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Abstract The logical analysis of data (LAD) is a combi-
natorics, optimization and logic based methodology for the
analysis of datasets with binary or numerical input variables,
and binary outcomes. It has been established in previous stud-
ies that LAD provides a competitive classification tool com-
parable in efficiency with the top classification techniques
available. The goal of this paper is to show that the method-
ology of LAD can be useful in the discovery of new classes
of observations and in the analysis of attributes. After a brief
description of the main concepts of LAD, two efficient com-
binatorial algorithms are described for the generation of all
prime, respectively all spanned, patterns (rules) satisfying
certain conditions. It is shown that the application of classic
clustering techniques to the set of observations represented in
prime pattern space leads to the identification of a subclass of,
say positive, observations, which is accurately recognizable,
and is sharply distinct from the observations in the opposite,
say negative, class. It is also shown that the set of all spanned
patterns allows the introduction of a measure of significance
and of a concept of monotonicity in the set of attributes.

Keywords Logical Analysis of Data (LAD) · Patterns ·
Clustering · Feature analysis

Abreviations LAD: Logical Analysis of Data

1 Introduction

The extraction of knowledge hidden in records of past obser-
vations is a common problem in practically every area of sci-
ence, engineering and business, and is the central object of
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study of classical disciplines, like statistics, and newer ones,
like machine learning and data mining. Numerous methods
have been developed to address this type of problems, and
substantial success with their use is reported in the literature.
One of the basic questions addressed by all the above men-
tioned areas is that of classification, e.g., that of recognizing –
on the basis of similarities with already known observations
in a given dataset � – whether a not-yet-seen observation
(i.e., one not belonging to �) is positive or negative (or true
or false, or sick or healthy, etc). We plan to show in this paper
that the tools developed for classification can be successfully
applied also for the extraction of other important information
from datasets.

In order to clarify the concepts and the methods proposed
in this paper we shall illustrate them on the breast cancer wis-
consin (BCW) dataset – one of the most frequently quoted,
publicly available datasets (http://www1.ics.uci.edu/∼mlearn
/MLRepository.html).This dataset includes 699 observations,
of which we shall only use those 683 for which the values
of all the nine attributes are specified. Of these 683 obser-
vations, 239 correspond to positive (i.e., malignant breast
cancer) cases, while 444 correspond to negative (i.e., be-
nign breast cancer) cases. The nine variables of the prob-
lem, clump thickness, uniformity of cell size, uniformity of
cell shape, marginal adhesion, single epithelial cell size, bare
nuclei, bland chromatin, normal nucleoli, and mitosis, take
values from one to ten, and will be denoted in this paper by
x1, . . . , x9.

Various statistical and machine learning classification
techniques are available for distinguishing the positive obser-
vations from the negative ones. Among the methods which
are most frequently applied for the solution of such problems
we mention logistic regression, Bayesian networks, nearest
neighbors, linear (diagonal) discriminant, decision trees, arti-
ficial neural networks, support vector machines (see e.g., [19,
15]). The method we shall use in this study is the logical anal-
ysis of data (LAD), which was selected because of its double
potential of answering the basic classification question on the
one hand, and of providing on the other hand, novel types of
information about the problems under study, e.g., the analysis
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Table 1 Number and generation time of prime patterns with prevalence ≥ 10% in bcw dataset

Homogeneity Degree

2 3 4

# positive # negative Time (s) # positive # negative Time (s) # positive # negative Time (s)
patterns patterns patterns patterns patterns patterns

90% 45 56 0 45 105 1 45 110 43
95% 59 54 0 87 216 1 99 411 43
100% 39 7 0 194 68 1 464 201 43

of the role and nature of attributes, the discovery of new clas-
ses, etc.

The paper is structured as follows: the basic concepts of
LAD will be presented in Sect. 2. Section 3 will deal with the
algorithmic problems of generating different types of pat-
terns. Section 4 will deal with various applications of the
large collections of patterns generated by LAD, including a
new type of clustering of the observations (aimed at discov-
ering new classes of observations), and the analysis of the
importance and role of features. The paper ends with some
brief conclusions presented in Sect. 5.

2 Basic concepts of LAD

The Logical Analysis of Data (LAD), introduced in [13,14],
is a combinatorial optimization-based approach to the anal-
ysis of a dataset � = �+ ∪ �−, consisting of “positive” and
“negative” observations, each of which is represented as a
vector of n attribute values, each attribute xi taking the val-
ues {0, 1, . . . , ki}. It has been established in previous studies
([5,12]) that LAD provides a competitive classification tool,
comparable in efficiency with the best classification tech-
niques available. The key concept used in LAD is that of pat-
terns, which makes it in particular possible to provide clear
justifications of the reasons for which a not-yet-seen obser-
vation should be considered positive or negative. As it will be
seen in this paper, the set of patterns can provide numerous
other important information about the data. The essence of
LAD consists in the systematic and exhaustive generation of
all the patterns satisfying certain limiting conditions, and the
extraction of information from this set of patterns.

Let us first introduce some basic concepts.A set of bound-
ing restrictions imposed on the values of several attributes is
called a conjunction. A conjunction is called a positive (or
negative) pattern if it is sufficiently “biased”, i.e., it satisfies at
least a prescribed proportion of the positive (negative) obser-
vations, and at most a prescribed proportion of the negative
(positive) observations.A positive (negative) pattern is called
pure if every negative (positive) observation in the dataset
violates at least one of its defining conditions. For illustra-
tion, the conditions “uniformity of cell size” ≥ 5, “marginal
adhesion” ≥ 2, and “ normal nucleoli” ≥ 3 imposed on the
attribute values of the observations in bcw represent a pure
positive pattern, say P , because they are simultaneous satis-
fied by 137 (57.3%) of the 239 positive cases, and by none
of the negative cases.

+ --

+

+ + +

-- + +

+ + --

--

-- -- +

+

Fig. 1 An intuitive example of a prime and of a spanned pattern

It was shown in [12,17] that the key role in knowledge
extraction by LAD is played by two types of patterns, called
“prime” and “spanned”. A prime pattern is in fact “minimal”
with respect to the set of its defining conditions, i.e., it is a pat-
tern such that if any of its defining conditions is relaxed, the
remaining system of conditions defines a conjunction which
is no longer a pattern. In the case of a positive (negative) pat-
tern, this means that after the relaxation of any of its defining
conditions, the proportion of negative (positive) observations
satisfying the remaining conjunction violates the prescribed
bias. For illustration, if we consider positive patterns to have
a bias of 0% (i.e., no negative observation should satisfied
them) then the pure positive pattern P is prime, since by
relaxing any of its defining conditions allows some of the
negative observations to satisfy its conditions; for instance,
by relaxing the second condition to “marginal adhesion ≥ 1”,
and leaving the other two unchanged, the new conjunction C
obtained in this way will be satisfied by two negative obser-
vations. A spanned pattern is in fact also a “minimal” one,
but in a different sense then in the prime case. More exactly,
a spanned pattern is such that by strengthening any of its
defining conditions, at least one of the observations covered
by the pattern (i.e., satisfying its defining conditions) will
no longer be covered. For illustration, if in the positive pure
pattern discussed above we strengthen any of its defining
conditions, some of the positive observations covered by it
will be uncovered; for instance, by strengthening the second
condition to “marginal adhesion ≥ 3”, the number of positive
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Table 2 Generation time (in seconds) of spanned pure patterns in bcw
dataset

Prevalence (%) Number of spanned pure patterns produced

1000 5000 10000 16000

5 3 25 47 93
10 4 28 51 99

observations covered by the conjunction obtained in this way,
say D, will drop from 137 to 123. An intuitive example of
a prime and a spanned pattern in a fictitious example of a
dataset with two variables is shown in Figure 1; the “box”
enclosed by the dotted line represents a prime pattern, while
that enclosed by a heavy line represents a spanned pattern.

There are five basic parameters σ, τ, δ, π, χ associated
to a pattern. The sign σ of a pattern, can only take the val-
ues + or – to indicate whether it has a positive or a neg-
ative bias. The type of the pattern, τ , can take the values
“prime” or “spanned”. The degree δ of a pattern indicates
the number of variables used in its definition, for instance
δ = 3 for the pattern P mentioned above. The prevalence
π of a pattern represents the proportion of observations cov-
ered within �+ (in the case of positive patterns), or �−(in
the case of negative patterns) covered by it; e.g., the prev-
alence of P is π = 57.3% . In the case of positive (neg-
ative) patterns, their homogeneity χ represents the propor-
tion of those of the observations covered by them which are
positive (respectively, negative). For instance the conjunc-
tion C mentioned before covers 143 positive and 2 negative
observations; the corresponding positive pattern has a homo-
geneityχ of 98.62%.

Clearly, if n is the number of attributes of a dataset, then
the set I (P ) of points of Rn which satisfy the inequalities
defining a pattern P form an interval of Rn. If P ∗ is a prime
pattern, then I (P ∗) is inclusionwise maximal in the family
of all intervals I (P ) (i.e., no constraint of the type x ≤ a
appearing in their definition can be relaxed to x ≤ a′ with
a < a′).

On the other hand, if maximality is defined in terms of
the set of observations in � covered by a pattern, then neither
the prime nor the spanned patterns are necessarily maximal.
Because of the large number of possible patterns, we usu-
ally list only the coveragewise maximal ones. In particular,
Tables 5 and 6 only list the coveragewise maximal patterns
in the respective pandects.

Both prime and spanned patterns provide valuable infor-
mation about the dataset. There are advantages and disadvan-
tages associated both to the use of prime and to the use of
spanned patterns. Prime patterns of low degree can be gen-
erated more efficiently than spanned patterns and are more
easily comprehensible. In classification problems in which
the primary criterion is to not leave any new observation
“unclassified”, they are the preferred tool. On the other hand,
spanned patterns usually have higher degrees, and are more
“conservative” than the prime ones. It was shown in [6] that
classifications based on models using spanned patterns are
more “robust”, having usually fewer errors, at the cost of

Table 3 Dissimilarities for k-means clustering

k-means clustering

k = 2 k = 3 k = 4

Attribute space 91.15% 95.28% 95.07%
Pattern space 95.95% 96.54% 97.29%

leaving somewhat larger numbers of observations unclassi-
fied. It will be seen below that prime patterns are the major
tool used in the proposed approach to class discovery, while
the proposed attribute analysis procedures are mostly based
on information provided by spanned patterns.

It is clear that the “most interesting” patterns are those
which have low degrees (i.e., high explicative power due to
their intuitive nature), high prevalences (i.e., high reliabil-
ity, due to the fraction of observations covered by them),
and high homogeneity (i.e., highly informative, due to their
strong bias). The set of all patterns of a given sign σ ∗, type τ ∗,
degree at most δ∗, prevalence at least π∗, and homogeneity
at least χ∗ will be called the (σ ∗, τ ∗, δ∗, π∗, χ∗) -pandect of
the dataset � . It should be noted that beside the positive and
the negative pandects (for which σ ∗ is “+” or “−”, respec-
tively), we shall also consider the pandect of all positive or
negative patterns with the given characteristics; we shall use
the symbol “± ” to indicate this type of pandect.

It has been shown in [7,8] that the (σ ∗, τ ∗, δ∗, π∗, χ∗)-
pandect can be generated (for a fixed δ∗) in polynomial time in
the input size (i.e., the number n of variables and the number
m of observations). If δ∗ is not fixed, this set can still be gen-
erated in total polynomial time (i.e., in n, m and the number
c of conjunctions). The generation algorithms of prime and
spanned patterns will be briefly outlined in the next section.

In numerous case studies ([1,2,5,6,9,12,16,24], etc) it
was noticed that the most informative pandects were those
with δ∗ equal 2 or 3, or (rarely) 4; usually δ∗ ≥ 5 lead to
a phenomenon resembling statistical overfitting. The values
of π∗ had substantial variations (5–80%) in the case studies
examined, being usually in the 10–50% range. Finally, χ∗
was usually restricted to the 90–100% range, reaching how-
ever, in the extreme case of “inseparable” and “unbalanced”
data ([6,25]) values as low as 16.5%.

Since the patterns can be seen as new, synthetic attri-
butes, the pandect defines a new way of representing obser-
vations. Each observation can be represented in the pattern
space corresponding to a pandect as a binary vector, whose
j th component indicates whether the observation is or is not
covered by the j th pattern. Similarly, the attributes can be
represented as ternary vectors in another pattern space cor-
responding to a pandect, the (−1,0,1) component j of which
indicates whether the attribute’s values are bounded from
above/are unrestricted / are bounded from below in the defi-
nition of pattern j .

Pandect-based classification is one of the essential and
well-known applications of LAD (see e.g., [2,5,6,12,15,
25]). The purpose of this paper is to describe two other appli-
cations of LAD, one being a new class discovery technique
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based on clustering in the binary pattern space of a pandect,
and the other being an attribute analysis technique, based
on the role of variables in the corresponding ternary pattern
space.

3 Pandect generation

3.1 Generation of prime patterns

The algorithm evaluates the (positive and negative) preva-
lence, degree, and homogeneity of all possible conjunctions
(intervals) in the dataset, and selects subsequently only those
which satisfy the pandect-defining degree, prevalence, and
homogeneity requirements.

The basic component of the algorithm is the calculation of
the positive and of the negative prevalences of each interval in
the discrete space. While the algorithm for calculating these
prevalences is given in [9] for the general n-dimensional case,
its basic principles will be illustrated here for the special case
n = 2. The attributes are denoted X and Y , and take values
in the sets {0, 1, . . . , p} and {0, 1, . . . , q}, respectively. We
shall denote an interval in the two dimensional discrete space
as I = [(i, j), (k, l)] (i ≤ k, j ≤ l), and shall indicate by
Cov+(I ) and Cov−(I ) the number of positive, respectively
negative, elements of the dataset contained in I .

We shall illustrate the way the algorithm calculates preva-
lences on the positive case. The algorithm starts by associat-
ing to � the matrix M , whose entries are mij = Cov+([(i, j),
(i, j)]), and aims at calculating a sequence of matrices lead-
ing to a matrix R(0,0)whose elements are the positive preva-
lences of each of the discrete intervals. In most cases, mij

takes the values 0 or 1, since it is assumed that there is no
duplication of observations.

For every pair of integers k ∈ {0, 1, . . . , p} and l ∈
{0, 1, . . . , q}, the algorithm recursively constructs matrices
R(k,l), where for each i ≤ k,j ≤ l, the entry (i,j) of R(k,l)

is defined as r
(k,l)
i,j = Cov+([(i, j), (k, l)]). The first matrix,

R(p,q) = R can be calculated as follows:

R:=M;
For i:=p downto 0 do
For j :=q − 1 donwto 0 do ri,j :=ri,j+1 + ri,j ;
For j :=q donwto 0 do
For i:=p − 1 downto 0 do ri,j :=ri+1,j + ri,j ;

The recursive computation of R(k,l) is based on the enu-
meration of the pairs (k, l), k ∈ {0, 1, . . . , p} and l ∈
{0, 1, . . . , q}, by utilizing a generalized form of Gray code
[23], which makes it possible: (a) to generate every pair be-
tween (0,0) and (p,q) exactly once, and (b) to assure that
any two consecutive pairs differ in exactly one component,
and by exactly one unit. As soon as the matrix R(p,q) is com-
puted, the recursion can proceed to the next pair in the Gray
sequence. Denoting the current pair by (k, l), the next ele-
ment if the Gray sequence is defined as one of pairs (k+1, l),
(k −1, l), (k, l+1), (k, l −1). In the case when the next pair is
(k, l−1), the corresponding matrix is calculated as follows:

Table 4 Positive content of nearest neighborhood

R Average proportion Average proportion
of positive cases in C* (%) of positive cases in C’ (%)

1.50 99 35
1.75 98 35
2.00 98 37
2.50 98 45
3.00 96 54
3.50 95 52
4.00 90 46

R := R(k,l);
For i:=0 to p do
{For j :=0 to l − 1 do ri,j :=ri,j − ri,l ;
For j :=l to q do ri,j :=ri,j + ri,l−1; }

The calculation of the following matrix in the other three
cases is defined in a similar way.

Example. Let p = 3, q = 3, and let � be a dataset. The
number mij of positive elements (i, j) in � is shown in
the matrix M . The Gray code defines the sequence: (3,3),
(3,2), (3,1), (3,0), (2,0), (2,1), . . . , (0,0). The corresponding
matrices are R(3,3), R(3,2), . . . , R(0,0). We start by calculat-

ing r
(3,3)
i,j =

3∑

s=i

3∑

t=j

mst ; for example, Cov+[(1, 1), (3, 3)] =

r
(3,3)
1,1 = 8. In the following step we calculate the matrix R(3,2),

etc.

M =






m00 m01 m02 m03
m10 m11 m12 m13
m20 m21 m22 m23
m30 m31 m32 m33




 =






1 0 1 2
2 1 0 0
2 2 2 1
1 1 1 0




 ,

R(3,3) =






17 11 7 3
13 8 4 1
10 7 4 1
3 2 1 0




 , R(3,2) =






14 8 4 7
12 7 3 4
9 6 3 4
3 2 1 1




 , . . . ,

R(0,0) =






1 1 2 4
3 4 5 7
5 8 11 14
6 10 14 17




 .

Making a similar calculation for the negative prevalenc-
es of each interval, we have all the information necessary to
enumerate all the positive patterns satisfying the prescribed
requirements. The number of operations (additions) Op nec-
essary to generate all the prime patterns satisfies Op ≤ 2nc,
where c is the number of conjunctions. Clearly, if the number
n of attributes is small, the algorithm is linear in the size of
the output.

In order to illustrate the efficiency of the algorithm for
generation of prime patterns, we present in Table 1 the num-
ber of patterns which are generated in the bcw dataset for
δ∗ = {2, 3, 4}, π∗ = 10% and χ∗ = 90%, 95%, and 100%,
as well as their generation time on a Pentium III 1 GHz pro-
cessor.
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3.2 Generation of spanned patterns

An incremental polynomial time algorithm using a consen-
sus-type approach was developed in [6] for the generation of
all the spanned patterns in a dataset. The well-known method
of consensus was proposed by Blake [11] and Quine [26] for
finding prime implicants of a Boolean function. Malgrange
[24] used a consensus-type approach to find all the maximal
submatrices consisting of the 1 s of a 0–1 matrix. Also, a con-
sensus-type algorithm for finding all maximal bicliques of a
graph was presented in [4].

Consensus-type methods enumerate the family of all max-
imal objects of a certain collection, by starting from a suffi-
ciently large set of objects, and systematically completing it
by the application of two simple operations. The operation
of consensus adjunction associates to a pair of objects in the
given collection, one or more new objects, and adds them
to the collection. The operation of absorption removes from
the collection those objects which are “dominated” by other
objects in the collection. The two operations are repeated as
many times as possible, leading eventually to a collection
consisting exactly of all the maximal objects.

Below we describe the proposed algorithm [7] for the gen-
eration of all the positive spanned patterns in a dataset. The
negative spanned patterns can be generated in a similar way.

We shall briefly present here a particular variant of the
consensus method, which produces the complete collection
of all its spanned positive patterns, restricting our attention
only to the case of pure patterns. For any two integers ai , bi

with 0 ≤ ai ≤ bi ≤ ki , we denote by [ai, bi] the interval of
integers {ai, ai + 1, . . . , bi}, and we represent an n−dimen-
sional interval as [a1, b1]×· · ·× [an, bn]. Let P = [a1, b1]×
· · · × [an, bn] and P ′ = [a′

1, b
′
1] × · · · × [a′

n, b
′
n] be a pair

of positive pure spanned patterns, and let P ′′ be the inter-
val [a′′

1 , b′′
1] × · · · × [a′′

n, b
′′
n], where a′′

i = min{ai, a
′
i} and

b′′
i = max{bi, b

′
i}, i = 1, . . . , n. If P ′′ is a positive pure

pattern, then it is called the consensus of the pure patterns
P and P ′. Clearly, a pair of positive spanned pure patterns
can have at most one consensus, which is the pure pattern
spanned by the observations covered by P or P ′. We say
that the positive spanned pure pattern P absorbs the positive
spanned pure pattern P ′ if P = P ′.

The proposed algorithm for generating all positive spanned
pure patterns runs as follows. Let us start with the collection
C: = C0 of all those spanned patterns, which cover exactly
one observation in �+. The collection C will be augmented
by the inclusion of additional patterns. More precisely, at
each stage, we shall select a pair of patterns P0 in C0 and P
in C, whose consensus P ’ exists and is not already contained
in C, and add P ′ to C. This operation will be repeated until
the collection C cannot be enlarged anymore in this way. It
was proved in [6] that at this stage, C will consists exactly of
the collection of all spanned patterns.

Example. We shall illustrate the algorithm for the dataset �
consisting of the four observations ω1 = (1,0,2), ω2 = (0,2,0),
ω3 = (3,1,1), ω4 = (2,0,2), where ω1, ω3, and ω4 are positive,
and ω2 is negative. The input collection C0 is {P1 = [1,1] ×

[0,0] × [2,2], P3 = [3,3] × [1,1] × [1,1], P4 = [2,2] × [0,0]
× [2,2]}. Initialize C:= C0. Perform consensus adjunction
for the pair of patterns P1 in C0 and P3 in C: the candidate
for consensus is P1,3 = [1,3] × [0,1] × [1,2], covering the
positive observations ω1, ω3, ω4; since P1,3 is not contained
in C, it is added to C. Perform consensus adjunction for the
pair of patterns P1 in C0 and P4 in C: the candidate for con-
sensus is P1,4 = [1,2] × [0,0] × [2,2], covering the positive
observations ω1, ω4 ; since P1,4 is not contained in C, it is
added to C. Perform consensus adjunction for the pair of pat-
terns P3 in C0 and P4 in C: the candidate for consensus is
P3,4 = [2,3] × [0,1] × [1,2], covering the positive observa-
tions ω3, ω4 ; since P3,4 is not contained in C, it is added to
C. The consensus of any other pair of patterns from C and
C0 is contained in C. The algorithm stops and outputs the
family of all positive pure spanned patterns C = {P1, P3, P4,
P1,3, P1,4, P3,4 }.

The proof of correctness of this algorithm (i.e. of the fact
that it stops after a finite number of steps, coinciding at ter-
mination with the list of all pure spanned positive patterns),
as well as its worst-case complexity, are presented in [6]. The
algorithm runs in incremental polynomial time, its total run-
ning time being O(βm+(m+m+n)), where β is the number
of positive spanned pure patterns, and m+ is the number of
positive observations in the dataset. In order to illustrate the
efficiency of the proposed algorithm, we present in Table 2
the computational time when applying it to the bcw dataset.

In all real-life applications encountered, the number of
spanned pure patterns was extremely high. In view of this
fact, it was important to apply various filtering mechanisms
to restrict the number of pure patterns produced, and to keep
in this way both time and memory requirements at an accept-
able level. The final list of pure spanned patterns is obtained
from the list C, based on several selection criteria, which
include restrictions on the number of pure patterns produced,
and the total time allocation.

Applications of patterns

One of the most important applications of the collections of
positive and negative patterns is the construction of classifiers
(see [13,10]). The basic idea of pattern-based classification
is the following.

(i) If a new observation (i.e., one which is not contained
in �) satisfies the defining conditions of some of the
positive (negative) patterns in the collection, but does
not satisfy the defining conditions of any negative (pos-
itive) pattern in the collection, then this observation is
classified as positive (negative).

(ii) If an observation satisfies the defining conditions of
some positive and some negative patterns, then a weight-
ing criterion ([10]) is applied to determine the classifi-
cation.

(iii) In case that a new observation does not satisfy the defin-
ing conditions of any positive or negative pattern in the
collection, the observation is left unclassified; it should
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Table 5 Pandect of pure prime patterns having degrees ≤ 3 and positive (negative) prevalences ≥ 30% (respectively, 50%)

Pattern Pattern description Prevalence (%)

Name Sign x1 x2 x3 x4 x5 x6 x7 x8 x9 Positive Negative

P1 + >4 >4 54 0
P2 + >4 >4 52 0
P3 + >4 >2 >2 51 0
P4 + >2 >5.5 46 0
P5 + >3 >5.5 46 0
P6 + >6.5 >4 44 0
P7 + >4 >3 >4.5 44 0
P8 + >3.5 >2 >5.5 42 0
P9 + >3.5 >5.5 >2 42 0
P10 + >5.5 >3 >2 41 0
P11 + >5.5 >2 >3.5 40 0
P12 + >2 >5.5 >3 40 0
P13 + >6.5 >4 >2.5 40 0
P14 + >5.5 >4.5 >2 39 0
P15 + >2 >5.5 >4.5 39 0
P16 + >4 >4.5 >4.5 38 0
P17 + >4 >4 >2 38 0
P18 + >4 >4.5 >4.5 38 0
P19 + >5.5 >4 38 0
P20 + >5.5 >3 >4.5 37 0
P21 + >5.5 >5.5 37 0
P22 + >4 >5 36 0
P23 + >3.5 >5.5 >2 36 0
P24 + >5.5 >3 >2 36 0
P25 + >4 >1.5 36 0
P26 + >5.5 >4.5 >2 34 0
P27 + >4 >1.5 33 0
P28 + >6.5 >4 >3 33 0
P29 + >6.5 >4 >3.5 31 0
P30 + >3 >2 30 0
N1 - ≤3 ≤2.5 ≤3.5 0 91
N2 - ≤3 ≤3.5 ≤2.5 0 90
N3 - ≤3 ≤3 ≤2.5 0 90
N4 - ≤6.5 ≤3.5 ≤2.5 0 89
N5 - ≤3 ≤2.5 ≤4 0 89
N6 - ≤6.5 ≤2 ≤4.5 0 89
N7 - ≤4 ≤2.5 ≤2 0 89
N8 - ≤4 ≤2.5 ≤2 0 88
N9 - ≤5 ≤3 ≤2.5 0 88
N10 - ≤5 ≤3 ≤2.5 0 86
N11 - ≤2 ≤2.5 ≤2.5 0 86
N12 - ≤2 ≤2.5 ≤4 0 85
N13 - ≤4 ≤2.5 ≤2.5 0 85
N14 - ≤5 ≤2 ≤4.5 0 85
N15 - ≤4 ≤2.5 ≤2.5 0 85
N16 - ≤2 ≤2.5 ≤4.5 0 84
N17 - ≤2.5 ≤2.5 ≤4 0 84
N18 - ≤2 ≤2 ≤4.5 0 83
N19 - ≤6.5 ≤2.5 ≤2.5 0 83
N20 - ≤2 ≤2.5 ≤4.5 0 80
N21 - ≤5 ≤2 ≤2.5 0 80
N22 - ≤4 ≤4.5 ≤2.5 0 66
N23 - ≤5.5 ≤4.5 ≤2.5 0 66
N24 - ≤6.5 ≤4.5 ≤2.5 0 66
N25 - ≤5.5 ≤2.5 ≤2.5 0 64
N26 - ≤2.5 ≤2.5 ≤5.5 0 64
N27 - ≤5 ≤2.5 ≤2.5 0 63
N28 - ≤6.5 ≤2.5 ≤2.5 0 61
N29 - ≤3.5 ≤3 ≤3 0 61
N30 - ≤3.5 ≤3 ≤5.5 0 61
N31 - ≤3.5 ≤3 ≤4.5 0 60
N32 - ≤3.5 ≤5.5 ≤4.5 0 60
N33 - ≤3.5 ≤3 ≤3.5 0 60
N34 - ≤3.5 ≤5.5 ≤2 0 59
N35 - ≤3.5 ≤3 ≤4 0 59
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Table 5 (Continued)

Pattern Pattern description Prevalence (%)

Name Sign x1 x2 x3 x4 x5 x6 x7 x8 x9 Positive Negative

N36 - ≤3.5 ≤2 0 59
N37 - ≤3.5 ≤4 ≤2.5 0 58
N38 - ≤3.5 ≤2 0 58
N39 - ≤3.5 ≤2.5 ≤5.5 0 58
N40 - ≤3.5 ≤2.5 ≤4.5 0 57
N41 - ≤3.5 ≤2.5 ≤4.5 0 55

be mentioned that this case is extremely rare, and that
in practical applications the number of cases in this sit-
uation is usually less than 1%.

Numerous applications of this technique have shown it
to be highly accurate ([1,5,6,10,24]), and to have sensitivi-
ties and specificities comparable to or somewhat better than
those reported in the literature.

3.3 Pattern-based clustering

In their original form, the observations in the dataset � =
�+ ∪ �− appear as numerical and binary vectors in the n-
dimensional discrete space. The similarities and dissimilari-
ties existing between the observations represented in this way
are frequently explored ([18,27]) by using various clustering
techniques, by partitioning � into subsets, or “clusters”, in
such a way that the pairs of observations grouped into a com-
mon cluster have a high “degree of similarity” (according to
various metrics), and the pairs of observations belonging to
different clusters have high “degrees of dissimilarity”.

The representation of observations in pattern space, dis-
cussed at the end of Sect. 1, makes it possible to use clustering
techniques for the exploration of similarities between obser-
vations which are covered by similar sets of patterns. Given
the pandect 	 = {P1, P2, . . . , Pr, N1, N2, . . . , Ns}, each
observation in ω ∈ � is represented as an (r + s)-dimen-
sional binary vector, which indicates the patterns in 	 which
cover ω . The interest in clustering � in the space of patterns
comes from the fact that patterns can be viewed as synthetic
attributes which reflect more closely the positive or negative
nature of an observation than the original attributes. There-
fore, it can be expected that observations covered by the same
(or almost the same) sets of patterns may have high degrees
of similarity.

In order to compare the usefulness of clustering in pattern
space vs. clustering in the original discrete space, we have
carried out several k-means clustering experiments (for k =
2, 3 and 4) using the two representations of the observations;
the results of these experiments are reported in Table 3.

In each experiment we measured the percentage of those
pairs of observations x, y, (with x ∈ �+, y ∈ �−) which
were assigned to different clusters; the results of these exper-
iments are reported in Table 3.

It is clear that clustering in pattern space produces con-
sistently a better separation of positive and negative points
than clustering in the original discrete space of the attributes.

Based on this conclusion, we have carried out a series of
pattern space-based clustering experiments on several pub-
licly available datasets. We shall illustrate the type of results
found in such applications on the bcw dataset, using the (+, p,
3, 30%, 100%) – and the (−, s, 3, 50%, 100%) – pandects (see
Tables 5, 6). Because of space limitation, we shall only pres-
ent here conclusions concerning the set �+ of positive obser-
vations, although similar conclusions were also found for
�−. For these experiments we have applied three of the most
frequently used clustering techniques: k-means clustering,
partitioning k-medoids, and hierarchical agglomerative clus-
tering (see e.g., [22] for a description of these techniques).
The reason for not limiting these experiments to the well-
known k-means clustering technique is the fact that other
methods (e.g., partitioning k-medoids) may be less sensitive
to outliers and may work effectively for small datasets, or are
independent of the selection of the number k of classes (e.g.,
hierarchical agglomerative clustering). It would interesting
to extend these experiments for other clustering techniques,
including those of Huang [20] and of Jollois and Nadif [21].

(a) Stability Applying three-means clustering to �, we
find that one of the three clusters, say C, contains 105 posi-
tive observations and no negative ones, while the remaining
observations are clustered into a set D consisting of 404 nega-
tive observations, and no positive ones, and a set E containing
both positive and negative observations.

The repeated application of k-means clustering produces
usually partitionings which differ from one experiment to the
other. This is a consequence of the way k-means clustering
works. It starts with a random partition of the original set into
k subsets, and is followed by a sequence of transfers of ele-
ments between the subsets. In view of this fact, it is surprising
that the set C turns out to be very “stable”. Indeed, by repeat-
ing the same clustering 20 times, we find that the cluster C
reappears without any changes in every single experiment.

Even more unexpected is the fact that a two-means clus-
tering of �+ splits the set of positive observations into two
clusters, one of which, say C∗, is almost exactly the set C,
differing from it only by the addition of one single supple-
mentary observation. Again, 20 repetitions of this experi-
ment, produce invariably C∗ as one of the two clusters.

Applying the more robust partitioning k-medoids cluster-
ing technique [22], the same property reappears: in each of
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Table 6 Pandect of pure spanned patterns having positive (negative) prevalences ≥ 35% (respectively, 85%)

Pattern Pattern description Prevalence (%)

Name Sign x1 x2 x3 x4 x5 x6 x7 x8 x9 Positive Negative

P1 + >4 >4 54 0
P2 + >2 >4 >4 52 0
P3 + >4 >2.5 >2.5 >2 51 0
P4 + >2 >2 >5.5 46 0
P5 + >3 >5.5 46 0
P6 + >6.5 >4 44 0
P7 + >4 >2.5 >4.5 44 0
P8 + >2.5 >5.5 >2.5 42 0
P9 + >2.5 >4 >2.5 >2.5 42 0
P10 + >2 >4 >2.5 >4.5 >2 42 0
P11 + >2.5 >2 >5.5 42 0
P12 + >5.5 >2.5 >2.5 41 0
P13 + >2 >5.5 >2.5 >2.5 >2.5 >2.5 40 0
P14 + >6.5 >4 >2.5 40 0
P15 + >2 >5.5 >2.5 >2.5 40 0
P16 + >2 >5.5 >4.5 39 0
P17 + >5.5 >4.5 >2.5 39 0
P18 + >2 >5.5 >2.5 >2.5 >2.5 >2 39 0
P19 + >2 >5.5 >2.5 >2.5 >2.5 >2.5 >2 39 0
P20 + >4 >2 >2.5 >4.5 >4.5 38 0
P21 + >2 >4 >4 >2.5 >2 38 0
P22 + >2 >4 >4.5 >4.5 38 0
P23 + >5.5 >4 38 0
P24 + >2 >5.5 >2.5 >4.5 37 0
P25 + >5.5 >5.5 37 0
P26 + >4 >5 36 0
P27 + >2.5 >5.5 >2 36 0
P28 + >5.5 >2.5 >2.5 >2 36 0
P29 + >4 >1.5 36 0
P30 + >5 >4 >2.5 >2 35 0
N1 - ≤3 ≤2.5 ≤3.5 0 91
N2 - ≤6.5 ≤3 ≤2.5 ≤3.5 0 90
N3 - ≤3 ≤3 ≤2.5 0 90
N4 - ≤3 ≤2.5 ≤3.5 ≤2 0 90
N5 - ≤4 ≤3 ≤2.5 ≤4 0 90
N6 - ≤3 ≤3 ≤2.5 0 90
N7 - ≤6.5 ≤4 ≤2.5 ≤3.5 0 89
N8 - ≤6.5 ≤3 ≤2.5 0 89
N9 - ≤6.5 ≤2 ≤4.5 0 89
N10 - ≤3 ≤3 ≤2.5 ≤4 0 89
N11 - ≤3 ≤2.5 ≤4 ≤3.5 0 89
N12 - ≤3 ≤4 ≤3 ≤2.5 ≤4 0 89
N13 - ≤5 ≤4 ≤4.5 ≤2 0 89
N14 - ≤6.5 ≤3 ≤3 ≤2.5 0 89
N15 - ≤5 ≤4 ≤4.5 ≤2 0 89
N16 - ≤6.5 ≤3 ≤4 ≤2.5 0 89
N17 - ≤3 ≤2.5 ≤2 0 89
N18 - ≤6.5 ≤3 ≤5 ≤2.5 0 89
N19 - ≤5 ≤4 ≤4.5 ≤2 0 89
N20 - ≤3 ≤4 ≤2.5 ≤2 0 88
N21 - ≤4 ≤3 ≤2.5 ≤4 ≤4 0 88
N22 - ≤6.5 ≤3 ≤2.5 ≤3.5 0 88
N23 - ≤5 ≤3 ≤2.5 0 88
N24 - ≤2 ≤3 ≤5 ≤4.5 0 88
N25 - ≤5 ≤4 ≤4 ≤2.5 0 88
N26 - ≤6.5 ≤3 ≤2.5 ≤5 0 88
N27 - ≤6.5 ≤3 ≤2.5 ≤2 0 88
N28 - ≤2 ≤3 ≤4.5 ≤5 0 88
N29 - ≤2 ≤4 ≤5 ≤4.5 ≤2 0 87
N30 - ≤3 ≤2.5 ≤4 ≤2 0 87
N31 - ≤5 ≤3 ≤4.5 ≤2 0 87
N32 - ≤4 ≤4 ≤2.5 ≤4.5 ≤3.5 0 87
N33 - ≤5 ≤4 ≤5 ≤2.5 0 87
N34 - ≤4 ≤4 ≤4 ≤2.5 ≤4.5 ≤3.5 0 87
N35 - ≤5 ≤4 ≤2.5 ≤2 0 87
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Table 6 (Continued)

Pattern Pattern description Prevalence (%)

Name Sign x1 x2 x3 x4 x5 x6 x7 x8 x9 Positive Negative

N36 - ≤3 ≤5 ≤2.5 ≤4 ≤2 0 87
N37 - ≤2 ≤4 ≤4.5 ≤4 ≤2 0 87
N38 - ≤6.5 ≤2.5 ≤4.5 ≤3.5 0 87
N39 - ≤3 ≤4 ≤2.5 ≤4 ≤2 0 87
N40 - ≤5 ≤4 ≤2.5 ≤4 0 87
N41 - ≤5 ≤3 ≤2.5 0 86
N42 - ≤5 ≤2 ≤5.5 ≤2 0 86
N43 - ≤2 ≤4 ≤2.5 ≤2 0 86
N44 - ≤2 ≤4 ≤2.5 ≤4 0 85
N45 - ≤3 ≤4 ≤2.5 ≤2.5 0 85

Table 7 Accuracies of models using high/low ranked attributes

k Accuracy (%) of model built on

Top ranked k attributes Bottom ranked k attributes

3 81.2 62.9
4 92.5 86.3
5 93.9 94.0
6 95.3 93.2
7 95.7 94.0
8 95.5 93.4
9 95.5 95.5

20 experiments, the set C∗ turns out to be one of the clusters
appearing among the final clusters.

Finally, applying now a third clustering technique, called
hierarchical agglomerative clustering with average linkage
[22], in which the number of subsets in the partition is not
fixed a priori, the set C∗ reappears again.

(b) Strong positivity Within the set of positive observa-
tions �+, the subset C∗ displays a series of powerful char-
acteristics indicating the positive nature of its observations,
distinguishing it clearly from C ′ = �+\C∗.

First, the proportion of positive observations in the neigh-
borhood of each observation in C∗ is much higher than in the
neighborhood of observations in C ′. In order to see this, the
original data were “normalized”, i.e., the measurement xij

of each attribute j in observation i was replaced by (xij −
µj)/σj , where µj and σj are respectively the mean and the
standard deviation of attribute j in � . The average pro-
portions of positive observations contained in the spheres
centered in the points of C*, respectively C ′ are reported
in Table 4. The radius R of each sphere is calculated in the
Euclidean metric applied to the normalized data (as described
above). Since we are only interested in the distribution of
positive and negative observations within the neighborhood
of points in C* and C ′, we taken into account those spheres
whose radius is at most 4 (i.e., about 30% of the maximum
distance between most of the pairs of observations).

Clearly, the proportion of positive points in the neighbor-
hoods of the points in C∗ exceeds substantially that of the
points in the neighborhoods of points in C ′, regardless to the
choice of the neighborhood defining radius. Moreover, the
disproportion increases rapidly when the radius decreases.

Second, the points in C∗ have a much stronger coverage
by positive patterns than those in C ′. Indeed, the proportion

of positive patterns in 	 covering an average point in C∗ is
3 times higher (57%) than in C’ (19%). Moreover, the aver-
age prevalence of the patterns covering the points in C∗ is
significantly higher (40%) than in C ′ (32%).

(c) Separation The observations in C∗ can be separated
from the other observations in � by the interval hull [C∗] of
C∗, i.e., the unique minimum n-dimensional interval which
includes C∗ in the original discrete space. Indeed, the set [C∗]
consists of C∗, 9 addition points in �+, and 1 point in �−.

In fact, [C∗] can be viewed as a spanned pattern of high
prevalence (48.12%), and homogeneity (99.14%). Using the
variables x1, . . . , x9 defined in Section 1, this pattern can be
described by the system of inequalities “x3 ≥ 2, x4 ≥ 6, x5 ≥
2, and x7 ≥ 2”. It should be remarked that after the elimi-
nation of redundancies, the resulting prime pattern “x3 ≥ 2,
x4 ≥ 6” covers the same points as [C∗]. Finally, the Fisher
linear discriminant

y = 38.7x1 − 9.6x2 + 29.3x3 − 49x4 + 5.4x5 − 22.4x6

+14x7 − 9.7x8 + 1.9x9 + 2334

separates the entire interval [C∗] from �\C∗ with an accu-
racy of 99.4%.

(d) High predictability The most important consequence
of the stability, the strong positivity, and the separability
of [C∗] is that the classification by LAD of the positive
points belonging to this set is extremely accurate. Indeed,
the application of 20 cross-validation experiments by two-
folding, produced 4.35% errors in the set �+\ [C∗], but only
0.67% errors in [C∗].

The underlying principles of the approach presented in
this section bear certain similarities with the approach taken
by Vrac et al. [28] in combining rule-based reasoning with
clustering techniques. We are grateful to an anonymous ref-
eree who has kindly called our attention to this reference, and
has also pointed out the potential of the Vrac et al. [28] ap-
proach to handle problems with more complex types of data.

3.4 Attribute analysis

An interesting application of the availability of the pandect is
the possibility it offers for measuring the relative importance
of the various attributes, as well as for identifying monotone
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attributes. We shall illustrate this possibilities on the nine
attributes of the bcw dataset.

3.4.1 Importance of attributes

The degree of participation of a variable in the patterns appear-
ing in the pandect offers a valuable measure of its impor-
tance. Clearly, this analysis has to be based on spanned, rather
than prime patterns, since the description of a prime pattern
“hides” the implicit bounding conditions on some of the vari-
ables.

Assuming that the set of spanned patterns in the pandect
	∗ = {P ∗

1 , P ∗
2 , . . . , P ∗

u , N∗
1 , N∗

2 , . . . , N∗
v }, we shall define

the role ρj of variable xj as wj/(u + v), where wj is the
number of patterns in 	∗ which include a bounding condi-
tion on xj . The values of ρj for the 9 variables x1, x2, . . . , x9
in bcw are 65%, 43%, 43.5%, 33.5%, 31.5%, 52%, 43.5%,
35.5% and 23.5%, showing that their respective ranks are 1,
5, 3, 8, 6, 2, 4, 7 and 9.

An indication of the significance of this frequency-based
ranking of the variables, is shown in the following experi-
ment. We have removed from the dataset the top ranked k
variables, constructed a LAD model on the remaining vari-
ables and evaluated through cross-validation the accuracy of
the classification provided by the model. After this, the expe-
rience was repeated by removing this time the bottom ranked
k variables. The resulting accuracies are shown in Table 7.
The results clearly demonstrate the consistently superior per-
formance of the models built on the high ranking variables
compared to those built on the low ranking ones.

3.4.2 Monotonicity of attributes

A variable xj with the properties that: (i) no positive pat-
tern in the pandect includes a bounding condition of the
form xj ≤ α, and (ii) no negative pattern in the pandect
includes a bounding condition of the form xj ≥ β, is called
a contributor. Similarly, a variable xj with the properties
that: (1) no negative pattern in the pandect includes a bound-
ing condition of the form xj ≤ α, and (2) no positive pat-
tern in the pandect includes a bounding condition of the
form xj ≥ β, is called a blocker. Contributors and blockers
are called monotone variables. Clearly, if xi is a contribu-
tor, ω = (x∗

1 , x∗
2 , . . . , x∗

i−1, x
∗
i , x

∗
i+1, . . . , x∗

n) ∈ �+ and if
x∗∗

i ≥ x∗
i , then

ω′ = (
x∗

1 , x∗
2 , . . . , x∗

i−1, x
∗∗
i , x∗

i+1, . . . , x∗
n

) ∈ �+.

A similar observation holds, of course, for blockers. For
illustration, we mention that in the bcw dataset, all the nine
variables are contributors.

4 Conclusions

While much of the statistical, data mining, and machine learn-
ing literature is focused on problems of classification and
clustering, computational techniques can reveal important

structural characteristics of datasets. This study is aimed at
describing some ways of discovering such characteristics of
datasets by examining the set of its combinatorial patterns.

After defining two types of patterns (prime and spanned),
and outlining some efficient enumerative algorithms for the
generation of significant subclasses of such patterns, we briefly
describe the possibility of using these families of patterns for
classification purposes. The paper is focused on two other
uses of the large families of patterns generated by the above
mentioned algorithms.

The first major application described in this paper shows
that a combination of classic clustering algorithms with the
pattern-space representation of the observations in the data-
set can lead to the discovery of new classes of observations.
In particular, it is shown that the frequently analyzed breast
cancer wisconsin BCW contains a subclass of 104 cancer
patients with markedly different characteristics from those
of all the other patients.

A second major application described in this paper iden-
tifies a new ranking of features which takes into account their
impact on distinguishing positive cases from negative ones.
An application to the bcw dataset shows that the accuracy of
models using top-ranked features is superior to that of mod-
els using features of lower ranks. It is also shown that the
family of patterns hidden in a dataset can be used for identi-
fying features which contribute or inhibit a certain condition.
It turns out that all the 9 features considered in the bcw data-
set are contributors, i.e., an increase in their values increases
the chances of a patient to have breast cancer. It should be
remarked however, that in general, only a subset of the fea-
tures have a contributing or inhibiting nature, while the nature
of the remaining features can vary according to the particular
values taken by other features.
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