
A comprehensive survey of fitness approximation
in evolutionary computation

Y. Jin

Abstract Evolutionary algorithms (EAs) have received
increasing interests both in the academy and industry. One
main difficulty in applying EAs to real-world applications
is that EAs usually need a large number of fitness evalu-
ations before a satisfying result can be obtained. However,
fitness evaluations are not always straightforward in many
real-world applications. Either an explicit fitness function
does not exist, or the evaluation of the fitness is compu-
tationally very expensive. In both cases, it is necessary to
estimate the fitness function by constructing an approxi-
mate model. In this paper, a comprehensive survey of the
research on fitness approximation in evolutionary com-
putation is presented. Main issues like approximation
levels, approximate model management schemes, model
construction techniques are reviewed. To conclude, open
questions and interesting issues in the field are discussed.

Keywords Evolutionary computation, Fitness approxima-
tion, Meta-model, Optimization

1
Introduction
Evolutionary computation has found a wide range of
applications in various fields of science and engineering.
Among others, evolutionary algorithms have been proved
to be powerful global optimizers. Generally, evolutionary
algorithms outperform conventional optimization algo-
rithms for problems which are discontinuous, non-differ-
ential, multi-modal, noisy and not well-defined problems,
such as art design, music composition and experimental
designs [76]. Besides, evolutionary algorithms are also well
suitable for multi-criteria problems.

Despite the great successes achieved in real-world
applications, evolutionary algorithms have also encoun-
tered many challenges. For most evolutionary algorithms,
a large number of fitness evaluations (performance cal-
culations) are needed before a well acceptable solution can
be found. In many real-world applications, fitness evalu-
ation is not trivial. There are several situations in which
fitness evaluation becomes difficult and computationally
efficient approximations of the fitness function have to be
adopted.

Several issues need to be addressed in employing fitness
approximations in evolutionary computation. First, which
levels of the fitness approximation should be used. While
an experimental verification can be seen as the true fitness
value of a given solution, fully computational simulations,
simplified computational simulations as well as functional
approximations (meta-models) can be used for fitness
calculation. So far, several models have been used for fit-
ness approximation. The most popular ones are polyno-
mials (often known as response surface methodology), the
kriging model, most popular in design and analysis of
computer experiments (DACE), the feedforward neural
networks, including multi-layer perceptrons and radial-
basis-function networks and the support vector machines.
Due to the lack of data and the high dimensionality of
input space, it is very difficult to obtain a perfect global
functional approximation of the original fitness function.
To tackle this problem, two main measures can be taken.
Firstly, the approximate model should be used together
with the original fitness function. In most cases, the ori-
ginal fitness function is available, although it is computa-
tionally very expensive. Therefore, it is very important to
use the original fitness function efficiently. This is known
as model management in conventional optimization [17]
or evolution control in evolutionary computation [37].
Secondly, the quality of the approximate model should be
improved as much as possible given a limited number of
data. Several aspects are important to improve the model
quality, such as selection of the model, use of active data
sampling and weighting (both on-line and off-line),
selection of training method and selection of error
measures.

The work on fitness approximation in evolutionary
computation has been distributed in several different
areas. Therefore, this survey aims to provide readers a
comprehensive picture of fitness approximation in evolu-
tionary computation. In Sect. 2, different motivations for
using approximation in evolutionary computation are
presented. In the following section, three major levels of
approximation, namely, problem approximation, func-
tional approximation and evolutionary approximation are
presented. Different approaches to the incorporation of
fitness approximations are described in Sect. 4. The main
functional approximation models that have been used in
fitness approximation are introduced in Sect. 5. Data
sampling techniques, which are very important for the
quality of models, are given in Sect. 6. Finally, open
questions and promising research topics are discussed in
Sect. 7.

Focus Soft Computing 9 (2005) 3–12 � Springer-Verlag 2003

DOI 10.1007/s00500-003-0328-5

Published online: 13 October 2003

Y. Jin
Honda Research Institute Europe,
63073 Offenbach, Carl-Legin-str. 30, Germany
E-mail: yaochu.jin@honda-ri.de

3



2
Motivations
So far, approximation of the fitness function in evolu-
tionary computation has been applied mainly in the
following cases.

– The computation of the fitness is extremely time-
consuming. One good example is structural design
optimization [30, 38, 44, 45, 52, 56, 60, 78]. In aerody-
namic design optimization, it is often necessary to carry
out computational fluid dynamics (CFD) simulations to
evaluate the performance of a given structure. A CFD
simulation is usually computationally expensive, espe-
cially if the simulation is 3-dimensional, which takes
over ten hours on a high-performance computer for one
calculation. Therefore, approximate models have widely
been used in structure optimization [4].

Fitness approximation has also been reported in
protein structure prediction using evolutionary algo-
rithms [53, 59]. A neural network has been used for
feature extraction from amino acid sequence in evolu-
tionary protein design and drug design [72, 73, 74].

– There is no explicit model for fitness computation. In
many situations, such as in art design and music
composition as well as in some areas of industrial de-
sign, the evaluation of the fitness depends on the human
user. Generally, these problems can be addressed using
interactive evolutionary computation [81]. However, a
human user can easily get tired and an approximate
model that embodies the opinions of the human eval-
uator is also very helpful [5, 41].

– The environment of the evolutionary algorithm is noisy.
Usually, there are two methods to deal with noisy fit-
ness functions. The first one is to sample the fitness
several times and to average [25]. However, this method
requires a large number of additional fitness evalua-
tions. The second method is to calculate the fitness of
an individual by averaging the value of this individual
as well as that of other individuals in its neighborhood.
To avoid additional computational cost, the individuals
that participate in the averaging can be chosen from the
current and previous generations [7]. A more flexible
alternative is to estimate the fitness of the individuals in
the neighborhood using a statistical model constructed
with history data [8, 70].

– The fitness landscape is multi-modal. The basic
assumption is that a global model can be constructed to
approximate and smoothen out the local optima of the
original multi-modal fitness function without changing
the global optimum and its location. A Gaussian kernel
has been used to realize coarse-to-fine smoothing of the
original multi-modal function [85]. Approximation for
smoothing multi-modal functions has also been re-
ported in [46, 47], where global polynomial models are
used instead of Gaussian kernel functions. Note that it
is generally difficult to build an approximate model that
has the same global optimum on the same location.
Therefore, the coarse-to-fine modeling approach seems
to be more realistic.

3
Levels of approximation
The concept of approximation in optimization is
not new [4]. Traditionally, there are two basic
approaches, i.e., functional approximation and problem
approximation. Additionally, special approximation
techniques for evolutionary fitness evaluation have also
been suggested.

– Problem approximation. Problem approximation tries
to replace the original statement of the problem by
one which is approximately the same to the original
problem but which is easier to solve. For example, to
evaluate the performance of a turbine blade, wind
tunnel experiments need to be carried out. However,
computational fluid dynamics (CFD) simulations in-
stead of wind tunnel experiments are often used to
evaluate the performance of a blade during design. In
CFD simulations, the fluid dynamics are described
with three-dimensional (3D) Navier-Stokes equations
with a turbulence model [2]. If the viscosity, mass
diffusion and thermal conductivity of the flow are
neglected, then flow dynamics can be described with
three-dimensional Euler equations. The Euler equa-
tions are computationally more efficient to solve than
the Navier-Stokes equations. Under certain condi-
tions, the 3D flow field can be solved by 2D com-
putations, which is known as quasi-3D solvers and
computationally more efficient [6].

Of course, many ad hoc methods can also be devel-
oped. For example, in [29], random sampling instead of
complete sampling is used for solving image registra-
tion problems using genetic algorithms. Another
example is the work reported in [1], where fitness
approximation is studied in terms of discretization.

– Functional approximation. In functional approxima-
tion, an alternate and explicit expression is constructed
for the objective function (in evolutionary computation,
it is usually called fitness function). Take the blade
design again as an example, instead of evaluating its
performance using CFD simulations, an explicit math-
ematical model can be constructed whose inputs and
outs are the blade geometry and the blade performance,
respectively.

– Evolutionary approximation. This type of approxima-
tion is specific for evolutionary algorithms. A popular
class of the evolutionary approximation methods is
known as fitness inheritance [15, 71, 80, 86]. In these
methods, fitness evaluations can be spared by estimat-
ing the fitness value of the offspring individuals from
the fitness value of their parents.

In the second class of fitness approximation, the
individuals are clustered into several groups [44]. Then,
only the individual that represents its cluster will be
evaluated using the fitness function. The fitness value of
other individuals in the same cluster will be estimated
from the representative individual based a distance
measure. We term it fitness imitation in contrast to
fitness inheritance.

4



4
Incorporation of approximate fitness models

4.1
Incorporation mechanisms
The incorporation of approximate models constructed
using history data in evolutionary computation can be
seen one of the methods for incorporating knowledge into
evolutionary systems [36]. Very interestingly, approximate
models have been embedded in almost every element of
evolutionary algorithms, including migration, initializa-
tion, recombination, mutation, fitness evaluations.

– Use of approximate fitness evaluations through migra-
tion [18, 77, 83]. The island model based architecture
has been proposed to incorporate information from
approximate models to speed up the evolutionary
algorithm [18], as illustrated in Fig. 1. It can be seen
that one sub-population has been introduced for each
level of approximation. Usually, each population
evolves separately using its own level of approximation.
At a certain frequency, the individuals in the sub-pop-
ulations that uses higher accuracy approximations will
be migrated into those using approximations of lower
accuracy. An extension of this architecture has been
suggested in [77], where individuals can migrate from
sub-populations using approximations of higher accu-
racy to sub-populations using approximate models of
lower accuracy and vise versa Fig. 2.

– Use of approximate fitness models for initializing the
population and for guiding crossover and mutation [3,
63, 64, 75]. Using approximate models in population
initialization and guidance of genetic operators rather
than directly in fitness evaluations is believed to reduce
the risk of misleading the search direction by the
approximate models [63]. The reason for is that ini-
tialization, crossover and mutation are usually carried
out randomly. Thus, initializations and genetic opera-
tions guided by an approximate model even with lower

accuracy should usually better than do them randomly.
However, the reduction of fitness evaluations may not
be significant.

– Use of approximate fitness models through fitness
evaluations. In most research, the approximate model
has been directly used in fitness evaluations in order to
reduce the number of fitness calculation [12, 20, 21, 22,
23, 27, 32, 37, 38, 39, 45, 49, 52, 57, 58, 60, 65, 66].
Different approximate models, including polynomials,
kriging models and neural networks have been applied.
An interesting idea in [22] is that a confidence interval
for the fitness estimation is calculated to modify the
model prediction so that the search in unexplored re-
gions is encouraged. It has been found that strategy
leads to better performance, especially when the origi-
nal fitness function is multimodal.

Most recently, approximate fitness evaluations have
also been employed in evolutionary multiobjective
optimization [23, 24, 51, 54].

4.2
Model management or evolution control

Among the three approaches to incorporating approx-
imate models, the use of approximate models for fitness
evaluations may reduce the number of fitness evaluations
most significantly. However, the application of approxi-
mation models to evolutionary computation is not as
straightforward as one may expect. There are two major
concerns in using approximate models for the fitness
evaluation. First, it should be ensured that the evolution-
ary algorithm converges to the global optimum or a
near-optimum of the original fitness function. Second, the
computational cost should be reduced as much as possible.
One essential point is that it is very difficult to construct
an approximate model that is globally correct due to the
high dimensionality, ill distribution and limited number of
training samples. It is found that if an approximate model
is used for fitness evaluation, it is very likely that the
evolutionary algorithm will converge to a false optimum. A
false optimum is an optimum of the approximate model,
which is not one of the original fitness function, refer to
Fig. 3 for an example.

Therefore, it is very essential in most cases that the
approximate model should be used together with the ori-
ginal fitness function. This can be regarded as the issue of
model management or evolution control. By evolution
control, it is meant that in evolutionary computation using
approximate models, the original fitness function is used
to evaluate some of the individuals or all individuals in

Fig. 1. Island model of parallel GA for incorporating approxi-
mate fitness models. In the figure, a large circle means a
sub-population, small circles denote individuals using the fitness
function with the highest accuracy, rectangles denote the indi-
viduals using models with the medium accuracy and the triangles
are the individuals using models with the lowest accuracy

Fig. 2. Hierarchical GA for incorporating approximate fitness
models

5



some generations [37]. An individual that is evaluated
using the original fitness function is called a controlled
individual. Similarly, a generation in which all its indi-
vidual are evaluated using the original fitness function is
called a controlled generation.

Generally, model management in evolutionary compu-
tation can be divided into three main approaches from the
viewpoint of evolution control.

– No Evolution Control. Very often, the approximate
model is assumed to be of high-fidelity and therefore,
the original fitness function is not at all used in
evolutionary computation, such as in [5, 41, 67].

– Fixed Evolution Control. The importance to use both
the approximate model and the original function for
fitness evaluation has been recognized [65]. There are
generally two approaches to evolution control, one is
individual-based [12, 30, 37], and the other is genera-
tion-based [37, 65, 66]. By individual-based control, it is
meant that in each generation, some of the individuals
use the approximate model for fitness evaluation and
others the original function for fitness evaluation. In
individual-based evolution control, either a random
strategy or a best strategy can be used to select the
individuals to be controlled [37]. In the best strategy,
the best individual (based on the ranking evaluated by
the approximate model) in the current generation is
reevaluated using the original function [30], see Fig. 4,
while in the random strategy, the individuals to be
controlled are selected randomly. It has been shown
that the best strategy shows to reduce the computa-
tional cost further, individual-based evolution control
can be carried out only in a selected number of gen-
erations [12]. In contrast, the random strategy selects

certain number of individuals randomly for reevalua-
tion using the original fitness function [37]. An alter-
native to the best strategy and the random strategy is to
evaluate the mean of the individuals in the current
population [52].
Generation-based evolution control can also be imple-
mented [65, 66]. In [65], generation-based evolution
control is carried out when the evolutionary algorithm
converges on the approximate model. More heuristi-
cally, evolution control is carried out once in a fixed
number of generations, see Fig. 5.

One drawback in the aforementioned methods is that
the frequency of evolution control is fixed. This is not
very practical because the fidelity of the approximate
model may vary significantly during optimization. In
fact, a predefined evolution control frequency may
cause strong oscillation during optimization due to
large model errors, as observed in [65].

– Adaptive Evolution Control. It is straightforward to
imagine that the frequency of evolution control should
depend on the fidelity of the approximate model. A
method to adjust the frequency of evolution control
based on the trust region framework [17] has been
suggested in [52], in which the generation-based ap-
proach is used. A framework for approximate model
management has also been suggested in [38], which has
successfully been applied to 2-dimensional aerody-
namic design optimization, see Fig. 6.

5
Approximation models

5.1
Polynomial models
The most widely used polynomial approximation model is
the second-order model which has the following form:

ŷy ¼ b0 þ
X

1�i�n

bixi þ
X

1�i�j�n

bn�1þiþjxixj ; ð1Þ

where b0 and bi are the coefficients to be estimated, and
the number of terms in the quadratic model is
nt ¼ ðnþ 1Þðnþ 2Þ=2 in total, where n is the number of
input variables.

Fig. 3. An example of a false minimum in the approximate
model. Solid line denotes the original fitness function, dashes line
the approximate model and the dots the available samples

Fig. 4. The best individual is controlled in each generation. AM:
approximate model; OF: original function

Fig. 5. Generation-based evolution control. AM: approximate
model; OF: original function

6



To estimate the unknown coefficients of the polynomial
model, both least square method (LSM) and gradient
method can be used:

– Least square method. To get a unique estimation of the
coefficients using LSM, it is required that the number of
samples (N) drawn from the original function should be
equal to or larger than the number of coefficients nt. Let

y ¼ ½yð1Þ; yð2Þ; � � � ; yðNÞ�T ; ð2Þ
and

X ¼

1 x
ð1Þ
1 x

ð1Þ
2 � � � ðxð1Þn Þ2

1 x
ð2Þ
1 x

ð2Þ
2 � � � ðxð2Þn Þ2

..

. ..
. ..

. . .
. ..

.

1 x
ðNÞ
1 x

ðNÞ
2 � � � ðxðNÞn Þ2

2
666664

3
777775
; ð3Þ

then the following equation holds:

y ¼ XH ; ð4Þ
The LSM algorithm works as follows,

ĤH ¼ ðXTXÞ�1XTy ; ð5Þ

where ĤH denotes the estimate of H. One assumption here
is that the rows of X are linearly independent.

– Gradient method. The main drawback of the least
square method is that the computational expense be-
comes unacceptable as the dimensionality increases. To
address this problem, the gradient method can be used.
Define the following square error function for the k-th
sample:

EðkÞ ¼ 1

2
ðy� yðkÞÞ2 ; ð6Þ

where y is defined in equation (1), it is then straight-
forward to get the update rule for the unknown coeffi-
cients:

Db0 ¼ �n � ðy� yðkÞÞ ð7Þ

Dbi ¼ �n � ðy� yðkÞÞxðkÞi ð8Þ

Dbn�1þiþj ¼ �n � ðy� yðkÞÞxðkÞi x
ðkÞ
j ; 1 � i � j � n :

ð9Þ

5.2
Kriging models
The kriging model can be seen as a combination of a
global model plus a localized ‘deviation’:

yðxÞ ¼ gðxÞ þ ZðxÞ ; ð10Þ
where gðxÞ is a known function of x as a global model of
the original function, and ZðxÞ is a Gaussian random
function with zero mean and non-zero covariance that
represents a localized deviation from the global model.
Usually, gðxÞ is a polynomial and in many cases, it is
reduced to a constant b.

The covariance of ZðxÞ is expressed as

Cov½ZðxðjÞÞ; ZðxðkÞÞ� ¼ r2R½RðxðjÞ; xðkÞÞ�;
j; k ¼ 1; � � � ;N ; ð11Þ

where R is the correlation function between any two of the
N samples, and R is the symmetric correlation matrix of
dimension N � N with values of unity along the diagonal.
The form of the correlation matrix can be selected by the
user, and the following form has often been used
[11,28,79]:

RðxðjÞ; xðkÞÞ ¼ exp �
Xn

i¼1

hijxðjÞi � x
ðkÞ
i j

2

" #
; ð12Þ

where hi are the unknown correlation parameters, x
ðjÞ
i and

x
ðkÞ
i are the i-th component of sample points xðjÞ and xðkÞ.

Thus, the prediction of yðxÞ is a function of unknown
parameters b and hi; i ¼ 1; 2; . . . ; n:

ŷy ¼ b̂bþ rTðxÞR�1ðy � bIÞ ; ð13Þ
where, ŷy is the estimated value of y given the N samples
and the current input x, b̂b is the estimated value of b, y is a
vector of length N as defined in Eq. (2), I is a unit vector of
length N , and r is the correlation vector of length N be-
tween the given input x and the samples fxð1Þ; . . . ; xðNÞg:

rTðxÞ ¼ ½Rðx; xð1ÞÞ;Rðx; xð2ÞÞ; . . . ;Rðx; xðNÞÞ�T : ð14Þ
The estimation of the parameters can be carried out using
the maximum likelihood method.

One advantage of using kriging models is that a confi-
dence interval of the estimation can be obtained without
much additional computational cost. Note, however, that it
is necessary to perform matrix inversions for estimating
the output in the kriging model, which increases the
computational expense significantly when the dimension-
ality becomes high.

5.3
Neural networks
Neural networks have shown to be effective tools for
function approximation. Both feedforward multilayer
perceptrons and radial-basis-function networks have
widely been used.

Fig. 6. Adaptive generation-based evolution control.
In the evolution control cycle, there are k generations,
g (g � k) generations will be controlled. AM:
approximate model; OF: original function

7



– Multilayer perceptrons. An MLP with one input layer,
two hidden layers and one output neuron can be
described by the following equation:

y ¼
XL

l¼1

vlf
XK

k¼1

w
ð2Þ
kl f

Xn

i¼1

w
ð1Þ
ik xi

 ! !
; ð15Þ

where, n is the input number, K and L are the number of
hidden nodes, and f ð�Þ is called activation function, which
usually is the logistic function

f ðzÞ ¼ 1

1þ e�az
; ð16Þ

where a is a constant.

– Radial-basis-function networks. The theory of radial-
basis-function (RBF) networks can also be tracked back
to interpolation problems [62]. An RBF network with
one single output can be expressed as follows:

yðxÞ ¼
XN

j¼1

wj/ðk x� xðjÞ kÞ ; ð17Þ

where /ð�Þ is a set of radial-basis functions, k � k is
usually a Euclidean norm, the given samples
xðjÞ; j ¼ 1; . . . ;N are the centers of the radial-basis
function, and wj are unknown coefficients. However, this
model is expensive to implement if the number of
samples is large. Therefore, a generalized RBF network is
more practical

yðxÞ ¼
XL

j¼1

wj/ðk x� lðjÞ kÞ : ð18Þ

The main difference is that the number of hidden nodes
(L) is ordinarily smaller than the number of samples (N),
and the centers of the basis functions (lðjÞ) are also
unknown parameters that have to be learned. Usually,
the output of a generalized RBF network can also be
normalized:

yðxÞ ¼
PL

j¼1 wj/ðk x� lðjÞ kÞ
PL

j¼1 /ðk x� lðjÞ kÞ
: ð19Þ

5.4
Support vector machines
The theory of support vector machines is mainly inspired
from statistical learning theory [82]. Major advantages
of the support vector machines over other machine
learning models such as neural networks, are that there is
no local minima during learning and the generalization
error does not depend on the dimension of the space.
Given l samples ðxi; yiÞ; i ¼ 1; . . . ; l, the construction of a
model is reduced to the minimization of the following
regularized �-insensitive loss function:

L ¼k w k2 þC � 1
l

Xl

i¼1

maxfjyi � f ðxiÞj � �g ; ð20Þ

where � is the tolerable error, C is a regularization constant
and f is the function to be estimated:

f ðxÞ ¼ w � xþ b; w; x 2 Rn; b 2 R : ð21Þ

The minimization of (20) is equivalent to the following
constrained optimization problem:

minimize
1

2
k w k2 þC � 1

l

Xl

i¼1

ðni þ n�i Þ ; ð22Þ

subject toððw � xiÞ þ bÞ � yi � �þ ni ð23Þ
yi � ððw � xiÞ þ bÞ � �þ n�i ð24Þ
ni; n

�
i � 0; i ¼ 1; . . . ; l: ð25Þ

Thus, quadratic programming techniques can be applied
to solve the minimization problem.

5.5
Comparative remarks
There are several papers that compare the performance
of different approximation models [13, 14, 28, 35, 78, 79].
However, no clear conclusions on the advantages and
disadvantages of the different approximation models
have been drawn. This is reasonable not only because the
performance may depend on the problem to be
addressed, but also because more than one criterion
needs to be considered. The most important factors are
accuracy, both on training data and test data, computa-
tional complexity and transparency. It has been found in
[37] that an approximate model may introduce false
optima, although it has very good performance on the
training data, refer to Fig. 3. This is more harmful than a
lower approximation accuracy if the model is used in
global optimization such as evolutionary optimization.
Methods to prevent a neural network model from gen-
erating false minima have been suggested in [37], which
are very effective for lower dimensional problems.

Some general remarks can still be made on different
approximation models, although it is difficult to provide
explicit rules on model selection. Firstly, it is recom-
mended to implement first a simple approximate model
for a given problem, for example, a lower order poly-
nomial model to see if the given samples can be fit
reasonably. If a simple model is found to underfit the
samples, a model with higher complexity should be
considered, such as higher order polynomials or neural
network models. However, if the input space (design
space) is high-dimensional and the number of samples is
limited, a neural network model is preferred. It is
recalled that to estimate the unknown parameters of
a second-order polynomial model, at least
ðnþ 1Þ � ðnþ 2Þ=2 data samples are required.
Otherwise, the model will be undetermined.

Secondly, if a neural network model, in particular a
multilayer perceptrons network is used, it is necessary to
consider regulating the model complexity to avoid
overfitting. It may also be necessary to try other more
efficient training methods [68] if the gradient descent
based method is found to be of slow convergence.
Besides, RBF networks have found to be of good accu-
racy as well as of fast training in some studies [35, 78].

8



6
Data sampling techniques
If an approximate model is used for evolutionary com-
putation, both off-line and on-line training will be
involved if the evolution is controlled. Off-line learning
denotes the training process before the model is used in
evolutionary computation. In contract, on-line learning
denotes the update of the model during optimization.
Usually, the samples for off-line learning can be generated
using Monte-Carlo method, however, it has been shown in
different research areas that active selection of the samples
will improve the model quality significantly. During
on-line learning, data selection is strongly related to the
search process.

6.1
Off-line data sampling
Several data sampling methods have been suggested in the
fields of design of experiments [31, 50], statistics and
machine learning. Some popular methods are:

– Design of experiments (DOE). Orthogonal arrays (OA),
central composite designs (CCD), and D-optimality are
most widely used in design of experiments. A first-order
orthogonal design is one for which XTX is a diagonal
matrix, where X is the extended sample array as defined
in Eq. (3). In other words, the columns of X are
mutually orthogonal.

Central composite design enables the efficient con-
struction of second-order polynomial models. CCDs are
basically first-order (2n) designs augmented by 2n ‘star’
points obtained by perturbing each variable in both
positive and positive directions from the central point
and the central point to allow estimation of the coeffi-
cients of a second-order model. An example of CCD
designs is given in Fig. 7 for a two-dimensional problem.

D-optimality takes advantage of the properties of
polynomial models in data sampling. The accuracy of
the least square estimate in Eq. (5) is defined as:

VarðĤHÞ ¼ ðXTXÞ�1r2 ; ð26Þ

where r2 is the variance of the estimate error. From
Eq. (26), it can be seen that to improve the quality of fit,
one should maximize the determinant of XTX. There-
fore, the D-optimality is to select the samples in such a
way that the determinant of XTX is maximized. Al-
though developed from the polynomial models, the D-
optimality has also shown to be beneficial in data
selection for constructing neural networks [16].

– Active learning. Active learning has widely been studied
in the field of neural network learning [42, 48, 84]. The
basic idea is to select the location of the next sampling
data in such a way that an objective function is
optimized. The objective function can be information
gain, entropy reduction, or generalization error. It has
been shown that active data selection can improve the
generalization ability of neural networks without
increasing the number of training samples.

6.2
On-line data sampling
Active data selection is also important in the case that
the training data has been collected and therefore, the
target is how to select a subset of the data for efficient
training.

– Bagging and boosting. Bagging [9] and boosting [26]
are two statistical learning methods that have been
developed to improve the quality of approximate model
using bootstrap techniques [19]. In bagging (bootstrap
aggregating), a number of bootstrap models are con-
structed using different bootstrap samples and the final
output is the average of the models. It is shown that
bagging is able to reduce the variance of estimate error
efficiently. An adaptive bagging technique can reduce
both variance and bias [10].

Boosting algorithms are able to boost a weak learning
algorithm into a strong one. A weak algorithm can be
inaccurate rules of thumb that are slightly better than a
random guess. The main difference between boosting
and bagging is that in boosting, the bootstrap samples
are affected by the performance of the current model. In
addition, the final output is a weighted average of the
different models.

– Active data selection. Some of the statistical active
learning methods can also be applied to this type of
data selection [61]. A special case of integrated mean
square error, called integrated squared bias is used as
the criterion to select a subset from available data to
improve learning performance. However, it is assumed
that the data is noiseless.

– Data weighting guided by evolution. In [38], a
method to weight the available data using the infor-
mation from the evolutionary algorithm has been
suggested. The basic idea is that if information on
search direction of the evolutionary algorithm is
available, then a larger weight should be given to the
data samples located in the region where the evolu-
tionary algorithm will most probably visit in the next
generation.

In [66], several strategies for data sampling have been
studied. For example, some strategies use the best

Fig. 7. Central composite designs for n ¼ 2. The dots represent
the sample points. The samples on the solid lines are the first-
order design and those on the dashed lines are central and star
points (

ffiffiffi
n
p
Þ

9



individuals to replace the worse ones in the training
samples, or the ones that are randomly selected. Some
strategies create new points randomly and replace the
worst ones in the training samples. It has been found
that the strategy that simply re-evaluates the best
individuals (best in the sense of the approximate
model) with the original fitness function exhibits the
best performance. This is actually the best strategy in
individual-based evolution control.

7
Discussions
Fitness approximation in evolutionary computation is a
research area that has not yet attracted sufficient attention
in the evolutionary computation community. Among
others, the following points still need to be clarified:

– It is theoretically still unclear in which way the evolu-
tionary algorithm can benefit from the approximate
model, although several studies have shown very
promising results using approximate models in evolu-
tionary computation. In the least sense, as pointed out
in [66], the approximate model can prevent the infor-
mation in the history of optimization from being lost,
although approximate models themselves do not create
new information.

– Which type of models helps most, a local one or a
global one? It is straightforward to imagine that a global
model is able to simplify the search process if the
approximate model does not change the properties of
the original fitness function. However, from the view-
point of modeling, to build a local model is much more
feasible than to build a global model. In [56], local
approximate models are constructed only for local
search within a Lamarkian framework of evolution.

– Which is the most effective way of using the approxi-
mate models? Generally speaking, the incorporation of
approximate models by migrations is not efficient
mainly due to the fact that if the models of lower
complexity have false optima whose fitness values are
higher than those in the correct but computationally
complex models, then the migrations between different
subpopulations will not help much in any sense. In
contrast, the use of approximate models for genetic
operations has lower requirement on the model quality
because theoretically, the approximate models can help
so long as the prediction of the model is better than
random guess. However, it is unclear how many eval-
uations can be spared. The use of the approximate
models in fitness evaluation can reduce the number of
fitness calculation most effectively. Nevertheless, a poor
model quality can degrade the efficiency and even lead
to false optima.

In addition, there are also several topics that deserve
further research. Some of them are:

– Development of learning algorithms that are efficient
and less sensitive to the number of training data.
Learning of problem class [34] and incorporation of a
priori knowledge [40] are two possible approaches. A
preliminary study has shown that the structurally

optimized neural networks exhibit much better per-
formance than fully connected neural networks for fit-
ness approximation in aerodynamic design
optimization [33].

– Approximate model with a variable input dimension.
During optimization, the input dimension may change
in many cases. For example, if an adaptive representa-
tion is used in design optimization, the number of
parameters increases or decreases during optimization
[55].

– How to handle problems with general nonlinear con-
straints. In optimization, a penalty term is usually ad-
ded to the object function if the constraints are voilated.
Unfortunately, samples containing a large penalty value
cause big difficulties for the model training. Thus,
knowledge about the constraints should be extracted
and reused in a proper way rather than directly be
incorporated in the approximate model.

– Management of different levels of approximation. So
far, only functional approximation has been discussed.
However, there are different levels of problem approx-
imation in many applications. For example, in com-
putational fluid dynamics simulation, 2D Euler-
Lagrange equations, Navier-Stokes equations, quasi 3D
simulations and 3D simulations are different approxi-
mations of the original problem. Thus, combining dif-
ferent levels of approximation with the approximate
model is very interesting [18, 69].

References
1. Albert L, Goldberg DE (2002) Efficient disretization sched-

uling in multiple dimensions. In: Langdon WB et al (Eds.)
Proceedings of Genetic and Evolutionary Computation
Conference, Morgan Kaufmann, pp. 271–278

2. Anderson JD (1995) Computational fluid dynamics: the basics
with applications. McGraw Hill

3. Anderson K, Hsu Y (1999) Genetic crossover strategy using an
approximation concept. In: IEEE Congress on Evolutionary
Computation, Washington DC IEEE, pp. 527–533

4. Barthelemy J-FM (1993) Approximation concepts for optim-
imum structural design – a review. Structural Optimization, 5:
129–144

5. Biles JA (1994) GenJam: A genetic algorithm for generating
jazz solos. In: Proceedings of International Computer Music
Conference, pp. 131–137

6. Bradshaw P, Mizner GA, Unsworth K (1976) Calculation of
compressible turbulent boundary layers on straight-tapered
swept wings. AIAA Journal, 14: 399–400

7. Branke J (1998) Creating robust solutions by means of evo-
lutionary algorithms. In: Proceedings of Parallel Problem
Solving from Nature, Lecture Notes in Computer Science,
Springer, pp. 119–128

8. Branke J, Schmidt C, Schmeck H (2001) Efficient fitness
estimation in noisy environment. In: Spector L et al, (ed.)
Proceedings of Genetic and Evolutionary Computation, San
Francisco CA July Morgan Kaufmann, pp. 243–250

9. Breiman L (1996) Bagging predictors. Machine learning, 24:
123–140

10. Breiman L (1999) Using adaptive bagging to debias regres-
sions. Technical Report 547, Departmetn of Statistics,
University of California, Berkeley

11. Brooker AJ, Dennis J, Frank PD, Serafini DB, Torczon V,
Trosset M (1998) A rigorous framework for optimization
of expensive functions by surrogates. Structural Optimization,
17: 1–13

10



12. Bull L (1992) On model-based evolutionary computation. Soft
Computing, 3: 76–82

13. Carpenter W, Barthelemy J-F (1994) A comparison of poly-
nomial approximation and artificial neural nets as response
surface. Technical Report 92, AIAA, 2247

14. Carpenter W, Barthelemy J-F (1994) Common misconcep-
tions about neural networks as approximators. ASCE Journal
of Computing in Civil Engineering, 8(3): 345–358

15. Chen J-H, Goldberg DE, Ho S-Y, Sastry K (2002) Fitness
inheritance in multi-objective optimization. In: Proceedings
of genetic and Evolutionary Computation Conference. Mor-
gan Kaufmann

16. Choueiki MH, Mount-Campbell CA (1999) Training data
development with the D-optimality criterion. IEEE Transac-
tions on Neural Networks, 10(1): 56–63

17. Dennis J, Torczon V (1997) Managing approximate models in
optimization. In: Alexandrov N, Hussani M (eds.) Multidis-
ciplinary design optimization: State-of-the-art, SIAM,
pp. 330–347

18. Eby D, Averill R, Punch W, Goodman E (1998) Evaluation of
injection island model GA performance on flywheel design
optimization. In: Third Conference on Adaptive Computing
in Design and manufacturing Springer, pp. 121–136

19. Efron B, Tibshirani R (1993) An Introduction to the Boot-
strap. Chapman and Hall

20. El-Beltagy MA, Keane AJ (1998) Optimization for multi-level
problems: A comparison of various algorithms. In: Parmee I
(ed.) Proceedings of Third International Conference on
Adaptive Computing in Design and Manufacture, Springer,
pp. 111–120

21. El-Beltagy MA, Nair PB, Keane AJ (1999) Metamodeling
techniques for evolutionary optimization of computationally
expensive problems: promises and limitations. In: Proceed-
ings of Genetic and Evolutionary Conference, Orlando, Mor-
gan Kaufmann, pp. 196–203

22. Emmerich M, Giotis A, Özdenir M, Bäck T, Giannakoglou K
(2002) Metamodel-assisted evolution strategies. In: Parallel
Problem Solving from Nature, number 2439 in Lecture Notes
in Computer Science, Springer, pp. 371–380

23. Farina M (2001) A minimal cost hybrid strategy for Pareto
optimal front approximation. Evolutionary Optimization,
3(1): 41–52

24. Farina M (2002) A neural network based generalized response
surface multiobjective evolutionary algorithms. In: Congress
on Evolutionary Computation, IEEE Press, pp. 956–961

25. Fitzpatrick JM, Grefenstette JJ (1988) Genetic algorithms in
noisy environments. Machine Learning, 3: 101–120

26. Freund Y (1995) Boosting a weak learning algorithm by
majority. Information and Computation, 121(2): 256–285

27. Giotis A, Emmerich M, Naujoks B, Giannakoglou K (2001)
Low kost stochastic optimization for engineering applica-
tions. In: Proceedings of International Conference on Evolu-
tionary Methods for Design Optimization and Control with
Applications to Industrial Problems

28. Giunta AA, Watson L (1998) A comparison of approximation
modeling techniques: Polynomial versus interpolating mod-
els. Technical Report 98-4758, AIAA

29. Grefenstette JJ, Fitzpatrick JM (1985) Genetic search with
approximate fitness evaluations. In: Proceedings of the
International Conference on Genetic Algorithms and Their
Applications, pp. 112–120

30. Grierson DE, Pak WH (1993) Optimal sizing geometrical and
topological design using agenetic algorithm. Structural Opti-
mization, 6(3): 151–159

31. Haftka RT, Scott EP, Cruz JR (1998) Optimization and
experiments: A survey. Applied Mechanics Review, 51(7):
435–448

32. Hong Y-S, Lee H, Tahk M-J (2003) Acceleration of the
convergence speed of evolutionary algorithms using multi-

layer neural networks. Engineering Optimization, 35(1): 91–
102

33. Hüsken M, Jin Y, Sendhoff B (2002) Structure optimization of
neural networks for evolutionary design optimization. In:
2002 GECCO Workshop on Approximation and Learning in
Evolutionary Computation, pp. 13–16

34. Hüsken M, Sendhoff B (2000) Evolutionary optimization for
problem clases with lamarckian inheritance. In: IEEE Sym-
posium on Combinations of Evolutionary Computation and
Neural Networks, pp. 98–109

35. Jin R, Chen W, Simpson TW (2000) Comparative studies of
metamodeling techniques under miltiple modeling criteria.
echnical Report 2000—4801, AIAA

36. Jin Y (2002) Knowledge in evolutionary and learning systems.
Shaker, Aachen

37. Jin Y, Olhofer M, Sendhoff B (2000) On evolutionary opti-
mization with approximate fitness functions In: Proceedings
of the Genetic and Evolutionary Computation Conference,
Morgan Kaufmann, 786–792

38. Jin Y, Olhofer M, Sendhoff B (2001) Managing approximate
models in evolutionary aerodynamic design optimization. In:
Proceedings of IEEE Congress on Evolutionary Computation,
1: 592–599

39. Jin Y, Olhofer M, Sendhoff B (2002) A framework for evo-
lutionary optimization with approximate fitness functions.
IEEE Transactions on Evolutionary Computation, 6(5): 481–
494

40. Jin Y, Sendhoff B (1999) Knowledge incorporation into neural
networks from fuzzy rules. Neural Processing Letters, 10(3):
231–242

41. Johanson B, Poli R (1998) GP-Music: an interactice genetic
programming system for music generation with automated
fitness raters. In: Koza JR, Banzhaf W, Chellapilla K, Deb K,
Dorigo M, Fogel DB, Garzon MH, Goldberg DE, Iba H, Riolo
R (eds.) Proceedings of the Third Annual Conference on
Genetic Programming, pp. 181–186

42. Kenji F (2000) Statistical active learning in multilayer per-
ceptrons. IEEE Transactions Neural Networks, 11(1): 16–26

43. Kim HS, Cho SB (2001) An efficient genetic algorithms with
less fitness evaluation by clustering. In: Proceedings of IEEE
Congress on Evolutionary Computation, IEEE, pp. 887–894

44. Kodiyalam S, Nagendra S, DeStefano J (1996) Composite
sandwich structural optimization with application to satellite
components. AIAA Journal, 34(3): 614–621

45. Lee J, Hajela P (1996) Parallel genetic algorithms implemen-
tation for multidisciplinary rotor blade design. Journal of
Aircraft, 33(5): 962–969

46. Liang K-H, Yao X, Newton C (1999) Combining landscape
approximation and local search in global optimization. In:
1999 Congress on Evolutionary Computation, pp. 1514–1520

47. Liang K-H, Yao X, Newton C (2000) Evolutionary Search of
approximated n-Dimensional Landscape. International Jour-
nal of Knowledge-based Intelligent Engineering Systems, 4(3):
172–183

48. MacKay D (1992) Information-based objective functions for
active data selection. Neural Computation, 4(4): 305–318

49. Morimoto T, De Baerdemaeker J, Hashimoto T (1997) An
intelligent approach for optimal control of fruit-storage pro-
cess using neural networks and genetic algorithms. Comput-
ers and Electronics in Agriculture, 18: 205–224

50. Myers R, Montgomery D (1995) Response Surface Method-
ology. John Wiley & Sons Inc., New York

51. Nain P, Deb K (2002) A computationally effective multi-
objective search and optimization techniques using coarse-
to-fine grain modeling. In: 2002 PPSN Workshop on Evolu-
tionary Multiobjective Optimization

52. Nair PB. Keane AJ (1998) Combining approximation concepts
with algorithm-based structural optimization procedures. In:
Proceedings of 39th AIAA/ASMEASCE/AHS/ASC Structures,

11



Structural Dynamics and Materials Conference, pp. 1741–
1751

53. Neumaier A (2002) Molecular modeling of proteins and
mathematical prediction of protein structures. SIAM Review,
39(3): 407–460

54. Oduguwa V, Roy R (2002) Multiobjective optimization of
rolling rod product design using meta-modeling approach. In:
Genetic and Evolutionary Computation Conference, New
York, Morgan Kaufmann, pp. 1164–1171

55. Olhofer M, Jin Y, Sendhoff B (2001) Adaptive encoding for
aerodynamic shape optimization using evolutiona stratgies.
In: Proceedings of IEEE Congress on Evolutionary Compu-
tation, 1: 576–583

56. Ong YS, Nair PB, Keane AJ (2003) Evolutionary optimization
of computationally expensive problems via surrogate model-
ing. AIAA Journal, 41(4): 687–696

57. Papadrakakis M, Lagaros N, Tsompanakis Y (1997) Structural
optimization using evolution strategies and neural networks.
In: Fourth U.S. National Congress on Computational
Mechanics, San Francisco

58. Papadrakakis M, Lagaros N, Tsompanakis Y (1999) Optimi-
zation of large-scale 3D trusses using Evolution Strategies and
Neural Networks. Int. J. Space Structures, 14(3): 211–223

59. Piccolboni A, Mauri G (1997) Application of evolutionary
algorithms to protein folding prediction. In: Hao J-K et al.
(ed.) Proceedings of the Artificial Evolution 97, volume 1363
of Lecture Notes in Computer Science, Springer, pp. 123–136

60. Pierret S (1999) Turbomachinery blade design using a Navier-
Stokes solver and artificial neural network. ASME Journal of
Turbomachinery, 121(3): 326–332

61. Plutowski M, White H (1993) Selecting concise training sets
from clean data. IEEE Transactions on Neural Networks, 4(2):
305–318

62. Powell M (1987) Radial basis functions for multi-variable
interpolation: a review. In: Mason C, Cox MG (eds.), Algo-
rithms for Approximation Oxford University Press, Oxford
UK, pp. 143–167

63. Rasheed K (2000) Informed operators: Speeding up genetic-
algorithm-based design optimization using reduced models.
In: Proceedings of genetic and Evolutionary Computation
Conference, Las Vegas, Morgan Kaufmann, pp. 628–635

64. Rasheed K, Vattam S, Ni X (2002) Comparison of methods for
using reduced models to speed up design optimization. In:
Proceedings of Genetic and Evolutionary Computation Con-
ference, New York, Morgan Kaufmann, pp. 1180–1187

65. Ratle A (1998) Accelerating the convergence of evolutionary
algorithms by fitness landscape approximation. In: Eiben A,
Bäck Th, Schoenauer M, Schwefel H-P (eds.), Parallel Problem
Solving from Nature, V, pp. 87–96

66. Ratle A (1999) Optimal sampling strategies for learning a
fitness model. In: Proceedings of 1999 Congress on Evolu-
tionary Computation, 3: 2078–2085, Washington DC

67. Redmond J, Parker G (1996) Actuator placement based on
reachable set optimizationfor expected disturbance. J Opt
Theory Appl, 90(2): 279–300 August 1996

68. Reed RD, Marks II RJ (1999) Neural Smithing. MIT, Cam-
bridge, MA

69. Robinson GM, Keane AJ (1998) A case for multi-level opti-
misation in aeronautical design. In: Proceedings of the RAeS
Conf. on Multidisciplinary Design and Optimisation, The
Royal Aeronautical Society, pp. 9.1–9.6

70. Sano Y, Kita H (2000) Optimization of noisy fitness functions
by means of genetic algorithms using history. In: Schoenauer
M et al. (ed.) Parallel Problem Solving from Nature, volume
1917 of Lecture Notes in Computer Science. Springer

71. Sastry K, Goldberg DE, Pelikan M (2001) Don’t evaluate,
inherit. In: Proceedings of genetic and Evolutionary Compu-
tation Conference, Morgan Kaufmann, pp. 551–558.

72. Schneider G (2000) Neural networks are useful tools for drug
design. Neural Networks, 13: 15–16

73. Schneider G, Schrödl W, Wallukat G (1998) Peptide design by
artificial neural networks and computaer-based evolutionary
search. Proceedings of National Academy of Science, 95:
12197–12184

74. Schneider G, Schuchhardt J, Wrede P (1994) Artificial neural
networks and simulated molecular evolution are potential
tools for sequence-oriented protein design. CABIOS, 10(6):
635–645

75. Abboud K, Schoenauer M (2002) Surrogate deterministic
mutation. In: Artificial Evolution’01, Springer pp. 103–115

76. Schwefel H-P (1995) Evolution and Optimum Seeking. Wiley
77. Sefrioui M, Periaux J (2000) A hierarchical genetic algorithm

using multiple models for optimization. In: Parallel Problem
Solving from Nature, volume 1917 of Lecture Notes in Com-
puter Science, Springer, pp. 879–888

78. Shyy W, Tucker PK, Vaidyanathan R (1999) Response surface
and neural network techniques for rocket engine injector
optimization. Technical Report 99-2455, AIAA

79. Simpson T, Mauery T, Korte J, Mistree F (1998) Comparison
of response surface and Kriging models for multidiscilinary
design optimization. Technical Report 98-4755, AIAA

80. Smith R, Dike B, Stegmann S (1995) Fitness inheritance in
genetic algorithms.In: Proceedings of ACM Symposiums on
Applied Computing, ACM, 345–350

81. Takagi H (1998) Interactive evolutionary computation. In:
Proceedings of the 5th International Conference on Soft
Computing and Information/Intelligent Systems, Iizuka
Japan, World Scientific, pp. 41–50

82. Vapnik V (1998) Statistical Learning Theory. Wiley
83. Vekeria H, Parmee I (1996) The use of a cooperative multi-

level CHC GA for structural shape optimization. In: Pro-
ceedings of fourth European Congress on Intelligent Tech-
niques and Soft Computing, Aachen, vol I: pp. 471–475

84. Vijayakumar S, Ogawa H (1998) Improving generalization
ability through active learning. IEICE Transactions on
Information and Systems, Vol. E82-D, No. 2, pp. 480–487

85. Yang D, Flockton SJ (1995) Evolutionary algorithms with a
coarse-to-fine function smoothing. In: IEEE International
Conference on Evolutionary Computation, Perth, Australia,
IEEE Press, pp. 657–662

86. Zhang X, Julstrom B, Cheng W (1997) Design of vector
quantization codebooks using a genetic algorithm. In: Pro-
ceedings of the IEEE Conference on Evolutionary Computa-
tion, IEEE, pp. 525–529

12


