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Abstract The conventional neural networks consisting of
simple neuron models have various drawbacks like large
training time for complex problems, huge data require-
ment to train a non linear complex problems, unknown
ANN structure, the relatively larger number of hidden
nodes required, problem of local minima etc. To make the
Artificial Neural Network more efficient and to overcome
the above-mentioned problems the new improved gener-
alized neuron model is proposed in this work. The pro-
posed neuron models have both summation ð

P
Þ and

product ðpÞ as aggregation function. The generalized
neuron models have flexibility at both the aggregation and
activation function level to cope with the non-linearity
involved in the type of applications dealt with. The train-
ing and testing performance of these models have been
compared for Short Term Load Forecasting Problem.

Keywords Generalized neural network, Back propagation,
Load forecasting

1
Introduction
The reliable power supply available at reasonable cost is
important for economic growth and development. The gap
between generation and demand, forces the electricity
boards to compromise on quality of the power supply by
allowing voltage fluctuation/drops and shortage of electric
power.

To bridge this shortage, load management is a manda-
tory requirement. In the process of planning effective load
management strategies, load forecasting may be resorted
to predict the load pattern in advance [1].

The short term forecast is needed for control, unit
commitment, security assessment, optimum planning of
power generation, planning for both spinning reserves and
energy exchange, and also as inputs to load flow study or
contingency analysis and many more decisions. There are
several factors which affect the short term load forecasting

such as meteorological, climatic, light intensity, price
schemes, tariff structure and many others [3, 15].

A number of procedures exist for short term load
forecasting techniques are :

� Multiple linear regressions.
� Stochastic time series.
� General exponential smoothing.
� State space and Kalman filter and
� Knowledge based approach.

These methods include non-whether sensitive and whether
sensitive models. In India, sudden changes in climate
seldom experienced. The whether load relationship is
embedded in the load shape. Therefore, for the purpose of
prediction, it is sufficient to use past load data only.
Of these five methods, time series technique is the most
popular approach. It has been applied, and still being
applied, to short-term load forecasting problems in electric
power industry. The short-term load forecasting
techniques may further be broadly categorized as follows:

1. Models independent of weather parameters.
2. Models including weather parameters.
3. Stochastic methods.

The main concern is to improve the accuracy of short-
term load forecasting procedures. Forecasting has been
mentioned as one of the most promising application areas
of artificial neural network. Several authors have at-
tempted to apply the back propagation-learning algorithm
to train ANN for forecasting time series [2]. Neural
networks have the remarkable ability to derive meaning
from complicated or imprecise data.

Neural networks process information in a similar way as
the human brain does. The network is composed of a large
number of highly interconnected processing elements
(neurons) working in parallel to solve a specific problem.
Neural networks learn by example. They cannot be pro-
grammed to perform a specific task. The examples must be
selected carefully otherwise useful time is wasted or even
worse the network might be functioning incorrectly.

The existing neural networks have various drawbacks
like large training time, huge data requirement to train for
a non linear complex load forecasting problem, the
relatively larger number of hidden nodes required etc.

2
Drawbacks of conventional ANN
The conventional neural network model suffers from
serious drawbacks.
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1. Training time for the conventional neural network is
too large, which results in the slower response of the
system.

2. Number of hidden layers and hidden neurons can’t be
predicted accurately, and also they are large in
number for complex function approximation.

3. The existing neuron model performs only the opera-
tion of summation of its weighted inputs; it does not
perform the operation of product on its weighted
inputs.

4. There is a effect of threshold (activation) function on
training time; also, accuracy of test results depends
on threshold function.

5. Back propagation learning also has some shortcom-
ings, like:
i. Slow learning.
ii. Problem of local minima may occur in the system.

6. There is a effect of normalization range of training
data. Hence selection of suitable range (i.e. maximum
and minimum values) is of great importance as it
affects the results of the neural network training.

7. Training time of neural network depends on the
mapping of input-output pattern (I/O-mapping)
presented to the network.

8. Training time of the network also depends on the
sequence of presentation of data.

To overcome the above drawbacks number of variants has
been developed in the past decades. Most of the variants
are either burden on the learning algorithms or/and
increases the computational labor. In this paper, a new
improved generalized neuron model is proposed, which
overcome the drawbacks of conventional neural network
by performing various possible variations and modifica-
tion in the generalized neuron model to find the effect of
activation function on the neural network output for the
problem of short term load forecasting. The model should
incorporate non-linearities present in the system.

The model should also incorporate following features:

1. The improved generalized neural network should
consist of characteristics of simple neuron and also
high order neuron characteristics.

2. There is no need of the selection of number of hidden
layers and the number of neurons i.e. the complexity
of the network should reduce.

3. The input output mapping should not affect the
response of the network.

4. Normalizing effect should not be there.

3
Development of improvemented generalized neuron
Existing models of neuron in the structure of artificial
neural network use the sigmoidal activation function and
ordinary summation as aggregation functions. These
models face problems in training when non-linearity
involved in real life problems.

To deal with the above, the proposed models have
both summation ð

P
Þ and product ðpÞ as aggregation

function. The generalized neuron models have flexibility
at both the aggregation and activation function level to
cope with the non-linearity involved in the type of
applications dealt with. The product and power non-
linearity in problems made them complex for training,
but with the help of product aggregation function it is
quite easy to train. Author tried product neuron layers
along with summation neuron layers in ANN and found
that the training time is drastically reduced for mapping
the non-linear starting characteristic of induction
motor. Hence, in this paper, the different combinations
of summation and product functions have been
explored.

3.1
Generalized neuron model-1
The Generalized Neural network is developed on the
basis of the Boolean algebra. It is the well known
that with the help of Sum of Product and Product of
Sum one can implement any given function [1]. Simi-
larly in the generalized neuron structure summation
and product as aggregation functions have been incor-
porated and the aggregated outputs pass through a
non-linear squashing / thresholding function as shown
in the Fig. 1.P

-part have the summation of weighted input with
sigmoidal activation function f1, while the P-part have the
product of weighted input with Gaussian activation func-
tion f2. The final output of the neuron is a function of the
weighted outputs OR and Op.

The output of summation ð
P
Þ part of the generalized

neuron is

OR ¼ f1

X
WRiXiþ XoR

� �

The output of product ðPÞ part of the generalized neuron
is

Op ¼ f2ðpWpiXiþ XopÞ

Fig. 1. Generalized Neuron Model-1
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Finally, the outputs are summed up to get the neuron
output. The output of the neuron can be mathematically
written as

Oi ¼ OR �WR þ Op � ð1�WRÞ

3.2
Generalized neuron model-2
This model is similar to the above developed generalized
neuron model-1. The only difference is that in this model
the linear activation function is used. Here, f1 and f2 are
straight line (ramp) function with slope unity.

3.3
Generalized neuron model-3
In earlier models of Generalized Neuron weighted input
ðXi �WiÞ is taken in

P
and P part. These types of

neurons can produce single hyper plane or a line to
separate the two classes of data. If we use ðXiþWiÞn
instead of Xi �Wi then a closed surface can be generated
depending of the value of n. If n is equal to 2, then
elliptical shape may be obtained. Hence it will be quick
and easy to train non-separable and non-linear problems.
The value of n may also be changed in training make it
generalized.

In this model summation ð
P
Þ part have summation of

ðX þWÞ2 with the sigmoidal activation function f1 while
the product ðPÞ part consisting of product of weighted
input have the Gaussian activation function f2. The final
output of the neuron is a function of the two outputs
OR and Op with the weights WRi and Wpi respectively.
The output of summation ð

P
Þ part of the generalized

neuron is

OR ¼ f1

X
ðWRi þ XiÞ2 þ XoR

� �

The output of product ðPÞ part of the generalized neuron
is

Op ¼ f2ðpWpi � Xiþ XopÞ
Finally, the outputs are summed up to get the neuron
output. The output of the neuron can be mathematically
written

Oi ¼ OR �WR þ Op � ð1�WRÞ

3.4
Generalized neuron model-4
This model is similar to the above developed generalized
neuron model-3. The only difference is that in this model
the linear activation function is used. Here, f1 and f2 are
straight-line (ramp) function with slope unity.

3.5
Generalized neuron model-5
In this model summation ð

P
Þ part have summation of

ðX þWÞ2 with sigmoidal activation function f1, while the
product ðPÞ part consisting of product of ðX þWÞ with
gaussian activation function f2. The final output of the
neuron is a function of the two outputs OR and Op with the
weights WRi and Wpið¼ 1�WRÞ respectively.

3.6
Generalized neuron model-6
This model is similar to the above developed generalized
neuron model-5. The only difference is that in this model
the linear activation function is used. Here, f1 and f2 are
straight line (ramp) function with slope unity.

3.7
Generalized neuron model-7
In this model summation ð

P
Þ part consisting of sum-

mation of ðX þWÞ with sigmoidal the activation function
f1, while the product ðPÞ part have product of ðX þWÞ
Gaussian activation function f2. The final output of the
neuron is a function of the two outputs OR and Op with the
weights WRi and Wpi respectively.

3.8
Generalized neuron model-8
In this model summation ð

P
Þ part and the product ðPÞ

part both have ðX þWÞ2 as input with sigmoidal and
Gaussian functions respectively. The final output of the
neuron is a function of the two outputs OR and Op with the
weights WRi and Wpi respectively.

3.9
Generalized neuron model-9
This model is similar to the above developed generalized
neuron model-8. The only difference is that in this model
the linear activation function is used. Here, f1 and f2 are
straight line (ramp) function with slope unity.

4
Learning algorithm of generalized neuron model-1
using back propagation
The following step are involved in the training of Gener-
alized Neural Network –

4.1
Modification of WR
After calculating the output of generalized neuron in the
forward pass of feed forward back propagation neural
networks, it is compared with the desired output to find
the error and then it is minimized to train the Generalized
Neural Network (GNN) model. Hence in this step the
output of the GNN with a single flexible generalized
neuron model is to be compared with the desired output to
get error for ith set of input.

Error Ep ¼ ðDi � OiÞ
The error that is minimized by the generalized delta rule is
the sum of squares of the errors for all output units, a
multiplication factor of 0.5 has been taken for simplifying
the calculations:

Ep ¼ 1=2
X
ðDi � OiÞ2

� oEp=oWR ¼
X
ðDi � OiÞðORi � OpiÞ

DWR ¼ g
X
ðDi � OiÞðORi � OpiÞ þ aDWR

WR ¼ DWR þWR
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4.2
Modification of WRi

oEp=oWRi ¼
X
ðDi � OiÞWRORð1� ORÞ � Xi

DWRi ¼ g
X
ðDi � OiÞORið1� ORiÞ �WR � Xiþ aDWRi

WRi ¼ DWRi þWRi

4.3
Modification of Wpi

oEp=oWpi¼�2
X
ðDi�OiÞ

�ð1�WRÞ�Op �ðnet piÞ�ðnet pi=WpiÞ
DWpi¼�2 �g �ð1�WRÞ

�
X
ðDi�OiÞ�Op �ðnet piÞðnet piÞ=WpiþaDWp

Wpi¼DWpiþWpi

4.4
Modification of XOR

� oEp=oXoR ¼
X
ðDi � OiÞWRORð1� ORÞ:

DXoR ¼ g
X
ðDi � OiÞORið1� ORiÞ �WR þ aWRi

XoRi ¼ DXoRi þ XoRi

Fig. 2. Results of model-1

Fig. 3. Results of model-2

Table 1. Training File

0.2690 0.1389 0.1461 0.1000 0.2201
0.1883 0.1768 0.1461 0.1068 0.1745
0.1526 0.1676 0.1154 0.1192 0.1248
0.1000 0.1000 0.1398 0.1733 0.1580
0.1019 0.1891 0.1000 0.1372 0.1000
0.2512 0.3622 0.2600 0.3133 0.3567
0.5845 0.6982 0.5178 0.7172 0.6320
0.8117 0.8068 0.4431 0.8425 0.6889
0.8343 0.8580 0.6142 0.8312 0.7965
0.8624 0.8283 0.7484 0.8300 0.8617
0.8709 0.7720 0.7603 0.7804 0.8700
0.7657 0.6460 0.6743 0.7375 0.7375
0.5620 0.4544 0.5576 0.5310 0.4829
0.7000 0.4636 0.6610 0.7398 0.5067
0.7150 0.5446 0.7016 0.7262 0.6019
0.7310 0.6091 0.7672 0.7702 0.6692
0.7451 0.6265 0.7421 0.7003 0.6485
0.8042 0.6449 0.7400 0.7567 0.7799
0.9000 0.8416 0.8420 0.8571 0.7965
0.8606 0.9000 0.9000 0.9000 0.8876
0.8192 0.7709 0.8497 0.8898 0.9000
0.6277 0.6306 0.7728 0.6924 0.7189
0.4962 0.5425 0.6890 0.6958 0.7220
0.3488 0.4370 0.5493 0.4870 0.5305

Table 2. Training performance for different neuron models for
short term load forecasting problem

Learning rate = 0.05; Momentum = 0.65; Epochs = 200

Model Sum-Squared Error

Model 1 0.0420
Model 2 0.0268
Model 3 0.0322
Model 4 0.0495*
Model 5 0.0329
Model 6 Not trained
Model 7 0.0371
Model 8 0.0328
Model 9 Not trained

* Model 4 is not trained at the learning rate=0.05, but is capable
to perform training at the value below 0.01, the result shown is at
the value of 0.005
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4.5
Modification of Xop

oEp=oXop¼�2
X
ðDi�OiÞð1�WRÞ �Op �ðnet piÞ

DXop¼�2 �g �ð1�WRÞ
X
ðD�OiÞ �Op �ðnet piÞþaDXop

Xop¼DXopþXop

5
Electrical short-term load forecasting using improved
generalized neuron models
For the purpose of optimal planning and operation of the
electric power system, the active power demands at
various load buses need to be estimated ahead of time.
Therefore, load forecasting plays an important role in
power system operation and control.

Rajurkar and Nissen [3] introduced stochastic modeling
and analysis methodology called data-dependent systems
(DDS) for Short Time Load Forecasting (STLF), while Goh
and Ong [8] refined the approach through stochastic time
series analysis so that with routinely available data from a
number of key substations, the substation demand pat-
terns are separately characterized. Hwang and Moon [5]
discussed a power load forecasting system based on a
temporal difference (TD) method. Dillon [6], Ishibashi
[12], and Matsumoto [8] presented method of short term
load forecasting using Artificial Neural Networks. Azzam-
ul-Asar et al. [13] in 1992 the effectiveness of an ANN
approach to short-term load forecasting in power systems
was investigated. Examples demonstrate the learning
ability of an ANN in predicting the peak load of the day by
using different preprocessing approaches and by exploit-
ing different input patterns to observe the possible cor-
relation between historical load and temperatures. In 1993,
Guangxi et al. [7] presented a method of changing a to-
pological ANN to forecast the load of a power system. The
model is almost an all-round reflection of various factors,
which affect the changing of load. Papalexopoulos [17, 18]
presented an ANN based model for the calculation of next
day’s load forecasts. The most significant aspects of the
model fall into the following two areas: training process

Fig. 5. Results of model-4

Fig. 4. Results of model-3
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and selection of the input variables. At the same time Lee
et al. [11] presented a diagonal recurrent ANN with an
adaptive learning rate. In 1993, Chaudhary et al. [4] pre-
sented a fast and accurate method of STLF using combi-
nations of self-organising maps (SOM) and multi-layer
perception model. The SOM recognizes the type of day
examining the variation of load which, along with past
load, temperature, humidity etc. Peng et al. [14] used a
linear adaptive neuron or adaptive linear combiner called
Adaline for STLF. Hence, it is very clear that ANN is
gaining momentum in load forecasting due to various
reasons like ability to cope up with non-linearity, adap-
tivity, intelligent and simplicity. Chaturvedi et al. [1] used
the generalized neural network (GNN) approach for
electrical STLF Problem to overcome the problem of ANN.
The performance of GNN has been again improved using
ðXiþWiÞn instead of weighted input ðXi �WiÞ, so that
a closed surface may be generated depending on the
requirement, by selecting the proper value of n.

The short-term demand of Gujarat Electricity Board has
been collected and arranged in proper normalized format.
The four past histories of electrical demand have been
used as four inputs to the neural network models and
present demand as the output of the models as shown in
Table 1.

The training performance of various models have been
compared in terms of sum-squared error achieved in 200
epochs as given in the Table 2. Also the trajectories of
sum-squared error with the epochs are plotted for differ-
ent models and given in the Figs. 2–8. In terms of training,
the model-2 provides the least sum-squared error, i.e.
0.0268 in 200 epochs. Models-3, 5 and 8 are also able to
train upto a tolerable error level. Model-4 is unable to train
at the value of learning rate 0.05, but it is trained efficiently
at the learning rate of 0.005. Models-6 and 9 are not
trained at all.

Fig. 7. Results of model-7

Fig. 8. Results of model-8

Fig. 6. Results of model-5

Table 3. The performance of different models while testing for
short term load forecating problems

Model RMS error Min. error Max. error

Model 1 0.0648 0.1238 0.1193
Model 2 0.0504 )0.0856 0.10194
Model 3 0.0566 )0.174 0.0918
Model 4 0.0677 )0.1149 0.1596
Model 5 0.0572 )0.1093 0.0919
Model 6 – – –
Model 7 0.0601 )0.1477 0.1025
Model 8 0.0571 )0.1088 0.0926
Model 9 – – –
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To compare the testing performance of generalized
neural network models the actual and predicted output are
plotted as shown in Figs. 2–8 and the RMS error, mini-
mum and maximum errors for forecasting are given in
Table 3. From this table, it is very clear that the neuron
model-2 gives the least rms error while testing i.e. 0.0504.
Models-3 and 5 also give the comparable rms error, which
is 0.0566 and 0.0572.

The results obtained for short-term load forecasting
problem from the generalized neural network using

different neuron models have been compared with the
actual results and it is found that the improved General-
ized Neural Network Model-2 is most efficient in training
and accurate in prediction. Models-3 and 5 also provides
efficient results in terms of both training and testing.

The three-dimensional surfaces are plotted for the
different models of improved generalized neuron model.
3-D Surface of output of summation (

P
) part of a models,

surface of output of product (PÞ part of the models and
finally the surface of the complete output of the General-

Fig. 10. Three Dimensional
surfaces of outputs neuron
models-4, 5 and 6

Fig. 9. Three Dimensional
surfaces of neuron models-1, 2
and 3
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ized Neuron Models are shown in Figs. 9–11. From these
three-dimensional surfaces of output of different models it
is very clear that the model-3 and model-5 can cope up the
non- separable problems very easily and efficiently without
involving the network complexity. Conventional single
layer artificial neural networks cannot cope up with non-
separable problems but the multiplayer network can do
that, but it requires large training time and network
complexity is also not less.

The output surfaces obtained for model-7 and model-8,
can also cope up with the non-linearities, but the surfaces
are not in the complete range 0–1. Therefore, training time
for the model may be large.

6
Conclusion
The improved generalized neuron model has been
developed in the present work to overcome the problems
of ANN. For this purpose various modifications in the
generalized neuron have been discussed. The improved
generalized neuron models have both summation (

P
) and

product (p) as aggregation function with and without
activation function.

The three-dimensional surfaces are plotted for the
different models of improved generalized neuron models
to determine the ability of the networks to cope up with
the non-linearities present in the systems.

Electrical Short-Term Load Forecasting Problem had
been formulated in the framework of improved general-
ized neural network models using back propagation
learning algorithm. Forecasting results as the predicted
load are obtained for the developed models and the
following observations are made:

1. In terms of training, the model-2 provides the least
training error (0.0268) as shown in the Table 2. Models
3, 5 and 8 are also giving good results.

2. For short-term load forecasting problem improved
generalized neuron model-2 gives minimum RMS
testing error (i.e. 0.0504). Models 3, 5 and 8 also good
from testing point of view as shown in Table 3.

3. From the three-dimensional surfaces of output of
different improved generalized neuron models it is
very clear that the model-3 and model-5 can cope up
the non-separable problems very easily and efficiently
without involving the network complexity.

4. The output surface of model-5 may be a closed surface
very easily, which can cope up with the non-linear
separable problems easily. While conventional
artificial neural network can do that with multi-layers
and large training time i.e. with complex network
structure.
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