
same as the crossover node. Then remove from
R all those consequents in which any difference
has been detected.
The consequents E − E and F − E are eliminated
from R in the case in point, since the terminal
symbol “-” is not present in the main derivation
and hence R = [E + E, F + E].

(7) Calculate the set X, formed by all those symbols
of the consequents within R that are in position p.
In this case, X = [E, F].
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Fig. 6 An example of the grammar-based crossover operator

(8) If X �= Ø, then select a symbol CS randomly. Then
calculate the set PN formed by all the nodes of
the second parent containing the symbol CS. If
X = Ø, then there are no possible crossover
nodes in the second parent that generate valid
individuals with CN1. Therefore, remove this sym-
bol from the NT set and go back to step 2.
In the proposed example, the crossover node of
the second parent is generated by randomly choos-
ing a node whose non-terminal symbol is E or F.
Supposing that we choose CS = F, we calculate
the PN set that is composed of all the nodes of
the second parent containing the non-terminal F,
PN = {(F,(1,1,1))}.

(9) If PN �= Ø, choose a CN2 element randomly,
which corresponds to the crossover node of the
second parent. If PN = Ø, then remove CS from
the set X and go back to step 8.
Following the example, there is only one possible
choice of crossover node for the second parent:
CN2 = (F, (1, 1, 1)). This node is shaded grey in
Fig. 6.

(10) Calculate P1 as the sum of the depth of node
CN1 in the first parent plus the depth of the sub-
tree whose root is CN2 in the second parent. In
this context, the depth of a node is measured as
the number of levels existing from the root to
this node, excluding the root. So, node CN1 is at
depth 2. The other term used is the depth of a
tree, measured as the number of levels there are
in the tree from the root to the deepest leaf. So,
the tree in Fig. 1 has depth 4.
Similarly as P1, calculate P2 as the sum of the
depth of node CN2 in the second parent plus
the depth of the subtree whose root is CN1 in

the first parent. If P1 or P2 exceed the value of
the maximum permitted depth for an individual
(D), then remove CN2 from the PN set and go
back to step 9.
In the case under study, P1 = 2+2 and P2 = 3+2
are calculated. Suppose that the permitted maxi-
mum depth is D = 5, then P1, P2 ≤ 5. Therefore,
it is possible to cross the nodes CN1 and CN2.

(11) If the non-terminal symbols of CN1 and CN2
match, then generate the two new offspring by
swapping the two subtrees whose roots are CN1
and CN2.

(12) Otherwise, get the derivation generated by the
parent node of CN2 in the tree and substitute the
symbol CN2 for the symbol CN1 in this deriva-
tion.
Since the non-terminal symbol of CN1 is differ-
ent from that of CN2, the derivation generated
by the parent node of CN2, E ::= F + E, must
be calculated. Then substitute the symbol F for
the non-terminal symbol of CN1, thus giving the
consequent: E + E.

(13) If the derivation resulting from the previous step
matches any consequent of the grammar produc-
tion rules, then the crossing can be done by swap-
ping the two subtrees whose roots are CN1 and
CN2. Otherwise, remove CN2 from the PN set
and go back to step 9.

Since the consequent E + E output in step 12 of
our case study is a member of the set of consequents
of the grammar production rules, all the requirements
needed to cross nodes CN1 and CN2, which match the
non-terminal symbols E and F, are met. Figure 6 shows
the result of applying this operation.
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The example given alongside this algorithm is a
perfect illustration of GBCs ability to consider all pos-
sible nodes of the second parent that can generate valid
individuals. This is a very significant characteristic, not
shared by other important operators, such as WX, which
prevents them from exploring points of the search space
that could lead towards the sought-after solution. In the
very example proposed, GBC is able to arrive at the final
solution because it can choose the node with the non-
terminal symbol F in the second parent. Conversely,
none of the possible options of crossing with WX are
optimal solutions of the problem, because it is compul-
sory to choose crossover nodes in the second parent with
the non-terminal symbol E : 3+2+4 = 7, 2+4 = 7, 3+
2−4+4 = 7, 4+4 = 7; 6−4 = 8, 3+6−4 = 8, 3+2−6 = 8
and 6 = 8.

6 Mutation operator: grammar-based mutation

A new mutation operator, termed grammar-based muta-
tion (GBM), is defined based on the algorithm proposed
for the GBC. Given an individual (derivation tree) to be
mutated, and having randomly chosen the node where
the mutation is to take place (mutation node MN), the
operator can substitute the subtree whose root is the
mutation node for any other that yields a valid deriva-
tion tree as a result.

Like GBC, the proposed mutation operator has an
important characteristic, which distinguishes it from
other operators, and this is the possibility of changing the
non-terminal symbol of the mutation node. This gives it
a greater capacity of exploring the search space, thus
helping to decrease the likelihood of getting trapped in
local optima.

The input for the GBM consists of two parameters:
the maximum permitted depth (D) to the individual
once the mutation has taken place; and a list with the

lengths of the grammar productions, which can be
calculated when the initial population is generated. To
do this, the following four definitions are given:

Definition 1 The length of a terminal symbol a ∈ �T is
0. It is denoted L(a) = 0.

Definition 2 The length of a production rule that only
derives terminal symbols is 1. It is denoted L(A ::= a)

= 1, ∀A ∈ �N and ∀a ∈ �∗
T (the closure of set �T).

Definition 3 The length of a production rule A ::= α is
the result of adding one to the maximum of the symbol
lengths constituting the consequent. It is denoted
L(A ::= α).

Definition 4 The length of a non-terminal symbol A is
the minimum of the lengths of all its productions. It is
denoted L(A).

The operator comprises fourteen steps. The first seven
steps of the algorithm are similar to those described for
GBC. The seventh step generates the set X, which is
composed of non-terminal symbols that are the can-
didates for becoming the root of the mutated subtree.
The algorithm is presented like GBC was, i.e. giving an
example detailing the steps. This example illustrates the
process of mutating the derivation tree of expression
6 + 4 = 7 according to the Eq. 1 grammar and taking
D = 4. Figure 7 sums up this process. It shows the list of
production lengths of the grammar in Fig. 7a, whereas
the mutation node is highlighted in grey in Fig. 7b. The
first seven steps produce the same results as for the
example proposed for GBC, that is, the set X = [E, F].
So, we continue with the eighth and subsequent steps:

(8) If X �= Ø, choose a symbol CS randomly. Other-
wise, it is impossible to find a valid mutation in
the node MN so, this node is removed from the
NT set, and go back to step 2. Let CS = F, which
is randomly chosen, for the proposed example.

Fig. 7 Grammar-based mutation of the individual 6 + 4 = 7
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(9) Calculate the mutation length ML, as the
subtraction between the depth of the mutation
node and the maximum permitted depth D. In
our case, the depth of the mutation node is 2 and
D = 4; therefore, ML = 4 − 2 = 2.

(10) Assign value 0 to the current depth, CD = 0.
(11) Get the set PP = {CS::= α}, α ∈ �∗ : �=�NU�T ,

such that CD + L(CS::= α) ≤ ML. If PP = Ø, then
it is not possible to find a mutation to generate a
valid individual with a depth less than D. There-
fore, remove CS from the set X and go back to
step 8.
For the case in point, PP = F::= N, as it satisfies
CD + L (F::= N) ≤ ML, 0 + 2 ≤ 2.

(12) Choose a production CS::= α from PP at random.
The only possibility in our example is to choose
the production F ::= N from the set PP.

(13) For each non-terminal B ∈ α, B ∈ �N, calculate
{B::=β}, β ∈ �∗, such that (CD + 1) + L(B::= β) ≤
ML. A derivation subtree, which does not exceed
ML, is recursively obtained (step 13) from any
production B::= β.
Taking the only non-terminal symbol N from the
production achieved in step 12, the set {N::= 0,
N::= 1, N::= 2, N::= 3, N::= 4, N::= 5, N::= 6, N::= 7,
N::= 8, N::= 9} is generated because it satisfies
CD + 1 + L(N ::= n) ≤ ML; 0 + 1 + 1 ≤ 2, for
all n = 0, 1, . . . , 9. Then the production N::= 3 is
chosen randomly. As this production derives only
terminal symbols, the recursive process finishes
and then we go on to step 14.

(14) The subtree whose root is the mutation node
is substituted for the subtree calculated in steps
11–13.
In the example, the subtree whose root is the
mutation node, represented by dashed lines in the
derivation tree on the left of Fig. 7b, is substituted
for the subtree generated in steps 11–13, illus-
trated with dashed lines in the derivation tree on
the right of Fig. 7b. The new individual generated
after the mutation process is 3 + 4 = 7, which is
valid according to the grammar productions and
is, also, a solution to the problem.

7 Results

In the following, we present and discuss the results
achieved by the proposed operators, which are com-
pared with other operators commonly used within the
genetic programming paradigm.

To do so, two experiments were carried out: the search
for arithmetical equalities (the example used through-
out this paper), whose possible solutions are expressed
by means of the grammar defined in Eq. 1, and a com-
plex classification problem involving providing a breast
cancer prognosis (benign or malignant) from the mor-
phological characteristics of one of the most frequent
type of lesions: masses. The same study has been con-
ducted for microcalcifications, yielding similar results
and findings.

For each experiment, a set of 100 independent runs
was performed to give averaged results. In all cases,
PCT2 was used to initialize the populations. After some
tuning runs with all the different combinations of
crossover and mutation operators, the best results were
achieved with the following settings: the operator rates
are 75% crossover and 5% mutation; tournament with
a size of seven was the selection operator and SSGA
was the replacement method. The same probability is
assigned to each possible alternative when any of the
crossover operators employed has several valid cross-
able symbols. This decision has been made to make the
tests run comparable.

7.1 Search for arithmetical equalities

First, the results achieved by the algorithm in terms
of convergence speed after applying the GBC cross-
over operator together with the GBM mutation opera-
tor were compared with the KX, Fair, SCPC and WX
crossing operators, all of which were combined with the
Standard mutation operator.

Table 1 shows the average number of generations
needed to reach convergence and the standard devi-
ation (SD) when using a population size of 50 and a
maximum permitted depth of individuals (D) of 12.

Table 1 Generations needed
for convergence Crossover operator Mutation operator Averaged generations Standard deviation

KX Standard 26.14 6.85
Fair Standard 16.72 3.69
SCPC Standard 14.59 3.43
WX Standard 13.26 3.45
GBC GBM 11.60 3.41
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Table 2 Post test score

Tukey HSD. Dependent
variable: generations needed
for convergence

Comparisons: (crossover, mutation) Mean difference Significance

(Fair, Standard), (GBC, GBM) 5.12 0.013
(SCPC, Standard), (GBC, GBM) 2.99 0.024
(WX, Standard), (GBC, GBM), 1.66 0.039

Fig. 8 Convergence speed for each crossover and mutation oper-
ator. Search for arithmetical equalities

Similarly, Fig. 8 shows the evolution process for the
average fitness of the population under the same condi-
tions.

Looking at the results, we find that KX is clearly the
operator that provides the slowest convergence speed.
This is due to its excessive exploration capacity resulting
from performing the crossovers completely at random.

For the other four crossover operators, an analysis
of variance has been run to show that the differences
between means are actually meaningful. In this study,
the combination of crossover and mutation operators
serves as the independent variable, while the conver-
gence speed, measured in number of generations needed
to reach the convergence, is the dependent variable.

The null hypothesis (the means are equal) can be
rejected because of the resulting F(df =3/396) of 30.235,
whose significance level is p < 0.01, indicating that the
average number of generations needed for convergence
depends on the crossover and mutation operators em-
ployed.

As there are sizeable differences in convergence
speed depending on the crossover and mutation opera-
tors employed, the Tukey HSD Test was used to make
post hoc comparisons to demonstrate whether there are
statistically significant differences between the proposed
crossover and mutation operators (GBC and GBC) and
the combinations of Fair, SCPC and WX crossovers with
standard mutation. Table 2 shows the significance level
for these multiple comparisons, taking into account that
the significance level for the mean difference is p < 0.05.

From these statistical results (Tables 1, 2; Fig. 8) we
find that SCPC has a high convergence speed in the
early iterations due to its good exploitation capability.
Later on, however, this characteristic slows down the
convergence towards the optimum because of trapping
in local optima. This slowdown increases when the SCPC
works with small-sized populations. Quite the opposite
applies to the Fair crossover operator: it performs bet-
ter when working with small-sized populations. How-
ever, for populations of larger size, as shown in Fig. 8,
it is slightly outperformed by SCPC. Whigham’s opera-
tor (WX) together with the Standard mutation operator
achieves quite good results. Its performance, however,
is poorer than that delivered by the proposed opera-
tors. The combination of GBC and GBM offers the best
results regarding convergence speed in all the tests per-
formed. This is because GBC and GBM are able to take
advantage of the grammar’s ambiguity to explore all
possible paths that lead to the sought-after solution.

GBC has also been combined with Standard muta-
tion under the same conditions as described above. It
yielded an average number of generations to conver-
gence of 12.37 with SD = 3.39. This result shows that
it is not Standard mutation that is hindering the per-
formance of the other combinations, confirms that the
crossover operator is most responsible for the evolution
process and that GBM is on the side of GBC, improving
the convergence speed.

Another significant aspect that can explain why the
proposed operators work well is that the average depth
of the individuals generated with KX, Fair, SCPC and
WX is not evenly distributed. For D = 12, an average
depth between 4.90 for KX and 5.66 for WX is achieved
(discarding all the trees larger than 12). This means that
the individuals generated tend to be small and are, there-
fore, not well distributed. On the contrary, GBC plus
GBM gets an average tree size of 7.30 with a standard
deviation of 3.18. This means that there is more diversity
in size among the individuals that are being generated.

7.2 Breast cancer prognosis

The second experiment involved searching a knowledge
base of fuzzy rules (Bojarczuk et al. 2004) that could give
a prognosis of masses present in breast tissue suspected
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Table 3 Misclassified cases in
training and testing Crossover operator Mutation operator Misclassified cases

Training Testing

KX Standard 105/265 (39.63%) 20/50 (40%)
Fair Standard 101/265 (38.12%) 19/50 (38%)
SCPC Standard 94/265 (36.48%) 18/50 (36%)
WX Standard 73/265 (27.55%) 14/50 (28%)
GBC GBM 58/265 (21.89%) 11/50 (22%)

Fig. 9 Convergence speed for each crossover and mutation oper-
ator. Breast cancer prognosis

of being a carcinoma. This application is part of a larger
project for automatically detecting breast pathologies.
The input for the system built so far is a complete
set of views of digitalized mammograms from both of
the patients’ breasts, which is used to search for suspi-
cious masses, one of the main abnormalities that can be
detected by mammography. The output is a set of charac-
teristics for each abnormality found. These characteris-
tics are stored in a database of 315 lesions of real patients
aged from 25 to 79 years at a Madrid University Hospi-
tal. All these cases have been diagnosed by two expert
radiologists, whose results were compared with the re-
sults of the biopsy, which is also available. We have used
these clinical data to run the tests. From the 315 lesions
available in the database, 265 were selected randomly to
train the genetic programming system; the remaining 50
were used to perform tests with cases never before pre-
sented to the system. The characteristics for each mass
stored are: the hospital expert radiologists’ prognosis,
the actual prognosis after carrying out a biopsy and the
morphological characteristics that follow:

Size It represents the size of the mass, measured as
the widest diameter in millimeters.

Morphology of the mass It has five possible values:
architectural distortions, lobulated, oval, round and
irregular.

Margins This characteristic describes the external lim-
its of the mass. It has five possible values: circumscribed,
ill-defined, microlobulated, spiculated and obscured.

Density It represents the texture of the tissue inside
the mass. The possible values are: high, equal, low and
fatty.

A fuzzy knowledge base to solve this problem
required a CFG deliberately designed as ambiguous,
containing 16 non-terminal symbols, 51 terminals and
55 production rules. The fitness value of an individual
corresponds to the number of masses in which the prog-
nosis inferred by the fuzzy knowledge base represented
by this individual is different from the prognosis made
after the biopsy. Table 3 illustrates the average number
of cases incorrectly classified during the training and test
phases, using a population size of 100 and D = 20.

Figure 9 shows the evolution process for the average
fitness of the population and for each combination of
crossover and mutation operators shown in Table 3.

WX gets better results than KX, Fair and SCPC
crossover operators. This is because this operator guar-
antees the generation of valid offspring, which boosts
convergence speed. This operator correctly classifies
72.45% (192/265) of the training lesions and 72% (36/50)
of the test lesions. GBC plus GBM provides the best
results and the swiftest convergence speed: 78.11%
(207/265) of correct results in training lesions and 78%
(39/50) in test lesions.

By way of an example, the following rule belongs
to the fuzzy knowledge base found by the GP system
using GBC plus GBM that best prognosticates suspi-
cious masses: “IF margins = spiculated AND morphol-
ogy = irregular, THEN prognosis = malignant”. In this
rule, margins and morphology are fuzzy variables that
can take the qualitative values of spiculated and irregu-
lar, respectively. If so, then the system will give a prog-
nosis of malignant.

Again, in this experiment, the depth of the trees
that are being generated through the evolution pro-
cess is better distributed using GBC and GBM than
using the other approaches: an average tree size of 13.60
with a standard deviation of 5.34 is obtained for GBC
and GBM, whereas the average tree size for the other
operators ranges from 7.30 for KX to 8.12 for WX.

It is usual practice in the field of medicine to use
three criteria to report statistical results and for the
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Table 4 Accuracy, specificity and sensitivity for the masses prognosis problem for the set of test patterns given by two expert radiologists,
the proposed GGGP system and the combination of KX, Fair, SCPC and WX with Standard mutation

Crossover Mutation Accuracy Specificity Sensitivity
(%) (%) (%)

KX Standard 60.32 61.29 59.37
Fair Standard 61.90 64.05 59.88
SCPC Standard 64.44 66.23 63.12
WX Standard 71.43 73.86 70.44
GBC GBM 78.09 80.39 75.93

Expert radiologists
Doctor A 76.19% 66.30% 89.55%
Doctor B 69.84% 58.51% 86.61%

purpose of comparisons. These are accuracy, specificity
and
sensitivity.

Accuracy is the percentage of correctly diagnosed
cases compared to incorrect diagnoses:

Accuracy = (TP + TN)/Number of instances. (2)

where TP (True Positive) are the cases prognosticated as
malignant that really are malignant and TN (True Neg-
ative) are the cases prognosticated as benign that are
benign.

Specificity represents the percentage of cases prog-
nosticated as negative, benign lesions, over the total
number of negative cases:

Specificity = TN/(TN + FP). (3)

where FP (False Positive) is the number of cases classi-
fied as malignant when they really are benign.

Sensitivity is the percentage of cases prognosticated
as positive, malignant lesions, over the total number of
positive cases:

Sensitivity = TP/(TP + FN). (4)

where FN (False Negative) is the number of cases
classed as benign when they really are malignant.

Table 4 shows the results in terms of accuracy, speci-
ficity and sensitivity of the prognosis for the set of test
patterns of masses, comparing the results of the pro-
posed GGGP system with the Standard, Fair, SCPC, and
WX crossover operators together with standard muta-
tion and with the results of two expert radiologists spe-
cialized in image prognosis (called A and B).

The combination of GBC and GBM provides the best
results in terms of accuracy when compared with the
other crossover and mutation operators and it even of-
fers a slight improvement of the most skilful radiologist’s
correctness rate. In addition, the proposed GGGP sys-
tem outperforms the doctors as regards specificity
though it is worse as regards sensitivity. This is because of

the way a radiologist diagnoses a detected breast lesion:
only when the doctor is really sure is the lesion classified
as benign; if there is any doubt, the lesion is classified as
malignant. The GGGP system has no such prejudices,
which means that it provides better results than radiol-
ogists for true negatives, but also worse results for false
negatives, which implies a bigger risk.

8 Discussion and conclusion

In this paper, we propose a GGGP system able to find
solutions to any problem that can be syntactically ex-
pressed through context-free grammars. The proposed
system includes two original operators specially desig-
ned for the GGGP paradigm: crossover (GBC) and
mutation (GBM).

GBC and GBM have three main characteristics. First,
they prevent code bloat as both of them incorporate
mechanisms to limit the size of the offspring or mutated
trees, respectively. Second, they boost (improve) the
exploration capacity of the search space: GBC can
choose among a higher number of nodes in the sec-
ond parent, that is, any node able to generate valid off-
spring, whereas GMB can select non-terminal symbols
for the root of the mutated subtree that differ from the
non-terminal symbol of the mutation node. This fea-
ture is observed in the results section for the first of
the two problems: an average tree size throughout the
evolution process centered within the range of permit-
ted values (which does not occur with the other opera-
tors) with a relatively high standard deviation indicates
good genetic diversity. Finally, the third characteristic of
the proposed operators is that they are able to benefit
from the property of the ambiguous grammar consist-
ing in having different derivation trees to represent the
same sentence (solution). If an unambiguous grammar
is used, results are similar to WX and Standard muta-
tion operators. As was observed in the results section,
the combination of these characteristics provides a high
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convergence speed in number of generations and less
likelihood of getting trapped in local optima as com-
pared with other operators now in use. Although the
tests run do not prove that GBC plus GBM performs
better than the others in all cases, they do confirm that
the presence of these three features in the proposed
system improves the convergence process.

The proposed system has been applied to solve a
straightforward problem: searching for arithmetical
equalities. In this experiment, statistical significance has
been reported to show that the proposed system takes
fewer generations to converge than the other cross-
over and mutation combinations. Specifically, this con-
vergence speed is improved by 12.5% with respect to
WX and Standard operators, the second combination of
operators that best results achieved. Besides, we have
presented its application to a more complex problem:
the prognosis of breast lesions: masses, which are one
of the two most important signs to detect breast can-
cer through radiodiagnosis. Similar results have been
achieved for microcalcifications. They represent the
other important sign for detecting breast cancer, and
have, therefore, not been reported. These tests have
been carried out on lesions of real patients at the 12 de
Octubre University Hospital in Madrid. The reported
results show that the proposed system outperforms the
other genetic operators, achieving an accuracy rate of
78.09%, a 6.66% improvement on WX plus Standard
(71.43%). Accuracy is similar and specificity is better as
compared to expert radiologists, although sensitivity is
worse. This entails a greater risk for patients as the num-
ber of false negatives output by the proposed system is
still high. This implies that the machine cannot (and is
not intended to) substitute the human expert, but is suit-
able for use (and is being used) as a second opinion in
a computer-aided prognosis system as part of screening
processes.

The convergence speed tests have been measured in
terms of number of generations to show that the pro-
posed operators improve the convergence process. In
return for fewer generations to convergence, GBC and
GBM perform more operations (compared with the
other operators) in each execution. In terms of time,
then, the proposed system is on average 4% slower
than WX with Standard mutation. However, this drop
in performance is offset by a lesser likelihood of getting
trapped in local optima that leads to an improvement
in the solutions to problems, which is more evident for
complex problems, as shown in the classification results
for breast cancer prognosis.

The development of this work opens the way to fur-
ther lines of research in the field of GGGP. One of them
involves finding an algorithm that can estimate the max-

imum depth (D) of the trees generated throughout the
evolution process assuring that the optimal solution is
reached. This would overcome the disadvantage of not
being able to find the solution to a problem because
the maximum depth (D) chosen for the GBC and GBM
operators is too restrictive.

At present, we are working on the definition and
design of non-trivial problems to be solved by the differ-
ent combinations of operators. The goal is to accomplish
a statistical analysis to generalize the results. It would
also be interesting to find out how changing the proba-
bilities of genetic operator occurrence would affect the
performance of the proposed and other systems.

Finally, we are also looking at how to define a mea-
sure of the ambiguity of a context-free grammar that can
optimize the performance of the proposed system. An
ambiguous context-free grammar provides more than
one derivation tree that codifies the solution to the prob-
lem and increases the capacity of selection of the nodes
to be crossed and mutated by the GBC and GBM oper-
ators. However, empirical tests demonstrate that if the
grammar is too ambiguous, the search space increases
considerably, and this causes a loss in the system perfor-
mance. Therefore, our aim is to find a formal method that
can establish the exact grammar ambiguity and achieve
the maximum convergence speed possible.
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