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Abstract The purpose of this study is to develop partner
robots that can obtain and accumulate human-friendly behav-
iors. To achieve this purpose, the entire architecture of the
robot is designed, based on a concept of structured learning
which emphasizes the importance of interactive learning of
several modules through interaction with its environment.
This paper deals with a trajectory planning method for gener-
ating hand-to-hand behaviors of a partner robot by using mul-
tiple fuzzy state-value functions, a self-organizing map, and
an interactive genetic algorithm.A trajectory for the behavior
is generated by an interactive genetic algorithm using human
evaluation. In order to reduce human load, human evaluation
is estimated by using the fuzzy state-value function. Fur-
thermore, to cope with various situations, a self-organizing
map is used for clustering a given task dependent on a hu-
man hand position. And then, a fuzzy state-value function
is assigned to each output unit of the self-organizing map.
The robot can easily obtain and accumulate human-friendly
trajectories using a fuzzy state-value function and a knowl-
edge database corresponding to the unit selected in the self-
organizing map. Finally, multiple fuzzy state-value functions
can estimate a human evaluation model for the hand-to-hand
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behaviors. Several experimental results show the effective-
ness of the proposed method.
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1 Introduction

Various human-friendly robots such as pet robots, human-
oid robots, and partner robots, have been developed so far.
These kinds of robots can perform many complicated behav-
iors, especially, dynamic walking and dancing, but it seems
to be difficult to realize social communication with a human.
Soft computing, which was proposed by Zadeh [1], is a new
concept for information processing, and its objective is to
realize a new approach for analyzing and creating flexible
information processing with human beings such as sensing,
understanding, learning, recognizing and thinking [1–4]. Soft
computing including fuzzy, neural, and evolutionary comput-
ing has been applied successfully to motion planning and
motion control of various robots in unknown or dynamic
environments [5–8]. For example, fuzzy controllers and neu-
ral controllers are used for action systems representing the
complicated relationship between sensory inputs and motion
outputs in unknown or dynamic environments. Furthermore,
neural networks and fuzzy inference rules are used for a per-
ceptual system such as clustering and classification, and used
for analyzing human behaviors. On the other hand, evolution-
ary optimization methods have been applied for parameter
tuning, motion planning, and behavior acquisition of various
robots. The researches of behavior acquisition based on evo-
lutionary computing are well known as evolutionary robotics
[9,10]. Furthermore, interactive genetic algorithm, reinforce-
ment learning, and organizational learning have been applied
to various complicated problems [11–16]. Interactive genetic
algorithm (IGA) is used for various design problems based on
human evaluation [11,12]. Reinforcement learning has been
applied for learning multi-stage or sequential actions of a
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robot in unknown environments. The reinforcement learning
can estimate a value function, and generate its corresponding
actions in a Markov decision process [13,14]. Organizational
learning is a new learning method based on multiple agents
like a human society [15,16]. In this way, various methods
based on human intelligence and life have been proposed to
build intelligent robots and artificial agents. Robotic intel-
ligence is deeply related with the control architecture of a
robot.

As a methodology for robotic control, a subsumption
architecture was proposed by Brooks [17]. The concept of
the subsumption architecture has led to one stream of behav-
ior-based robotics. Behavior-based robotics emphasizes the
importance of the interaction of an embodied robot with its
environment [17–19].According to cognitive psychology, the
embodiment indicating an agent has not only a physical body,
but also experience. Experience of a robot leads to the life-
time learning of perceptual system, action system, and com-
munication system interacting with an environment and a
human. The above discussion indicates that the importance
is how to accumulate behaviors rather than how to obtain a
brand-new behavior, i.e., the robot should generate and accu-
mulate its behaviors, and should grow up by itself. Further-
more, a human-friendly robot must learn its behaviors by con-
sidering human factors. Especially, human-friendly physical
expression using a robotic body is very important to realize
social communication with a human, but it is very difficult
to incorporate a human model into the evaluation function
of a robot beforehand. Therefore, we discuss a mechanism
for obtaining and accumulating robotic behaviors through
human evaluation from the viewpoint of constructivism.

The mechanism of a robot becomes complicated and large
increasingly as intelligent capabilities are added gradually
to the robot. Moreover, its resulting behavioral patterns de-
pend strongly on its information processing related to intel-
ligence. Therefore, we should consider an entire structure
of intelligence for processing information flowing over the
hardware and software of a robot, not a single intelligent
capability. Accordingly, we have proposed the concept of
structured intelligence [8,20] and structured learning [21].
The structured intelligence emphasizes the coupling of intui-
tive inference, logical inference, and self-consciousness. The
structured learning emphasizes the importance of interactive
learning of several modules through the interaction with its
environment. In this paper, we propose a method for obtain-
ing and accumulating a hand-to-hand behavior of a part-
ner robot based on the structured learning. A hand-to-hand
behavior is one of fundamental behaviors required for a part-
ner robot interacting with a human. We have proposed a
method of interactive genetic algorithm using human eval-
uation [21–23]. In order to obtain a hand-to-hand behavior, a
genetic algorithm is used for generating a trajectory enable to
maximize human evaluation. Because the human cannot eval-
uate all trajectory candidates, the robot must have a human
evaluation model as an internal model. However, it is very
difficult to identify an exact model of human evaluation, and
furthermore the obtained exact model might not be able to be

reused well because human evaluation is very vague and very
changeable according to spatial and temporal conditions. For
that reason, the robot should adaptively approximate the hu-
man evaluation model actually in displaying a trajectory can-
didate to a human. The estimated human evaluation model
is used to evaluate trajectory candidates of the genetic algo-
rithm using internal simulator of the robotic behaviors using
kinematics. In [22], we applied a simple discrete state-value
function to model the human evaluation through an interac-
tion with the human. However, the discrete state-value func-
tion needed much interaction to learn the state-value function
used for generating robotic trajectories. To solve this prob-
lem, we used a fuzzy state-value function [23]. In fact, the
memory size of the proposed fuzzy state-value function used
to represent a human evaluation model in the method [23] is
343 (7× 7× 7) where the number of membership functions
used in each axis is 7, while that of the discrete state-value
function is 27,000 (30 × 30 × 30) in the method [22]. In
this way, we can reduce the memory size used in estimat-
ing a human evaluation model by using fuzzy partition, and
furthermore, the number of human evaluation times can also
be reduced [23]. These previous works succeeded to obtain
human evaluation models through executing a single task.
However, the obtained human evaluation model might not
be able to be applied well for a new different task, and fur-
thermore, the new task might make the previously obtained
human evaluation model forgotten. In this paper, therefore,
we apply mulitple fuzzy state-value functions to deal with
various tasks composed of different human hand positions
(target points). In this case, the structure of human evalua-
tion is not static, but changeable according to a current task
or an objective of hand-to-hand behavior, but an evaluation
function should be designed systematically and statistically.
If the human evaluation can be used systematically and statis-
tically, the obtained structure of the human evaluation might
be more reliable. Therefore, we divide the state of input space
into several substates and try to estimate the structure of hu-
man evaluation. Accordingly, a self-organizing map (SOM)
is used for clustering hand-to-hand behaviors according to the
human hand position as the target points. Furthermore, mul-
tiple fuzzy state-value functions are applied for estimating
the structure of human evaluation according to the cluster-
ing result of SOM. Here a fuzzy state-value function corre-
sponding to an output unit of SOM is selected. In addition,
an output unit has the best trajectory of the previous search.
Therefore, initial trajectory candidates of an interactive ge-
netic algorithm for a current target point are generated by
using the previous best trajectory. Therefore, the proposed
method can distributively estimate the structures of human
evaluation according to various hand-to-hand behaviors, and
can generate human-friendly trajectories for hand-to-hand
behaviors.

This paper is organized as follows. Section 2 explains
the concept of communication and structured learning for
a hand-to-hand behavior using human evaluation, SOM for
clustering target positions, multiple fuzzy state-value func-
tions for estimating human evaluation, and IGA for trajectory



Multiple fuzzy state-value functions for human evaluation 893

Fig. 1 A human-like partner robot, Hubot

planning. Section 3 shows several experiment results and
comparison results with the previous methods.

2 A human-friendly partner robot

2.1 Communication and learning

Human-friendly robots require several intelligent capabilities
such as perceiving, acting, communicating, and surviving like
animals or humans. The capability to communicate is essen-
tial in building a relationship or even a friendship between a
robot and its human owner or operator. We consider an exam-
ple of a child playing with a pet robot. When a child begins
to play with a pet robot, the child would try to have contact
with the robot in various manners. The child will search for
causal relationship between his or her contacting pattern and
its reaction of the robot. The contacting pattern and its reac-
tion of the child correspond to sensory inputs to the robot and
motion outputs of the robot, respectively. A human can grad-
ually find the boundary or structure of difference in the action
patterns of the robot, and also the robot should learn a spe-
cific human contacting pattern and its corresponding actions.
This interactive or mutual learning plays a very important
role in their communication, because the causality of con-
tact and reaction is useful for predicting future behaviors
of each other. In many robots, their behavioral patterns and
communication forms are designed beforehand, but we think
the mechanism to enrich the relationship between a human
and a robot is the architecture for learning the interrelation
between the human and the robot. Consequently, the com-
munication of a robot with a human requires the continuous
interaction with the human, because the human tries to find
out the causal relationship between human contact and its
resulting robotic behavior, and furthermore, the human tries
to find more complicated relationship according to the found
relationships. Therefore, the robot needs to accumulate its
behaviors through interacting with the human step by step.

2.2 Hand-to-hand behavior of a partner robot

We developed a human-like partner robot called Hubot in
order to aim to realize the social communication (Fig. 1).

This robot is composed of a mobile robot, body, two arms
with grippers, and head with pan and tilt. The robot has var-
ious sensors such as two CCD cameras, four line sensors
(infrared sensors), microphone, ultrasonic sensors, touch sen-
sors as external sensors in order to perceive its environment.
Each CCD camera can capture an image between the range
of −30◦ and 30◦ in front of the robot. Furthermore, many
encoders are equipped with the robot. Two CPUs are used
for sensing, motion controlling, and communicating. In pre-
vious researches, we proposed a human detection method
using a series of images from the CCD camera and a simple
trajectory planning method for a hand-to-hand behavior [21].
In this paper, we focus on trajectory planning and learning
methods for various hand-to-hand behaviors of the partner
robot shown in Fig. 2.

Trajectory planning is one of the most important and
essential task required by robot manipulators [24–28]. In
general, a robot manipulator is composed of a gripper and
an arm. To achieve a given task, the robot manipulator gener-
ally performs the following subtasks: (1) finding obstacles or
modeling an environment (perception), (2) generating a col-
lision-free trajectory (decision making), and (3) tracing the
trajectory actually (action). First, the robot detects a human
by using visual perception, and then, a tentative target posi-
tion of the end-effector is decided according to the position of
the detected human hand position. Next, the robot generates
a reference trajectory based on the surrounding state built
from sensory information. Various trajectory planning meth-
ods have been proposed to solve motion planning problems
[24–28]. Basically, two main approaches have been proposed
to generate collision-free trajectories. The first one is artificial
potential field methods.A robot manipulator moves are based
on the attractive force from the goal point and the repulsive
force from the obstacles in the work space. The other is a
configuration space (C-space) method. The C-space is trans-
formed into an internal state space from a three-dimensional
space of an environment, and therefore, the dimensions of
the C-space are equal to the degrees of freedom (DOF) of the
robot manipulator. In this paper, we focus on the control of
the robot arm.Accordingly, a trajectory planning problem for
a hand-to-hand behavior can result in a path planning prob-
lem on the C-space from an initial configuration to a final
configuration corresponding to a target point of the detected
human hand. Here a configuration θ is expressed by a set of
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Fig. 2 An example of hand-to-hand behavior

Fig. 3 Architecture of structured learning for obtaining a hand-to-hand behavior of a partner robot

joint angles, because all joints are revolute,

θ = (θ1, θ2, . . . , θn)
T ∈ Rn (1)

where n denotes the DOF of a robot arm. The number of DOF
of the partner robot shown in Fig. 1 is 4 (n = 4). In addi-
tion, the position of the end-effector (robot hand or gripper),
P = (px, py, pz)

T , on the base frame is defined as follows:

P =0T 1
1 T2, . . . ,n−1 Tn

nX = f (θ) (2)

where P = (px, py, pz, 1)T ; i−1Ti denotes a homogeneous
transformation matrix from a frame i − 1 to a frame i; nX
denotes a position of the nth joint on the frame n. Because
a trajectory can be represented by a series of m intermediate
configurations, the trajectory planning problem is to gener-
ate a collision-free and human-friendly trajectory combining
several intermediate configurations.

Figure 3 shows a total architecture of generating a trajec-
tory for a hand-to-hand behavior of a partner robot. Here one
trial is defined as a process trajectory planning and learning
for one hand-to-hand behavior of the robot. First of all, the
robot detects the human hand as the target point at the t th
trial. By using the target point as an input vector to SOM, the
kth output unit that minimizes the distance from the input
vector, is selected. And then, SOM outputs its corresponding
kth fuzzy state-value function and the best trajectory θ∗k by
referring to the knowledge database stored. The trajectory
is used for generating initial trajectory candidates θinit as an
initial population of IGA. Next, IGA generates candidate tra-
jectories for a hand-to-hand behavior. After several iterations

of an internal simulation in the robot, the best trajectory θ∗
in the current population is displayed to the human. Accord-
ing to the hth human evaluation score S(t, h) at the t th trial
(h = 1, 2, ..., H), the fuzzy state-value function is updated.
Furthermore, a next trajectory candidate is generated accord-
ing to the updated fuzzy state-value function. And finally, the
generated best trajectories and fuzzy state-value function are
stored in the knowledge database linking with SOM.

2.3 Self-organizing map for clustering hand-to-hand
behaviors

Various unsupervised learning methods have been proposed
so far [2,29,30,32]. In a case of batch learning, a set of all
data is required, but incremental learning can update design
parameters when new data are given to the learning system.
Here a human hand position used as the target point of the
final configuration in a hand-to-hand behavior is changeable
dependent not only on the posture and the distance against the
robot (spatial conditions), but also on the meeting time and
day (temporal conditions). Furthermore, the area including
hand positions used as target points might be very specific
to the human interacting with the partner robot. Therefore,
we apply SOM for clustering target points sequentially. As
one of unsupervised learning methods, SOM is often used
for extracting a relationship among inputs data, since SOM
can learn the hidden topological structure from the learning
data [29–31].
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q(t)

...

Output Response

Fig. 4 A self-organizing map

In general, the Euclidian distance is defined as follows:

di = ‖q(t)− ci(t)‖ (3)

where q(t) = (q1(t), q2(t), q3(t)) and ci(t) = (c1, c2, c3)
are the coordinates of the target point used as the input vec-
tor and the ith reference vector at the t th trial, respectively.
We can obtain the kth output unit that minimizes the distance
di by

k = arg min
i
{‖q(t)− ci(t)‖} . (4)

Furthermore, the reference vector is trained by

ci(t + 1) = ci(t)+ ξ · ζki · ‖q(t)− ci(t)‖ (5)

where ζki and ξ are the neighborhood function and learning
rate respectively. The number of output units is the number
of fuzzy state-value functions. Accordingly, the state-value
function corresponding to the output unit nearest the input
vector is selected. Here three-dimensional structure is used
to represent the neighboring relationship among output units
in SOM.

2.4 Fuzzy state-value functions for estimating human
evaluation

A fuzzy theory is applied for estimating human evaluation.
As mentioned in the previous subsection, the kth set of fuzzy
rules corresponding to the kth output unit of SOM is selected
as a human model of the current human hand position. A
fuzzy rule is described as follows:

If x2 is A1,j and · · · and xN is AN,j then v is wj

where xi is the ith input; Ai,j is a membership function for
the ith input at the j th rule; v is an estimated human evalua-
tion value; wj is a singleton for the output of the j th rule; N
is the number of inputs. Here we use Gaussian membership
functions as follows,

µAi,j (xi(r)) = exp

(
−
(
xi(r)− ai,j

)2

bi,j

)
(6)

where ai,j and bi,j are the center and the width of a member-
ship function, respectively. Next, we obtain the output at rth
configuration by the following weighted average,

µj =
N∏

i=1

µAi,j (xi(r)) (7)

v =

M∑
j=1

wj · µj (r)

M∑
j=1

µj (r)

(8)

where µj denotes the firing strength of the j th rule; M is the
number of fuzzy rules. Because a human evaluation model
is used in the trajectory planning for a hand-to-hand behav-
ior, the inputs to above fuzzy inference are coordinates P(r)
of the robot hand at the rth intermediate configuration (r =
1, 2, ..., m) in the trajectory for a hand-to-hand behavior, and
therefore, the number of inputs is 3 (=N ). Here seven linguis-
tic values of negative big, negative medium, negative small,
zero, positive small, positive medium and positive big, are
used for fuzzifying input values. In this way, the fuzzy rules
can map the state space of the robot hand position into the
value space of the human evaluation. Therefore, we call the
set of fuzzy rules, a fuzzy state-value function. The fuzzy
state-value function is trained by using the human evalu-
ation along the trajectory of a robot hand. The updating
scheme for the j th rule of the fuzzy state-value function is
as follows,

wj ← wj + η ·
(

S(t, h)

10
− v

)
µj

M∑
i=1

µi

(9)

where η denotes a learning rate satisfying 0 < η < 1.0;
S(t, h) denotes the hth human evaluation score at the t th
trial with S(t, h) ∈ [0, 9]. Here the human evaluation score
0 indicates excellent.

2.5 Interactive genetic algorithm for trajectory planning

Interactive genetic algorithm (IGA) is often applied to an
optimization problem based on a fitness function including
human evaluation. Various interactive optimization methods
have been proposed so far to obtain good solutions based
on human evaluation. However the problem is how to gener-
ate a next candidate solution to be displayed to the human,
since the derivative information or searching direction for
generating a next solution is not exactly included in the cur-
rent solution. In the case of IGA, a population of candidate
solutions might implicitly include possible searching direc-
tions, because genetic diversity to generate possible good
candidate solutions is maintained in a population. Therefore,
IGA can heuristically generate a next candidate trajectory by
combining current candidate solutions. To reduce the human
evaluation times, we use a fuzzy state-value function instead
of actual human evaluation in a search with internal simu-
lator (Fig. 3). Furthermore, the fuzzy state-value function is
updated by using the human evaluation during the search of
IGA. The procedure of the IGA for trajectory generation is
shown as follows:
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Fig. 5 The representation of the ith trajectory candidate composed of r intermediate configurations

begin
Initialization
repeat

repeat
Delete Least Fitness Selection
Elite Crossover
Adaptive Mutation

until local termination condition is True
Human Evaluation
Update a fuzzy state-value function

until termination condition is True
end.

A trajectory candidate is composed of all joint variables
of intermediate configurations (Fig. 5). Initialization gener-
ates an initial population based on the previous best trajectory
stored in the knowledge database linked with SOM. The j th
joint angle of the rth intermediate configuration in the ith tra-
jectory candidate θi,j,r , which is represented as a real number,
is generated as follows (i = 1, 2, ..., gn; j = 1, 2, ..., n; r =
1, 2, ..., m):

θi,j,r ← θ∗k,j,r + γj ·N(0, 1) (10)

where θ∗k,j,r is the kth trajectory stored in the knowledge data-
base corresponding to the selected kth output unit of SOM;
γj is a coefficient for the j th joint angle; N(0, 1) is a Gaussian
random variable with mean 0 and standard deviation 1. A fit-
ness value is assigned to each trajectory candidate. The objec-
tive is to generate a trajectory realizing the possibly short
distance from the initial configuration to the final configura-
tion while realizing good evaluation. To achieve the objec-
tives, we use a following multi-objective fitness function,

fi = w1fp + w2fd + w3fV (11)

where w1, w2, and w3 are weight coefficients. The first term,
fp, denotes the penalty about the distance between the hand
position and the target point.

Figure 6 shows the penalty zone generated by using a
sphere with a center on the line connecting the initial hand
position and the target point. The radius of a sphere is de-
creased as the hand position approaches to the target point.
The penalty zone is outside the sphere and used in each inter-
mediate configuration. This factor simply restrains strange
trajectories such that a human cannot touch a robot hand.
The second term, fd , denotes the squared sum of the differ-
ence of each joint angle between two configurations. This

Penalty Zone

Robot

X

o

Y

Human

PZ(1)

PZ(r)

PZ(m)

Fig. 6 Penalty zones defined as the outside of a sphere with the center
on the line connecting the initial hand position and the target point

term is used to minimize motions of the manipulator [20].
But w2 is set to a relatively small value, because the min-
imal motion is not always the best for a human. The last
term, fV , denotes the sum of the estimated human evaluation
scores using the kth fuzzy state-value function. Therefore,
this trajectory planning problem can result in a minimization
problem.

“Delete least fitness” (DLF) is used as selection scheme,
which removes the worst individual from the current pop-
ulation. This kind of selection scheme is called a continu-
ous generation model or a steady-state genetic algorithm [4].
Next, one individual is randomly selected from the popu-
lation. Here we use an elite crossover incorporating some
genetic information from the best individual. Consequently,
the worst individual is replaced with the individual gener-
ated by the elite crossover. Furthermore, we use the following
adaptive mutation of the ith individual,

θi,j,r ← θi,j,r +
(

αj

fi − fmin

fmax − fmin
+ βj

)
N (0, 1) (12)

where fi is the fitness value of the ith individual, fmax and
fmin are the maximum and minimum of fitness values in the
population, respectively αj and βj are the coefficient and off-
set, respectively. The searching processes using the internal
simulator are repeated until the local termination condition
is satisfied. Here we use the maximal times of internal evalu-
ations (T ) as a local termination condition. After the search
with the internal simulator (every T times), the best trajec-
tory is displayed to the human.And then, the human evaluates
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the trajectory by using keyboard and scores a value (S(t, h))
between 0 and 9, and 0 is excellent. Next, the kth fuzzy state-
value function is updated according to this human evaluation
score. If the human evaluation is excellent (S(t, h) = 0), the
trajectory planning is stopped. Therefore, the human evalua-
tion and the maximal human evaluation times (H) are used
as the termination condition. And finally, the best trajectory
obtained is stored in the knowledge database.

3 Experiments

This section shows experimental results of learning hand-to-
hand behaviors using Hubot (see Figs. 1 and 2). Tables 1 and
2 show parameters used in this experiment.

First of all, we show learning results of SOM. The ref-
erence vectors of SOM used in front of the robot’s body are
initialized by small random values (Fig. 7). After 300 trials,
the positions of the reference vectors were well updated to
classify human hand positions (Fig. 8). The accuracy of this
classification is confirmed by comparing with actual human
hand positions showed in Fig. 9.

Here, the hand positions can be divided into two large
classes; one is upper area, and the other is lower area. The
upper area in the learning result corresponds to the hand
positions at human standing posture. The lower area cor-

Table 1 Parameters used in IGA

Parameter Value

Chromosome length (nDOF × mIC) 24 (4× 6)
Population size (gn) 200
Times of internal evaluations (IG) 200
Crossover rate 0.2
Mutation rate 1.0
Maximal human evaluation times for one trial (H ) 5

Table 2 Parameters used in SOM and fuzzy state-value functions
(FSVFs)

Parameter Value

Input units for SOM 3
Output units of SOM (= number of FSVFs) 36 (3× 4× 3)
Learning rate for SOM (ξ ) 0.02 ∼ 0.3
Learning rate for FSVFs (η) 0.05
Number of membership functions 7

Fig. 7 Distribution of reference vectors of Self-organizing map (SOM)
at initial state. a Front view (Y-Z). b Side view (X-Z). c Top view (Y-X)

Fig. 8 Distribution of reference vectors of SOM after 300 trials. a Front
view (Y-Z). b Side view (X-Z). c Top view (Y-X)

Fig. 9 Distribution of target points corresponding to human hand posi-
tions. a Front view (Y-Z). b Side view (X-Z). c Top view (Y-X)

responds to hand positions when the human sits on a chair.
These figures show that the robot can classify specific hu-
man hand positions through these experiments. Next, Fig. 10
shows the history of output units selected in SOM according
to the human hand positions. Until 100 trials, the specific
output units (state-value functions) were frequently used due
to the transient state in the learning, because the topological
distribution of output units is not suitable to the distribution
of various hand positions of the human. For that, only a few
output units tried to cover their neighboring hand positions.
However, because the SOM has the simultaneous learning
capability of the neighboring output units of the selected out-
put units, the output units were crowded around the area used
frequently as target hand positions of the human, and then the
role of each state-value function was specialized to specific
human hand positions after 200 trials.

Next, we discuss on the trajectory planning by IGA with
human evaluation. The maximal times of evaluations in the
internal simulator is 1000 at most in each trial (calculated by
the product of IG and H ), and the maximal human evaluation
times in IGA is five in each trial. The total number of trials
is 300, because we try to realize the life-time learning of a
partner robot. As a result, the experiment was conducted for
several days, although the internal simulation needs a short
time and one actual display of trajectory spends a couple of
minutes. Therefore, the evaluation and the objective of the
human might change according to the emotional state of the
human. Figures 11 and 12 show the average distance from
the position of the ninth output unit to its neighboring output
units in SOM and the history of human evaluations using the
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Fig. 10 History of output units selected in SOM to classify human hand positions
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Fig. 11 Average distance from the position of ninth output unit to its
neighboring outputs units in SOM

state-value function corresponding to the ninth output unit,
respectively.

Here the ninth output unit is the frequently selected unit
in SOM. And then, its neighboring output units (6th, 8th,
11th and 21st output units) are also frequently selected. The
position of the ninth output unit as well as its neighboring
output units were gradually updated according to human hand
positions through 300 trials (see Fig. 11.). The change of
human evaluation in Fig. 12 indicates that the robot was able
to generate good trajectories trial by trial. Figure 13 shows
the distribution of output values of the fuzzy state-value func-
tion corresponding to the ninth output unit and snapshots of
the displayed best trajectory at the final trial. The size of the
box indicates the degree of goodness. This figure shows the

Fig. 12 History of human evaluations at each trial using state-value function for ninth output unit in SOM

robot generates a trajectory passing through the area includ-
ing high evaluation scores of the estimated human evaluation
model. The region with good values is constructed along the
robot’s body and in front of robot (see Fig.13. a–c). In Fig.13
d, the robot moves its hand along the body until the height of
shoulder, and then reaches out it to the human.

To compare the proposed method with previous method
[22,23], we conducted a trajectory generation experiment
without SOM. The robot has a single fuzzy state-value func-
tion to estimate the human evaluation model. Figures 14 and
15 show the average score and average times of human eval-
uations in every 100 trials, respectively. Here, average score
means the average evaluation score of 100 trials where one
trial includes five human evaluation times at maximal. Aver-
age times indicates the average number of evaluation times
(1 ≤ Average times ≤ 5) until the robot obtain the best
human evaluation in each trial. The average score and aver-
age times of the robot with multiple fuzzy state-value func-
tions decrease as the increase of trials, while those of the
robot without SOM don’t decrease as the increase of trials.
This indicates the robot with multiple fuzzy state-value func-
tions and SOM-based clustering mechanism can estimate the
human evaluation structure much better in case of learning in
various hand positions, and IGA was able to generate trajec-
tories satisfying human evaluation with less evaluation times.

Figure 16 shows a part of the history of human evaluations
when only a single fuzzy state-value function was employed
to the robot, in order to compare the previous method with
the effectiveness of SOM clustering mechanism and multiple
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Fig. 13 A human-friendly trajectory obtained by interactive genetic algorithm (IGA) using human evaluation model of unit 9 in SOM. a Front
view (Y-Z). b Side view (X-Z). c Top view (Y-X). d Snapshots of hand-to-hand behaviour
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Fig. 14 Average score of human evaluations in every 100 trials

fuzzy state-value functions proposed in this paper. Since good
human evaluation scores were not obtained all over the his-
tory in the experiment of various tasks, we showed the his-
tory of evaluations in the last 30 trials by using the previous
method. A single fuzzy state-value function was not able to
estimate human evaluation, because it was used for trajec-
tory planning of various target points. Furthermore, the stored
previous best trajectory and the state-value function used in
other target hand position were not suitable for searching a
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Fig. 15 Average times of human evaluations in every 100 trials

new trajectory. As a result, the robot could not obtain good
scores at the end (see Fig. 16). Since good scores were not ob-
tained all over the history in the experiment of various tasks,
we showed the history of evaluations in the last 30 trials.

In general, it is hard to verify the accuracy of the human
evaluation model obtained by the proposed method, because
the evaluation is very changeable every moment due to a little
difference of trajectory, moving speed, distance, and other
reasons. However, the important point for human-friendly
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Fig. 16 History of human evaluations at each trial using a single state-value function

robots are the mutual adaptability, not the optimality in the
behavior learning of only a robot, because the human can
also learn the behavioral patterns of the robot. Therefore, the
relationship between a human and a partner robot should be
co-constructed like among humans. Furthermore, the reus-
ability of the obtained evaluation structure and trajectories
is also important in the life-time learning of a partner robot.
The above experimental results show the proposed method
realizes both the adaptability and reusability.

4 Concluding remarks

This paper proposed a trajectory planning and learning method
for various hand-to-hand behaviors based on human evalua-
tions to aim to build a human-like partner robot. In general,
it is very difficult to design evaluation function for human-
friendly robotic behaviors beforehand. Consequently, the robot
should obtain a human evaluation model to realize human-
friendly motion, but the human evaluation structure is much
complicated. Therefore, we proposed multiple fuzzy state-
value functions and applied SOM for clustering human hand
positions used as target points of hand-to-hand behaviors. In
this way, a fuzzy state-value function estimates human evalu-
ation structure of a clustered human hand position.According
to the fuzzy state-value function, the robot generates a tra-
jectory by using interactive genetic algorithm with internal
simulator. Actually, the robot obtains a human evaluation by
displaying the current best trajectory in internal simulator to
the human. The fuzzy state-value function is updated accord-
ing to the actual human evaluation. And finally, the best tra-
jectory is stored in a knowledge database. This knowledge
database is used for next trajectory planning. In this way, the
robot can generate various hand-to-hand behaviors by using
human evaluations.

In general, it is very difficult to justify the most effec-
tive factor in many components to improve a system, as a
system becomes complicated. However, we must consider
the complication of the system such as human-like partner
robots composed of many sensors and actuators. For that,
the important point is the robot can obtain suitable behav-
iors by using less information like “good” or “bad”, instead

of detailed instructions. And then, the clustering of behav-
iors and tasks is also important for partner robots to reuse
these behaviors efficiently. Therefore, a partner robot should
have an entire architecture of intelligent capabilities rather
than a single intelligent capability, because the robot needs to
obtain perceptual systems and action systems in unknown or
dynamic environments including humans through the inter-
action with its environment. To realize this, the structured
learning plays the important role in the life-time learning of
the robot.

The robot should extract human evaluation through the
actual interaction with the human, although this proposed
method requires explicit human input from the keyboard to
obtain a score of human evaluation. As a future work, we
intend to incorporate the method for extracting human evalu-
ation proposed in our previous works [21,31] for the human-
like partner robot. As another future work, we will introduce
a visual system using two CCD cameras for getting more
essential information in communication with the human. Fur-
thermore, we must discuss the relationship among commu-
nication and learning through interaction with a human.
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