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Abstract In this paper we will present a novel ap-
proach to data-driven fuzzy modeling which aims to
create highly accurate but also easily comprehensible
models. This is achieved by a three-stage approach which
separates the definition of the underlying fuzzy sets, the
learning of the initial fuzzy model, and finally a local or
global optimization of the resulting model. The bene-
fit of this approach is that it allows to use a language
comprising of comprehensible fuzzy predicates and to
incorporate expert knowledge by defining problem spe-
cific fuzzy predicates. Furthermore, we achieve highly
accurate results by applying a regularized optimization
technique.

Keywords Inductive learning · Fuzzy regression
trees · Regularization · Interpretability

1 Introduction

Fuzzy logic based systems can be used to gain insights
into a complex system for which no analytical model ex-
ists. For many complex technical applications, the prob-
lem arises that no proper mathematical formulation can
be found to describe the behavior of the respective sys-
tem. The only available information might be a set of
measurements taken from the system. Then the goal is
to find a function f that models the inherent connec-
tion between the input parameters (settings and mea-
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surements) and the goal parameter (final parameter of
interest) that is hidden in the data.

To find such a function f , however, is not always the
only objective. While statistical regression (DraperSmith
1981) or neural networks (McClelland and Rumelhart
1986; Rumelhart and (McClelland 1986; Zurada 1992)
allow to solve such kinds of machine learning problems,
they leave the resulting function f as a black box, i.e. a
plain function whose internals are difficult or impos-
sible to comprehend. In many practical applications,
however, qualitative insights into the structures of f are
desirable. For such tasks, rule-based systems are most
appropriate. They easily allow qualitative insight, since
the function f is represented by logical rules in a close-
to-natural-language manner. In the following, assume
that we are not necessarily interested in the full func-
tion f , but at least in significant bits of knowledge about
f and their inherent structures, i.e. rules.

For the remaining, let us consider a data set X of K
samples

X = {x1, . . . , xK}, (1)

where each sample (i = 1, . . . , K) has the same (n + 1)-
dimensional structure:

xi = (xi
1, . . . , xi

n, xi
n+1)

∈ X1 × · · · × Xn × Xn+1 (2)

The first n dimensions/variables are the inputs; the last
dimension/variable n + 1 is the output under investiga-
tion. In the following, we refer to the r-th dimension
(r = 1, . . . , n) as the r-th input attribute. The n + 1-st
dimension is called goal attribute. Ideally, the overall
objective of this machine learning problem is then to



422 M. Drobics, J. Himmelbauer

find a function

f : X1 × · · · × Xn −→ Xn+1 (3)

such that the inherent connection between the input
attributes and the goal attribute hidden in the data set X
is modeled as well as possible. Therefore, such machine
learning problems can be regarded as a kind of data
fitting.

To be able to handle numeric attributes in rule-based
models, it is indispensable to define a discrete set of
predicates for these kinds of attributes. If this quantiza-
tion is done by means of partitions into crisp sets (inter-
vals) as in traditional machine learning, small variations
(e.g. noise) can cause large changes in the classification
quality and instable results. This entails the demand for
admitting vagueness in the assignment of samples to
predicates. Fuzzy sets (Zadeh 1965) perfectly solve this
problem of artificial preciseness arising from sharp inter-
val boundaries.

A second benefit of fuzzy logic systems like decision
trees (Adamo 1980; Zeidler and Schlosser 1996) or rule-
based methods (Baranyi et al. ; Mikut et al. 2005) is, that
they create not only a computational but also an inter-
pretable model for f . The resulting function helps the
user to better understand the behavior of the system
(Casillas et al. 2003). It turned out, however, that in
many cases the simple application of methods for creat-
ing interpretable, computational models from data is not
sufficient. There is often the need for higher accuracy,
while preserving the interpretability of the systems. Con-
sequently, several approaches were developed recently
to optimize existing interpretable fuzzy systems (Burger
et al. 2002; Regattieri Delgodox et al. 2001).

In this paper we will present an approach to com-
pute semantically meaningful fuzzy sets a priori to the
rule induction process. We will then present an induc-
tive learning algorithm for fuzzy decision trees which
uses the so obtained fuzzy predicates to create compre-
hensible fuzzy models from data. Finally, we present an
approach to optimize such (Takagi-)Sugeno fuzzy sys-
tems via linear approximation of the consequences. We
pay special attention to the stability of the solution and
to preserving the fuzzy system’s interpretability. Apply-
ing variable selection is an additional contribution to
reach this goal.

2 The underlying language

To define the underlying language for our fuzzy models,
we have to consider the different types of input attri-
butes that can occur. Basically, we can distinguish be-
tween three types of attributes:

Boolean categorical attributes: The domain Xi is a unst-
ructured finite set of labels, for instance, types of car
engines (gasoline, diesel, hydrogen, electric) or clas-
ses of animals (birds, fish, mammals, etc.). The attri-
bute values xi

r are single elements of the label set Xi.
Fuzzy categorical attributes: There is again a unstruc-

tured finite set of labels, but with possible overlaps.
Therefore, values of such kinds of variables may be
fuzzy sets on this set of labels. For example, assume
that we are given a finite set consisting of different
grape varieties. Then blended wines (cuvees) cannot
be assigned to single categories crisply.

Numerical attributes: The underlying domain Xi is the
set of real numbers or a subset thereof (e.g. an inter-
val). The attribute values xi

r are real numbers, e.g.
pressures, temperatures, incomes, ratios, etc.

Note that Boolean categorical attributes are special cases
of fuzzy categorical attributes, since any crisp label can
be considered as a fuzzy set of labels, too.

Fuzzy predicates for categorical attributes, boolean
or fuzzy, can be defined easily in a straight forward man-
ner. Finding appropriate fuzzy predicates for numerical
attributes, however, is often a subtle problem for which
different approaches exist.

The simplest approach is to create fuzzy sets which
form a partition for each dimension and which are evenly
distributed over the data range or which have the same
cardinality (equi-distance binning, or equi-frequent bin-
ning). Although this approach is sufficient for basic
calculations, it has strong limitations with respect to
accuracy. Furthermore, it turns out that for unequally
distributed data, such fuzzy sets often conflict with the
user’s intuition. To overcome these limitations, several
approaches exist which try to fit the fuzzy sets to the
given training data as well as possible. Most of these ap-
proaches use some kind of projection methods (Castel-
lano et al. 2002; Klawonn and Kruse 1997) While fuzzy
sets are typically defined over one dimension, fuzzy clus-
tering methods can be used to identify higher-dimen-
sional fuzzy sets (Hoeppner and Klawonn 2003 ; Yager
and Filev 1994). Although the results of these two ap-
proaches are very promising, the resulting fuzzy sets do
not always directly correspond to a linguistic expres-
sion – one of the main building blocks of fuzzy logic.
Recent approaches in this direction use complex opti-
mization techniques (Mikut et al. 2000) or create hier-
archical fuzzy partitions Guillaume and Charnomordic
(2004), requiring a high computational effort.

Alternatively, the fuzzy sets can also be computed ad
hoc when creating the computational models. This ap-
proach has been applied in crisp algorithms like CART
(Breiman et al.1984) and C4.5 (Quinlan 1993) as well as
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in fuzzy logic based algorithms like LoLiMoT (Nelles
et al. 2000) or fuzzy decision tree based methods (Bald-
win et al. 1997; Janikow 1998; Zeidler and Schlosser
1996). Although this leads to very good numerical results,
the drawback of these approaches is again a lack of lin-
guistic expressions for the resulting fuzzy sets. The use of
different but almost similar sets at different occurrences
of an attribute makes it difficult to identify similarities
between distinct parts of the rule base and complicates
implementation of the obtained fuzzy models.

In contrast to the approaches mentioned above, we
create the fuzzy sets based on the data set given by con-
sidering the semantics of the corresponding linguistic
expressions. By comprising also ordering based pred-
icates we are able to define comprehensible, but still
expressive predicates automatically. Using this approach
we can overcome the problem of identifying the ideal
number of fuzzy sets in advance.

2.1 Generating meaningful fuzzy sets

To generate k unevenly distributed fuzzy sets according
to the distribution of values in the data set X , we devel-
oped a new algorithm called CompFS (Algorithm 1)
(Drobics 2004). First, the centers ci (1 ≤ i ≤ k) of the
fuzzy sets are initialized according to the data distribu-
tion. By initializing the fuzzy set centers with the accord-
ing quantiles (qi = i−0.5

k ), we create an equi-frequent
binning of the data set. To overcome problems which
can occur when using the quantiles, it is necessary to
readjust the fuzzy set centers by using a simple k-means
algorithm. Of course, equal frequencies can no longer
be guaranteed. Usually a few iterations of this cluster-
ing step suffice. The following example might illustrate
this approach: Let our data set consists of n/3 zeros, n/2
fours, and n fives. When creating three fuzzy sets, the
according quantiles (16, 50, and 83 %) are 0.5, and 5,
respectively. This would result in two fuzzy sets having
the same center. The data, however, consist of three
well-separated groups. Applying the k-means algorithm
rearranges the centers to 1, 4, and 5, which results in
well-defined fuzzy sets. Note that using equi-distance
binning would also fail to create useful fuzzy sets, as the
middle fuzzy set would have no corresponding samples.

Finally, the fuzzy sets are computed around these cen-
ters. For piece-wise linear fuzzy sets, the i-th set (1 < i <

k) is defined by its support points s(i,j) which are defined
according to

s(i,1) =
(

ci − (1 + o) · (ci − ci−1)

2
, 0

)

s(i,2) =
(

ci − (1 − o) · (ci − ci−1)

2
, 1

)

s(i,3) =
(

ci + (1 − o) · (ci+1 − ci)

2
, 1

)

s(i,4) =
(

ci + (1 + o) · (ci+1 − ci)

2
, 0

)
, (4)

where o is the percentage of overlap between two sets
which has to be specified in advance. Bell shaped fuzzy
sets are directly defined by their membership function

μsi(x) = e− 1
2

(
ci−x

w

)2

, (5)

where w = (ci+1−ci−1)/4. The resulting families of fuzzy
sets form a partition and are in a proper order – to ensure
highest interpretability of the results (Bodenhofer and
Bauer 2003).

To eliminate outliers, we use the 2 and 98% quan-
tiles of the data as the upper and lower bound of the
resulting partition, respectively. Although the complex-
ity of computing the quantiles and the clustering is at
most O(n log(n)), for large data sets these computations
may be performed on a (representative) subset of the
original data.

Figure 1 shows some examples of how the fuzzy sets
are computed for different data distributions. In the first
example, normally distributed data was used. The result-
ing fuzzy sets have almost similar cardinality and can
be easily identified with linguistic expressions ranging
from very small to very high. In the data set used in the
the second example, the density decreases as the values
increase. Therefore, the left most fuzzy sets are very nar-
row, while the other fuzzy sets are stretched to have a
higher cardinality. In the third example, the data consists
of two diverse normal distributions. To compensate for
the resulting gap in the data, the inner two fuzzy sets
are stretched to the center. In the fourth example, the
data set is distributed very unevenly. By using CompFS,
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Fig. 1 Fuzzy sets created using CompFS

it was possible to identify fuzzy sets with almost equal
cardinality which perfectly fit the given data distribution
automatically.

Although CompFS is capable of computing the fuzzy
sets automatically with respect to a given data distribu-
tion, it requires the actual number of fuzzy sets as an
input. In our experiments it has, however, turned out
that the actual choice of this number influences the per-
formance of the resulting model only slightly as long as
a sufficiently large number of fuzzy sets is created. This
is achieved by using ordering-based predicates and by
defining the underlying fuzzy sets according to the actual
distribution of the data such that there is a good chance,
that a sufficiently good split is found already with a low
number of sets. A detailed discussion of our experiments
can be found in Sect. 5.1.

2.2 Defining appropriate predicates

After defining the underlying fuzzy sets, it is necessary
to define appropriate predicates using these fuzzy sets.
A fuzzy predicate p on X is uniquely represented by its
truth function

t(p) : X → [0, 1] (6)

where t(p(x)) is interpreted as the degree to which the
value x fulfills the predicate p.

Suppose that the r-th attribute is numerical. This
means that Xr ⊆ R and the values in the r-th compo-
nent are real numbers. We assume that, for attribute r,
a family of Nr linguistic labels Mr,1, . . . , Mr,Nr is defined.
Depending on the underlying context of the attribute
under consideration, these labels can be natural lan-
guage expressions like very low, medium, and large. To
each label Mr,j, we assign a fuzzy set with membership
function μMr,j ∈ F(Xr) (j = 1, . . . , Nr) using Comp-
FS. Furthermore, we can define the complement and
the smallest superset with non-decreasing/non-increas-
ing membership function for these sets. These new fuzzy
sets correspond to the linguistic expressions is not, is at
least, and is at most, respectively (Fig. 2).

Given a set of linguistic labels Mr,1, . . . , Mr,Nr and
their corresponding semantics modeled by fuzzy sets,
we can now define 4 · Nr atomic fuzzy predicates. The
degrees to which a sample x ∈ X1 × · · · × Xn+m ful-
fills these predicates can be computed as follows (j =
1, . . . , Nr):

t(x is Mr,j) = μMr,j(xr)

t(x is not Mr,j) = 1 − μMr,j(xr)

t(x is at least Mr,j) = sup{μMr,j(u) | u ≤ xr} (7)

t(x is at most Mr,j) = sup{μMr,j(u) | u ≥ xr}
Although the two latter ordering-based predicates are
not absolutely necessary, they help to improve compact-
ness, expressiveness, and interpretability of the results
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Fig. 2 Fuzzy predicates

(Bodenhofer 1999a,b; Bodenhofer and Bauer 2003;
DeCock et al. 2000).

3 Rule induction

To create a decision or regression tree for a specific prob-
lem, inductive learning (i.e. learning from examples) is a
widely used approach.

Using not only crisp but also fuzzy predicates, deci-
sion trees can be used to model vague decisions. Several
approaches dealing with such fuzzy decision trees focus
on the problem of vague class memberships
(Maher and Clair 1993; Marsala 2000; Peng and Flach
2001; Wang et al. 2003; Yuan and Shaw 1995; Zeidler
and Schlosser 1996) Viewing decision trees as a com-
pressed representation of a (fuzzy) rule set enables us
to use decision trees not only for classification, but also
for approximation of continuous output functions. Re-
cent approaches in this direction try to create large trees
that solve the resulting optimization problem (Baldwin
et al. 1997; Janikow 1998). These solutions, however,
can no longer be interpreted easily – which is usually
one of the main advantages of regression trees over
numerical optimization methods or artificial neural nets.
Using pruning and back-fitting strategies can help to
overcome this shortcoming (Olaru and Wehenkel 2003).
All these approaches, however, tackle the problem of
finding accurate yet still comprehensible models from
an optimization point of view and do not pay attention
to the underlying language used, nor are they capable
of using a domain specific set of fuzzy predicates.

In our approach to inductive learning of fuzzy regres-
sion trees we pay special attention to comprehensibility.
This is achieved by using the general language defined
in Sect. 2 and by creating models which are as compact
as possible. In contrast to most existing approaches, the
trees generated using our method can be directly trans-
formed to a corresponding TSK fuzzy system. These
models are finally tuned with respect to their accuracy
using a local or post-optimization technique described
in Sect. 4. By introducing a novel transformation on
the rule consequences we are able to achieve numerical

accuracy without weakening the systems comprehensi-
bility.

3.1 Fuzzy regression trees

A general regression tree consists of a root node with
a number of child nodes. Each of these child nodes can
either be a leaf node or the root node of a new sub-
tree. If each inner node has exactly two child nodes,
the tree is called binary. We denote the set of all nodes
with N = {n1, . . . , nN}, the set of all leaf nodes with
L = {nl1 , . . . , nlL} ⊂ N and the set of inner nodes with
M = {nM1 , . . . , nMN } ⊂ N where we define the node
n1 to be the root node. To ease notation we will fur-
thermore denote the index set of all leaf nodes with
L = {l1, . . . , lL}.

To each non-leaf node ni ∈ M, a predicate pi is asso-
ciated which is used to decide which of the child nodes
to process next. For each inner node ni ∈ M the child
nodes are denoted as ni

1 and ni
2, and we define that

the left branch (ni
1) is selected when the corresponding

predicate pi is fulfilled and the right one (ni
2) otherwise.

The uniquely determined path from the root node n1

to a sub-node nj ∈ N is called complete branch of the
node and will be denoted as bj. Each leaf node nj ∈ L is
associated with a constant value cj ∈ R or a local model
cj(x), X �→ R.

To ensure comprehensibility of the local linear mod-
els, we do not use a simple linear combination of the
input dimensions,

cj(x) = α0 +
n∑

l=1

αlxl,

but of a reformulation with respect to the center of the
data under consideration according to

cj(x) = α0 +
n∑

l=1

αl(xl − x̄l).

x̄l defines the mean of the samples in the l-th dimension
according to bj

l. This eases interpretation as in contrast
to usual TSK models, the rule output can be interpreted
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easily. Actually, we can interpret α0 as the mean output
value of all data points the rule applies to. The x̄l’s then
characterize this mean with respect to the l’s dimension.
The αl’s finally describe the influence of the l’s dimen-
sion when xl is below or above x̄l. The αl’s might also
be normalized (e.g. to a standard deviation of 1 in each
dimension) to obtain an ordered list of influencing fac-
tors. For a rough output of the model only α0 might be
displayed. If more detailed information is needed, the
k top ranked αl’s can then be displayed.

In the following, we will restrict ourselves to binary
regression trees. We overcome the main problem of
binary trees – their increasing size for complex prob-
lems – by using the flexible underlying language, espe-
cially ordering-based predicates as defined in Sect. 2.
This enables us to determine the ideal segmentation
point automatically and to reduce the overall number
of predicates involved.

3.2 Inductive learning of fuzzy regression
trees – FS-LiRT

The basic idea behind FS-LiRT is to create a tree where
the leaves approximate the desired goal function as well
as possible. By associating numerical values (or func-
tions) with the leaf nodes, we finally obtain a Sugeno-
or TSK-type controller. The method is called FS-LiRT
(Fuzzy Set based Linear Regression Trees), as in most
cases linear models are associated with the leaf nodes.
Outline: Starting with a single root node, a binary regres-
sion tree is grown in a top-down manner. The mean
squared error is computed and the predicates are sorted
with respect to their actual relevance. Then the most rele-
vant predicate is chosen and associated with the tree node
under investigation. This procedure is repeated recur-
sively until a stopping condition is fulfilled.

To decide for each node which predicate to take, we
use the mean squared error measure which ensures that
the model accuracy increases as the tree grows. The
mean squared error for a given predicate P and a sample
set X is computed according to

MSEDT(P, X ) =
∑

x∈X μX (x)(z̃P(x) − xn+1)
2

|X | , (8)

z̃P(x) = t(P(x))z̄(X |P) + t(¬P(x))z̄(X |¬P),

(9)

where xn+1 is the desired goal value, z̃P(x) is an estimate
of the output according to predicate P, and

z̄(X |P) =
∑

x∈X t(P(x))xn+1∑
x∈X t(P(x))

is the average goal value with respect to the predicate
P.

The leaf node output cj for a leaf node nj, j ∈ L is
defined as the weighted average of the n + 1-st attribute
(our goal attribute) according to:

cj =
∑

x∈X t(nj(x))xn+1∑
x∈X t(nj(x))

(10)

To achieve a more accurate approximation it is also
possible to define the output cj as a linear combination
of the inputs. This can be achieved by solving the local
least squares problem

∑
x∈X

(
t(nj(x))

(
xn+1 − α

j
0 −

n∑
l=1

α
j
l(xl − x̄l

))2 = min
αj

, (11)

where αj = (α
j
0, αj

1, . . . , αj
n)T are the according linear

weights and x̄l defines the weighted average of the sam-
ples under consideration with respect to the l-th dimen-
sion. It has, however, to be noted that this optimization
problem can only be solved if the according observation
matrix has full rank. This motivates the usage of regu-
larized optimization techniques to find optimal values
for the α-s. This approach is described in more detail in
Sect. 4.2.

The algorithm stops if any of the following stopping
criteria is fulfilled:
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– No more samples: if the number of samples decreases
under a certain threshold (Default: 10% of the orig-
inal data).

– Minimum variance: if the variance of all samples in a
node is below a given threshold (Default: 5% of the
range of the goal attribute).

– Maximum depth reached: if the depth of the tree
reaches a predefined maximum (Default: 10).

– No sufficient increase: if the relative increase with
respect to the mean squared error

MSEDT(pi, X i) − MSEDT(pj, X j)

MSEDT(pi, X i)

(cj being a child node of ci) is below a given threshold
(Default: 0.10).

Optionally, pruning can be applied to the tree gen-
erated by FS-LiRT to optimize the size of the tree. The
goal is to achieve a good compromise between a model’s
simplicity and its predictive accuracy by removing irrel-
evant parts of the model. If pruning is applied, only the
first stopping criterion is used. By pruning a tree, the
new complexity of the model is automatically identified
without the need to a priori establish thresholds for the
stopping conditions which could be sensitive to the data
set under investigation. This facilitates the application
of the method also for non-experts and allows us to inte-
grate this method into a semi-automatic problem solver.

We use the same pruning technique as presented by
(Olaru and Wehenkel 2003). They used a four-step pro-
cedure, where first the inner nodes of the tree are sorted
with respect to their summed squared error. Then a se-
quence of subtrees is generated by subsequently deleting
the child nodes of the nodes in this sequence. Thirdly,
the mean absolute error on a pruning data set is com-
puted for each of these subtrees. Finally, the smallest
tree within one standard error is selected.

3.3 Deduction with fuzzy decision trees

To obtain real-valued output from fuzzy regression trees,
the regression tree can be inferred directly by computing
the output of a non-leaf node nj(x) according to:

ci(x) = t(pi(x))ci
1(x) + t(¬pi(x))ci

2(x) (12)

This formula is evaluated recursively to finally obtain
the output of the root node c1.

Alternatively, we can transform the regression tree
to a corresponding (Takagi-)Sugeno fuzzy system (TSK
system) (Takagi and Sugeno 1985). The transformation

is performed according to:

IF nj(x) THEN cj(x), ∀j ∈ L.

The degree nj(x) to which a sample x belongs to the leaf
node nj is computed as the conjunction of the predicates
on the corresponding complete branch bj:

nj(x) =
∧

pi∈bj

bj
i(p

i(x)) (13)

The function bj
i(pi) returns pi when the left (true) branch

and ¬pi when the right (false) branch of node ni is part
of bj.

Such a TSK system is defined as a mapping which
assigns to each observation a crisp output value of the
real domain. In the case of

∑
nj(x) > 0 for all x ∈ X,

the input-output function Fs : X → Xn+1 associated to
Eq. (13) can be given explicitly by

Fj(x) =
∑

j∈L nj(x) cj(x)∑
j∈L nj(x)

. (14)

In the following we will show a way to optimize a given
TSK fuzzy system of the form Eq. (14) by tuning the
rules’ consequences cj(x).

4 Post-optimization of fuzzy rule bases

In the previous two chapters we presented a method
for creating easily comprehensible fuzzy models. The
trade off for obtaining higher comprehensibility is a
lower accuracy, as smaller models have to involve more
general rules/nodes. In our approach we overcome this
drawback by adding more expressive output functions
to the leaf nodes [as in Eq. (11)] or by performing post-
optimization of the complete fuzzy system. In (Burger
et al. 2002), a combination of both is presented, where—
besides the coefficients of the affine linear consequences
cj – the underlying fuzzy sets themselves are fitted by
optimizing the positions of the fuzzy sets’ interpolation
points. This approach results in a nonlinear optimization
problem. Here, however, we decided to restrict our-
selves to the optimization of the consequences, which
leads to a linear least squares problem which can be
solved easier and faster. Moreover, by doing so we avoid
the danger of ending up in degenerated fuzzy sets which
are no longer comprehensible.

4.1 Derivation of the least squares system

For the case that we want to perform a local optimi-
zation of the output functions we have already defined
the least squares system in Eq. (11). For the global case,
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however, defining the according system is a little bit
more complex.

In the following we will assume that the fuzzy rules
fulfill the partition of unity, i.e.

∑
j∈L nj(x) = 1 for all

x ∈ X. To ease notation, we first restrict ourselves to the
one-dimensional case, i.e. a single-input single-output
system.

Under these assumptions, tuning a TSK system glob-
ally reduces to fitting a set of data X by a linear com-
bination of the rules’ membership functions in the least
squares sense, i.e. seeking a solution of the minimization
problem,

∑
x∈X

⎛
⎝xn+1 −

∑
j∈L

nj(x) · (α
j
0 − α

j
1(x1 − x̄1))

⎞
⎠

2

= min
α

,

or written in matrix form

1
2
‖xn+1 − Nobsα‖2 = min

α
, (15)

where Nobs = (
N

∣∣ NAp
)

represents the observation
matrix with

N =
⎛
⎜⎝

n1(x1) · · · nlL(x1)
...

. . .
...

n1(xK) · · · nlL(xK)

⎞
⎟⎠

and

NAp =
⎛
⎜⎝

n1(x1)(x1
1 − x̄1) . . . nlL(x1)(x1

1 − x̄1)
...

. . .
...

n1(xK)(xK
1 − x̄1) . . . nlL(xK)(xK

1 − x̄1)

⎞
⎟⎠

xn+1 := (x1
n+1, . . . , xK

n+1) defines the goal vector of the
system. As the solution of problem Eq. (15), we obtain
the vector α = (α1

0, . . . , αlL
0 , α1

1, . . . , αlL
1 ), containing the

coefficients of the approximation function for each rule.
So far we have treated only the case of a system with

one-dimensional input. In many applications, however,
we have to deal with large numbers of input variables.
This extension to the multi-dimensional situation can be
obtained without many modifications (except with re-
spect to notation). For each additional input dimension
we only need to add lL columns to the matrix NAp. The
observation matrix finally has dimension K × lL(n + 1)

for the global case. For the local case we obtain a K̃ ×
(n + 1) dimensional observation matrix, where K̃ is the
number of samples with a degree of fulfillment greater
than zero.

4.2 Tikhonov-regularization of the system

In Sect. 3, we arrived at a linear least squares problem
with – in the global case – a K × (lL(n + 1)) observation
matrix Nobs.

Equation (15) has a unique solution if and only if the
observation matrix Nobs has full rank, which is equiv-
alent to the – in approximation theory well-known —
Schoenberg-Whitney condition (DeBoor 1978). In the
case of full rank, we achieve the unique solution by solv-
ing the linear system (Nobs)TNobsα = (Nobs)Txn+1. In
the case of a rank-deficient matrix (i.e., r := rank(Nobs)
< lL(n + 1)), the least squares problem (15) is no longer
uniquely solvable. The set of solutions consists of the
linear manifold

x† + N(Nobs).

x† denotes the unique least squares solution of minimal
(Euclidean) norm, given by x† = (Nobs)†xn+1 (where
(Nobs)† is the Moore–Penrose inverse or pseudo-inverse)
and N(Nobs) denotes the nullspace of Nobs with dimen-
sion (lL(n+1))−r. Numerical calculation of the Moore-
Penrose inverse, however, belongs to the class of
so-called ill-posed problems. It can be shown that small
perturbations in the system matrix can cause arbitrarily
great differences in the result of the inverses.

For our application of optimizing a fuzzy rule base,
we cannot guarantee an observation matrix Nobs with
full rank, as the rank of the matrix is dependent on the
already given and fixed rule conditions and most of all
on the given data set. With an increasing ratio of number
of rules lL and input dimension n to the number of data
samples K, the probability of ending up in a system with
rank deficient Nobs rises. As, in our case, we have to deal
with inexact input data (e.g. measurement errors) as well
as with round-off errors during numerical computation,
we cannot be sure of always obtaining a stable solution
to our problem. Therefore, we have to use regulariza-
tion techniques where the ill-posed problem is replaced
by a family of similar, well-posed problems.

We will see that regularization of the problem has also
positive effects on the condition number of the observa-
tion matrix Nobs and consequently of (Nobs)TNobs, the
matrix to be inverted for solving Eq. (15). The condition
number of a matrix A is defined as κ(A) := ‖A‖‖A−1‖
and is a measure of a linear system’s sensibility towards
noisy input data. The higher κ , the higher is also the
error of the solution with respect to the input error. The
relative error of the solution of A(x + u) = y + v can be
estimated by

‖u‖
‖x‖ ≤ ‖A‖‖A−1‖‖v‖

‖y‖ .



Creating comprehensible regression models 429

A similar error estimation exists for noisy system matri-
ces A + S. Hence the condition number κ is a decisive
measure of how well the numerical solution will behave.
As we will see later, ill-conditioned systems (i.e. sys-
tems with very high κ) are generated in many cases of
optimizing fuzzy rule bases.

To guarantee a unique and stable solution, we will
now apply a regularization method on the given sys-
tem. In Burger et al. (2002), a numerical analysis of
Smoothing and Tikhonov regularization was made. In
the following we will apply the Tikhonov method to our
system Eq. (15). In our case, this amounts to simply
adding to the cost function of the given system Eq. (15)
the squared sum of the coefficients α

j
l (weighted by a

regularization parameter β) as a penalty term.
Applying this regularization method we finally arrive

at the following observation matrix

Nreg =
(

N NAp
√

βI

)
(16)

and output vector

α = (α1
0, . . . , αlL

0 , . . . , α1
n, . . . , αlL

n )T . (17)

for Eq. (15). The resulting least squares problem can be
written as

∑
x∈X

⎛
⎝xn+1 −

∑
j∈L

cj(x)nj(x)

⎞
⎠

2

+ β

lL(n+1)∑
k=1

α2
k = min

α
, (18)

where cj(x) := α
j
0 + α

j
1(x1 − x̄1) + . . . + α

j
n(xn − x̄n) for

j ∈ L.
The penalty term β

∑lL(n+1)

k=1 α2
k causes the absolute

values of the coefficient to be kept as low as possible.
The higher the regularization parameter β is chosen,
the closer to zero the coefficients are kept and conse-
quently, the more we will achieve a stable, but also less
accurate solution of our problem. In fact, it turns out
that the choice of β is a crucial task; one has to find a
good compromise between accuracy and stability.

4.3 Variable selection via forward selection

As already mentioned, we want to use our method for
problems with large input dimensions. Hence, taking
into consideration that for each rule we have a high-
dimensional linear output-function cj(x), we end up in a
high-dimensional observation matrix that is not sparse.
Variable selection, i.e. only using a subset of all input
parameters for each approximation cj(x), is a good tool
to alleviate this drawback caused by high-dimensional
input data.

There are three reasons why additional variable selec-
tion is recommendable. First, a system matrix approxi-
mation with all variables involves many entries, whereas
our wish is to achieve a matrix which is as sparse as
possible. Second, a very important criterion for a fuzzy
system is its interpretability. A system that uses only the
most “decisive and important” features for the output of
each rule, is clearly expected to be more “readable” and
interpretable than one using full selection. And thirdly,
the danger of overfitting the data (most of all in case of
a high ratio of the number of input parameters to the
number of samples) is expected to decrease.

The way how we use this method for global post-
optimization is as follows: First we apply variable selec-
tion to each rule separately. That is, we take one rule
after the other and identify the most significant variables
for the corresponding “one-rule-system”. Then we opti-
mize the global fuzzy system, using – for each output
function – only the variables selected at the correspond-
ing rule.

Looking at the linear approximation function (for the
i-th test-point)

ŷi = θ0 + θ1xi
1 + θ2xi

2 + · · · + θnxi
n, (19)

where the xk is called regressor and θk the regression
coefficient, we must first determine an error measure
with respect to which we want to find optimal parame-
ters for θk. Choosing the sum of squares of the distances
between the measured values xi

n+1 and the estimated
values ŷi,

K∑
i=1

(
xi

n+1 − ŷi)2 (20)

the optimal parameters can be calculated by

θ̂ =
(

XTX
)−1

XTy, (21)

if the matrix XTX is regular with X = (x1, x2, . . . , xn),
xj = (x1

j , . . . , xK
j ) and y = (x1

n+1, . . . , xK
n+1).

4.3.1 Forward selection

The next step is to select the most significant and deci-
sive variables. We will use a simplified forward selection
as we have to run this algorithm for each rule. The struc-
ture of this algorithm is the following:

1. For each regressor candidate xk: Calculate the solu-
tion of the one-dimensional regression with regres-
sor xk and output variable xn+1.

2. Determine the best-fitting, most significant solution
(using the R2 measure). Let us denote the corre-
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sponding regressor with xA and the associated para-
meter with θ̂A0 for the constant part and θ̂A for the
linear part.

3. Modify the output variable: y
A

= y−(θ̂A0 + θ̂AxA)

(i.e.: y
A

is the part of y that cannot be described lin-
early via xA).

4. For all remaining regressor candidates xk: Repeat
step 1–3 with the new output variable y

A
.

5. Repeat this procedure (1–4) until a given number ns

of regressors is selected or a certain approximation
quality criterion is fulfilled.

We chose this procedure as it is fast, as in the i-th step
only n − i − 1 one-dimensional regression systems have
to be solved. Further performance improvements are
achieved by applying this procedure only on those sam-
ples for which the according rule j has a degree of ful-
fillment higher than a certain threshold ζ (i.e. only on
those x ∈ X for which nj(x) > ζ ). Typically, we choose
ζ = 0.1.

4.4 Description of the optimization algorithm –
LAPOC

The algorithm for optimizing TSK systems described
above consists of two main parts. First, the system of the
optimization problem is set up, then this system is solved.
We will now present a rough schedule of the algorithm
ultimately obtained, LAPOC (Linear Approximation of
Consequences).

The solving algorithm we use reduces the observation
matrix to an upper triangular form by a series of Gi-
vens rotations and is adapted to sparse matrices. When
applying variable selection, in general we do not use the
whole data set for selecting the most decisive variables,
but we choose only a reduced data set. For each rule,
we use only those samples for which the correspond-
ing rule output is at least of a certain “minimum degree
of membership”. This improves the performance of the
algorithm without any loss of accuracy.

For the local approach, the algorithm is almost the
same, except that we perform the algorithm individually
for each rule.

5 Experimental results

In this section, we will present some experiments which
give an overview over special characteristics of our
methods and illustrate the performance of the proposed
methods. For this purpose, we used four different data
sets. First, we used the housing data set from the UCI
repository (Blake and Merz 1998). Then we defined two
different two-dimensional test functions:

f2D−A(x) = x2 · sin(2πx1), x ∈ [0, 1]2

f2D−B(x) = cos
(

5π(x2
1+x2

2)
1/2

)
(1+10(x2

1+x2
2)

1/2)
, x ∈ [−1, 1]2,

Finally, we defined a six-dimensional test function

f6D(x) = x1 + x0.5
2 + x3x4 + 2e2(x5−x6),

with x ∈ [1, 5] × [1, 5] × [0, 4] × [0, 0.6] × [0, 1] × [0, 1.2].
To validate the models, we used 10-fold cross validation
to determine the average model complexity (in terms of
number of leaves) and the average model performance
(correlation coefficient between the actual output and
the predicted output on the test data).

5.1 On the choice of fuzzy sets

To answer the question of how to choose the number and
shape of fuzzy sets for a given problem, we ran several
experiments with different settings on the four data sets
using FS-LiRT with constant output values and without
pruning.

To illustrate the expressive power of the ordering-
based predicates, we performed a series of analyses
where we used only the predicates directly induced by
the corresponding fuzzy sets first and performed the
analyses again by using all the predicates according Eq.
(8) afterwards. Results are shown in Fig. 3 and Fig. 4,
respectively. It shows that by using ordering-based pred-
icates, the complexity of the resulting model and the
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Fig. 3 Influence of the
number of input sets on the
correlation of the resulting
model using IS predicates
only

Fig. 4 Influence of the
number of input sets on the
correlation of the resulting
model using ordering-based
predicates

quality of the results obtained are much less influenced
by the number and structure of the underlying fuzzy sets
as compared with using only simple predicates. Only the
results for function f2D−B are influenced by the number
of sets as this function is highly non-linear with large
local deviations. Therefore, the choice of the under-
lying fuzzy sets is crucial to describing this behavior. The
overall performance is, however, still more robust than
without ordering-based predicates.

When increasing the number of fuzzy sets for the
input attributes, one would expect that the resulting
models get more complex. It turns out, however, that by
using ordering-based predicates, the complexity of the
models computed remains almost constant. A compar-
ison of experiments using different data sets is shown
in Fig. 5. This can be explained by the fact that using
ordering-based predicates, we obtain more predicates
with a high support, even if the number of sets is high.
Furthermore, the support of the rules composed only
of simple predicates decreases when the number of sets

increases. Therefore, more rules have to be created to
obtain a complete coverage of the state space, or, if these
rules do not fulfill the minimum requirements in terms
of support, the algorithm fails.

Finally, we investigated the influence of the shape of
the underlying fuzzy sets on both the accuracy and the
complexity of the created models (Fig. 6). In our tests,
we compared a crisp partitioning (o = 0) with fuzzy
partitions using fuzzy sets with a piece-wise linear mem-
bership function (o = 0.2, o = 0.5, o = 0.8, and o = 1.0)
and fuzzy sets with an exponential membership func-
tion. It turns out that fuzzy sets with a high overlap are
advantageous, especially for highly non-linear problems.
The results are shown in Fig. 6.

5.2 Examples for the influence of regularization

We will now have a closer look on the aspect of numer-
ical stability; i.e. we show that applying regularization
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Fig. 5 Influence of the
number of input sets on the
complexity of the resulting
model using ordering-based
predicates

Fig. 6 Influence of the shape
of the input sets on the
correlation of the resulting
model using five fuzzy sets for
all input attributes

to our optimization problems was essential in order to
obtain stable solutions. Note, however, that the choice of
the regression parameter for the optimization process is
crucial, as it strongly influences the performance of the
algorithm.

As already mentioned, in the case of Tikhonov regu-
larization, the original problem is modified by adding a
penalty term the Euclidean norm of the vector of con-
sequences. For β → ∞ and αk → 0 for all k, as well
as for (appropriately chosen) β → 0, the solution con-
verges to the one of the unregularized problems. For
sufficiently high β, we can expect a stable and smooth
solution, however less accurate. Decreasing the value of
β results in increasing accuracy, however at the expense
of the system’s stability. We will see that in many cases,
the choice of the regularization parameter is of crucial
importance for the solution process.

Figure 7 demonstrates how regularization influences
the result in the case of noisy data. LAPOC was applied

to a noisy data set (dots), generated by an one-dimen-
sional function with two major peaks, with several val-
ues of β. The left side shows the approximation achieved
with β = 0 (no regularization), whereas on the right side
the best result (β = 0.001) is shown. Without regulari-
zation, an artificial third peak appears, i.e. the solution
becomes unstable.

Figure 8 shows the correlation coefficient between the
original goal attribute and the model output for decreas-
ing β for a test run of LAPOC applied to the housing
data set. The solid lines are the values for the training
data, the dashed lines for the test data. The lighter lines
show the results of LAPOC with full approximation,
the darker lines the results obtained by LAPOC with
variable selection. For β < 0.1, the test results of LAPOC
deteriorate rapidly, both as a cause of overfitting and
increasing system condition number. Moreover, when
setting β to zero (i.e. no regularization applied), the cor-
relation coefficient on the training data decreases, too.
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Fig. 7 Approximation of a one-dimensional function with noisy
training data using no regularization (left) and with regularization
(right)
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Fig. 8 Correlation coefficients on training and test data for differ-
ent values of the regularization parameter β for the housing data
set

A closer look on the rank of the system matrix shows
that this was because we ended up with a rank-deficient
matrix Nobs (89 = r(Nobs) < lL(n + 1) = 98).

5.3 Examples

In this section we will present experiments with LAPOC
and FS-LiRT applied to the housing data set and to
the artificial six-dimensional function. A comparison of
the results shows that with the same requirements to
accuracy we can create smaller, highly interpretable and
more expressive models with LAPOC.

Example 1 (UCI-Data (Housing)) As already mentio-
ned before, in this example we investigated how much
we can simplify a regression tree without reducing its
accuracy using global optimization. Using FS-LiRT with
constant output values for the computation of a regres-
sion tree for the housing data set, we achieved an aver-
age correlation coefficient of 0.859 at an average model
size of 11 (Fig. 9). Although, due to the use of fuzzy sets,
the information of one record might be spread over the
whole tree, a large number of records will belong to one
leaf node with a very high degree of membership. As
in many cases ordering based predicates (which have a
large kernel) are used, the regions where the individual
branches overlap do not influence the model structure
dramatically. They have, however, a large influence on
the application of the model, as these overlaps enable us
to create smooth transitions from one state to another.

We achieved the same accuracy (0.858) by optimiz-
ing a regression tree of average model size 4 using lin-
ear approximation of the output functions with at most
four variables (of overall 13 input dimensions) for each
rule. The extracted rule base of a partial result is shown
in Fig. 10. Although the rule outputs might look a bit
complicated, the terms in brackets can be replaced with
according variables to simplify the output (e.g. replac-
ing (B−306.775) in the first rule’s consequence with B′).
These terms, however, contain some important informa-
tion, too, as e.g. the term (B − 306.775) tells us that the
attribute B has an average value of 306.775 over all sam-
ples fulfilling the first rule’s antecedent. Furthermore it
is, at least for a rough overview, sufficient to consider
the constant rule outputs, as the linear terms are only
additional information which does not alter the core
information of the rule. In Fig. 11 the result obtained
using M5P-Rules is shown. It is easy to see, that these
rules are far more complex then those obtained using
FS-LiRT.
Example 2 (Approximation of the six-dimensonal func-
tion.) Figure 12 shows a comparison of experiments
using models of different sizes for the basic
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Fig. 9 Regression tree
generated by FS-LiRT for the
housing data set

Fig. 10 LAPOC applied to a
rule base extracted from a
tree generated by FS-LiRT
for the housing data set

regression tree. The graphic also illustrates how optimi-
zation improved the accuracy of the basic model (cre-
ated by FS-LiRT with constant output values). Note
that with increasing model size the improvement of the
correlation coefficient decreased. The same correlation
coefficient, however, was never reached with basic FS-
LiRT. The global and the local optimization (LAPOC
and LiRT Ml, respectively) had nearly the same per-
formance for all experiments. In this example, the use
of variable selection always slightly impaired the perfor-
mance of the optimization, but, of course, for the benefit
of simpler output functions.

5.4 Comparison with other algorithms

To compare the performance of the proposed meth-
ods with other approaches, we used eleven regression

Table 1 Data sets used

Data set No. Recs. No. Attr. Num. Attr. Cat. Attr.

2D-A 100 3 3 0
2D-B 1,000 3 3 0
6D 1,000 7 7 0
AutoPrice 159 16 16 0
Bodyfat 252 15 15 0
Bolts 40 8 8 0
Cloud 108 7 5 2
Cpu 209 8 7 1
Detroit 13 14 14 0
Gascons 27 5 5 0
Housing 506 14 14 0
Longley 16 7 7 0
Pollution 60 16 16 0
PwLinear 200 11 11 0

problems from the UCI repository (see Table 1). Again,
we used ten fold cross validation and computed the aver-
age correlation coefficient σ . We compared the results
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a b

Fig. 11 Regression model generated by M5P-rules for the housing data set

with three methods from the Weka toolkit (Witten and
Frank 2000), namely Linear Regression, M5-Prime [a
variant of C4.5 (Quinlan 1992)], and M5-Rules. The first
method creates a simple linear regression model to solve
the regression learning problem. The latter two meth-
ods, M5-Prime and M5-Rules, generate decision trees
or decision rules to do so. We ran M5-Prime using con-
stant output values and linear models, with smoothing

enabled. We used the Weka Toolbox 3–4 to obtain the
final results.

First, we compared the average correlation coefficient
between the original output and the predicted values
for the test data. The results are shown in Table 2. We
can see that for these data sets, our methods performed
equally well as the other methods. Comparing FS-LiRT
with constant and with linear output models shows that
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Fig. 12 Correlation for
models with different
complexities for the
six-dimensonal test function
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Table 2 Average correlation
coefficients achieved using
ten fold cross validation

Method/Data Set LiRT LiRT Model M5P Model M5P M5Rules Lin.Reg.

2D-A 0.93 0.97 0.99 0.98 0.97 0.65
2D-B 0.84 0.88 0.91 0.88 0.89 –
6D 0.93 0.99 0.99 0.92 0.9 0.91
AutoPrice 0.87 0.91 0.93 0.86 0.92 0.87
Bodyfat 0.92 0.93 0.99 0.96 0.99 0.99
Bolts 0.91 0.98 0.91 0.87 0.9 0.93
Cloud 0.82 0.88 0.92 0.72 0.87 0.92
Cpu 0.83 0.95 0.97 0.78 0.97 0.93
Detroit 0.76 0.76 0.84 –0.29 0.84 0.67
Gascons 0.96 0.96 0.86 0.87 0.93 0.56
Housing 0.86 0.88 0.91 0.87 0.9 0.85
Longley 0.94 0.98 0.97 0.72 0.97 0.98
Pollution 0.56 0.51 0.71 0.5 0.71 0.74
PwLinear 0.85 0.94 0.94 0.84 0.94 0.85

the latter performs significantly better (two-sided t test
on the mean of differences H0 : d(m1, m2) = 0, p =
0.024). When comparing FS-LiRT with constant output
functions with M5-Prime with constant output functions,
FS-LiRT performs slightly better (p = 0.156). Com-
pared to M5-Prime with linear output models, FS-LiRT
has almost the same performance (p = 0.32). We can,
however, observe that the results obtained using sim-
ple linear regression have the same performance, too.
This indicates that these problems are almost linear and
complex methods do not provide any additional ben-
efit at all. For the complex, two-dimensional problems
where oscillations are involved, the more complex meth-
ods outperform linear regression easily. In these cases,
our methods perform also much better then M5-Prime
and M5-Rules. This is mainly caused by the fact that
using exponential type fuzzy sets enables us to create
smooth transitions between the different rules.

Finally, we compared the corresponding sizes of the
models learned. The results are shown in Table 3. Again,

we can see that for the UCI data sets, the size of the
resulting models is almost equal but for the artificial data
sets, FS-LiRT was able to extract much more compact
representations. As the models created by our meth-
ods are, however, based on a predefined, well-structured
language, they are much easier to comprehend. Further-
more, we ran all experiments using the default settings
of the algorithms. By adjusting these settings, further
improvements can be achieved.

6 Conclusions and further work

In this work, we have presented a novel approach to
derive comprehensible and numerically accurate fuzzy
regression models from data. Comprehensibility is
achieved by using a novel method to derive fuzzy sets
from a given data set and by introducing ordering-based
predicates. It was shown that the actual choice of the
number and shape of the fuzzy sets used has only a minor
influence on the performance of the resulting model. To
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Table 3 Average model sizes
achieved using 10 fold cross
validation

Method / Data Set LiRT LiRT Model M5P Model M5P M5Rules

2D-A 9 6 153 102 86
2D-B 69 52 100 112 29
6D 56 18 150 18 51
AutoPrice 4 8 7 9 4
Bodyfat 3 3 4 17 5
Bolts 4 3 3 3 3
Cloud 5 4 3 8 3
Cpu 2 2 3 13 3
detroit 6 7 1 2 1
Gascons 3 3 3 3 2
Housing 6 9 13 21 8
Longley 4 2 1 3 1
Pollution 12 12 1 4 1
PwLinear 7 4 2 12 2

inductively learn regression models from data, we have
presented a new method which uses fuzzy decision trees
with linear models in the leaf nodes. Variable selection is
applied to increase interpretability of these linear terms.
High accuracy of these models is achieved by apply-
ing regularized numerical optimization techniques, ei-
ther in the leaf nodes or on the complete model. It has
turned out that using regularization techniques, global
optimization leads to almost equal results as local opti-
mization. The choice of the regularization parameter is,
however, crucial and depends heavily on the data under
investigation.

The presented approach has been applied on various
problems in all kind of application areas, ranging from
metallurgy and paper industry to energy production. In
all these applications, we have received very positive
feedback for the comprehensibility of the models and
the achieved accuracy.

Future work will focus on integrating cross validation
in the optimization process. We hope that this can help
to further increase the stability of the models. Further-
more, we want to use this approach to automatically
identify the regularization parameter, which is crucial
for semi-automatic application of the method.

Another future direction of research is the combina-
tion of different models into a combined model (some
kind of additive regression). We have already made very
promising experiments which indicate that a combina-
tion of simple regression trees with constant output func-
tions and simple regression models can be used to solve
complex problems.
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