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Abstract This article addresses some problems in outlier
detection and variable selection in linear regression
models. First, in outlier detection there are problems
known as smearing and masking. Smearing means that
one outlier makes another, non-outlier observation appear
as an outlier, and masking that one outlier prevents an-
other one from being detected. Detecting outliers one by
one may therefore give misleading results. In this article a
genetic algorithm is presented which considers different
possible groupings of the data into outlier and non-outlier
observations. In this way all outliers are detected at the
same time. Second, it is known that outlier detection and
variable selection can influence each other, and that dif-
ferent results may be obtained, depending on the order in
which these two tasks are performed. It may therefore be
useful to consider these tasks simultaneously, and a ge-
netic algorithm for a simultaneous outlier detection and
variable selection is suggested. Two real data sets are used
to illustrate the algorithms, which are shown to work well.
In addition, the scalability of the algorithms is considered
with an experiment using generated data.

Keywords Variable selection, Model selection, Outlier,
Outlier detection, Genetic algorithm

1
Introduction
In statistical data analysis, outliers or aberrant observa-
tions are, according to one definition, observations that
are somehow different from the majority of the data. This
definition is somewhat vague, but it will be adequate for
our purposes in this article. There are several statistical
methods for outlier detection in different circumstances.
In practical work it may however be difficult to decide
which method to use, and to resolve potential inconsis-
tencies in the results obtained by different methods. And
if outliers are detected in the data, there are several ways
of taking them into account in the analysis. For example,
one can either remove the outlying observations from the

data altogether, or incorporate the detected outliers into
the statistical model. An introduction to outliers, and their
detection and modeling can be found in [2].

In addition to the basic problems of outlier detection
mentioned above, there is an additional nuisance in
practical outlier detection, namely the possibility of
smearing and masking. These terms refer to two related
special problems. First, smearing means that an outlier
causes another observation, which is not in reality an
outlier at all, to be considered as one by an outlier
detection method. Second, masking is said to occur when
an outlier prevents another one from being detected by an
outlier detection method. Sequential detection of outliers
may therefore be misleading, if the detection of one outlier
causes the subsequent detection of other outliers to be
flawed, due to either smearing or masking, or even both.

In this article therefore a simultaneous outlier detection
method is first considered in linear regression modeling.
The simplest outlier detection method would be to con-
sider all possible outlier combinations in turn, that is to go
through all possible permutations of the observations into
two groups, outliers and non-outliers, and decide which
of these is the best combination (based on some
prespecified criterion). This, however, becomes impossible
in practice due to the enormous amount of possible
combinations (2N � 1, where N is the number of
observations in the data). Since some combinations are
more probable than others, a genetic algorithm (GA) is a
natural way of going through the most interesting
possibilities. The same idea has recently also been used in
[1] in detecting outliers from time series data.

The use of GAs for variable selection in statistical
modeling has already been discussed in, for example, [4]
and [16]. In addition to outlier detection, we will extend
our algorithm to include also a choice on which variables
to select, out of a set of candidate variables, into the
regression model. The motivation for this is that the choice
of which variables to select into the model can affect the
outlier detection, and conversely, the choice of whether or
not to consider some observations as outliers can affect the
variable selection [3]. If the choices on outliers and vari-
ables are made sequentially, it is possible that mistaken
conclusions are made in either, or even in both steps. A
simultaneous choice, as in our algorithm, should be more
appropriate in this respect.

The fitness functions for these GAs are built on using
information criteria. They are used both to select the
variables of the model, and to determine the outlying
observations. The idea of using information criteria to
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detect outliers was apparently first introduced in [12], in
finding outliers in a sample of independently and identi-
cally distributed data. A general discussion of model
selection using information criteria is given in [8], and
[17] discusses their use in variable selection in autore-
gressive moving average (ARMA) time series models.

GAs have been used for somewhat similar purposes
before, and we will give just a few examples here. First, [5]
presents a GA for model selection of subset ARMA models. If
such models are considered for a time series, there exists
a large number of potential model forms, and finding the
best one using conventional methods may require the
estimation of a prohibitive number of models. [11] describes
a GA for the detection of multiple change-points (or level
shifts) in a time series. The problems caused by change-
points are similar to those caused by outliers, in that the
detection of one change-point affects the consequent
detection of further change-points. A simultaneous, rather
than a sequential, detection procedure is therefore beneficial
also for change-points. Finally, a related area of research
is that of the use of GAs for feature and instance selection in,
for example, data mining. A number of references to this
literature can be found in [10].

2
Models and outliers
To begin with, we will consider only outlier detection in
linear regression models, when the variables to be in-
cluded in the model are known. The observed data consists
of the dependent variable vector y, and of the independent
explanatory variable vectors x1; . . . ; xp. We will use the
notation zi for an element of a vector z. In addition, X will
denote a matrix of the column vectors x1; . . . ; xp. The
linear regression model can now be written as

y ¼ Xbþ e ; ð1Þ
where y is an N � 1 vector of the dependent variable, X the
N � ðpþ 1Þ matrix of independent variable vectors,
including a constant vector 1ðN�1Þ, b a ðpþ 1Þ � 1
parameter vector and e an N � 1 vector of independent
and identically distributed Gaussian errors, ei � Nð0; r2Þ;
i ¼ 1; . . . ;N . The model can be estimated by ordinary least
squares regression, which provides estimates for the
parameters (b̂b ¼ ðX0XÞ�1X0yÞ and residuals (̂ee ¼ y � X b̂b).

If outliers occur in the data, the errors can be thought to
have a distribution different from the above. There are
several possibilities, but perhaps the most intuitive one is
the mixture model, where with probability 1� p each er-
ror ei comes from a Nð0; r2Þ distribution, and with prob-
ability p from another distribution. Here, 0 < p < 1, and if
outliers are thought of as rare events, as is usually mean-
ingful, p must be close to zero. There are also various
alternatives for the outlier distribution. For example, the
outliers may come from a Nðx; r2Þ distribution, or from a
Nð0; dr2Þ distribution, where x and d are some fixed
constants (x 6¼ 0; d > 1). In either case, some errors ei,
and consequently some observations yi are somehow
different from the majority of the data.

The detection of outliers is important, not only for their
own sake, but also because the inferences drawn from the
model will be biased if outliers are neglected. Potential

outliers can be incorporated into the linear regression
model of equation (1) by the use of dummy (or indicator)
variables. A dummy variable is an N � 1 vector that has a
value of one for the outlier observation, and zero for all
other observations. For example, a dummy variable to be
added to the model above could be
xpþ2 ¼ ð 1 0 � � � 0 Þ0. This dummy variable would
correspond with the first observation being an outlier.
A dummy variable in the regression model is therefore
equivalent to a detected outlier, and the problem here is to
select the best model, where the candidate models have
different combinations of all possible dummy variables
(i.e. corresponding to each N observations) as explanatory
variables.

Outlier detection, and later also variable selection, are in
this article based on the use of information criteria. There
is a large number of possible criteria to choose from. The
BIC criterion of [18] will be used here, since it usually
performs quite well in various situations, see for example
[15]. For our linear regression model with dummy
variables the criterion can be calculated as

BIC ¼ logðr̂r2Þ þm logðNÞ=N ; ð2Þ
where N is the sample size, r̂r2 ¼ ðêe0êeÞ=N is the residual
sum of squares, and m ¼ 1þ pþmd, the total number of
parameters in the estimated model, consists of parameters
for the constant, the p independent variables and the
number of outlier dummies md. In general, a good model
has small residuals, and few parameters. A model with the
smallest value of BIC is therefore preferred.

A problem in using the BIC for outlier detection is that
by itself it tends to include unnecessary outlier dummies
(see also [6]). To circumvent this problem, a correction to
the criterion will be used in this article. The corrected BIC
takes into account the different nature of outlier dummies
and other variables, and has a different penalty term for
different variables. This takes the form of an extra penalty
for the dummies. The corrected BIC, denoted BIC0, is given
by

BIC0 ¼ logðr̂r2Þ þ ð1þ pÞ logðNÞ=N þ jmd logðNÞ=N ;

ð3Þ
where j ðj > 1Þ is the extra penalty given to outlier
dummies. Simulation experiments can be conducted to
determine relevant values for j in different situations. One
can, for example, generate artificial data from the statis-
tical model, estimate the model both with and without
outlier dummies, and find a value of j with which an
outlier dummy is unnecessarily accepted into the model
with some small probability, say one per cent. We have
found that often a value of three works well in preventing
unneeded dummies from being added to the model, yet
at the same time ensuring that true outliers are detected,
and a dummy variable added for them. This value (j ¼ 3)
will be used in the examples reported later in the article.

3
A genetic algorithm for outlier detection
A general introduction to genetic algorithms is [7]. In
the application of this article the two most important
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considerations are the coding of the models and the fitness
function. In addition, several algorithm parameters, and
procedures for the creation of new generations from the
old ones, must be decided on. In a GA the best solution to
a certain problem, such as optimization of a function or a
combinatorial problem, is found by considering a large
number of possible solutions, and combining aspects of
potentially good ones. In our application the problem is to
describe the data by finding the best possible model, first
by finding any outliers in the data. To this end a number
of, initially randomly selected, candidate models are first
examined. The goodness of each model is determined by
the fitness function. The next generation of candidate
models are formed from the current models, using a
process of combination described below. When a large
number of generations has been examined, the GA should
discover, if not the overall best possible model, at least a
reasonably good one.

We will start by describing an algorithm for outlier
detection. The coding of the candidate models for outlier
detection is straightforward. Each model, also called an
individual, is fully described by a binary vector z
¼ ð z1 � � � zN Þ, where zi ¼ 0 indicates no outlier dum-
my and zi ¼ 1 indicates an outlier dummy for observation
i, for each i ¼ 1; . . . ;N . These elements of the z vector are
also referred to as the genes of that individual. For
example, a model with a dummy variable for the first and
last observations is described by the vector z
¼ ð 1 0 � � � 0 1 Þ. Note that before the GA is run on a
data set, the dummy variables for each observation must
first be created. The fitness of an individual is then com-
puted simply as the BIC0 value (3) for a linear regression
model (1) with the corresponding dummy variables.

In our GA, the population size in each generation is 40
individuals. The initial population for the algorithm to
start with is generated randomly, such that each gene of
each individual has a value of zero with probability 0.9,
and therefore a value of one with probability 0.1. Linear
regression models corresponding to these individuals are
then estimated using the observed data, and BIC0 values
for them computed. Note that the algorithm could most
likely be made considerably faster, by incorporating any
preliminary information about which of the observations
are potentially outliers. Such information could come
from, for example, knowledge of the data collection, or
simply by looking at the data. Here no such information
has been used.

Mating, or the creation of the next generation of
individuals from the previous one, is also based on the
BIC0 values of the individuals. Each new individual of
generation t þ 1 has as its parents two individuals from
the previous generation t. These are selected by first
computing for each individual j in generation t a uniform
random variable in the interval ½0; 1=BIC0j�.1 The two

individuals with the largest values of this random variable
are then selected as parents. In this way the best individ-
uals, that is the ones with the smallest values of the fitness
function BIC0, are more likely to pass their genes onto the
next generation. To create the offspring, two integer
points, v1 and v2, are first randomly selected from the
interval ½0;N � 1�, such that v2 � v1. The offspring gets the
first v1 genes from the first parent, the next v2 � v1 genes
from the second parent, and the last N � v2 genes again
from the first parent. Note that if v1 ¼ v2, the offspring is
an exact copy of the first parent. This procedure is
repeated to create the same number of individuals as
existed in the previous generation.

To make sure that the algorithm will also take into
consideration entirely new models, and that as many
models as possible are examined, mating of the individuals
from the previous generation will not be enough. In evo-
lutionary terms, more genetic variation in the population
is needed. To this end, the individuals of each generation
are also mutated before model estimation. Each gene of
each individual is flipped, from zero to one or vice versa,
with probability 0.01. After the mating and mutation steps
are completed, models are estimated and BIC0 values
computed for the new generation ðt þ 1Þ, and a new round
of mating, mutation and estimation is begun on the next
generation ðt þ 2Þ. Table 1 has the most important GA
parameters.

In addition to mating and mutation, a condition for the
maximum number of dummies is used to alter the popu-
lation. This rule is used in order to keep the candidate
models from having too many variables, since only a few
dummies will presumably be allowed in the final model.
The rule states that if a candidate model has more than
N=5 dummy variables, or in other words if the number of
outliers is more than 20% of the number of observations, it
is dropped from consideration.

The mating, mutation and estimation procedure out-
lined above is repeated until convergence is achieved. The
convergence criterion states that when no improvement is
found in the last M generations, the algorithm is termi-
nated, and the best model so far found is reported. The
value of M has to be chosen for each application of the
algorithm. A large enough value must be chosen to make
sure that a good solution is found, but on the other hand a
larger value leads to more computations and a longer
execution time.

After some experiments with the algorithm, it was noted
that the results can be improved if a small number of the
best individuals are kept the same from one generation to
the next. It seems that by preserving the two best indi-
viduals in each generation intact, the time needed to find
the optimal solution can be cut by as much as half. In the
remainder of this article, this strategy is therefore always
followed.

Since the algorithm is based on a random choice of
models to be considered, different results can be obtained
in a run with different random numbers. Therefore, and
also to find appropriate values of the termination criterion
for each application, the algorithm was run several times,
using different seeds for the random number generator
each time.

1 Where BIC0j denotes the BIC0 value of individual j. This interval
can be used in this situation since the BIC0 values are all larger
than one. If this were not the case, some other transformation of
the BIC0 values would have to be used in selecting the parents. This
is what happens later in Sect. 7, where generated data is used, and
a constant has to be added to the BIC0 values before mating.
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4
Examples
Our empirical examples use two data sets that have been
used in several earlier papers. References to these, and
other further information, including where to obtain the
data can be found in [9].2 These data sets have specifically
been used to illustrate outlier detection and variable
selection methods in linear regression modeling. It is
therefore interesting to see how our genetic algorithms do
in comparison with earlier findings. In this section we will
detect outliers from these data sets with our GA. In a later
section we will use a GA also to select the variables to
include in the statistical models. Some information on the
data sets can be found in Table 1.

The first data set, called the Scottish hill running data,
has 35 observations. The dependent variable is the record
times (in minutes) of hill running races, and the two
independent variables are distance (length of the race in
miles) and climb (the total elevation gained in the race in
feet). In earlier research observations 7 and 18 have been
initially identified as outliers.3 If these two observations
are removed from the data, it is usually found that

observation 33 seems also to be an outlier. Observations 7
and 18 therefore mask observation 33 from being detected
as an outlier. At this stage, our statistical model for this
data includes a constant and both of the independent
variables. Our only task is therefore to detect any possible
outliers in the data.

The GA described earlier was run with this data, using
ten different seeds for the random number generator. All
runs result in the same outliers being detected, at obser-
vations 7, 18 and 33. These three observations are exactly
the ones identified as outliers also in the earlier work
mentioned above. The minimum, maximum and average
number of generations needed to find this best solution are
given in Table 1. The solution was always found quickly by
the GA, since the average number of generations needed
was only 18. The estimated model with the three outlier
dummies has a BIC0 value of 4.13599.

The second data set, called the stack loss data, has 21
observations from a chemical process. The dependent
variable (stack loss) is the amount of the chemical
escaping the plant. The three independent variables are air
flow, cooling water temperature and concentration of acid
used in the process. Observations 1, 3, 4 and 21 have in
earlier research been identified as outliers. This data set
provides an interesting and rather extreme example of
masking. It is noted in [9] that the detection of any of these
outliers is very difficult if only one observation at a time is
examined, but that simultaneous methods are able to
detect all four outliers.

The GA was run with this data as well, with a model that
has a constant and all three variables. Again, ten runs were
made with different seeds for the random number gener-
ator, and the results can be found in Table 1. The best
outlier combination found had observations 1, 3, 4 and 21
as outliers, with an estimated BIC0 value of 2.29069. This
solution, which was found in all ten runs, is therefore
again the same that has been found in earlier work as well.
This solution was found, on average, in less than 100
generations.

However, and as noted above, the detection of the
outliers in this data set is indeed rather difficult. If only
two outliers are in the current model (observations 4 and
21 are fairly easy to detect as outliers), adding either of the
two remaining ones alone will increase the BIC0 value.
Therefore moving from a model with two dummies to the
optimal model with four dummies can be rather difficult.
This illustrates the need to either run the GA several times
with different random number seeds, or set the termina-
tion criterion such that a larger number of generations are
considered before termination. Here, it would seem that
the algorithm can be safely terminated if no improvement
is found in a few hundred generations.

Since the sample sizes in our examples are so small, it
was feasible to consider, as a comparison, all possible
outlier combinations. This amounts to, in other words,
finding the best solution by enumerating all possibilities.
The Scottish hill running data has more observations, and
was chosen for this purpose as the more demanding
example. Models for all possible outlier combinations with
up to seven outliers were considered. The best discovered
outlier combination was the same that was found with the

Table 1. Information on the data sets used, GA parameters and
results

Scottish hill
running data

Stack loss
data

Observations 35 21
Outliers 3 4
Explanatory variablesa 2 3
Variables that belong

to the modela 2 2

Crossover probability 1 1
Mutation probability 0.01 0.01
Population size 40 40
Elite population sizeb 2 2

Outlier detection only
Number of runs 10 10
Minimumc 7 21
Maximumc 38 214
Averagec 18 97
Number of times

best model found 10 10

Simultaneous variable selection and outlier detection
Number of runs 10 10
Minimumc 10 170
Maximumc 68 1890
Averagec 34 829
Number of times
best model found 10 10

a Excluding the constant
b Crossover and mutation operators were not used on these
individuals.
c Number of generations needed to find the best model

2 At the time of writing, the data were available from one of the
authors’ website. See http://www.stat.colostate.edu/�
jah=index:html.
3 It is pointed out in [9] that observation 18 has a recording error
in the independent variable. All other observations are apparently
correct, but a few of them are aberrant (i.e. outliers).
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genetic algorithm, that is that observations 7, 18 and 33 are
outliers. Estimating all these models, and calculating their
BIC0 values took approximately four hours. This can be
compared with the few seconds needed to run the GA for
several hundred generations, by which time the best
solution has certainly been discovered.

The role of the penalty function was also examined
further. The robustness of the outlier detection results with
respect to the fitness function was tested by running the
algorithm for the Scottish hill running data with different
values for j, the extra penalty given to outlier dummies. In
addition to the previously used value of 3, the algorithm
was also run with values of 2, 2.5, 3.5, and 4. The same
outliers as before were detected with all these values, apart
from the value 2, with which an additional outlier at
observation 19 was detected. The obtained results would
therefore have been the same with a wide range of penalty
function values.

5
Simultaneous variable selection and outlier detection
In the previous sections a genetic algorithm was used to
detect outliers in a situation where the variables included
in the statistical model had already been chosen. For such
situations there exists a large number of different outlier
detection methods, and the use of the proposed genetic
algorithm method may not perhaps be the best possibility.

For a more useful application, outlier detection can be
combined into a more general model selection algorithm.
The logical next step in this direction is a GA for simul-
taneous variable selection and outlier detection. Similar
work has already been carried out using other methods.
For example, [9] considers the simultaneous variable
selection and outlier detection in linear regression models
in a Bayesian framework. This method, however, requires
the analyst to first identify a subset of observations that are
potentially outliers. The method then selects the final
outliers from this group. In our GA no such preliminary
work is needed. Similarly, [13] and [14] employ Bayesian
methods to examine whether some macroeconomic time
series are better characterized by nonlinear models, or by
linear models that contain structural changes and outliers.
In both these situations the questions of outlier detection
and model selection are related.

It is clear that the choices on the statistical model and
the variables to include in the model influence the results
of outlier detection, since any observation is an outlier
only in relation to some specific model. On the other
hand the choice of whether to correct some outliers might
also influence the outcome of model and variable selection.
The traditional procedure is to first select the statistical
model and variables, and then detect possible outliers
within the chosen model. This sequential modeling may
lead to conflicting outcomes, depending on the order in
which the tasks are carried out. If, on the other hand, the
choice on the variables to include in the model, and the
choice on which observations to consider as outliers is
made simultaneously, these problems can perhaps be
avoided. We propose in this section one possible solution
to this using a GA similar to the one described earlier for
outlier detection.

The extension of the outlier detection GA to include
also variable selection is straightforward. Each model,
consisting of the variables included in the statistical model
and outliers detected, is described by a binary vector z =
ð z1 . . . zpþ1þN Þ, where the first pþ 1 elements indicate
whether the model contains the corresponding column of
the X matrix as an explanatory variable, and the final N
elements indicate whether or not an outlier occurs at
observation i ¼ 1; . . . ;N, and consequently whether a
dummy variable is added for that observation. Otherwise
the same algorithm specifications can be used as above.

6
Examples continued
The GA presented in the previous section was next run on
the two data sets, this time including the choice of the
variables to include in the model in the algorithm as well.
The algorithm was again run ten times for both data sets,
with different seeds for the random number generator. The
results are again given in Table 1.

For the Scottish hill running data, the best estimated
model had a BIC0 value of 4.13599. All of the three vari-
ables (the constant and both explanatory variables) were
included in the best model, as in [9]. And as earlier,
observations 7, 18 and 33 were again detected as outliers.
The selected model is therefore exactly the same as the one
found earlier in section 4. Here the best model was, on
average, discovered after about 30 generations. This
number is not much more than what was required for the
outlier detection alone.

For the stack loss data set, the third variable, acid
concentration, does not belong in the model according to
[9]. For this data, the best estimated model had a BIC0

value of 2.23295, and includes a constant and the first two
explanatory variables, and detects the same outliers
(at observations 1, 3, 4, and 21) as earlier. The third
explanatory variable is left out of the model. These
findings are again in line with earlier research. Note also
that the BIC0 value obtained earlier in the outlier detection
algorithm is indeed larger than the one obtained here,
indicating that dropping the third variable improves the
model fit based on the BIC0 criterion. The average number
of generations needed to find this model is over 800. This
is mainly due to the difficulties with masking noted
earlier: all four outliers must be discovered at the same
time. This also means that the stopping criterion has to
allow more time for the best solution to be discovered, and
several thousand generations without an improvement
should probably be iterated before stopping.

7
Scalability of the algorithm
Both of the two data sets used earlier as examples are
rather small, both in terms of the number of observations
and the number of variables in the data. To get some idea
on the scalability of these algorithms, some experiments
were therefore conducted by examining generated data
sets of different sizes. In this section we will concentrate
on the simultaneous variable selection and outlier detec-
tion algorithm, since this task is clearly more demanding
than outlier detection alone. The generated data has two
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kinds of variables, those that belong in the true model and
those that do not. It also has a certain number of outliers,
as detailed below. The GA is run on the generated data,
until the true model is found by the GA as the best model
so far. The algorithm then terminates and the number of
generations iterated so far is reported. Ten runs with dif-
ferent random number generator seeds are again executed
for each combination of the factors.

The total number of explanatory (x) variables, n, in the
data set is varied, such that n ¼ 4; 8; 12. The sample sizes
used are N ¼ 50; 100; 200; 300. The data is generated as
follows. First, the explanatory variables are generated from
the standard Gaussian distribution. Half (the first n=2) of
these are then used to generate the independent (y) vari-
able, along with random Gaussian error terms e, such that
y = x1þ x2 þ . . .þ xn=2 þ e. In other words, half of the
explanatory variables in the data set always belong to the
true model. Note that to simplify matters slightly, no
constant variables are used in this experiment, either in
the data or in the estimated models.

Outliers are then added to this data, such that 2% of all
observations are outliers, or that the probability of an
outlier occurring is 0.02 for every observation. In addition,
the outliers’ size, x, is also increased as the sample size
increases. This is not an unrealistic assumption, since in
larger samples more extreme observations appear due to
random variation. The outlier size x is 4 for N ¼ 50, 5 for
N ¼ 100, 7 for N ¼ 200 and 8 for N ¼ 300. To add outliers
to the data, a value of x is simply added to the first 2% of
the y variable observations, so that yi ¼ yi þ x; i ¼
1; 2; . . . ;N=50 (which is identical to drawing the corre-
sponding errors from a Gaussian distribution with a mean
of x). The actual number of outliers in the data sets varies
therefore from one (N ¼ 50) to six (N ¼ 300).

Table 2 has the results of this experiment. The mini-
mum, maximum and average numbers of generations
(from the 10 runs) needed to find the true model are first
reported. As can be expected, the computational burden in
terms of the number of generations needed to find the true
model is increased both by an increase in the number of
variables, and by an increase in the sample size. The
sample size seems to be the more important factor in this
respect, however, since increasing the sample size from
100 to 200 to 300 will increase the average number of
generations needed to find the true model from tens to
hundreds to thousands.

The number of generations needed to find the true
models does not tell the whole story of course, since

models with more variables and data sets with more
observations require also more computational time for
each model and therefore each generation. The total
computation time needed for all 10 runs (relative to the
smallest data set of N ¼ 50; n ¼ 4) and the average num-
ber of generations iterated per second are therefore also
reported in Table 2, to give some idea of the true com-
putational costs.4 The total computational time is more or
less insignificant for samples of 50 and 100 observations.
For a sample of 200 observations, however, the times are
measured in minutes rather than seconds, and for a
sample of 300 observations in hours rather than minutes.
The number of generations iterated per second decreases
clearly as the sample size grows, but decreases only very
slightly as the number of variables is increased.

One must also keep in mind that with real data the true
model is of course not known, and therefore actual com-
putational times would be longer, since a large number
of generations have to be iterated without improvement
before stopping the algorithm. Overall, it seems therefore
that with present-day computers the proposed method is
practicable, but only for relatively small sample sizes.

8
Discussion
Genetic algorithms for outlier detection and variable
selection in linear regression models were presented in this
article. It seems that the GAs are able to avoid the potential
problems of smearing and masking, which sometimes cause
problems for reliable outlier detection. In addition, simul-
taneous outlier detection and variable selection is possible.

Although this article considered only linear regression
models, the idea of using GAs for outlier detection and
variable selection can be applied in several statistical
models. The discussion here was in the context of cross-
section data, but the algorithms could obviously be used
also for time series data. In addition to variable selection
and outlier detection, similar GAs could be built to
simultaneously consider also other kinds of modeling
choices. These could include, for example, the detection of
change-points in time series models, as in [11].

In future work we intend to use similar GAs for modeling
time series of industrial production, which are known to
have some kind of nonlinearity [13, 14]. The precise form of

Table 2. Scalability of the simultaneous outlier detection and model selection algorithm – experimental results on generated dataa

NðnÞ 50 (4) 50 (8) 50 (12) 100 (4) 100 (8) 100 (12) 200 (4) 200 (8) 200 (12) 300 (4) 300 (8) 300 (12)

Minimumb 3 10 21 13 46 32 128 103 230 1002 1593 1596
Maximumb 16 46 68 57 141 135 1221 1044 942 2686 2994 5210
Averageb 8 23 46 31 78 81 346 475 500 1785 2289 2480
Timec 1 3 6 13 32 35 558 791 850 6193 8149 9038
Generations/sd 7.7 7.4 7.2 2.5 2.4 2.3 0.6 0.6 0.6 0.3 0.3 0.3

a GA parameters are as in Table 1. N is the number of observations, n the total number of explanatory variables in the data set.
b Number of generations needed to find the true model.
c Total computation time needed for 10 runs, relative to the simplest case of N ¼ 50; n ¼ 4.
d Average number of generations iterated per second.

4 A relatively slow Pentium PC (233MHz) was used for all
computations.
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the nonlinearity is not obvious, however, and therefore
selection between alternative models, such as different
linear and nonlinear models, both with and without dummy
variables for level shifts and outliers, using a GA could
provide interesting results. Unfortunately, however, in
many cases the estimation of the models is considerably
more costly in CPU time, which perhaps limits the practical
applicability of the method somewhat.

One further point, not deemed to be of sufficient
interest to be tackled here, is the fact that exactly the same
models are estimated several times during the run of the
GA. One possibility to circumvent this is to keep track of
all the models that have already been considered, and
estimate each model only once, as in [11]. If the estimation
of the models were more time-consuming, this would
clearly be worth considering. Other similar practical
improvements to the algorithm and the required
computations are also surely possible.
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