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Abstract Analytical methods are proposed for solving
fuzzy linear system of equations when the composition
is max-product. These methods provide universal algo-
rithm for computing the greatest solution and the set
of all minimal solutions, when the system is consistent.
In case of inconsistency, the equations that can not be
satisfied are obtained.
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Inverse problem

1 Introduction

Inverse problem resolution for fuzzy relational equa-
tions and in particular for fuzzy linear systems is subject
of great scientific interest. The main results are pub-
lished in De Baets (2000), Di Nola et al. (1989), Peeva
(2006), and Peeva and Kyosev (2004). They demonstrate
long and difficult period of investigations for discovering
analytical methods and procedures to determine com-
plete solution set, as well as to develop software for
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computing the greatest and all minimal solutions, see
Peeva (2006) and Peeva and Kyosev (2004).

The first and most essential are Sanchez results
Sanchez (1976) for the greatest solution of fuzzy
relational equations with max − min and min − max com-
position. Sanchez gives formulas that permit to deter-
mine the potential greatest solution in any of these
cases, often used as solvability criteria. After Sanchez
results for the greatest solution, attention was paid on
the minimal solutions, see Cheng and Wang (2002),
Higashi and Klir (1984), Miyakoshi and Shimbo (1986),
Pappis and Sugeno (1985), Peeva (1992, 2002, 2006) and
Peeva and Kyosev (2004). Universal algorithm and soft-
ware for solving max − min and min − max fuzzy rela-
tional equations is proposed in Peeva (2002, 2006) and
Peeva and Kyosev (2004).

Concerning fuzzy linear system of equations with
max-product composition (Di Nola and Lettieri 1989;
Di Nola et al. 1989), the results concern greatest solu-
tion (Bourke and Fisher 1998), minimal solutions (in
some references procedures pretend to yield to minimal
solutions, but in fact they yield to some non-minimal
solutions as well), estimating time complexity of the
problem, applications in optimization problems (Guu
and Wu 2002; Loetamonphong and Fang 1999, 2001;
Loetamonphong et al. 2002). The relationship with the
covering problem is subject of Markovskii (2005), where
two methods for solving such fuzzy linear systems (alge-
braic and with table decomposition) are discussed and
an algorithm is proposed, realizing table decomposition
method.

Up to now there do not exist satisfactory methods,
procedures and software for inverse problem resolution
of fuzzy relational equations with max-product compo-
sition.
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This paper deals with inverse problem resolution for
fuzzy linear system of equations with max-product com-
position

A � X = B,

where A stands for the matrix of coefficients, X stands
for the matrix of unknowns, B is the right-hand side of
the system and the max-product composition is written
as �.

Since operations in the fuzzy algebras are different
from classical operations, the traditional linear algebra
methods – for instance Gaussian elimination method
(MacLane and Birkhoff 1979), cannot be used here.

In this paper we extend the methodology developed
for max − min fuzzy relational equations (Peeva 2002,
2006; Peeva and Kyosev 2004) for the case of max-prod-
uct composition – we propose method and software for
solving A � X = B for unknown X. We obtain as
much improvements over the straightforward exhaus-
tive depth search of this NP-hard problem (Markovskii
2005) as possible. Rather than work with the system
A � X = B, we use a matrix, whose elements capture
all the properties of the equations. In depth first search,
we propose how to drop branches that do not lead to
minimal solutions. A sequence of simplification rules is
defined, that bring the matrix A into a new form. Once
in this form, we apply dominance to remove redundant
equations in the system. In this manner we reduce the
time complexity of exhaustive search merely by making
a more clever choice of the objects over which the search
is performed. This provides easily finding the complete
solution to the original system.

We propose algorithm and software for computing
the greatest and all minimal solutions or for establishing
inconsistency of the system A � X = B.

In Sect. 2 we introduce basic notions. In Sects. 3 and 4
we study fuzzy linear systems of equations and develop
a method and procedure for solving them. It provides
the algorithm and software that answers to the following
questions:

1. What is the complete solution set of a consistent
system?

2. If the system is inconsistent, which equations can not
be satisfied simultaneously with the other equations
in the system?

Section 5 presents inverse problem resolution for
max-product fuzzy relational equations. In Sect. 6 we
propose software description and some comments on
experimental results.

Terminology for computational complexity and algo-
rithms is as in Aho et al. (1976) and Garey and Johnson
(1979), for fuzzy sets and fuzzy relations is according to
De Baets (2000), Di Nola et al. (1989), Klir et al. (1997),
Peeva and Kyosev (2004) and Sanchez (1976), for lat-
tices – as in Grätzer (1978), for algebra – as in MacLane
and Birkhoff (1979).

2 Basic notions

Partial order relation on a partially ordered set (poset)
P is denoted by the symbol ≤. By a greatest element of a
poset P we mean an element b ∈ P such that x ≤ b for
all x ∈ P. The least element of P is defined dually.

Set I� = 〈[ 0, 1 ], ∨, ∧, 0, 1, �〉, where [ 0, 1 ] is the
real unit interval, � is the usual product between real
numbers and ∨, ∧ are respectively defined by

a ∨ b = max{a, b}, a ∧ b = min{a, b}.
Then I� is a complete lattice with universal bounds 0
and 1; it is residuated with respect to �, being the resid-
uum given by:

a � b =
{

1, if a ≤ b
b
a , if a > b

.

The algebraic structure I� = 〈[ 0, 1 ], ∨, ∧, 0, 1, �〉
is called fuzzy algebra.

2.1 Fuzzy relation compositions – matrix
representation

We denote by F(X) the fuzzy sets over the crisp set X.
A fuzzy relation R ∈ F(X × Y) is defined as a fuzzy
subset of the Cartesian product X × Y,

R = { ( (x, y), µR(x, y)) }
where (x, y) ∈ X × Y and µR : X × Y → [ 0, 1 ].

The inverse (or transpose) R−1 = Rt ∈ F(Y × X) of
R ∈ F(X × Y) is defined as

R−1(y, x) = R(x, y) for all pairs (y, x) ∈ Y × X.

For the Cartesian product X × Y the first projection
pr1 and the second projection pr2 are defined (MacLane
and Birkhoff 1979) as pr1(X×Y)=X and pr2(X×Y)=Y,
respectively.

The fuzzy relations R ∈ F(X × Y) and S ∈ F(Y × Z),
with pr2(X × Y) = pr1(Y × Z) = Y, are called compos-
able.

In what follows when we consider compositions, we
work with composable fuzzy relations.
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Definition 1 Let the fuzzy relations R ∈ F(X × Y) and
S ∈ F(Y × Z) be given.

1. The �-composition (Di Nola and Lettieri 1989; Di
Nola et al. 1989) of R and S is the fuzzy relation
R � S ∈ F(X × Z) with

µR�S(x, z) =
∨
y∈Y

( µR(x, y). µS(y, z)), (x, z) ∈ X × Z.

2. The �-composition of R and S is the fuzzy relation
R � S ∈ F(X × Z) with

µR � S(x, z) =
∧
y∈Y

(µR(x, y) � µS(y, z)), (x, z) ∈ X×Z.

The next Theorem 1 and Theorem 2 are particular
cases of Theorem 1 and Theorem 2, respectively, cf. Di
Nola and Lettieri (1989), proved in Di Nola and Lettieri
(1989) for the general case of a complete lattice, resid-
uated with respect to the product.

Theorem 1 (Di Nola and Lettieri 1989) Let R ∈ F(X×Y)

and T ∈ F(X × Z) be fuzzy relations, let S� be the set of
all fuzzy relations S ∈ F(Y × Z) with R � S = T. Then,

1. S� 
= ∅ iff R−1 � T ∈ S�.
2. If S� 
= ∅ then R−1 � T is the greatest element in S�.

A matrix A = (aij)m×n, with aij ∈ [ 0, 1 ] for each
i, j, 1 ≤ i ≤ m, 1 ≤ j ≤ n, is called a membership matrix
(Klir et al. 1997).

In what follows we write ‘matrix’ instead of ‘member-
ship matrix’.

We consider operations with matrices on the fuzzy
algebra I�.

Any fuzzy relation R ∈ F(X × Y) is representable by
a matrix (Di Nola et al. 1989), written for convenience
with the same letter R = (rij), where rij = µR(xi, yj) for
any (xi, yj) ∈ X × Y.

We stipulate to use the matrix R = (rij) for the fuzzy
relation R ∈ F(X × Y).

Definition 2 Let the matrices A = (aij)m×p and B =
(bij)p×n be given.

1. The matrix C = (cij)m×n = A�B is called �-product
of A and B if

cij = p
max
k=1

(aik.bkj), when 1 ≤ i ≤ m, 1 ≤ j ≤ n.

2. The matrix C = (cij)m×n = A � B is called �-product
of A and B if

cij =
p

min
k=1

(aik � bkj), when 1 ≤ i ≤ m, 1 ≤ j ≤ n.

Definition 2 is the matrix representation of the com-
positions of fuzzy relations as introduced in Definition 1.
This permits to manipulate with the matrix products
instead of with compositions of fuzzy relations.

Theorem 2 (Di Nola and Lettieri 1989) Let A = (aij)m×p

and C = (cij)m×n be given matrices and let B� be the set
of all matrices such that A � B = C. Then:

1. B� 
= ∅ iff At � C ∈ B�.
2. If B� 
= ∅ then At � C is the greatest element in B�.

2.2 Inverse problem

Let R ∈ F(X × Y) and S ∈ F(Y × Z) be composable
fuzzy relations and R � S = T ∈ F(X × Z) be their
composition.

Solving R � S = T for the unknown fuzzy relation S,
if the fuzzy relations R and T are given, is called inverse
problem resolution for the fuzzy relational equation
R � S = T.

Inverse problem resolution in case of fuzzy algebras
is subject of pure mathematical investigations, where
attention is paid on the complete solution set. This
is a partially ordered set that is determined (Bourke
and Fisher 1998; Di Nola and Lettieri 1989; Markovskii
2005) by the minimal solutions and by the unique max-
imum solution, bearing in mind the density of ordering
also. The property density of ordering, see Di Nola and
Lettieri (1989), Proposition 4

(∀a, b ∈ [0, 1]) a < b ⇒ (∃c ∈ [0, 1]) a < c < b

in I� means that the maximum solution and minimal
solutions determine complete solution set.

Hence, inverse problem resolution for �-composite
fuzzy equations requires to determine the maximum
solution and all minimal solutions.

3 Fuzzy linear systems of equations
with �-composition

We study fuzzy linear systems of equations with �-com-
position (�-FLSE):∣∣∣∣∣∣

(a11. x1) ∨ · · · ∨ (a1 n. xn) = b1
· · · · · · · · · · · · · · ·
(am 1. x1) ∨ · · · ∨ (am n. xn) = bm

, (1)
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written in the following equivalent matrix form

A � X = B,

where A = (aij)m × n stands for the matrix of coeffi-
cients, X = (xj)n ×1 stands for the matrix of unknowns,
B = (bi)m ×1 is the right-hand side of the system. For
each i, 1 ≤ i ≤ m and for each j, 1 ≤ j ≤ n, we have
aij, bi, xj ∈ [ 0, 1 ] and the max-product composition is
written as �.

Following the concepts for fuzzy linear systems of
equations with max − min composition (Peeva 2006;
Peeva and Kyosev 2004), we introduce the correspond-
ing notions for �-FLSE.

For X = (xj)n×1 and Y = (yj)n×1 the inequality X ≤
Y means xj ≤ yj for each j, 1 ≤ j ≤ n.

Let us first define solutions for A � X = B and give a
classification of the �−FLSE according to the number
of its solutions.

Definition 3 Let the system A � X = B in n unknowns
be given.

1. X0 = (x0
j )n×1 with x0

j ∈ [0, 1], when 1 ≤ j ≤ n, is
called a (point) solution of the system A � X = B
if A � X0 = B holds.

2. The set of all point solutions X
0 of A � X = B is

called complete solution set.
3. If X

0 
= ∅ then A � X = B is called consistent,
otherwise A � X = B is called inconsistent.

In the next exposition we omit the word “point” in
“point solution”.

Definition 4 Let the system A � X = B in n unknowns
be given.

1. A solution X0
low ∈ X

0 is called a lower (minimal)
solution of A � X = B if for any X0 ∈ X

0 the rela-
tion X0 ≤ X0

low implies X0 = X0
low, where ≤ denotes

the partial order, induced in X
0 by the order of [0, 1].

Dually, a solution X0
u ∈ X

0 is called an upper (max-
imal) solution of A � X = B if for any X0 ∈ X the
relation X0

u ≤ X0 implies X0 = X0
u . When the upper

solution is unique, it is called greatest (or maximum)
solution.

2. The n-tuple (X1, . . . , Xn) with Xj ⊆ [0, 1] for each j,
1 ≤ j ≤ n, is called an interval solution of the system
A � X = B if any X0 = (x0

j )n × 1 with x0
j ∈ Xj for

each j, 1 ≤ i ≤ n, implies X0 = (x0
j )n × 1 ∈ X

0.
3. Any interval solution of A � X = B whose com-

ponents (interval bounds) are determined by a lower
solution from the left and by the greatest solution

from the right, is called maximal interval solution of
A � X = B.

In this paper we consider inhomogeneous systems
with bi 
= 0 for each i = 1, ..., m.

If A � X = B is consistent, according to Theorem 2,
it has unique maximum solution Xgr = At �B. The com-
plete solution set is described by the set of all maximal
interval solutions. They are determined by all minimal
solutions and the maximum one. Since there exists ana-
lytical expression for the maximum solution, attention
in references is paid on computing minimal solutions.

3.1 Preliminary simplifications

Following the approach for max − min FLSE (Peeva
2002, 2006; Peeva and Kyosev 2004), we propose the
first steps for simplifying �−FLSE so that the complete
solution set can be easily found and the size of the instant
can be reduced.

Step 1 Obtaining the associated matrix in which all
zero coefficients corresponds to variables that
do not contribute to solve the equation.

Step 2 Computing the index vector to indicate consis-
tency or inconsistency of the system.

Step 3 Rearrangement of the equations in the system
non-decreasingly with respect to the compo-
nents of the index vector.

The first step marks all coefficients that do not con-
tribute to solvability. The last step provides (after some
supplementary considerations) automatically fulfilling
of some equations. These equations and coefficients are
dropped, we made a more clever choice of the objects
over which the search is performed.

3.1.1 Step 1. Associated matrix

For the system (1) any coefficient aij ≥ bi provides a
way to satisfy the i-th equation with aij . xj = bi, when
xj = bi

aij
. This leads to the idea to distinguish coefficients

that contribute for solving the system from these that do
not contribute, see (2).

We assign to A � X = B a symbolic matrix A∗ =
(a∗

ij) with elements a∗
ij determined according to the next

expression:

a∗
ij =




S, if aij < bi

E, if aij = bi

G if aij > bi

. (2)
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The matrix A∗ with elements a∗
ij, determined by (2),

is called associated matrix of the system (1). Its elements
depend both on A and on B.

The time complexity function for obtaining A∗ is
O(mn).

Interpretation of A∗

– Any a∗
ij = S in A∗ corresponds to aij < bi in the i-th

equation of (1). But aij < bi means aij . xj < bi for
each xj ∈ [0, 1]. Hence each a∗

ij = S in the i-th row of
A∗ indicates, that the coefficient aij do not contribute
to satisfy i-th equation of (1).

– Any a∗
ij 
= S in (2) corresponds to aij ≥ bi 
= 0 in the

i-th equation of (1) that determines a way to satisfy
this equation by xj = bi

aij
. In this case aij.xj = aij.

bi
aij

=
bi.

Hence, associated matrix A∗ provides first simplifica-
tion. Rather than work with the system A � X = B, we
use A∗, whose elements capture all the properties of the
equations. This reduces the size of the instant and makes
easier to solve the original system.

3.1.2 Step 2. IND vector

We introduce a vector IND = INDm×1 to establish con-
sistency of the system. We describe how the components
of IND depend on A∗. Let we denote by |Gi| the number
of elements a∗

ij = G and by |Ei| the number of elements
a∗

ij = E in the i-th row of A∗, j = 1, ..., n. Then

IND(i) = |Gi| + |Ei| (3)

equals the number of elements a∗
ij 
= S in the i-th row

of A∗. It means that:

1. If a∗
ij = S for each j = 1, ..., n then IND(i) = 0. In

this case the i-th equation can not be satisfied and
the system is inconsistent.

2. If a∗
ij 
= S for some j = 1, ..., n then IND(i) = |Gi| +

|Ei| 
= 0. In this case the i-th equation can be sat-
isfied by |Gi| + |Ei| different paths. If IND(i) 
= 0
for each i = 1, ..., m then the system can be either
consistent or inconsistent.

Lemma 1 Let the system A � X = B be given. Then we
have:

1. If IND(i) = 0 for at least one i = 1, ..., m then the
system is inconsistent.

2. If the system is consistent then the number of its
potential minimal solutions does not exceed

PN =
m∏

i=1

IND(i). (4)

Here IND(i) is computed according to (3).

Proof

1. If IND(i) = 0 for some i ∈ {1, ..., m} then a∗
ij = S for

each j = 1, ..., n and aij · xj < bi for each xj ∈ [0, 1],
the i-th equation can not be satisfied and the system
is inconsistent.

2. If the system is consistent then IND(i) = |Gi| +
|Ei| 
= 0 for each i ∈ {1, ..., m}, see (3). Any a∗

ij = G
or a∗

ij = E provides a way to satisfy i-th equation
and gives a way to a potential minimal solution as
well as lower bound for non-zero components of a
minimal solution. Hence all possible ways to satisfy
simultaneously all equations does not exceed

PN =
m∏

i=1

IND(i).

3.1.3 Step 3. Rearrangement of the equations

Two systems are called equivalent (MacLane and Birk-
hoff 1979) if any solution of the first one is a solution
of the second one and vice versa. Any interchange of
equations in the system A � X = B results an equiva-
lent system.

A system A�X = B, in which the equations are rear-
ranged in such a way that the components of the index
vector IND are ranked non-decreasingly, i.e.

IND(1) ≤ IND(2) ≤ · · · ≤ IND(m),

is said to be in a normal form.

4 Solving �-fuzzy linear systems

In this section we propose a unified and exact method
and algorithm for solving inhomogeneous �-FLSE of
the form A � X = B, resulting in:

1. A necessary and sufficient condition (Corollary 4)
for consistency of the �-FLSE, similar to the gen-
eral test for consistency of a system (MacLane and
Birkhoff 1979) in Linear Algebra.

2. Analytical expressions for the maximum solution
and minimal solutions.

3. Algorithm for inverse problem resolution for �-
FLSE.
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Let the following stipulations be satisfied for inhomo-
geneous A � X = B:

1. The system A � X = B has coefficient matrix A =
(aij)m×n, matrix of unknowns X = (xj)n×1, and right-
hand side B = (bi)m×1 with bi 
= 0 for each i =
1, ..., m. Hence it has n unknowns and m equations.

2. The associated matrix A∗ for the system A � X = B
is obtained.

3. Any coefficient a∗
ij = S is called S-type coefficient,

any a∗
ij = E is called E-type coefficient and any a∗

ij =
G is called G-type coefficient.

4. For each j, j = 1, . . . , n, A∗( j) = (a∗
ij)m×1 denotes

the j-th column of A∗ and a∗
ij denotes the i-th ele-

ment (1 ≤ i ≤ m) in A∗( j).

Theorem 3 Let the system A � X = B be given.

i) If A∗( j) contains G-type coefficient(s) a∗
ij = G and

x̂j = m
min
i=1

{
bi

aij

}
, when aij > bi,

then xj = x̂j implies in (1):
aij . xj = bi for each i, 1 ≤ i ≤ m when bi

aij
= x̂j,

aij . xj < bi for each i, 1 ≤ i ≤ m with bi
aij


= x̂j.
ii) If A∗( j) does not contain any G-type coefficient,

but it contains E-type coefficient(s) a∗
kj = E, then

x̂j = 1 and xj = x̂j = 1 implies:
aij . xj = bi for each i, 1 ≤ i ≤ m with a∗

ij = E,
aij . xj < bi for each i, 1 ≤ i ≤ m with a∗

ij = S.
iii) If A∗( j) contains neither G- nor E-type coefficient

then x̂j = 1 and xj = x̂j = 1 implies aij . xj < bi for
each i, 1 ≤ i ≤ m (a∗

ij = S in A∗( j)).

The proof follows from the definition of the asso-
ciated matrix, its relationship with the system (1) and
expression (2).

Corollary 1 For any consistent system A � X = B,

Xgr = At � B = X̂ = (x̂j)n×1

where x̂j, 1 ≤ j ≤ n, are computed according to Theorem 3.

Corollary 2 If a∗
ij = S for each i = 1, ..., m, then x̌j = 0

in any minimal solution X̌ = (x̌j)n×1 of the consistent
system A � X = B.

Proof If A∗( j) contains only S-type coefficients then the
component xj ∈ [0, 1] has no influence on satisfiability

of equations, see Theorem 3, iii). Then in all minimal
solutions x̌j = 0.

Corollary 3 If X̌ = (x̌j)n×1 is a minimal solution of the
consistent system A � X = B, then for each j = 1, ..., n
either x̌j = 0 or x̌j = x̂j .

Proof Since bi > 0 for each i = 1, ..., m, the system can
not have zero solutions, it has some set of non-zero min-
imal solutions. The component x̌j of a minimal solution
has zero value, if A∗( j) contains only S-type coefficients,
see Corollary 2. The other components of a minimal
solution cannot take their minimal values independently
from each other – the equations in the consistent system
A � X = B must be satisfied simultaneously. If A∗( j)
contains E- or G-type coefficients then in a minimal
solution the component x̌j may take either zero value

or the value x̌j = x̂j = minm
i=1

{
bi
aij

}
, when aij ≥ bi, see

Theorem 3 i), ii).

4.1 Selected elements

Theorem 3 and its Corollaries 2, 3 prove that all S-type
coefficients do not contribute for solving the system and
there may exist redundant coefficients of type G and E
in the system. We propose a selection of all coefficients
that contribute to solve the system. All other coefficients
are called non-essential for solvability procedure and we
drop them.

Definition 4 Let the system A � X = B with associated
matrix A∗ be given.

1. If A∗( j) = (a∗
ij)m×1 contains G-type coefficient a∗

kj =
G, such that

bk

akj
= m

min
i=1,

{
bi

aij

}
when aij > bi,

then each G-type coefficient a∗
ij in A∗( j) with bi

aij
= bk

akj

is called selected.
2. If A∗( j) = (a∗

ij)m×1 does not contain G-type coeffi-
cient, but it contains E-type coefficient(s), then all
E-type coefficients in A∗( j), namely a∗

ij = E when
1 ≤ i ≤ m, are called selected.

3. If A∗( j) does not contain neither G-, nor E-type
coefficient, then there does not exist selected coeffi-
cient in A∗( j).

From Theorem 3 we obtain

Corollary 4 Let the system A � X = B be given.
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1. It is consistent if and only if for each i, 1 ≤ i ≤ m,
there exists at least one selected coefficient a∗

ij, other-
wise it is inconsistent.

2. If the system is consistent then

Xgr = At � B (5)

is its unique maximal (i.e. greatest, or maximum)
solution.

3. The time complexity function for establishing the
consistency of the system and for computing Xgr is
O(mn).

4.2 Help matrix and dominance matrix

Now we propose the next simplification steps.

Step 4 Obtain a help matrix H from selected coeffi-
cients.

Step 5 Using a dominance relation over the rows in H,
form a dominance matrix D that provides easier
way to compute all minimal solutions.

4.2.1 Step 4. help matrix

We introduce a help matrix H = (hij)m×n with elements

hij =
{

1 if a∗
ij is selected

0 otherwise
. (6)

We upgrade the components of the vector IND =
INDm×1 to establish the consistency of the system and
to diminish the potential number PN (see (4)) of mini-
mal solutions. Now the i-th component IND(i) of IND
equals the number of selected coefficients in the i-th
equation of the system, i.e.

IND(i) =
n∑

j=1

hij. (7)

If there are no selected coefficients in the i-th equation,
then IND(i) = 0 and the system is inconsistent, see Cor-
ollary 4.1).

Obviously, now the potential number PN1 of minimal
solutions will be diminished in comparison with PN, i.e.

PN1 =
m∏

i=1

IND(i) ≤ PN. (8)

4.2.2 Step 5. Dominance matrix

In order to determine the minimal solutions of a �-
FLSE, a suitable dominance relation for the rows of the
help matrix H is introduced.

Definition 5 Let hl = (hlj) and hk = (hkj) be the l-th and
the k-th rows, respectively, in the help matrix H. If for
each j, 1 ≤ j ≤ n, hlj ≤ hkj, then

hl is said to be a dominant row to hk in H;
hk is redundant row with respect to hl for solving the
system (1).

If hk is redundant row with respect to hl for solving
(1) it means that:

– k-th equation is automatically satisfied whenever l-th
equation is satisfied.

– It is meaningless to investigate the k-th equation,
because it will not lead to smaller solution than the
l-th equation.

– When we eliminate k-th equation from next consid-
eration we cut redundant branches from the search
(they not lead to minimal solutions), making a more
clever choice of the objects over which the search is
performed.

Using Definition 5, we introduce a dominance matrix
D = (dij) obtained from H as described below. If the
row hl dominates the row hk in H, then in D:

We preserve all elements of the row hl , i.e. dij = hlj for
j = 1, ..., n. This preserves non-redundant (or essen-
tial for solution procedure) equation.

We replace all elements of the row hk by 0, i.e. dkj = 0
for j = 1, ..., n. This eliminates redundant equations
and also removes redundant branches of the search.

We again upgrade the components of the vector IND,

IND(i) =
n∑

j=1

dij.

Now the i-th component IND(i) equals the number of
non-redundant selected coefficients in the i-th equation
of the system.

Next, the potential number PN2 of minimal solutions
will be diminished in comparison with PN1 and PN, i.e.

PN2 =
m∏

i=1,IND(i) 
=0

IND(i) ≤ PN1 ≤ PN. (9)
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4.3 Finding minimal solutions

From dominance matrix D = (dij) we go to the next
simplification. We form a matrix M = (m∗

ij) indicating
non-redundant elements for solving (1). First we remove
all zero rows (redundant equations) and all zero columns
(non-essential coefficients) from D. From the rest, we
obtain:

m∗
ij =

{
bi
aij

if h∗
ij = 1

0 if h∗
ij = 0

(10)

In what follows we work with the matrix M.

4.3.1 Algebraic properties

We expand the possible irredundant paths (called cov-
erings in Markovskii (2005), i.e. different ways to satisfy
simultaneously equations of the system) using the matrix
M and the algebraic properties of the logical sums, as
described below.

If the element m∗
ij 
= 0, we symbolize this with

〈
m∗

ij
j

〉
.

In this case aij . m∗
ij = bi and hence x̂j = m∗

ij gives a
lower bound to fulfill the i-th equation of the system;
x̌j = x̂j = m∗

ij is the minimum value for the j-th compo-
nent.

For each i, 1 ≤ i ≤ m, the elements m∗
ij 
= 0 in M

mark the potential lower bounds of different ways, to
satisfy the i-th equation of the system, written Mi and
symbolized by the sign

∑
:

Mi =
∑

1≤j≤n

〈
m∗

ij

j

〉
. (11)

For instance, if there exist two ways to satisfy the second
equation of a system – by x4 = 0.5 and x5 = 0.25, it is
symbolized as

M2 =
〈

m∗
24

4

〉
+
〈

m∗
25

5

〉
=
〈

0.5
4

〉
+
〈

0.25
5

〉
.

We have to consider equations simultaneously, i.e., to
compute the concatenation W of all ways, symbolized
by the sign

∏
:

W =
∏

1≤i≤m


 ∑

1≤j≤n

〈
m∗

ij

j

〉
 . (12)

For instance,

M2.M3 =
(〈

m∗
24

4

〉
+
〈

m∗
25

5

〉)
.
〈

m∗
31

1

〉

=
(〈

0.5
4

〉
+
〈

0.25
5

〉)
.
〈

0.4
1

〉

means that there exist two ways satisfy the second equa-
tion of a system – by x4 = 0.5 and x5 = 0.25, and one
way to satisfy the third equation by x1 = 0.4 and also we
consider these equations simultaneously.

In order to compute complete solution set, it is impor-
tant to determine different ways to satisfy simultaneously
equations of the system. To achieve this aim we list the
properties of concatenation (12).

Concatenation is distributive with respect to addition,
i.e.〈

m∗
i1j1

j1

〉 (〈
m∗

i2j2

j2

〉
+
〈

m∗
i2j3

j3

〉)

=
〈

m∗
i1j1

j1

〉 〈
m∗

i2j2

j2

〉
+
〈

m∗
i1j1

j1

〉 〈
m∗

i2j3

j3

〉
. (13)

This analytical expression demonstrates simultaneous
satisfaction of both equations (i1, i2) by selected elements
in two different ways – the first way, that corresponds to
the first summand, is by the selected elements m∗

i1j1
and

m∗
i2j2

in rows i1, i2 and columns j1, j2, respectively; the
second way corresponds to the second summand and it
is formed by the selected elements m∗

i1j1
, m∗

i2j3
.

Concatenation is commutative:〈
m∗

i1j1

j1

〉 〈
m∗

i2j2

j2

〉
=
〈

m∗
i2j2

j2

〉 〈
m∗

i1j1

j1

〉
. (14)

This provides the validity of Step 3 – rearrangement of
equations in the �-FLSE.

The next property is called absorption for multiplica-
tion:〈

m∗
i1j1

j1

〉 〈
m∗

i2j1

j1

〉
=
〈

m∗
i1j1

j1

〉
(15)

Expression (15) gives the lower solution for simul-
taneous satisfying of two different equations i1 and i2,
when selected coefficients belong to the same column j1.
Hence, expanding along the non-zero elements in the
the i-th row, we automatically satisfy all equations in the
system, having the same m∗

ij. It is clear that this prop-
erty reduces the number of the ways that have to be
investigated.

We apply (13), (14), (15) to expand the parentheses
in (12). We obtain the set of ways, from which we extract
the minimal solutions:

W =
∑

(j1,··· ,jm)

〈
m∗

i1j1

j1

〉 〈
m∗

i2j2

j2

〉
· · ·

〈
m∗

imjm

jm

〉
. (16)

We simplify (16) according to the next described abso-

rption for addition (missing
〈

m∗
ij

j

〉
are supposed to be

〈
0
j

〉
):
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〈
m∗

i1j1

j1

〉
· · ·

〈
m∗

imjm

jm

〉
+
〈

m∗
s1j1

j1

〉
· · ·

〈
m∗

smjm

jm

〉

=




〈
m∗

i1j1
j1

〉
· · ·
〈

m∗
imjm
jm

〉
,if m∗

it jt
≤ m∗

stjt
for t = 1, . . . , m

unchanged, otherwise

.

(17)

From two compatible point solutions with respect
to the relation ≤, expression (17) selects the smaller,
because complete solution set X

0 is a poset, see
Di Nola et al. (1989).

Property (17) provides reduction of the number of
terms in (16) that we investigate to obtain lower solu-
tions. In particular,
〈

m∗
i1j1

j1

〉
.

〈
m∗

i2j2

j2

〉
+
〈

m∗
i1j1

j1

〉
.

〈
m∗

i2j2

j2

〉

=
〈

m∗
i1j1

j1

〉
.

〈
m∗

i2j2

j2

〉
. (18)

A property called combined absorption follows from
(15), (17) and (18):
〈

m∗
i1j1

j1

〉 [〈
m∗

i2j1

j1

〉
+
〈

m∗
i2j2

j2

〉]

=
〈

m∗
i1j1

j1

〉 〈
m∗

i2j1

j1

〉
+
〈

m∗
i1j1

j1

〉 〈
m∗

i2j2

j2

〉
=
〈

m∗
i1j1

j1

〉
.

(19)

After simplifying (16) according to (17)–(19) any term
〈

m∗
i1j1

j1

〉 〈
m∗

i2j2

j2

〉
· · ·

〈
m∗

imjm

jm

〉

determines a minimal solution X̌ = (
x̌j
)
, with compo-

nents (obtained after expanding brackets in (12) by rules
(13)–(20)), see also Corollary 3:

x̌jt =
{

m∗
it jt

= x̂jt if m∗
it jt


= 0 in (16)

0 otherwise
(20)

Corollary 5 For any consistent �-FLSE the minimal solu-
tions are computable and the set of all its minimal solu-
tions is finite.

4.3.2 Method based on expansion along the non-zero
elements of M

The proposed formalism in Sect. 4.3.1 provides the next
quite simple method based on expansion along the non-
zero elements of the row in M.

1. Take the non-zero elements of i-th row (for i =
1, ..., m) of M and form the sum Mi, see (11).

2. Expand M: from each element m∗
ij 
= 0 in Mi we

form a summand, consisting of
〈

m∗
ij

j

〉
, multiplied by

a submatrix Mij of M; Mij is obtained as follows: we
delete in M the i-th row and the j-th column, see
(15), as well as all rows with the same m∗

ij 
= 0 – they
are automatically satisfied, see (18). From the result-
ing submatrix we remove redundant rows, zero rows
and zero columns.

3. If i > m-stop, otherwise take the next i.

Example Following the above theoretical back-
ground, we solve the system given by Markovskii in 2005
A � X = B with:∣∣∣∣∣∣∣∣∣∣∣∣

(0.2 . x2) ∨ (0.05 . x3) ∨ (0.4 . x5) = 0.1
(0.1 . x1) ∨ (.6 . x2) ∨ (.3 . x3) ∨ (.2 . x5) ∨ (.2 . x6) = 0.3
(0.8 . x1) ∨ (0.48 . x2) ∨ (0.24 . x3) ∨ (0.48 . x4) = 0.24
(0.3 . x1) ∨ (0.4 . x4) ∨ (0.8 . x5) ∨ (0.15 . x6) = 0.2
(0.12 . x3) ∨ (0.2 . x4) ∨ (0.48 . x5) ∨ (0.1 . x6) = 0.12
(0.5 . x1) ∨ (0.3 . x2) ∨ (0.1 . x4) ∨ (0.6 . x5) = 0.15

.

In order to make the exposition clear, equations are
marked as e1–e6, unknowns are x1–x6:

A=




x1 x2 x3 x4 x5 x6
e1 0 0.2 0.05 0 0.4 0
e2 0.1 0.6 0.3 0 0.2 0.2
e3 0.8 0.48 0.24 0.48 0 0
e4 0.3 0 0 0.4 0.8 0.15
e5 0 0 0.12 0.2 0.48 0.1
e6 0.5 0.3 0 0.1 0.6 0




, B=




e1 0.1
e2 0.3
e3 0.24
e4 0.2
e5 0.12
e6 0.15




.

For associated matrix according to (2) we have:

A∗ =




x1 x2 x3 x4 x5 x6
e1 S G S S G S
e2 S G E S S S
e3 G G E G S S
e4 G S S G G S
e5 S S E G G S
e6 G G S S G S




,

Computing IND as given in Sect. 3.1.2.
IND(1) = 2, because in the first row of A∗ there exist

two G-type coefficients; IND(2) = 2, because in the
second row of A∗ there exist one G-type and one E-
type coefficients; IND(3) = 4, because in the third row
of A∗ there exist three G-type coefficients and one E-
type coefficient, etc. for IND(4) = 3, IND(5) = 3, IND
(6) = 3. The system can be either consistent or inconsis-
tent and it may have no more than PN = ∏6

i=1 IND(i) =
2.2.4.3.3.3 = 432 potential minimal solutions, see (4).

For computing H and Xgr we apply Theorem 3:
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For j = 1, A∗(1) contains three G-type coefficients,
namely a∗

31, a∗
41 and a∗

61. We apply Theorem 3 i) to com-
pute Xgr(1) = x̂1, to select essential and to drop non-
essential coefficients.

x̂1 = 6
min
i=1

{
b3

a31
,

b4

a41
,

b6

a61

}
= min

{
0.24
0.8

,
0.2
0.3

,
0.15
0.5

}
= 0.3.

Since x̂1 = 0.3 we put Xgr(1) = x̂1 = 0.3. This selection
is based on

b3

a31
= b6

a61
= 0.3 <

b4

a41
,

hence selected coefficients from the first column are
a∗

31 = a∗
61, see Definition 4 and we put h31 = h61 = 1

according to (6). It means that we have found a way
to satisfy e3 and e6 by the terms a31 · x̂1 and a61 · x̂1,
respectively.

For j = 2 we also apply Theorem 3 i) and by anal-
ogy with previous inference, selected coefficients from
the second column are a∗

12 = a∗
22 = a∗

32 = a∗
62, hence

h12 = h22 = h32 = h62 = 1 and Xgr(2) = 0.5.
For j = 3 there do not exist G-type coefficients, we

apply Theorem 3 ii) and select all E-type coefficients
a∗

23 = a∗
33 = a∗

53, leading to h23 = h33 = h53 = 1, and
Xgr(3) = 1.

For j = 4 we apply Theorem 3 i), a∗
34 = a∗

44 are
selected, h34 = h44 = 1, Xgr(4) = 0.5.

For j = 5 we apply Theorem 3 i), select a∗
15 = a∗

45 =
a∗

55 = a∗
65, h15 = h45 = h55 = h65 = 1, Xgr(5) = 0.25.

For j = 6 apply Theorem 3 iii), because A∗(6) con-
tains only S-type coefficients, x6 does not contribute for
solving the system, Xgr(6) = 1.

The result is summarized as:

H =




x1 x2 x3 x4 x5 x6
e1 0 1 0 0 1 0
e2 0 1 1 0 0 0
e3 1 1 1 1 0 0
e4 0 0 0 1 1 0
e5 0 0 1 0 1 0
e6 1 1 0 0 1 0




, IND =




2
2
4
2
2
3




,

Xgr =




0.3
0.5
1

0.5
0.25

1




.

Notice that the components of the vector IND are up-
graded and computed from H. Since IND(i) 
= 0 for
i = 1, . . . , 6, the system is consistent, see Corollary 4.
It has no more than PN1 = 2.2.4.2.2.3 = 192 potential
minimal solutions, see current IND-components.

Next we obtain dominance matrix. The rows e3 and e6
are redundant, they are dominated by e2 and e1, respec-
tively. We obtain for the dominance matrix D:

D =




x1 x2 x3 x4 x5 x6
e1 0 1 0 0 1 0
e2 0 1 1 0 0 0
e3 0 0 0 0 0 0
e4 0 0 0 1 1 0
e5 0 0 1 0 1 0
e6 0 0 0 0 0 0




.

We remove redundant rows and columns and upgrade
IND:

M =




x2 x3 x4 x5
e1 0.5 0 0 0.25
e2 0.5 1 0 0
e4 0 0 0.5 0.25
e5 0 1 0 0.25


 , IND =




2
2
2
2


 .

From current IND it follows that the system is in nor-
mal form and it has no more than PN2 = 16 minimal
solutions.

Expansion along M follows. In the first row of M
there exist two non-zero elements, namely m∗

12 = 0.5
and m∗

15 = 0.25. When we select x̌2 = m∗
12 = 0.5, we

satisfy equations e1 and e2, selecting x̌5 = m∗
15 = 0.25

we satisfy e1, e4 and e5. For this reason these equations
are excluded from the corresponding summands:

〈
0.5
2

〉
·

 x3 x4 x5

e4 0 0.5 0.25
e5 1 0 0.25


+

〈
0.25

5

〉
·
(

x2 x3 x4
e2 0.5 1 0

)
.

In the second summand we exclude the zero column for
x4:

〈
0.5
2

〉
·

 x3 x4 x5

e4 0 0.5 0.25
e5 1 0 0.25


+

〈
0.25

5

〉
·
(

x2 x3
e2 0.5 1

)

Expanding the last expression and having in mind
absorption (18) we obtain:[〈

0.5
2

〉
·
〈

1
3

〉
·
〈

0.5
4

〉
+
〈

0.5
2

〉
·
〈

0.25
5

〉]

+
[〈

0.5
2

〉
·
〈

0.25
5

〉
+
〈

1
3

〉
·
〈

0.25
5

〉]

=
〈

0.5
2

〉
·
〈

1
3

〉
·
〈

0.5
4

〉

+
〈

0.5
2

〉
·
〈

0.25
5

〉
+
〈

1
3

〉
·
〈

0.25
5

〉
. (21)

According to (21) the minimal solutions are:

X̌1 = (
0 0.5 1 0.5 0 0

)t , X̌2 = (
0 0.5 0 0 0.25 0

)t ,

X̌3 = (
0 0 1 0 0.25 0

)t .
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Hence the maximal interval solutions, respectively
complete solution set, are:

Xmax 1 =




[0, 0.3]
0.5
1
0.5
[0, 0.25]
[0, 1]




, Xmax 2 =




[0, 0.3]
0.5
[0, 1]
[0, 0.5]
0.25
[0, 1]




,

Xmax 3 =




[0, 0.3]
[0, 0.5]
1
[0, 0.5]
0.25
[0, 1]




.

The minimal solutions for this example are deter-
mined by Markovskii (2005), using covering. We devise
here a computational scheme, extending the approach
for max − min FLSE (Peeva 2006) for �−composition.
Instead of work with the system A � X = B, we use the
associated matrix A∗, whose elements preserve all the
properties of the initial system. Manipulation on A∗ is
carried out to select some coefficients and to determine
the help matrix H. Using dominance relation, we bring
H into a new form D. Once in this form, solution to the
system is easily found.

4.4 The algorithm

Conventional reasoning to solve �−FLSE leads to com-
binatorial problem, see Markovskii (2005). Using the
theoretical background from Sects. 3 and 4, we devise
algorithm that computes maximal and all minimal solu-
tions (without listing duplications of minimal solutions
or non-minimal solutions) and that is smaller time con-
suming in comparison with the algorithms given in Guu
and Wu (2002), Loetamonphong and Fang (1999, 2001),
Loetamonphong et al. (2002) and Markovskii (2005).

Algorithm for solving A � X = B.

1. Enter the matrices Am×n and Bm×1.
2. Compute A∗ = (a∗

ij) with a∗
ij according to (2).

3. Compute H, IND, Xgr.
4. Transform the system in normal form.
5. If IND(i) = 0 for some i = 1, . . . , m, then the system

is inconsistent and the equation(s) with IND(i) = 0
can not be satisfied simultaneously with the other
equation(s) in the system.
Go to Step 9.

6. If IND(i) = 1 for each i = 1, ..., m, the system
is consistent with unique: maximum solution, min-
imum solution and maximal interval solution; Xgr

contains the maximum solution; Xlow is determined
according expression (20); Xmax is determined by
Xlow on the left and by Xgr on the right.
Go to Step 9.

7. Compute the dominance matrix D = (dij)m×n as
described in Sect. 4.2.2.

8. Compute the matrix M with elements computed by
(10). Expand M along non-zero elements by rows
as given in Sect. 4.3.2. Simplify W according to alge-
braic properties in Sect 4.3.1.

9. The system is consistent, Xgr contains the maximum
solution. Determine the minimal solutions accord-
ing to expressions (12)–(20). Obtain the maximal
interval solutions by minimal solutions and by max-
imum solution.

10. End.

The algorithm for solving �-FLSE is provided by
Theorem 3 and its Corollaries, algebraic-logic properties
of the terms as described in Sect. 4.3 and expansion
along M. Based on simplifications, help and dominance
matrices, as well as the matrix M, the algorithm has
smaller computational complexity in comparison with
the algorithms proposed in Guu and Wu (2002), Loeta-
monphong and Fang (1999, 2001), Loetamonphong
et al. (2002), Markovskii (2005).

Theorem 4 For A � X = B:

(i) It is solvable in polynomial time whether the sys-
tem is consistent or not.

(ii) If the system is consistent the maximum solution,
the minimal solutions and the maximal interval
solutions are computable.

(iii) For inconsistent system we can determine the equa-
tions that can not be satisfied by At � B.

By this theoretical background in MATLAB work-
space we develop software for computing the complete
solution set or for establishing inconsistency of the sys-
tem A � X = B. Software is available free for educa-
tional and research purposes only, upon request to the
authors.

5 Solving fuzzy relational equations

Let R ∈ F(X × Y), Q ∈ F(Y × Z) and T ∈ F(X × Z) be
fuzzy relations on I�. The equation

R � Q = T, (22)

where one of the fuzzy relations on the left is unknown,
and the other relation on the left and the relation T are
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given, is called �-fuzzy relational equation (�-FRE). If
the relations are over finite support, we can assign to
any relation a matrix and thus (22) can be interpreted
as fuzzy matrix equation on I � .

Let the fuzzy relations R, Q and T be over finite sup-
port, and the composition R � Q = T makes sense.

Theorem 5 R � Q = T is solvable for Q if R and T are
given.

Proof Follows from Theorem 3 and the Algorithm. In
order to solve (22), we represent relations by the corre-
sponding matrices:

Rm×n � Qn×p = Tm×p. (23)

We split Qn×p and Tm×p in (23) by columns and apply
the equivalence:

Rm×n � Qn×p = Tm×p ⇔
∣∣∣∣∣∣

Rm×n � Q(1) = T(1)

· · · . . .

Rm×n � Q(p) = T(p)

. (24)

Q( j), j = 1, ..., p, denotes the j-th column of Q and
T( j), j = 1, ..., p – j-th column of T. Now, instead of (23)
we solve p fuzzy linear systems, having the same matrix
Rm×n, with the Algorithm.

Solving fuzzy matrix equation A � B = C for A or
FRE R � Q = T for R, requires first to transpose the
equation.

Hence, applying the Algorithm for FLSE, we can
solve: fuzzy matrix equation of the form A � B = C
for B (or for A); FRE of the form R � Q = T for Q (or
for R).

The algorithm is realized in MATLAB and gives the
complete solution set when the Eq. (22) has solution,
otherwise it establishes inconsistency.

6 Software description and some experimental results

We develop software, based on this method and algo-
rithm in MATLAB workspace.

The algebraic-logical approach and matrix based ap-
proach are programmed as alternative programming
techniques. The algebraic-logical approach uses the
MATLAB library published in Peeva and Kyosev (2004)
and available under General Public License for con-
struction and operation with terms. This approach has
advantages – it operates only with essential (non-zero)
elements of the matrix, not wasting computational time
for checking duplicated or non-minimal solutions (see
absorptions in Sect. 4.3.1), so directly whole branches of
redundant solutions are cut.

The matrix approach is based on the operation with
and within matrices, without building new structures.
Applying dominance rules before each new sub-step can
speed up the calculation process, and thus the method
seems to be preferable for larger systems.

Theoretically both methods are equivalent. Which
one is faster depends on the properties of the instant.
A comparison between computational times at this
moment is not suitable, because the MATLAB Environ-
ment has a set of pre-compiled functions for matrix oper-
ations, which are very fast. In contrast, our MATLAB
Library with implementation of the algebraic-logical
approach is currently used as not compiled set of func-
tions, which are working slower.

We include some prints from MATLAB session. For
the above Example they confirm the same results as
these in Markovskii (2005):

Help matrix:
0.00 0.50 0.00 0.00 0.25 0.00
0.00 0.50 1.00 0.00 0.00 0.00
0.30 0.50 1.00 0.50 0.00 0.00
0.00 0.00 0.00 0.50 0.25 0.00
0.00 0.00 1.00 0.00 0.25 0.00
0.30 0.50 0.00 0.00 0.25 0.00

Greatest Solution transposed =
0.30 0.50 1.00 0.50 0.25 1.00

Dominance matrix initial
0.00 1.00 0.00 0.00 1.00 0.00
0.00 1.00 1.00 0.00 0.00 0.00
1.00 1.00 1.00 1.00 0.00 0.00
0.00 0.00 0.00 1.00 1.00 0.00
0.00 0.00 1.00 0.00 1.00 0.00
1.00 1.00 0.00 0.00 1.00 0.00

Significant rows from the dominance
matrix
0.00 1.00 0.00 0.00 1.00 0.00
0.00 1.00 1.00 0.00 0.00 0.00
0.00 0.00 0.00 1.00 1.00 0.00
0.00 0.00 1.00 0.00 1.00 0.00
1.00 1.00 1.00 1.00 0.00 0.00

Minimal Solutions - transposed
0 0.50 1.00 0.50 0 0
0 0.50 0 0 0.25 0
0 0 1.00 0 0.25 0

Short solution summary: s =
exists: 1

low: [3x6 double]
sol_numb: 3

Xgr: [0.3000 0.5000 1 0.5000
0.2500 1]
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Ind: [5x1 double]
hlp: [6x6 double]
A: [6x6 double]
B: [6x1 double]
d: [5x6 double]

The presented structure consists information about
the input matrix and data from different solution steps.
More detailed solution summary is also available, where
also solution times for the different routines are saved.

7 Conclusions

In this paper we develop exact method and universal
algorithm for solving max-product fuzzy linear systems
of equations and max-product fuzzy relational equa-
tions.

Various applications of inverse problem for max −
product composition in finite fuzzy machines, as infer-
ence engine, for fuzzy modeling, for some optimization
problems, are possible. They will be subject of next pub-
lications.
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