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Abstract Fuzzy Galois connections were introduced by
Bělohlávek in [4]. The structure considered there for the
set of truth values is a complete residuated lattice, which
places the discussion in a ‘‘commutative fuzzy world’’.
What we are doing in this paper is dropping down the
commutativity, getting the corresponding notion of Galois
connection and generalizing some results obtained by
Bělohlávek in [4] and [7]. The lack of the commutative law
in the structure of truth values makes it appropriate for
dealing with a sentences conjunction where the order be-
tween the terms of the conjunction counts, gaining thus a
temporal dimension for the statements. In this ‘‘non-
commutative world’’, we have not one, but two implica-
tions ([15]). As a consequence, a Galois connection will
not be a pair, but a quadruple of functions, which is in fact
two pairs of functions, each function being in a symmetric
situation to his pair. Stating that these two pairs are
compatible in some sense, we get the notion of strong
L-Galois connection, a more operative and prolific notion,
repairing the ‘‘damage’’ done by non-commutativity.

Keywords Non-commutative fuzzy logic, Fuzzy Galois
connection, Fuzzy relation, Non-commutative conjunction

1
Introduction
As in [4], our discussion concerns only Galois connections
between power sets.

A classical (crisp) Galois connection between the power
sets of X and Y (shortly, between X and Y) is a pair ð"; #Þ
of functions ": 2X �! 2Y , #: 2Y �! 2X such that A1 � A2

implies A"2 � A"1, B1 � B2 implies B#2 � B#1, A � A"#,
B � B#", for all A;A1;A2 2 2X , B;B1;B2 2 2Y . Galois con-
nections naturally arise when one considers an arbitrary
relation between X (the universe of objects) and Y (the
universe of attributes). For A � X, A" is the set of all at-

tributes shared by the objects of A and, for B � Y, B# is the
set of all objects that share the attributes of B. In [14], Ore
showed that all the Galois connections between X and Y
are induced by binary relations, so Galois connections are
in a bijective correspondence with binary relations.

In [4], Bělohlávek generalized the notion of Galois
connection to the case where the truth values (degrees)
come from a complete residuated lattice, that is a structure
ðL;_;^; �;!; 0; 1Þ, where ðL;_;^; 0; 1Þ is a complete,
bounded lattice, ðL; �; 1Þ is a commutative monoid and
ð�;!Þ forms a residuated pair (i.e. x � y � z iff x � y! z
for all x; y; z 2 L). Of course, the framework is fuzzy logic
and thus, for a fixed set X, called universe, instead of the
power set one considers the L-power set, LX (the set of
functions A : X �! L). For any x 2 X and A 2 LX , AðxÞ
represents the truth value of ‘‘x is in A’’. An L-relation
between the universes X and Y is a function I from LX�Y ,
Iðx; yÞ showing, for any ðx; yÞ 2 X � Y , how much is x in
the relation I with y. For A1;A2 2 LX , SðA1;A2Þ (in [4], it is
denoted SubsðA1;A2Þ) is the subsethood degree of A1 in
A2, namely

W
x2XðA1ðxÞ ! A2ðxÞÞ (it is, in fact, the truth

value of ‘‘for all x, x is in A1 implies x is in A2’’). A1 � A2

means that for all x 2 X, A1ðxÞ � A2ðxÞ, i.e. SðA1;A2Þ ¼ 1.
An L-Galois connection between X and Y is a pair ð"; #Þ of
functions ": LX �! LY , #: LY �! LX such that SðA1;A2Þ �
SðA"2;A

"
1Þ, SðB1;B2Þ � SðB#2;B

#
1Þ, A � A"#, B � B#", for all

A;A1;A2 2 LX , B;B1;B2 2 LY . As in the crisp case, an
L-relation I from LX�Y induces an L-Galois connection
between X and Y :

A"ðyÞ ¼
^

x2X

ðAðxÞ ! Iðx; yÞÞ

for all y 2 Y ;

B#ðxÞ ¼
^

y2Y

ðBðyÞ ! Iðx; yÞÞ

for all x 2 X. Bělohlávek proved a generalization of Ore’s
theorem, showing that there are as many L-Galois con-
nections between X and Y as L-relations in LX�Y (every L-
Galois connection being induced by an L-relation). He also
provided a representation of L-Galois connections by
families of crisp Galois connections with certain proper-
ties, namely L-nested systems.

All these can be found in [4]. Now let us suppose that �
(the multiplication on L) is not necessarily commutative
and that, instead of !, we have two residua ! and ),
satisfying the properties:

x � y � z if f x � y! z if f y � x) z
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for all x; y; z 2 L. Then L is a generalized residuated lattice
([15]). The statement ‘‘�, not being necessarily commuta-
tive, gives rise to two residua instead of one’’ is motivated
by the fact that, in both commutative and non-commu-
tative case, the residuum (residua), if there exists (exist), is
(are) uniquely determined by �. Of course, for each uni-
verse X, we have two subsethood degrees between the
L-subsets of X, S1 and S2, corresponding to the two
implications given by the two residua.

An L-Galois connection will consist of a quadruple
ð";*; #;+Þ of functions ";*: LX �! LY , #;+: LY �! LX ,
where ð";+Þ and ð*; #Þ are both pairs of complementary
functions that satisfy similar properties as in the com-
mutative case, only with a left-right variation of the sub-
sethood degree considered. In addition, when fulfilled a
compatibility condition between these two pairs (de-
manding that " and *, respectively # and +, have the same
starting point, i.e. coincide on crisp singletons), the
L-Galois connection will be called strong.

Section 2 of this paper creates the framework for our
discussion (generalized residuated lattices, L-sets, subset-
hood degrees).

In Sec. 3, we define the L-Galois connections and
investigate their properties, following quite closely [4] in
order to generalize the results from there. It turns out that
most of the generalizations are possible only with strong
L-Galois connections; this, together with the fact that
strong L-Galois connections (which still generalize the
commutative case of L-Galois connections) are precisely
the ones induced by L-relations, suggests that this might
be the right fuzzy non-commutative notion of Galois
connection, although the strongness condition is quite
unlike ‘‘Galois connection style’’.

Section 4 treats, in the style of [7], the case where
universes come equipped with fuzzy equalities and, con-
sequently, the considered relations and Galois connections
must respect those equalities. It is proved that a bijection
between L-relations and strong L-Galois connection exists
also here.

2
The framework

Definition 2.1 A generalized residuated lattice is a struc-
ture ðL;_;^; �;!; 0; 1Þ such that the following conditions
hold:

(GR1) ðL;_;^; 0; 1Þ is a bounded lattice;
(GR2) ðL; �; 1Þ is a monoid;
(GR3) (residuation)

For all a; b; c 2 L we have the equivalences:

a � b! c if f a � b � c ;

a � b) c if f b � a � c :

Obviously, a generalized residuated lattice is a residuated
lattice (identifying ! with )) iff � is commutative.

Lemma 2.1 In a complete generalized residuated lattice L,
the following properties hold for all a; b; c 2 L, ðaiÞi2I � L,
ðbiÞi2I � L, ðaijÞði;jÞ2I�J � L:

(1) a � b iff a! b ¼ 1 iff a) b ¼ 1;
(2) a! 1 ¼ a) 1 ¼ 1; 1! a ¼ 1) a ¼ a;
(3) ! and) are antitone in the first and isotone in the

second argument;
(4) � is isotone in both arguments;
(5) a � b � a and a � b � b;
(6) 0 � a ¼ a � 0 ¼ 0;
(7)

W
i2I ai

� �
� a ¼

W
i2Iðai � aÞ and

a �
W

i2I ai

� �
¼
W

i2Iða � aiÞ;
(8) ða! bÞ � a � b and a � ða) bÞ � b;
(9) a � ða! bÞ ) b and a � ða) bÞ ! b;

(10)
V

i2I ai

� �
� a �

V
i2Iðai � aÞ and

a � ð
V

i2I aiÞ �
V

i2Iða � aiÞ;
(11)

W
i2I ai

� �
! a ¼

V
i2Iðai ! aÞ and

a! ð
V

i2I aiÞ ¼
V

i2Iða! aiÞ;
(12)

W
i2I ai

� �
) a ¼

V
i2Iðai ) aÞ and

a)
V

i2I ai

� �
¼
V

i2Iða) aiÞ;
(13)

V
i2I

V
j2J aij ¼

V
j2J

V
i2I aij ¼

V
ði;jÞ2I�J aij;W

i2I

W
j2J aij ¼

W
j2J

W
i2I aij ¼

W
ði;jÞ2I�J aij;

(14) a! ðb) cÞ ¼ b) ða! cÞ and
a) ðb! cÞ ¼ b! ða) cÞ;

(15) � is commutative iff !¼) .

Remark 2.1 Of course, many of the properties above
(namely those that do not involve family suprema) hold in
any generalized residuated lattice, not necessarily com-
plete. However, we are interested only in the case of
completeness, since the truth values must be appropriate
for universal and existential quantification.

For a set X, call an element from LX (the set of functions
from X to L) an L-fuzzy-subset (L-subset) of X. We shall
identify the subsets of X (called crisp subsets, i.e. elements
from 2X) with particular L-subsets of X in the obvious way.
For two sets X and Y , an L-relation between X and Y is an
element from LX�Y .

In the commutative case ([4]) (i.e. L being a complete
residuated lattice), we have, for any A;B 2 LX , the
subsethood degree SðA;BÞ of A in B:

SðA;BÞ ¼
^

x2X

ðAðxÞ ! BðxÞÞ :

One can see that, for all a; b; c 2 LX ,

(1) SðA;AÞ ¼ 1;
(2) SðA;BÞ � SðB;CÞ � SðA;CÞ ,

i.e. S : LX � LX ) L is an L-preorder on LX .
Now we want to define a similar concept of

subsethood degree for the case of a generalized
residuated lattice ðL;_;^; �;!;); 0; 1Þ. The existence
of two residua ! and ) leads to two indicators of this
degree:

S1ðA;BÞ ¼
^

x2X

ðAðxÞ ! BðxÞÞ ;

S2ðA;BÞ ¼
^

x2X

ðAðxÞ ) BðxÞÞ

for any A;B 2 LX . We write A � B when AðxÞ � BðxÞ for
all x 2 X.
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For the rest of this paper, ðL;_;^; �;!;); 0; 1Þ will be
a generalized residuated lattice.

Proposition 2.1 For all A;B;C 2 LX the following prop-
erties hold:

(1) A � B implies S1ðB;CÞ � S1ðA;CÞ and
S2ðB;CÞ � S2ðA;CÞ;

(2) A � B implies S1ðC;AÞ � S1ðC;BÞ and
S2ðC;AÞ � S1ðC;BÞ;

(3) A � B iff S1ðA;BÞ ¼ 1 iff S2ðA;BÞ ¼ 1;
(4) S1ðB;CÞ � S1ðA;BÞ � S1ðA;CÞ;
(5) S2ðA;BÞ � S2ðB;CÞ � S2ðA;CÞ.

Proof. (1): By Lemma 2.1.(3), for any x 2 X, AðxÞ � BðxÞ
implies BðxÞ ! CðxÞ � AðxÞ ! CðxÞ and
BðxÞ ) CðxÞ � AðxÞ ) CðxÞ, hence

S1ðB;CÞ ¼
^

x2X

ðBðxÞ ! CðxÞÞ

�
^

x2X

ðAðxÞ ! CðxÞÞ ¼ S1ðA;CÞ

and, similarly,

S1ðB;CÞ � S1ðA;CÞ :
(2) The proof is similar.
(3) We have the equivalences:

S1ðA;BÞ ¼ 1 iff ^x2XðAðxÞ ! BðxÞÞ ¼ 1

iff AðxÞ ! BðxÞ ¼ 1 for x 2 X

if f AðxÞ � BðxÞ for all x 2 X

if f A � B :
The equivalence A � B iff S2ðA;BÞ ¼ 1 can be proved
in the same manner.

(4) By Lemma 2.1.(5 and 8), for any x 2 X, the following
inequalities hold:

ðBðxÞ ! CðxÞÞ � ðAðxÞ ! BðxÞÞ � AðxÞ

� ðBðxÞ ! CðxÞÞ � BðxÞ � CðxÞ :
We get, in accordance to (GR3), that

ðBðxÞ ! CðxÞÞ � ðAðxÞ ! BðxÞÞ � AðxÞ ! CðxÞ ;
for any x 2 X. Therefore, using Lemma 2.1.(10),

S1ðB;CÞ � S1ðA;BÞ

¼
^

x2X

ðBðxÞ ! CðxÞÞ
" #

�
^

x2X

ðAðxÞ ! BðxÞÞ
" #

�
^

x;y2X

½ðBðxÞ ! CðxÞÞ � ðAðyÞ ! BðyÞÞ�

�
^

x2X

½ðBðxÞ ! CðxÞÞ � ðAðxÞ ! BðxÞÞ�

�
^

x2X

ðAðxÞ ! CðxÞÞ � S1ðA;CÞ :

(5) has a similar proof.

3
Non-commutative fuzzy Galois connections
In [4], Bělohlávek defines fuzzy Galois connection as a
natural generalization of the classical (crisp) one. This

section is concerning with a notion of Galois connection
corresponding to a fuzzy set theory based on a generalized
residuated lattice. The results from [4] are generalized in
this section.

Remember that L denotes a generalized residuated
lattice.

Definition 3.1 Let X and Y be two arbitrary non-empty
sets. An L-Galois connection between X and Y is a
quadruple ð";*; #;+Þ of functions

": LX �! LY ; *: LX �! LY ; #: LY �! LX ;

+: LY �! LX

such that the following conditions are fulfilled:

(G1) S1ðA1;A2Þ � S2ðA"2;A
"
1Þ; S2ðA1;A2Þ � S2ðA*2 ;A

*
1 Þ;

(G2) S1ðB1;B2Þ � S2ðB#2;B
#
1Þ; S2ðB1;B2Þ � S1ðB*2 ;B

"
1Þ;

(G3) A � A"+; A � A*#;
(G4) B � B#*; B � B+" .

If L is a residuated lattice then the residua ! and )
coincide hence one obtains the Bělohlávek’s notion of
fuzzy Galois connection ([4]).

The following proposition provides an alternative
definition for L-Galois connections.

Proposition 3.1 A quadruple (";*; #;+) of functions
";*: LX �! LY , #;+: LY �! LX forms an L-Galois
connection iff

S1ðA;B+Þ ¼ S2ðB;A"Þ, S2ðA;B#Þ ¼ S1ðB;A*Þ for all
A 2 LX , B 2 LY . (D)

Proof. Let (";*; #;+) be an L-Galois Connection.
First, we prove S1ðA;B+Þ � S2ðB;A"Þ. From (G1), we get

S1ðA;B+Þ � S2ðB+";A"Þ. Moreover, by (G4), B � B+"; now,
applying Proposition 2.1.(1), S2ðB+";A"Þ � S2ðB;A"Þ. Thus
S1ðA;B+Þ � S2ðB;A"Þ. For the converse inequality, we
apply (G2) and get S2ðB;A"Þ � S1ðA"+;B+Þ; next, by (G3),
A � A"+ and thus, applying again Proposition 2.1.(1),
S2ðB;A"Þ � S1ðA"+;B+Þ � S1ðA;B+Þ.

We showed that S1ðA;B+Þ � S2ðB;A"Þ. The proof of the
fact that S1ðA;B#Þ � S2ðB;A*Þ goes on in a similar
manner.

Suppose now, conversely, that D hold. We shall prove,
for each property from (G1)–(G4), only half of it, the other
half having an analogous proof.

(G3): Because S2ðA";A"Þ ¼ 1, we have that
S1ðA;A"+Þ ¼ S2ðA";A"Þ ¼ 1, hence A � A"+.

(G1): S2ðA"2;A
"
1Þ ¼ S1ðA1;A

"+
2 Þ. But since A2 � A"+2 (as

showed above) and S1 is isotone in the second
argument, S1ðA1;A2Þ � S1ðA1;A

"+
2 Þ ¼ S2ðA"2;A

"
1Þ.

(G4): Since S1ðB+;B+Þ ¼ 1, we have
S2ðB;B+"Þ ¼ S1ðB+;B+Þ ¼ 1, hence B � B+".

(G2): S1ðB+2 ;B
+
1 Þ ¼ S2ðB1;B

+"
2 Þ. But since B2 � B+"2 (as

showed above) and S2 is isotone in the second
argument, S2ðB1;B2Þ � S2ðB1;B

+"
2 Þ ¼ S1ðB+2 ;B

+
1 Þ.

Now we shall see how a binary L-relation I 2 LX�Y

naturally induces an L-Galois connection.
With any L-relation I 2 LX�Y , one can associate four

functions
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"I: LX �! LY ; *I : LX �! LY ; #I: LY �! LX ;

+I : LY �! LX

defined by

A"I ðyÞ ¼
^

x2X

ðAðxÞ ! Iðx; yÞÞ

A*I ðyÞ ¼
^

x2X

ðAðxÞ ) Iðx; yÞÞ

B#I ðxÞ ¼
^

y2Y

ðBðyÞ ! Iðx; yÞÞ

B+I ðxÞ ¼
^

y2Y

ðBðyÞ ) Iðx; yÞÞ

for any A 2 LX , B 2 LY and x 2 X, y 2 Y.

Proposition 3.2 For any binary L-relation I 2 LX�Y , the
quadruple ("I ;*I ; #I ;+I) is an L-Galois connection.

Proof: We shall prove that the conditions D from
Proposition 3.1 hold. We have

S1ðA;B+Þ ¼
^

x2X

ðAðxÞ ! B+ðxÞÞ

¼
^

x2X

½AðxÞ !
^

y2Y

ðBðyÞ ) Iðx; yÞÞ� :

Applying successively Lemma 2.1.(11, 14 and 13), we get:

S1ðA;B+Þ ¼
^

x2X

½AðxÞ !
^

y2Y

ðBðyÞ ) Iðx; yÞÞ�

¼
^

x2X

^

y2Y

½AðxÞ ! ðBðyÞ ) Iðx; yÞÞ�

¼
^

y2Y

^

x2X

½AðxÞ ! ðBðyÞ ) Iðx; yÞÞ�

¼
^

y2Y

^

x2X

½BðyÞ ) ðAðxÞ ! Iðx; yÞÞ� :

On the other hand,

S2ðB;A"Þ ¼
^

y2Y

ðBðyÞ ) A"ðyÞÞ

¼
^

y2Y

½BðyÞ )
^

x2X

ðAðxÞ ! Iðx; yÞÞ� :

Applying Lemma 2.1.(12), we get

S2ðB;A"Þ ¼
^

y2Y

½BðyÞ )
^

x2X

ðAðxÞ ! Iðx; yÞÞ�

¼
^

y2Y

^

x2X

½BðyÞ ) ðAðxÞ ! Iðx; yÞÞ� :

So S1ðA;B+Þ ¼ S2ðB;A"Þ.
The fact that S2ðA;B#Þ ¼ S1ðB;A*Þ follows similarly.

Remark 3.1 The crisp form of the above reasoning is:
A � B+ iff A � fx 2 X = x 2 B+g iff A � fx 2 X = 8y 2 B;
ðx; yÞ 2 Ig iff 8x 2 A; 8y 2 B; ðx; yÞ 2 I; on the other hand,

B � A" iff B � fy 2 Y = y 2 A"g iff B � fy 2 Y = 8x 2 A;
ðx; yÞ 2 Ig iff 8y 2 B; 8x 2 A; ðx; yÞ 2 I; hence, since
universal quantifications commute, A � B+ iff B � A".

Thus, like in the crisp case and in the commutative fuzzy
case, relations induce Galois connections (("I ;*I ; #I ;+I) is
called the L-Galois connection induced by I). Ore ([14])
showed that every crisp Galois connection is induced by
some crisp relation. Bělohlávek generalized this result,
showing that, when L is a complete residuated lattice, every
L-Galois connection is induced by an L-relation. In our non-
commutative case, the splitting of implication into two,
which leads to the splitting of subsethood degree into two,
causes the existence of two ‘‘liberty degrees’’ instead of one
in our definition of an L-Galois Connection; that is, the pairs
ð";+Þ and ð*; #Þ are quite independent from each other,
making impossible the natural bijective correspondence
with L-relations that exists in the commutative case. Thus,
one could argue that our definition of L-Galois Connections
is two permisive and that for the two pairs ð";+Þ and ð*; #Þ it
should be postulated a compatibility condition. We shall in
fact do that, when defining what we shall call a strong
L-Galois Connection. Though most of the interesting results
hold only for strong L-Galois Connection, we have chosen
this variant thinking that the definition of Galois connection
should be given only with ‘‘traditional tools’’, like in [8] and
[14]. However, though important, this is only a matter of
sintax.

Consider the L-Galois connection ("I ;*I ; #I ;+I) induced
by some L-relation. The two pairs ð"I ;+IÞ and (*I ; #I) are,
in this case, strongly connected, in fact each one of them
uniquely determining the other. This will lead us to the
notion of strong L-Galois Connection. But let us first in-
vestigate some properties of L-Galois connections between
two fixed sets X and Y .

We make the following denotation:
(for any a 2 A and x 2 X)
fajxg is the function from LX defined by:

fajxgðx0Þ ¼ 0; if x0 6¼ x
a; if x0 ¼ x

�

for all x0 2 X.
Let (";*; #;+) be an L-Galois Connection.

Lemma 3.1 For any a 2 L, x 2 X and y 2 Y , we have:

(1) f1jxg"ðyÞ ¼ f1jyg+ðxÞ;
(2) f1jxg*ðyÞ ¼ f1jyg#ðxÞ .

Proof.
(1) We know that S1ðf1jxg; f1jyg+Þ ¼ S2ðf1jxg"; f1jygÞ.

This means that
^

x02X

ðf1jxgðx0Þ ! f1jyg+ðx0ÞÞ

¼
^

y02Y

ðf1jxg"ðy0Þ ! f1jygðy0ÞÞ ;

that is

1! f1jyg+ðxÞ ¼ 1) f1jxg"ðyÞ ;
that is f1jyg+ðxÞ ¼ f1jxg"ðyÞ .
(2) has a similar proof.
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Lemma 3.2 For any a 2 L, x 2 X and y 2 Y , we have:

(1) a) f1jyg#ðxÞ � fajxg*ðyÞ;
(2) a! f1jyg+ðxÞ � fajxg"ðyÞ;
(3) a) f1jxg"ðyÞ � fajyg+ðxÞ;
(4) a! f1jxg*ðyÞ � fajyg#ðxÞ .

Proof. We shall only prove (1), the rest being provable
analogously.

By the definition of S2,

S2ðfajxg; ff1jyg#ðxÞjxgÞ
¼
^

x02X

½fajxgðx0Þ ) ff1jyg#ðxÞjxgðx0Þ�

¼ a) f1jyg#ðxÞ ;
hence, by (G1),

a) f1jyg#ðxÞ � S1ðff1jyg#ðxÞjxg*; fajxg*Þ :
On the other hand, since ff1jyg#ðxÞjxg � f1jyg#, we have,
by (G3),

1 ¼ f1jygðyÞ � f1jyg#*ðyÞ � ff1jyg#ðxÞjxg*ðyÞ ;
therefore ff1jyg#ðxÞjxg*ðyÞ ¼ 1.

Thus,

S1ðff1jyg#ðxÞjxg*; fajxg*Þ

¼
^

y02Y

½f1jyg#ðxÞjx*ðy0Þ ! fajxg*ðy0Þ�

� f1jyg#ðxÞjx*ðyÞ ! fajxg*ðyÞ ¼ 1! fajxg*ðyÞ

¼ fajxg*ðyÞ :

Therefore a) f1jyg#ðxÞ � fajxg*ðyÞ.

Lemma 3.3 For any a 2 L, x 2 X and y 2 Y , we have:

(1) a) f1jxg*ðyÞ ¼ fajxg*ðyÞ;
(2) a! f1jxg"ðyÞ ¼ fajxg"ðyÞ;
(3) a) f1jyg+ðxÞ ¼ fajyg+ðxÞ;
(4) a! f1jyg#ðxÞ ¼ fajyg#ðxÞ .

Proof. We only prove (1). Let a 2 A, x 2 X and y 2 Y .
From Lemma 3.1.(2) and Lemma 3.2.(1), we immediately
get a) f1jxg*ðyÞ � fajxg*ðyÞ. For the converse inequal-
ity, notice that a ¼ S2ðf1jxg; fajxgÞ. Now, from (G1),

a � S1ðfajxg*; f1jxg*Þ � fajxg*ðyÞ ! f1jxg*ðyÞ :
From (GR3), we get, successively, that

a � fajxg*ðyÞ � f1jxg*ðyÞ
and

fajxg*ðyÞ � a) f1jxg*ðyÞ :

Lemma 3.4 LX and LY are complete lattices with respect
to the component-wise inclusion in which infima and

suprema are the component-wise infima and suprema
from L. Moreover, for any ðAjÞj2J � LX and ðBjÞj2J � LY ,
we have:

(1)
_

j2J

Aj

 !"

¼
^

j2J

A"j ;

(2)
_

j2J

Aj

 !*

¼
^

j2J

A*j ;

(3)
_

j2J

Bj

 !#

¼
^

j2J

B#j ;

(4)
_

j2J

Bj

 !+

¼
^

j2J

B+j .

Proof. That LX and LY are complete lattices with compo-
nent-wise suprema and infima follows immediately from
the fact that L is a complete lattice.

Further, we only prove (1). Let B 2 LY and ðAjÞj2J � LX .
Applying, successively, Lemma 2.1.(11, 13 and 12), we get

S2 B;
_

j2J

Aj

 !"
0

@

1

A

¼ S1

_

j2J

Aj;B
+

 !

¼
^

x2X

_

j2J

AjðxÞ
 !

! B+ðxÞ
" #

¼
^

x2X

^

j2J

ðAjðxÞ ! B+ðxÞÞ ¼
^

j2J

^

x2X

ðAjðxÞ ! B+ðxÞÞ

¼
^

j2J

S1ðAj;B
+Þ ¼

^

j2J

S2ðB;A"j Þ

¼
^

j2J

^

x2X

ðBðxÞ ) A"j ðxÞÞ ¼
^

x2X

^

j2J

ðBðxÞ ) A"j ðxÞÞ

¼
^

x2X

BðxÞ )
^

j2J

A"j ðxÞ
 !" #

¼ S2 B;
^

j2J

ðA"j Þ
 !

:

In particular, B �
W

j2J Aj

� �"
iff B �

V
j2JðA

"
j Þ, so

_

j2J

Aj

 !"

¼
^

j2J

A"j .

Definition 3.2 An L-Galois connection (";*; #;+) is called
strong if it satisfies one of the following equivalent
conditions:

(i) f1jxg" ¼ f1jxg* for all x 2 X.
(ii) f1jyg# ¼ f1jyg+ for all y 2 Y .

That (i) and (ii) are equivalent one can see from Lemma
3.1.

Proposition 3.3 An L-Galois connection is strong iff it is
induced by some L-relation. There is a bijective corre-
spondence between the set of L-relations and the set of
strong L-Galois connections (between X and Y).

Proof. Let I 2 LX�Y be an L-relation. We know that it
naturally induces an L-Galois Connection,
CI ¼ ð"I ;*I ; #I ;+IÞ. Let us show that this L-Galois
connection is strong. Take x 2 X and y 2 Y . Since
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f1jxg"ðyÞ ¼
^

x02X

½f1jxgðx0Þ ! Iðx0; yÞ�

¼ 1! Iðx; yÞ ¼ Iðx; yÞ
and

f1jxg*ðyÞ ¼
^

x02X

½f1jxgðx0Þ ) Iðx0; yÞ�

¼ 1) Iðx; yÞ ¼ Iðx; yÞ ;
it follows that f1jxg"ðyÞ ¼ f1jxg*ðyÞ. Thus, for any x 2 X,

f1jxg" ¼ f1jxg*.
Consider now (";*; #;+) a strong L-Galois connection

and denote it with C. We define IC 2 LX�Y as follows: for
any x 2 X and y 2 Y,

ICðx; yÞ ¼ f1jxg"ðyÞ ¼ f1jxg*ðyÞ ¼ f1jyg#ðxÞ
¼ f1jyg+ðxÞ :

This definition is correct according to the definition of
strong L-Galois connection and Lemma 3.1.

Let us prove now that the two correspondences from
above (I 7!CI and C 7!IC) between L-relations and L-Galois
connections are invertible and inverse to each other.

Consider I 2 LX�Y and let x 2 X and y 2 Y . Then

ICI ðx; yÞ ¼ f1jxg
"I ðyÞ ¼

^

x02X

ðf1jxgðx0Þ ! Iðx0; yÞÞ

¼ 1! Iðx; yÞ ¼ Iðx; yÞ :
So ICI ¼ I.

Now, take C ¼ ð";*; #;+Þ to be an L-Galois Connection.
We show that C ¼ CIC ð¼ ð"IC

;*IC
;+IC

; #IC
ÞÞ. Remember

that LX and LY are complete lattices with respect to the
component-wise inclusion in which infima and suprema
are the component-wise infima and suprema from L. Let
A 2 LX and B 2 LY . We have that: A ¼

W
x2XfAðxÞjxg, so,

according to Lemma 3.4.(1), A" ¼
V

x2XðfAðxÞjxg
"Þ.

Let y 2 Y . From above and Lemma 3.3.(2), we get

A"ðyÞ ¼
^

x2X

ðfAðxÞjxg"ÞðyÞ

¼
^

x2X

ðAðxÞ ! f1jxg"ðyÞÞ :

On the other hand,

A"IC ðyÞ ¼
^

x2X

ðAðxÞ ! ICðx; yÞÞ

¼
^

x2X

ðAðxÞ ! f1jxg"ðyÞÞ :

Thus A"IC ¼ A". That A*IC ¼ A*, for any A 2 LX and B#IC ¼
B# and B+IC ¼ B+, for any B 2 LY , follow analogously.

Notice that, for a strong L-Galois Connection, the cor-
responding L-relation IC can be defined in terms of any of
the four functions from C (in fact, it was sufficient the
restriction of one function to crisp singletons). This
immediately gives:

Corollary 3.1 If ð";*; #;+Þ and ð"0;*0; #0;+0Þ are two
strong L-Galois connections, then the following statements
are equivalent:

(1) ð";*; #;+Þ ¼ ð"0;*0; #0;+0Þ.
(2) "¼"0.
(3) " and "0 coincide on crisp singletons.
(4) *¼*0.
(5) * and *0 coincide on crisp singletons.
(6) #¼#0.
(7) # and #0 coincide on crisp singletons.
(8) +¼+0.
(9) + and +0 coincide on crisp singletons.

Actually, we can tell more about the above bijective
correspondence, namely that, considering the partial order
� on LX�Y and the component-wise � on the set of strong
L-Galois Connections between X and Y, this correspon-
dence is an order isomorphism.

Proposition 3.4 Let ð"1;*1; #1;+1Þ ð"2;*2; #2;+2Þ be two
strong L-Galois Connections between X and Y and I1; I2

the corresponding L-relations. Then the following are
equivalent:

(1) I1 � I2;
(2) For each A 2 LX , B 2 LY , we have A"1 � A"2 and

B+1 � B+2 ;
(3) For each A 2 LX , B 2 LY , we have A*1 � A*2 and

B#1 � B#2 ;

Proof. ‘‘(1) implies (2)’’ and ‘‘(1) implies (3)’’ are easy
consequences of ! and ) being isotone in the second
argument. Let us prove ‘‘(2) implies (1)’’. Particularizing
(2), we get that, for any x 2 X and y 2 Y , f1jxg"1ðyÞ �
f1jxg"2ðyÞ, that is I1ðx; yÞ � I2ðx; yÞ. ‘‘(3) implies (1)’’
follows similarly.

The equivalence between (2) and (3) together with
Corollary 3.1 immediately give:

Corollary 3.2 Fix, as usual, X and Y . Consider these five
partially ordered sets:

� The set of strong L-Galois connections with the com-
ponent-wise inclusion;

� The set of functions " such that there exists the triple
ð*; #;+Þ making (";*; #;+) a strong L-Galois connec-
tion, together with the component-wise inclusion;

� The set of functions * such that there exists the triple
ð"; #;+Þ making (";*; #;+) a strong L-Galois connec-
tion, together with the component-wise inclusion;

� The set of functions # such that there exists the triple
ð";*;+Þ making (";*; #;+) a strong L-Galois connec-
tion, together with the component-wise inclusion;

� The set of functions + such that there exists the triple
ð";*; #Þ making (";*; #;+) a strong L-Galois connec-
tion, together with the component-wise inclusion.

The five structures are isomorphic (and, of course, iso-
morphic to ðLX�Y ;�Þ).

So, for an L-Galois connection to have its components
correlated, we had to postulate that " and* (or, same thing, #
and +) coincide on crisp singletons. This condition could be
seen as a remedy for the ‘‘non-commutativity syndrome’’,
which splits everything in two. Thus, the ‘‘healthy’’ version
of L-Galois connection is the strong one. Notice also that
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strong L-Galois connections still generalize L-Galois con-
nections from the commutative case. Our interest in the rest
of the paper will be focused on strong L-Galois connections.

The next proposition says that, in non-trivial cases, our
notion of strong L-Galois connection coincides with the
one from [4] if and only if L is commutative.

Proposition 3.5 Suppose X, Y 6¼ ;. Then the following are
equivalent:

(i) L has the operation � commutative;
(ii) For any strong L-Galois connection (";*; #;+) be-

tween X and Y , "¼* and #¼+.

Proof. (i) implies (ii): Suppose � is commutative, and
hence, from Lemma 2.1.(15), !¼). Let I be the corre-
sponding L-relation. We have that, for any A 2 LX , B 2 LY

and x 2 X, y 2 Y ,

A"ðyÞ ¼
^

x2X

ðAðxÞ ! Iðx; yÞÞ ¼
^

x2X

ðAðxÞ ) Iðx; yÞÞ

¼ A*ðyÞ
and

B#ðxÞ ¼
^

y2Y

ðBðyÞ ! Iðx; yÞÞ ¼
^

y2Y

ðBðyÞ ) Iðx; yÞÞ

¼ B+ðxÞ :
So "¼* and #¼+.

(ii) implies (i): Let a; b 2 L. Take A 2 LX as the constant
function a and I 2 LX�Y as the constant function b. Ac-
cording to the hypothesis, "I¼*I and thus, for an y 2 Y ,

a! b ¼
^

x2X

ðAðxÞ ! Iðx; yÞ ¼
^

x2X

ðAðxÞ ) Iðx; yÞ

¼ a) b :

Applying again Lemma 2.1.(15), we get � commutative.

In the rest of the section, generalizing another result
from [4], we shall get a representation of strong L-Galois
Connections by (crisp) Galois connections.

Like in [4], for A 2 LX (and same goes for A 2 LY , or
A 2 LX�Y ) and a 2 L, the a-cut of A is the crisp set
aA ¼ fx 2 X = AðxÞ � ag. As already mentioned, we view
crisp subsets of X (i.e. elements from 2X) as particular
cases of L-subsets of X from LX .

Lemma 3.5 Let I 2 LX�Y , (";*; #;+) the (strong) L-Galois
connection induced by I and, for any a 2 A, (^a ; _a ) the
crisp Galois connection between X and Y induced by the
crisp relation aI. Then:

(1) For any a 2 L, A 2 2X and B 2 2Y , we have:

aðA"Þ ¼ aðA*Þ ¼ A
^a

;a ðB#Þ ¼ aðB+Þ ¼ B
_a
:

(2) For any a 2 L, A 2 LX and B 2 LY , we have:

aðA"Þ ¼
\

b2L

ðbAÞ^a�b ; aðB+Þ ¼
\

b2L

ðbBÞ_b�a ;

aðA*Þ ¼
\

b2L

ðbAÞ^b�a ; aðB#Þ ¼
\

b2L

ðbBÞ_a�b :

Proof.
(1): For any y 2 Y , we have that

y 2 aðA"Þ if f A"ðxÞ � a if f
^

x2X

ðAðxÞ ! Iðx; yÞÞ � a

if f ðA being crispÞ
^

x2A

ð1! Iðx; yÞÞ � a

if f
^

x2A

Iðx; yÞ � a

if f ðx; yÞ 2 aI for all x 2 A if f x 2 A^a :

Thus aðA"Þ ¼ A^a . Analogously, aðA*Þ ¼ A^a and
aðB#Þ ¼ aðB+Þ ¼ B_a .
(2): Let y 2 Y . We have that

y 2 aðA"Þ if f A"ðyÞ � a

if f
^

x2X

ðAðxÞ ! Iðx; yÞÞ � a

if f for all x 2 X; a � AðxÞ ! Iðx; yÞ
if f for all x 2 X; a � AðxÞ � Iðx; yÞ: #

On the other hand,

y 2
\

b2L

ðbAÞ^a�b if f

for all b 2 L; for all x 2 bA; Iðx; yÞ � a � b if f

for all x 2 X; for all b 2 L; b � AðxÞimplies a � b

� Iðx; yÞ: ##

It is immediate that ## implies # (taking b as AðxÞ).
Conversely, suppose # holds and let x 2 X and b 2 B such
that b � AðxÞ. Then a � b � a � AðxÞ � Iðx; yÞ. So # im-

plies ##. This means that y 2 aðA"Þ iff y 2
T

b2Lð
bAÞ^a�b ,

for any arbitrary y 2 Y . Thus aðA"Þ ¼
T

b2Lð
bAÞ^a�b The

other three equalities from (2) follow in the same way.

The definition of an L-nested system is taken from [4]:

Definition 3.3 A system fð^a ;_a Þ = a 2 Lg of crisp Galois
connections is called L-nested if:

(a) for each a; b 2 L, a � b, A 2 2X , B 2 2Y , we have
A^b � A^a , B_b � B_a ;

(b) for every x 2 X, y 2 Y , the set fa 2 L = y 2 fxg^ag has
the greatest element.

Proposition 3.6 Let X and Y be two sets. There is a
bijective correspondence from the set of strong L-Galois
Connections between X and Y to the set of L-nested
systems of crisp Galois connections between X and Y .

Proof. Let C ¼ ð";*; #;+Þ be an L-Galois connection.
Define SC ¼ fð^a;_aÞ = a 2 Lg, where, if a 2 L, A^a ¼
aðA"Þ ¼ aðA*Þ and B_a ¼ aðB+Þ ¼ aðB+Þ for any A 2 2X ,
B 2 2Y . The definition is correct according to Lemma
3.5.(1). We show that SC is an L-nested system. Let I be the
L-relation that corresponds to C. If a � b, then bI � aI.
Applying Lemma 3.5.(1), ð^a;_aÞ and ð^b;_bÞ are the
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crisp Galois connections induced by aI and bI; thus, from
Proposition 3.4. (that treats, in particular, the crisp case),
we get A^b � A^a and B_b � B_a for all A 2 2X , B 2 2Y . In
addition, for any x 2 X and y 2 Y, the set
fa 2 L = y 2 fxg^ag is precisely fa 2 L = Iðx; yÞ � ag,
which has the greatest element, namely Iðx; yÞ.

Consider now S ¼ fð^a ;_a Þ = a 2 Lg an L-nested sys-
tem. Define CS ¼ ð"S;*S; #S;+SÞ, with "S;*S: LX �! LY

and #S;+S: LY �! LX as follows: for any A 2 LX , B 2 LY ,
x 2 X, y 2 Y ,

A"SðyÞ ¼
_

a = y 2
\

b2L

ðbAÞ^a�b

( )

;

B#SðxÞ ¼
_

a = x 2
\

b2L

ðbBÞ_a�b

( )

;

A*SðyÞ ¼
_

a = y 2
\

b2L

ðbAÞ^b�a

( )

;

B+SðxÞ ¼
_

a = x 2
\

b2L

ðbBÞ_b�a

( )

:

Let us show that CS is a strong L-Galois connection.
Consider the L-relation I defined by

Iðx; yÞ ¼
_
fa j y 2 fxg^ag ¼

_
fa j x 2 fyg^ag

for all x 2 X, y 2 Y and ("I ;*I ; #I ;+I) the corresponding
L-Galois Connection. We shall prove that ð"S;*S; #S;+SÞ ¼
ð"I ;*I ; #I;+IÞ. From the definition of I, ð^a ;_a Þ is the crisp
Galois connection induced by aI. Thus, according to
Lemma 3.5(2), for any A 2 LX and y 2 Y ,

A"I ðyÞ ¼
_
fa = y 2 aðA"I Þg

¼
_

a = y 2
\

b2L

ðbAÞ^a�b

( )

¼ A"ðyÞ :

Similarly, we get A*I ¼ A*S , A#I ¼ A#S , A+I ¼ A#S .
Thus we defined two mappings (C 7!SC) and S 7!CS be-

tween strong L-Galois Connections and L-nested systems.
Let us show that these mappings are invertible and inverse
to each other.

Let C ¼ ð";*; #;+Þ an L-Galois connection and let
A 2 LX , y 2 Y. It is obvious that A" ¼

W
fa = x 2 aðA"Þg.

By Lemma 3.5.(2),

A" ¼
_
fa = x 2a ðA"Þg ¼

_
a = y 2

\

b2L

ðbAÞ^a�b

( )

;

where ^a�b is the first component of the crisp Galois
connection induced by the relation aI, which is, via Lemma
3.5.(1), exactly the first component of the element from SC

corresponding to a � b. And similar statements can be
proved for *, # and +, obtaining that C ¼ CSC .

Finally, let S ¼ fð^a ;_a Þ = a 2 Lg an L-nested system.
Let A 2 2X and a 2 L. We know, from Lemma 3.5.(1), that
aðA"CÞ ¼ A^a and the similar statements for *C, #C, and
+C, meaning together that S ¼ SCS .

Remark 3.2 Notice that we did not have to enrich, because
of non-commutativity, the notion of L-nested system.
Thus, this notion is ‘‘commutative-free’’, like those of
fuzzy sets and fuzzy relations.

4
Galois connections modulo equality
In what follows, we shall prove a generalization of the
theorem stating the one-to-one correspondence between
strong L-Galois Connections and L-relations. Instead of
just sets, we shall take sets with L-equalities. This will also
generalize Proposition 7 from [7].1

Definition 4.1 Let U be a set. A binary L-relation
	2 ŁU�U (in infixed notation) is called L-equality on U if,
for all x; y; z 2 U,

(i) ðx 	 xÞ ¼ 1 (reflexivity);
(ii) ðx 	 yÞ ¼ ðy 	 xÞ (symmetry);

(iii) ððx 	 yÞ � ðy 	 zÞÞ ^ ððy 	 zÞ � ðx 	 yÞÞ � ðx 	 zÞ
(transitivity)

(iv) ðx 	 yÞ ¼ 1 implies x ¼ y.

Definition 4.2 Let ðX;	XÞ and ðY;	YÞ two sets with
L-equalities. An L-relation R between ðX;	XÞ and ðY;	YÞ
is an L-relation between X and Y which is compatible with
	X and 	Y , i.e., for all x1; x2 2 X, y1; y2 2 Y ,

ðx1 	X x2Þ � Rðx1; y1Þ � ðy1 	Y y2Þ � Rðx2; y2Þ
and

ðy1 	X y2Þ � Rðx1; y1Þ � ðx1 	Y x2Þ � Rðx2; y2Þ :
Denote with LðX;	XÞ�ðY;	Y Þ the set of L-relations between
ðX;	XÞ and ðY;	YÞ.

Definition 4.3 Let ðX;	XÞ be a set with L-equality. An
L-subset A 2 LX is said to be:

– left extensional w.r.t. ð	XÞ if, for all x; x0 2 X,

AðxÞ � ðx 	X x0Þ � Aðx0Þ;
– right extensional w.r.t. 	 if, for all x; x0 2 X,

ðx0 	X xÞ � AðxÞ � Aðx0Þ;
– extensional w.r.t. 	X if it is both left and right

extensional w.r.t. 	X .

Denote with L
ðX;	XÞ
l (L

ðX;	XÞ
r , Lðx;	XÞ) the set of L-sets that

are left extensional (respectively right extensional,
extensional) w.r.t. 	X .

Definition 4.4 Let ðX;	XÞ and ðY;	YÞ be two sets with
L-equalities. An L-Galois connection between ðX;	XÞ and
ðY;	YÞ is a quadruple (";*; #;+) of functions

": L
ðX;	XÞ
l �! LðY;	Y Þ

r ; *: LðX;	XÞ
r �! L

ðY;	Y Þ
l ;

#: L
ðY;	Y Þ
l �! LðX;	XÞ

r ; +: LðY;	Y Þ
r �! L

ðX;	XÞ
l

1In [7], the author consider the proof of this proposition a simple
adaptation of the one that does not consider equalities on the
universes and leaves it to the reader. In the non-commutative
case, the proof will encounter a few technical difficulties, so we
give it here.
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such that:

(a) S1ðA1;A2Þ � S2ðA"2;A
"
1Þ; S2ðA1;A2Þ � S1ðA*2 ;A

*
1 Þ;

(b) S1ðB1;B2Þ � S2ðB#2;B
#
1Þ; S2ðB1;B2Þ � S1ðB+2 ;B

+
1 Þ;

(c) A � A"+; A � A*#;
(d) B � B#*; B � B+":

Consider now a crisp singleton from LX , that is an L-set
of the form f1jxg, with x 2 X and 	 an L-equality on X.
We have that, for each x; x0 2 X,

f1jxgðx0Þ � ðx0 	 x00Þ ¼ 0; if x 6¼ x0;
x 	 x00; otherwise:

�

Hence f1jxg is left extensional w.r.t. 	. Analogously, f1jxg
is also right extensional w.r.t. 	. Thus the following defi-
nition makes sense:

Definition 4.5 An L-Galois connection between ðX;	XÞ
and ðY;	YÞ is called strong if one of the following
equivalent conditions holds:

(1) " and * coincide on the crisp singletons of LX ;
(2) # and + coincide on the crisp singletons of LY .

The two above conditions are equivalent because, for each

x 2 X and y 2 Y, we have f1jxg"ðyÞ ¼ f1jyg+ðxÞ and

f1jxg*ðyÞ ¼ f1jyg#ðxÞ.
(this has a proof similar to the one of Lemma 3.1)

Proposition 4.1 Let ðX;	XÞ and ðY;	YÞ be two sets with
L-equalities. Then there are as many strong L-Galois
connections between ðX;	XÞ and ðY;	YÞ as L-relations
from LðX;	XÞ�ðY;	Y Þ.

Proof. Let (";*; #;+) be an L-Galois connection between
ðX;	XÞ and ðY;	YÞ. Define I 2 LX�Y by

Iðx; yÞ ¼ f1jxg"ðyÞ ¼ f1jxg*ðyÞ ¼ f1jyg#ðxÞ ¼ f1jyg+ðxÞ

for all x 2 X, y 2 Y . We show that I is in LðX;	XÞ�ðY;	Y Þ. Let
x; x0 2 X, y; y0 2 Y . We apply, successively, the left exten-
sionality of f1jxg*, the fact that f1jxg*ðy0Þ ¼ f1jy0g#ðxÞ,
the symmetry of 	X and the right extensionality of f1jy0g#:
ðx 	X x0Þ � Iðx; yÞ � ðy 	Y y0Þ

¼ ðx 	X x0Þ � ðf1jxg*ðyÞ � ðy 	Y y0ÞÞ

� ðx 	X x0Þ � f1jxg*ðy0Þ ¼ ðx 	X x0Þ � f1jy0g#ðxÞ

¼ ðx0 	X xÞ � f1jy0g#ðxÞ � f1jy0g#ðx0Þ ¼ Iðx0; y0Þ :

Analogously,

ðy 	Y y0Þ � Iðx; yÞ � ðx 	X x0Þ

¼ ðy0 	Y yÞ � f1jxg"ðyÞ � ðx 	X x0Þ

� f1jxg"ðy0Þ � ðx 	X x0Þ

¼ f1jy0g+ðxÞ � ðx 	X x0Þ � f1jy0g+ðx0Þ ¼ Iðx0; y0Þ :

Consider now I 2 LðX	XÞ�ðY	Y Þ. Define (";*; #;+) as
follows:

A"1ðyÞ ¼
^

x2X

ðA1ðxÞ ! Iðx; yÞÞ; A*2 ðyÞ

¼
^

x2X

ðA2ðxÞ ) Iðx; yÞÞ;

B#1ðxÞ ¼
^

y2Y

ðB1ðyÞ ! Iðx; yÞÞ; B+2 ðyÞ

¼
^

y2Y

ðB2ðyÞ ) Iðx; yÞÞ

for all A1 2 L
ðX;	XÞ
l , A2 2 L

ðX;	XÞ
r , B1 2 L

ðY;	Y Þ
l , B2 2 L

ðY;	Y Þ
r ,

x 2 X, y 2 Y .
From a similar reason as in the proof of Proposition

3.3, we have that conditions (a)–(d) from Definition 4.3
hold. It remains to show that, if A 2 L

ðX;	XÞ
r , then

A" 2 L
ðY;	Y Þ
l and the other three corresponding state-

ments for *; #;+. We only prove the one mentioned
above, the rest following similarly. Take y; y0 2 Y . We
have that, for each x 2 X,

ðy 	Y y0Þ � ðAðxÞ ! Iðx; yÞÞ � AðxÞ � ðy 	Y y0Þ � Iðx; yÞ
¼ ðy 	Y y0Þ � Iðx; yÞ � ðx 	X xÞ � Iðx; y0Þ

(we applied Lemma 2.1.(8) and the compatibility of I).
Further, by residuation, we have:
for each x 2 X, ðy 	Y y0Þ � AðxÞ ! Iðx; yÞÞ � AðxÞ !
Iðx; y0Þ #.

We now apply, successively, the symmetry of 	Y ,
Lemma 2.1.(10) and #:

ðy0 	Y yÞ �A"ðyÞ
¼ ðy 	Y y0Þ �A"ðyÞ ¼ ðy 	Y y0Þ �

^

x2X

ðAðxÞ ! Iðx; yÞÞ

�
^

x2X

½ðy 	Y y0Þ � ðAðxÞ ! Iðx; yÞÞ�

�
^

x2X

ðAðxÞ ! Iðx; y0ÞÞ ¼ A"ðy0Þ :

Thus we have defined two mappings between strong
L-Galois connections and compatible L-relations. By
definition, the two mappings are both restrictions and
corestrictions of the mappings defined in the proof of
Proposition 3.3, hence they are, like those, bijective and
inverse to each other.
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