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Abstract In this study, we introduce the concept of lat-
tice-valued regular grammars. Such grammars have be-
come a necessary tool for the analysis of fuzzy finite
automata. The relationship between lattice-valued finite
automata (LA) and lattice-valued regular grammars
(LRG) are discussed and we get the following results, for
a given LRG, there exists an LA such that they accept
the same languages, and vice versa. We also show the
equivalence between deterministic lattice-valued regular
grammars and deterministic lattice-valued finite auto-
mata.

Keywords Fuzzy finite automata Æ Fuzzy regular
grammar Æ Fuzzy regular language Æ Lattice-ordered
monoid

1 Introduction

The concept of fuzzy automata was introduced by Wee
in 1967. Thereafter, there were considerable authors,
such as Santos (1975, 1976, 1977), Lee and Zadeh (1969)
etc., have contributed in this field. For detail, we refer to
Kandel and Lee (1980), and Wechler (1978) and espe-
cially the recent ones by Mordeson and Malik (2000,
2002). Also, fuzzy automata have many important
applications such as in learning systems, the model of
computing with words, pattern recognition and data
base theory (Mordeson and Malik 2002; Ying 2002).

Recently, Qiu (2001) and Asveld (2003) proposed to
study fuzzy automata based on residuated logic and the

proposed method provided a tool to study fuzzy auto-
mata in the frame of many-valued logic. However, these
concepts and conclusions are mostly drawn from fuzz-
ifying preliminarily the classical case, and therefore have
poor level structure. To state more precise, automata are
the mathematical models to recognize formal languages
in the theory of classical computation, and the former
proposed fuzzy automata with truth values in unit
interval [0, 1] with max–min composition, we call them
classical fuzzy automata in this paper. To overcome
this kind of problem, we study the automata theory
with truth values in the more general structures: lattice-
ordered monoids.
It is well known in the classical automata theory
(Hopcroft and Ullman 1979) that, the following four
approaches to represent a language (regular language, to
be precise) L are equivalent:

(i) L is recognized by some deterministic finite state
automaton.

(ii) L is recognized by some nondeterministic finite
state automaton.

(iii) L is described by some regular expression.
(iv) L is generated by some regular grammar.

The same results hold for fuzzy regular languages with
truth values in [0, 1] and with max–min composition
(Bělohlávek 2002; Kandel and Lee 1980; Malik and
Mordeson 2000, 2002; Močkoř 2002; Santos 1975, 1976,
1977; Shen 1996; Thomason and Marinos 1974). For
generalized lattice-valued languages, it has been shown
in Li(2003) that (i) and (ii) are not equivalent for some
truth-value lattice-ordered monoids. The nondetermin-
istic lattice-valued finite automaton (LA) is more pow-
erful than deterministic lattice-valued finite automata
(DLA) when it comes to the recognitions of fuzzy lan-
guages. An important problem arises as to the descrip-
tion of LA or DLA by regular expressions and regular
grammars. Since the problem of regular expressions has
been resolved in Li and Pedrycz (2004), this issue is of
interest in the study of the relationship between LA and
LRG.
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2 Some basic concepts

We first give some basic concepts we use in this paper.

Definition 2.1. Given a lattice L, we use �, � to represent
the supremum operation and infimum operation on L,
respectively, with 0, 1 being the least and the largest
elements. Assume that there is a binary operation • (we
call it multiplication) on L such that (L, •, e) is a monoid
with identity e2L. We call L a lattice-ordered monoid
(some modification of the the notion of lattice-ordered
monoid in Birkhoff (1940) if it satisfies the following two
conditions:

(i) " a2L, a• 0=0• a=0,
(ii) " a, b, c2L, a• (b � c)=(a• b)� (a• c), and (b � c)• a=

(b• a)� (c• a).

For a lattice-ordered monoid, since we only con-
cerned with the multiplication • and finite supremum
operation �, in what follows, a lattice-ordered monoid
will be denoted by (L, •, �).

We give some examples of lattice-ordered monoids.

Example 2.1. (1) Let (L, �, �) be a distributive lattice
(Balbes and Dwinger 1974), and let •=�, then L is a
lattice-ordered monoid, and the identity of multiplica-
tion is 1.

2. Let (L, •, �) be a lattice-ordered monoid, the
identity is e. We use L(n) to denote all n· n matrices with
values in L. The multiplication, denoted as �, is defined as
sup�• composition; and � is the pointwise-�. That is, for
two n· nmatrices, A=(aij) and B=(bij), with values in L,
let A�B=C=(cij), then cij ¼

Wn
k¼1 ðaik � bkjÞ; and let

A�B=D=(dij), then dij=aij�bij. Then (L(n), �, �) is also
a lattice-ordered monoid, the identity is the diagonal-
matrix E=diag(e, e, ..., e) with e as the diagonal element.
In general, the multiplication on L(n) is not commuta-
tive, even if the multiplication on L is commutative.

3. Let • be any uninorm (Li and Shi 2000; Yager
1994) on [0, 1], if 0• 1=0, then ([0, 1], •, �) is a com-
mutative lattice-ordered monoid. In particular, if • is
a t-norm on [0, 1], then ([0,1], •, �) is a commutative
lattice-ordered monoid with identity e=1.

4. Quantales are complete lattice-ordered monoid,
where L is a quantale if L is a complete lattice, and it
satisfies the following infinite distributive laws (Li et al.
2002; Rosenthal 1990):

a �
_

t
bt

� �
¼
_

t
ða � btÞ; and

_

t
bt

� �
� a

¼
_

t
ðbt � aÞ:

In the following, we always assume that L is a lattice-
ordered monoid.

Definition 2.2. An LA is a five tuple,

M ¼ ðX ;U ; d; r0; r1Þ;

where X, U are finite nonempty sets, d: X· U fi F(X),
and r0, r1 : X fi L are L-fuzzy sets of X. The elements
of X are called states, and the elements of U are called
(input) symbols. d is called a fuzzy transition function
and r0, r1 are called fuzzy initial state and fuzzy final
state, respectively.

We can regard d(x, u)(y) as the grade of membership
that the next state of M is y, given that the present state
of M is x and the input symbol u is implied. For sim-
plification we denote d(x, u)(y) as d(x, u, y).

Let U* denote the set of all words of finite letter over
U and let L denotes the empty word. Then, U* is the free
monoid generated by U with the concatenation opera-
tion. For h2U*, |h| denotes the length of h.

By means of Li (2003), we can extend d on X· U*,
denoted as d*: X· U* fi F(X), in the following forms:

(i) " y2X, if y=x, then d*(x, L, y)=e, otherwise d*(x,
L, y)=0;

(ii) " h2U*, u2U, d�ðx; hu; yÞ ¼
W

z2X ½d
�ðx; h; zÞ � dðz;

u; yÞ�:
For the extension d*, since L is a lattice-ordered

monoid, it satisfies the following equation for any h2U*

(Li 2003), if h=h1h2, then

d�ðx; h1h2; yÞ ¼
[

z2X
½d�ðx; h1; zÞ � d�ðz; h2; yÞ�:

Definition 2.3. Suppose that M=(X, U, d, r0, r1) is an
LA. Then the L-valued language fM2F(U*) accepted by
M or recognized by M is defined as follows,

fM ðhÞ ¼ r0 � dh � r1 ¼
_

x;y2X
½r0ðxÞ � d�ðx; h; yÞ � r1ðyÞ�:

The element f2F(U*) is called an L-language on U, an
L-language which is accepted by an LA is called an LA-
language.

For two LAs M1 and M2, we say that they are
equivalent if they accept the same LA-language, that is,
fM1
¼ fM2

:
As to the classical automata theory, we have the

notions of deterministic finite automata and nondeter-
ministic finite automata. The notion of an LA is a gen-
eralization of the notion of nondeterministic automaton.
The LA is nondeterministic in nature , in the following
we will present a deterministic counterpart of the notion
of an LA.

Definition 2.4. A DLA is a five tuple,

M ¼ ðX ;U ; d; x0; r1Þ;

where X, U and r1 are the same defined as LA , x02X is
the initial state, d: X· U fi X is called a transition
function.

The extension of d onto U* is the same as that of
classical case. Then, the L-language fM2F(U*) accepted
by a DLA is defined as,

8h 2 U�; fMðhÞ ¼ r1ðd�ðx0; hÞÞ:

80



However, unlike the classical case, Li (2003) has
shown that in general LA and DLA are not equally
powerful.

In the classical automata theory we know that regular
grammars and finite automata are essentially the same in
that either is a specification of a regular language. Since
then, it is necessary for us to study the corresponding
(distinctive) fuzzy grammars for LA and DLA.

Definition 2.5. (1) A lattice-valued grammar is a qua-
druple G=(N, T, P, S), where

(i) N is a finite set whose elements are called nonter-
minal symbols.

(ii) T is a finite set whose elements are called terminal
symbols and T\ N=/.

(iii) S2N is called the starting symbol and S does not oc-
cur on the right-hand side of any fuzzy productions.

(iv) P is a finite collection of fuzzy productions over
T [ N and

P¼ u!q vju2ðN[T Þ�NðN[T Þ�;v2ðN[T Þ�
n o

;where

q2L�f0g:

We may interpret q(u, v) as the grade of membership
that u will be replaced by v.

If u!q v is a production and a, b2(N[ T)*, then a vb is
said to be directly derivable from a ub. In this case, we
write

aub)
q

avb:

If ui2(N[ T)* for i=1, 2, ..., p and ui+1 is directly
derivable from ui for i=1, 2, ..., p�1, we say that up is
derivable from u1 and written as,

u1)
q �

up:

We call

u1)
q1

u2)
q2

. . . )
qp�1

up

the derivation chain of up (from u1), where
q=q1•q2•...•qp-1.

(2) The L-language fG2F(T*) generated by an L-val-
ued grammar is defined as follows:

fGðhÞ ¼
_

q : S)
q �

h
n o

L-valued grammars are classified according to the
form of the production rules used (Chomsky hierar-
chy). These grammars are sometimes described as fol-
lows:

Definition 2.6. Let G=(N, T, P, S) be an L-valued
grammar.

1. G is unrestricted (of type 0), if there are no restric-
tions on the form of the production rules. Accord-
ingly, fG is called L-valued type 0 language.

2. G is context-sensitive if for every u!q v 2 P ; u, v 2(T[
N)*, q(u, v)>0 implies |u| £ |v|. Accordingly, fG is
called L-valued context-sensitive language.

3. G is context-free if for every u!q v 2 P ; u, v 2(T[ N)*,
q(u, v)>0 implies |u| £ |v| and u2N. Accordingly, fG
is called L-valued context-free language.

4. G is weak regular if for every u!q v 2 P ; u, v 2(T[
N)*, q(u, v)>0 implies u2N and v2T+B, B2N [{L}
or u=S, v=L . Accordingly, fG is called L-valued
weak regular language.

5. G is regular if for every u!q v 2 P ; u, v 2(T [ N)*, q(u,
v)>0 implies u2N and v2TB, B2N [{L} or u=S,
v=L . Accordingly, fG is called L-valued regular
language.

Two L-valued grammars G1 and G2 are said to be
equivalent if they generate the same language, that is,
fG1
¼ fG2

:

Theorem 2.1. L-valued weak regular grammars (LWRG,
for short) are equivalent to L-valued regular grammars
(LRG, for short). Where the word ‘‘equivalent’’ means
that they generate the same classes of L-languages.

Proof. From the definition, we can easily know that every
L-language generated by an LRG can be generated by an
LWRG which is the same as the former LRG. In the
following we only need to show that every L-language
generated by an LWRG can also generated by an LRG.

Let G1=(N1, T, P1, S) be an LWRG, the language
generated by G1 is denoted as fG1

: We can define an
LRG G=(N, T, P, S), such that fG ¼ fG1

:
(i) For each production

x! a1a2 . . . amy 2 P1; ð1Þ

where ai2T1 for i=1, 2, ..., m and x, y2N1.
When m=1, we have a12T, x; y 2 N1 � N and x fi

a1 y2P as desired.
When m‡ 2, x; y 2 N1 � N ; we can define new non-

terminal symbols n1, n2, ..., nm-1 in N and denote the set
of these symbols as N0, then N=N1[ N0.

Let qG and qG1
denote the grade of membership of

productions in G and G1, respectively. Now we can mi-
mic the production (Eq. 1) by means of productions
x fi a1n1, n1 fi a2n2, ..., nm-1 fi am y 2P with

qGðx! a1n1Þ ¼ qGðn1 ! a2n2Þ ¼ . . .

¼ qGðnm�2 ! am�1nm�1Þ ¼ e;

qGðnm�1 ! amyÞ ¼ qG1
ðx! a1a2 . . . amyÞ:

Then qG ðx! a1a2 . . . amyÞ ¼ qGðx! a1n1Þ � qGðn1 !
a2n2Þ � . . . � qG ðnm�2 ! am�1nm�1Þ � qGðnm�1 ! amyÞ ¼
qG1
ðx! a1a2 . . . amyÞ:
(ii) For each production

x! b1b2 . . . bn 2 P1 ð2Þ

where bi2T1 for i=1, 2, ..., n and x 2N1. When n=1,
we have b12T and X fi b12P as desired. When n‡ 2,
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x 2 N1 � N :We can define new nonterminal symbols g1,
g2, ..., gn-12N and denote the set of these symbols as N0,
then N=N1[ N0. Now we can mimic the production
(Eq. 2) by means of productions

x! b1g1; g1 ! b2g2; . . . gn�1 ! bn 2 P

with qG(x fi b1g1)=qG(g1 fi b2g2)=...=qG(gn-2 fi
bn-1gn-1)=e; qGðgn�1 ! bnÞ ¼ qG1

ðx! b1b2 . . . bnÞ: Then
qGðx! b1b2 . . . bnÞ ¼ qGðx! b1g1Þ � qGðg1 !
b2g2Þ � . . . � qGðgn�2 ! bn�1gn�1Þ � qG ðgn�1 ! bnÞ ¼
qG1
ðx! b1b2 . . . bnÞ:
Clearly G thus specified is an L-valued regular

grammar. Thus, from Eqs. 1 and 2 we conclude that
fG1
� fG:
To prove the reverse inclusion, suppose that for

some h2T*, there is a derivation S)
q �

h in G. Let
G2=(N, T, P[ P1, S), where G2 has both all the pro-
ductions of G1 and G , then certainly there is a
derivation

S)
q �

h ð3Þ

in G2 with qG2
ðS �! hÞ ¼ qGðS �! hÞ:

We shall show that there is a derivation of h in G1 by
induction on the number of symbols from N\ N1

appearing in the derivation (3). If no such symbols ap-
pear then Eq. 3 is already a derivation in G1. Otherwise
the first appearance of a symbol of N\ N1 is based either
on a production

x! a1n1 with qG2
ðx! a1n1Þ ¼ qGðx! a1n1Þ;

where x fi a1a2... amy is a production in G1, or on a
production

x! b1g1 with qG2
ðx! b1g1Þ ¼ qGðx! b1g1Þ;

where x fi b1b2... bn is a production in G1. Consider the
first case, for any of the symbols of N\ N1, the only way
in which ni can subsequently appear must involve
changes from n1 to a2n2, ..., nm-1 to amy. Then the se-
quence of transitions

x! a1n1; n1 ! a2n2; . . . ; nm�1 ! amy

with qG2
ðx! a1n1Þ

¼ qGðx! a1n1Þ; qG2
ðn1 ! a2n2Þ

¼ qGðn1 ! a2n2Þ; . . . ; qG2
ðnm�1 ! amyÞ

¼ qGðnm�1 ! amyÞ

can be replaced by a single transition x fi a1a2... amy in
G2 with

qG2
ðx! a1a2 . . . amyÞ
¼ qG2

ðx! a1n1Þ � qG2
ðn1 ! a2n2Þ � . . .

� qG2
ðnm�1 ! amyÞ ¼ qGðx! a1n1Þ

� qGðn1 ! a2n2Þ � . . .

� qGðnm�1 ! amyÞ ¼ qGðx! a1a2 . . . amyÞ
¼ qG1

ðx! a1a2 . . . amyÞ:

Similarly, in the second case the derivation must in-
volve subsequently changes from g1 to b2g2, ..., gn-1 to bn,
and these n transitions can be replaced by a single
transition in G2 from x to b1b2... bn with

qG2
ðx! b1b2 . . . bnÞ
¼ qG2

ðx! b1g1Þ � qG2
ðg1 ! b2g2Þ � . . .

� qG2
ðgn�1 ! bnÞ

¼ qGðx! b1g1Þ � qGðg1 ! b2g2Þ � . . .

� qGðgn�1 ! bnÞ ¼ qGðx! b1b2 . . . bnÞ
¼ qG1

ðx! b1b2 . . . bnÞ:

In both cases, the derivation (3) is replaced by one with
fewer occurrences of symbols from N\ N1 with qG2

ðhÞ ¼
qGðhÞ; then it follows that fG2

� fG1
: Hence certainly

fG � fG1
:

Thereby, fG ¼ fG1
; say, LWRG and LRG are equiv-

alent as far as the languages generated by them are
concerned. �

Example 2.2. Suppose G1=(N1, T, P1, S) is an LWRG,
where N1={S, A, B}, T={a, b, c},

P1 ¼ S!q1 abA;A!q2 bbB;B!q3 cA;A!q4 ac;B!q5 bc
n o

:

Construct an LRG G=(N, T, P, S), where

P ¼ S!e an1;n1!
q1 bA;A!e bn2;n2!

q2 bB;B!q3 cA;A!e
n

ag1;

g1!
q4 c;B!e bg2;g2!

q5 c
o
andN ¼N1 [ n1;n2;g1;g2f g:

Clearly, for h=ab3cac the derivation of h in G1 is as
follows:

S!q1 abA!q2 abbbB!q3 ab3cA!q4 ab3cac;

so fG1
ðhÞ ¼ q1 � q2 � q3 � q4:

The derivation of h in G is as follows:

S!e an1!
q1 abA!e ab2n2!

q2 ab3B!q3

ab3cA!e ab3cag1!
q4 ab3cac;

then fGðhÞ ¼ e � q1 � e � q2 � q3 � e � q4 ¼ q1 � q2 � q3 �
q4 ¼ fG1

ðhÞ:

3 Lattice-valued grammars and LA

In Theorems 3.1 and 3.2, we shall show that L-valued
regular languages coincide with LA-languages.

Theorem 3.1 Let G=(N, T, P, S) be an L-valued regular
grammar, then there exists an LA M such that fM=fG.

Proof. Constructing an LA M=(X, U, d, r0, r1),
where U=T, X=N[{Z},r0=e/S, r1=(e/Z)+(fG(L)/S)
and
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dðx; u; yÞ ¼
qðx! uyÞ x; y 2 N
qðx! uÞ x 2 N ; y ¼ Z

0 otherwise

8
<

:

For any r, s 2(T[ N)*, qðr! sÞ ¼ _fq : r)
q �

sg: We
show fG=fM below.

Let h2T*, if h=L, then fM(h)=fG(L) as desired.
When h „ L, suppose h=u1u2... un, where ui2T for

i=1, 2, ..., n. If S)
q �

h there must exist some derivation
of h with the form

S)
q1

u1A1)
q2

u1u2A2 ) . . . )
qn�1

u1u2 . . . un�1An�1)
qn

u1u2 . . . un�1un;

where Ai�1!
qi uiAi 2 P for i=1, 2, ..., n and A0=S,

An=un with q=q1 • q2 • ... • qn.
Corresponding to the given LA, by the definition of

d, we get that

d�ðS; h; ZÞ � dðS; u1;A1Þ � dðA1; u2;A2Þ � . . .
� dðAn�1; un; ZÞ

¼ q1 � q2 � . . . � qn ¼ q;

then fM (h)=r0 � dh � r1=r0(S) • d*(S, h, Z) •
r1(Z)=d*(S, h, Z)‡q.

Thus, we have shown that fG(h) £ fM(h) for any
h2U*, that is, fG £ fM.

Conversely, if fM (h)=d* (S, h, Z)‡ d(S, u1, A1) •
d(A1, u2, A2) • ... • d(An-1, un, Z). For any Ai2X, let d(S,
u1, A1)=q1, ..., d(An-1, un, An)=qn, and let q=q1 • q2 •
... • qn, then there exists corresponding derivation S)

q �
h:

Then it shows that if q £ fM(h), then q £ fG(h), that is,
fM £ fG.

Therefore fM=fG, that is, L-valued languages can be
recognized by LA. �

We give an example to illustrate the proof of the
above theorem.

Example 3.1. Let L=[0, 1], • is the multiplication of real
numbers, G=(N, T, P, S) is an LRG, where N={S, A,
B}, T={a, b}. The productions in P are as follows:

P : S!0:5 aA; S!0:6 aB;A!0:7 aA;B!0:4 aB;A!0:3 b;B!0:8 b:

Construct an LA, M=(X, U, d, r0, r1), where

U ¼ fa; bg;X ¼ fS;A;B; Zg; r0 ¼
e
S
; r1 ¼

e
Z
þ fGðKÞ

S
;

the transition function with the form

dðS; a;AÞ ¼ 0:5 dðS; a;BÞ ¼ 0:6 dðA; a;AÞ ¼ 0:7;
dðB; a;BÞ ¼ 0:4 dðA; b; ZÞ ¼ 0:3 dðB; b; ZÞ ¼ 0:8:

For h=a3b, the derivation of h are as follows

ðiÞ S!0:5 aA!0:7 aaA!0:7 aaaA!0:3 aaab:

ðiiÞ S!0:6 aB!0:4 aaB!0:4 aaaB!0:8 aaab:

So fG(a
3b)=(0.5 · 0.7 · 0.7 · 0.3) � (0.6 · 0.4 · 0.4 ·

0.8)=0.0768, fM(a3b)=d*(S, a3b, Z)=[d(S, a, A) • d(A,
a, A) • d(A, a, A) • d(A, b, Z)] � [d(S, a, B) • d(B, a, B) •
d(B, a, B) • d(B, b, Z)]=0.0768. Thereby fM(h)=fG(h).

Theorem 3.2 Let M=(U, X, d, r0, r1) be an LA, there
exists an LRG such that fG=fM.

Proof. We define an LRG G=(N, T, P, S) as follows
T=U, N=X[{S}. The productions in P are defined as
follows:

(i) x!q1 uy 2 P for each d(x, u, y) „ 0, where
q1=d(x, u, y).

(ii) If d(x, u, y) „ 0 and r1(y) „ 0, then x!q2 u 2 P ;
where q2 ¼

W
y2X ½dðx; u; yÞ � r1ðyÞ�:

(iii) If d(x, u, y) „ 0 and r0(x) „ 0, then S!q3 uy 2 P ;
where q3 ¼

W
x2X ½r0ðxÞ � dðx; u; yÞ�:

(iv) If d(x, u, y) „ 0, r0(x) „ 0 and r1(y) „ 0, then
S!q4 u 2 P ðu 2 U [ fKgÞ; where
q4 ¼

W
x;y2X ½r0ðxÞ � dðx; u; yÞ � r1ðyÞ�:

Obviously, such a grammar G is an LRG. We show
that fG=fM below.

Let h2T*, if h=L, then fG (L)=q (S fi L)=fM(L).
When h „ L, suppose h=u1u2... un, where ui2T for

i=1, 2, ..., n.

If S)
q �

h there must exist some derivation of h with
the form

S)
q1

u1A1)
q2

u1u2A2 ) . . . )
qn�1

u1u2 . . . un�1An�1

)
qn

u1u2 . . . un�1un ¼ h;

where Ai�1!
qi uiAi 2 P ; i ¼ 1; 2; . . . n and A0 ¼ S;An ¼ un

with q ¼ q1 � q2 � . . . � qn: From the definition of P, we
know that

fM ðhÞ ¼ r0 � dh � r1 ¼
W

A0;An2X ½r0ðA0Þ � d�ðS; h;AnÞ�
�
W

A0;An2X ½r0ðA0Þ � dðS; u1;A1Þ � dðA1; u2;A2Þ
� . . . � dðAn�1; un;AnÞ � r1ðAnÞ�

¼
W

A02X ½r0ðA0Þ � dðS; u1;A1Þ� � dðA1; u2;A2Þ
� . . . �

W
An2X ½dðAn�1; un;AnÞ � r1ðAnÞ�

¼ q1 � q2 � . . . � qn ¼ q

Thus, we have shown that fG(h) £ fM(h) for any h2U*,
that is, fG £ fM.

Conversely, if

fM ðhÞ ¼ r0 � dh � r1 ¼
W

A1;...;An2X ðr0ðA0Þ � dðS; u1;A1Þ
�dðA1; u2;A2Þ � . . . � dðAn�1; un;AnÞ � r1ðAnÞÞ

�
W

A02X ½r0ðA0Þ � dðS; u1;A1Þ� � dðA1; u2;A2Þ
� . . . �

W
An2X ½dðAn�1; un;AnÞ � r1ðAnÞ�:

For any A1, ..., An2X, let
W

A02X ½r0ðA0Þ �dðS; u1;A1Þ� �
dðA1; u2;A2Þ � . . . �

W
An2X ½dðAn�1; un;AnÞ � r1ðAnÞ� ¼ q1�

q2 � . . . � qn ¼ q; then there exists corresponding deri-

vation S)
q �

h: Thus it shows that if q £ fM(h), then q £
fG(h), that is, fM(h) £ fG(h) for any h2U*, that is, fM £ fG.
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Therefore fM=fG, that is, the languages recognized
by LA are L-valued regular languages. �

We give an example to illustrate the proof of the
above theorem.

Example 3.2 Let L=[0, 1], • is the multiplication of real
numbers, M=(U, X, d, r0, r1) is an LA where U={u1,
u2}, X={x1, x2, x3}, r0=(0.9/x1)+(0.5/x2), r1=(0.5/
x2)+(0.8/x3),

dðx1; u1; x2Þ ¼ 0:8; dðx2; u1; x3Þ ¼ 0:7; dðx3; u1; x3Þ
¼ 0:4; dðx3; u2; x2Þ ¼ 0:5:

Construct an LRG G=(N, T, P, S), where N={x1, x2,
x3}, T={u1, u2}. The productions in P are as follows:

S !0:36 u1; S !
0:72

u1x2; S !
0:35

u1x3; x1!
0:8

u1x2; x2!
0:7

u1x3; x3

!0:4 u1x3; x3!
0:5

u2x2; x1!
0:4

u1; x2 !
0:56

u1; x3 !
0:32

u1; x3 !
0:25

u2:

For h=u1
2u2u1,

fM ðhÞ ¼ r0 � dh � r1

¼ ½r0ðx1Þ � d�ðx1; h; x3Þ
� r1ðx3Þ�

_
½r0ðx2Þ � d�ðx2; h; x3Þ

� r1ðx3Þ� ¼ 0:14112:

Correspondingly , the derivation of h in G are as follows:

ðiÞ S!q1 u1x2!
q2 u1u1x3!

q3 u1u1u2x2!
q4 u1u1u2u1:

ðiiÞ S!
q0
1 u1x3!

q0
2 u1u1x3!

q0
3 u1u1u2x2!

q0
4 u1u1u2u1:

Furthermore in (i), we have,

q1 ¼ r0ðx1Þ � dðx1; u1; x2Þ ¼ 0:9	 0:8 ¼ 0:72;

q2 ¼ dðx2; u1; x3Þ ¼ 0:7;

q3 ¼ dðx3; u2; x2Þ ¼ 0:5;

q4 ¼ dðx2; u1; x3Þ � r1ðx3Þ ¼ 0:56;

q ¼ q1 � q2 � q3 � q4 ¼ 0:72	 0:7	 0:5

	 0:56 ¼ 0:14112;

in (ii)

q01 ¼r0ðx2Þ � dðx2; u1; x3Þ ¼ 0:5	 0:7 ¼ 0:35;

q02 ¼dðx3; u1; x3Þ ¼ 0:4;

q03 ¼dðx3; u2; x2Þ ¼ 0:5;

q04 ¼dðx2; u1; x3Þ � r1ðx3Þ ¼ 0:56;

q0 ¼q01 � q02 � q03 � q04 ¼ 0:35	 0:4	 0:5	 0:56 ¼ 0:0392:

Then fG(h)=q � q¢=0.14112, thus fM(h)=fG(h).

Corollary 3.1 L-valued regular grammars are equivalent
to LAs.

Proof. Straightforward by Theorem 3.1 and Theorem
3.2.�

By Theorem 2.1 and Corollary 3.1 we can easily get
that

Corollary 3.2 L-valued automata are equivalent to
L-valued weak regular grammars.

4 Characterization of DLA by L-valued regular grammars

Definition 4.1 (1) G=(N, T, P, S) is called an L-valued
deterministic regular grammar (DLRG, for short) if all
the productions in P have only three forms,

A!e uB or A!q u or S!q K; where A;B 2 N ; u 2 T ;
and q 2 L� f0g:

Accordingly, fG is called an L-valued deterministic
regular language. Obviously, DLRG belongs to a special
kind of LRG.

Similarly, for u1, ..., up2(N[ T)*, if ui2(N[ T)* for
i=1, 2, ..., p and ui+1 is directly derivable from ui for
i=1, 2, ..., p�1, we say that up is derivable from u1 and
written as,

u1)
q �

up

We call

u1)
q1

u2)
q2

. . .) up

qp�1

the derivation chain of up (from u1). However, here
q1=q2=...=qp-2=e and q=q1 • q2 • ... • qp-1 =qp-1.

(2) The L-language fG 2F(T*) generated by an
L-valued grammar is defined as follows:

fGðhÞ ¼
_

q : S)
q �

h
n o

Remark 4.1 Suppose that G is a DLRG, then the range
of images set of f is finite, that is, the set
Rf={fG(h)|h2T*} is a finite set of L.

Since fGðhÞ ¼ _fq : S)
q �

hg; it is clear that Rf is
completely determined by the productions with form
like A!q u: Since P is finite, such qs are finite.

Lemma 4.1 (Li 2003) Let M=(X, U, d, x0, r1) be an LA,
where d: X· U fi 2X, r:X fi L, x02X,
fM ðhÞ ¼

W
½r1ðxÞ : x 2 d�ðx0; hÞ�; then there exists a

DLA, N=(Y, U, g, y0, s), such that fM=fN.
Proof. Take Y=2X, and g:Y· U fi Y is defined as,

gðZ; uÞ ¼ [x2Zdðx; uÞ; y0={x0}, s:Y fi L is taken as,
sðZÞ ¼

W
x2Z rðxÞ: Then N=(Y, U, g, y0, s) is a DLA,

and g*(y0, h)=d*(x0, h). Thus fN ðhÞ ¼ sðg�ðy0; hÞÞ
¼
W

x2g�ðy0;hÞ rðxÞ ¼
W

x2d�ðx0;hÞ rðxÞ ¼ fMðhÞ; that is,

fN=fM. �

Theorem 4.1 L-valued deterministic regular languages can
be accepted by DLA.

Proof. Suppose G=(N, T, P, S) be a DLRG, and con-
struct an LA M=(X, U, d, x0, r1) where U=T, x0=S.
Check all the productions in G, and let P1 denote the set
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whose elements are with form of A!q u; that is,

P1 ¼ x!qi uji ¼ 1; 2; . . . ;m
n o

; where m is just the number

of such productions.
For any (x, u)2NT, define d as follows

dðx; uÞ ¼
yjx!e uy 2 P
n o

[ Zif g x!q u 2 P1

yjx!e uy 2 P
n o

x!q u 62 P1

8
<

:

and define r1 as: r1=(qi (x fi u)/Zi)+(fG(L)/S).
Furthermore, X=N[ { Zi} for i=1, 2, ..., m.

Let h2T*, if h=L, then, fM (h)=r1 (d(x0, L))=fG (L).
When h „ L, suppose that h=u1 u2 ... un where ui 2T

for i=1, 2, ..., n. If S)
q �

h; there must exist some deri-
vation of the form

S)
e

u1A1)
e

u1u2A2 ) . . .)
e

u1u2 . . . un�1An�1

)
q

u1u2 . . . un�1un;

where Ai�1!
e

uiAi 2 P ; for i=1, 2, ..., n�1, A0=S and
An�1!

q
un 2 P : Furthermore q (S fi h)=q (An-1 fi

un)=q.
Corresponding to the LA, by the definition of d and

r1, we get that A1 2d(x0, u1); A2 2d(A1, u2); ..., An-1

2d(An-2, un-1); Zt 2d(An-1, un) for 1 £ t £ m.
Then fM(h) = � {r1(Z) : Z 2d* (x0, h)} ‡

r1(Zt)=q(An-1 fi un)=q. Thus, we have shown that
fG(h) £ fM(h) for any h2U*, that is, fG £ fM.

Conversely, if fM(h) = � [r1(Z) : Z 2d* (x0, h)] ‡
r1(Zt)=q(An-1 fi un)=q, then there exist correspond-
ing derivation S)

q �
h; it implies that if q £ fM(h), then

q £ fG(h), that is, fM £ fG.
Therefore, fM=fG. From lemma 4. 1, fM is equivalent to

a DLA language, thus fG can be accepted by a DLA. �

Theorem 4.2 The languages accepted by DLA are L-
valued deterministic regular languages.

Proof. Let M=(X, U, d, x0, r1) be a DLA, define an
LRG G=(N, T, P, S), where T=U, N=X, S=x0.

Check all the transition functions in M, for every
y=d(x, u) where x, y2X, u2U, we define a correspond-
ing production: x!e uy 2 P : Let Y={x|r1(x) „ 0 },
Y � X :

If the transition functions satisfy that d(x, u)2Y, then
we define another kind of productions: x!qi u and
qi(x fi u)=r1(Zi), Zi2Y, i=1, 2, ..., m, where m=|Y|.

Clearly, such a grammar G is an DLRG. We show
fM=fG below.

Let h2T*, if h=L, then fG (h)=q(S fi L)=fM(L).
When h „ L, suppose that h=u1,u2...un, where ui 2T

for i=1, 2, ..., n, then the process that h is accepted byM
can be denoted as

dðx0; u1Þ ¼ A1; dðA1; u2Þ ¼ A2; . . . ; dðAn�2; un�1Þ
¼ An�1; dðAn�1; unÞ ¼ ZðZ 2 Y Þ;

so fM(h)=r1(d
*(x0, h))=r1(Z).

Correspondingly, from the construction of G we

know that, if S)
q �

h there must exist some derivation of h
with form,

S)
e

u1A1)
e

u1u2A2 ) . . .

)
e

u1u2 . . . un�1An�1)
q

u1u2 . . . un�1un;

where Ai�1!
e

uiAi 2 P ; i ¼ 1; 2; . . . ; n� 1;A0 ¼ S ¼ x0;
An�1!

q
un 2 P : Furthermore, q (S fi h)=q(An-1 fi

un)=r1(Z), thus fG=fM. �

Example 4.1 Let L=[0, 1], • is the multiplication of real
numbers, M=(X, U, d, x0, r1) is a DLA, where U={u1,
u2}, X={x1, x2, x3, x4}, x0=x1, r1=(0.5/x2)+(0.8/x3),
d(x1, u1)=x2, d(x2, u1)=x3, d(x3, u1)=x4, d(x4, u2)=x3,
d(x3, u2)=x2.

Construct an LRG G=(N, T, P, S), where N={x1,
x2, x3, x4}, T={u1, u2}, S=x1. The fuzzy productions in
P are as follows:

ðaÞ x1!
e

u1x2;x2!
e

u1x3;x3!
e

u1x4;x4!
e

u2x3;x3!
e

u2x2 and

ðbÞ x1!
q1 u1;x2!

q2 u1;x4!
q2 u2;x3!

q1 u2

and q1=r1(x2)=0.5, q2=r1(x3)=0.8.
For h=u1

3u2, its derivations in G are as follows,
x1!

e
u1x2!

e
u2
1x3!

e
u3
1x4!

q2 u3
1u2; then fG(h)=q2=0.8,

and fM(h)=r1 (d*(x1, h))=r1(x3) =0.8, thus
fM(h)=fG(h).

Thereby, from theorems 4.1 and 4.2 we can immedi-
ately get the following conclusion:

Corollary 4.1. For an L-language f over a finite set U, f
can be accepted by a DLA iff f can be generated by a
DLRG.

In Li (2003), a sufficient and necessary condition has
been given for the lattice-ordered monoid L, which to
ensure that any LA is equivalent to some DLA, then we
can obtain another similar conclusion for LRG and
DLRG.

Corollary 4.2. For any LRG G, there exists a DLRG G¢
such that fG=fG¢ iff the lattice-ordered monoid L satisfies
the following conditions, for any finite subset L¢ of L, the
subalgebra of (L, •, �) generated by L¢ is finite.

Distributive lattice always satisfies the conditions
stated in Corollary 4.2, that is to say, for any distributive
lattice L, if L¢ is a finite subset of L, then the sublattice of
L generated by L¢ is also finite. Then we deduce the
following corollary.

Corollary 4.3 If (L, �, �) is a distributive lattice, then any
LRG are equivalent to an DLRG.

Conclusion

Regular grammars with truth values in lattice-ordered
monoid and the languages generated by them are
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studied in this paper. We show the equivalence between
LA and LRG in the sense of recognizing fuzzy lan-
guages. Since, LA are not equivalent to DLA in the
power of recognizing fuzzy languages, we define a spe-
cial regular grammar DLRG and show that this kind of
grammars are equivalent to DLA.

Of course, much more work should be done in this
direction. Some other related work such as minimization
of LA, the special (algebraic) properties of LA languages
from the point of view of level structure, and the formal
model of computing with words (Ying 2002) based on
LRG and DLRG, and so on, should be studied in the
future work.
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