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Abstract Artificial immune systems (AIS) can be defined
as computational systems inspired by theoretical
immunology, observed immune functions, principles and
mechanisms in order to solve problems. Their develop-
ment and application domains follow those of soft
computing paradigms such as artificial neural networks
(ANN), evolutionary algorithms (EA) and fuzzy systems
(FS). Despite some isolated efforts, the field of AIS still
lacks an adequate framework for design, interpretation
and application. This paper proposes one such framework,
discusses the suitability of AIS as a novel soft computing
paradigm and reviews those works from the literature that
integrate AIS with other approaches, focusing ANN, EA
and FS. Similarities and differences between AIS and each
of the other approaches are outlined. New trends on how
to create hybrids of these paradigms and what could be the
benefits of this hybridization are also presented.

Keywords Framework, Artificial immune systems, Hybrid
intelligent systems, Survey of hybrids

1
Introduction
The increase in the understanding of several computa-
tional intelligence approaches, such as artificial neural
networks, fuzzy systems, evolutionary algorithms and
probabilistic reasoning (PR), led to the proposal of the soft
computing (SC) paradigm (Bonissone, 1997; Novák, 1998).
SC is usually viewed as a fusion of these approaches, which
in turn provides foundations for the conception, design
and development of computational intelligence systems.
By combining or hybridizing such paradigms, it has been

possible to create a number of successful and sophisticated
solutions to complex real-world problems.

Each of the established soft computing paradigms
contributes their own set of particular characteristics. The
main contribution of FS is as an approach for dealing
with imprecision, approximate reasoning, information
granulation and computing with words. ANN major uses
are concerned with system identification, learning, gener-
alization, local search and adaptation. The paradigm of EA
is one of systematized search, tuning and optimization.
Finally the main contribution of PR is for decision
analysis and management of uncertainty.

Zadeh (1997) argued that SC is not just a mixture of
approaches, rather it is a partnership, in which each
strategy contributes a distinct methodology for addressing
problems in its domain. Indeed, this is one of the aspects
argued in this paper. AIS can contribute with the already
established methodologies in order to mutually improve
their performances and application domains.

There has been a growing interest in the use of meta-
phors extracted from the immune system for the devel-
opment of the so-called artificial immune systems. AIS
have been applied to a wide variety of domain areas, such
as pattern recognition and classification (Hunt and Cooke,
1996; Carter, 2000; de Castro and Timmis, 2002b), opti-
mization (Fukuda et al., 1998; de Castro and Von Zuben,
2000a), data analysis (Timmis and Neal, 2001; de Castro
and Von Zuben, 2000b), computer security (Kephart, 1994;
Kim and Bentley, 1999; Hofmeyr and Forrest, 2000) and
robotics (Ishiguro et al., 1997; Jun et al., 1999).

To date, there are two edited volumes on AIS (Ishida
et al., 1998; Dasgupta, 1999) that present collections of
papers detailing works on theoretical immunology and
attempts at constructing AIS. Survey works for AIS do
exist (Dasgupta, 1999; de Castro and Von Zuben, 2000c),
however, there has been no review presented focusing the
hybrids of AIS with other computational intelligence
paradigms. There is no work in the literature that tries to
highlight and draw together important processes involved
in the development of AIS. Additionally, no effort has been
made in the direction of presenting a general framework to
the design of artificial immune systems.

This paper attempts to address these and other defi-
ciencies in the literature: (1) to review the fundamentals of
immunology for the development of AIS, (2) to present a
general framework in which to design artificial immune
systems, (3) to review works combining AIS with other SC
paradigms, (4) to highlight some similarities and differ-
ences between AIS and other SC approaches, and (5) to
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discuss new ways of integrating AIS with other SC
approaches.

The paper is organized as follows. Section 2 introduces
the basic immunology background necessary to develop
and understand AIS. Section 3 introduces the field of AIS
and proposes a general framework to design AIS. Section 4
puts places AIS in context with other SC paradigms by
outlining some similarities and differences of these different
strategies. In Sect. 5 a survey of hybrids of AIS with ANN, EA
and FS is presented. Section 6 summarizes the outcomes of
integrating AIS with SC techniques and suggests new ave-
nues to the creation of hybrid models of AIS with ANN, EA
and FS. The paper is concluded in Sect. 7 with a discussion of
the main contributions of the AIS to the SC community.

2
Fundamentals of the immune system
All living beings are endowed with an immune system
whose complexity varies according to their characteristics.
For example, some plants have spines to provide protection
from predators to that attack them. Animals containing
bones (vertebrates) developed a highly effective and com-
ple x immune system. It is composed of a vast array of cells,
molecules and organs that work together to maintain life.
The focus here will be on the immune system of verte-
brates, more specifically of humans. This is due to its
interesting features, from a biological and computational
perspective, the great knowledge available about its’
functioning and its broad applicability in the design of AIS.

The immune system performs several functions.
Together with other bodily systems it maintains a stable
state of our vital functions, named homeostasis. Its most
remarkable roles however, are the protection of the or-
ganism against the attack of disease causing agents, called
pathogens, and the elimination of malfunctioning cells.

Microorganisms like viruses, bacteria, fungi and para-
sites are classified as pathogens, for they can cause dis-
eases after invading our bodies. The primary problem the
immune system is faced with, is thus the recognition of
these pathogens. The pathogens themselves cannot be
directly recognized by the components of the immune
system. Some small portions of the pathogens, named
antigens, are the molecules that are going to be recognized
by the immune system. After recognizing (identifying) a
disease causing agent, the immune system is responsible
for eliminating it, so as to avoid or block the disease.

There are a few other tasks however, that the immune
system has to perform so that it can correctly identify and
eliminate pathogens. One such task is the recognition of
our the body’s own tissues, which are broadly named self.
Like pathogens, the cells and molecules of our the body’s
organisms also present antigens, in this case self antigens,
that can be recognized by the immune system. In order to
distinguish self antigens from those presented by patho-
gens, the latter are named nonself antigens. The process of
distinguishing between self and nonself antigens (i.e. what
belongs and what does not belong to the body) is termed
self/nonself discrimination and will be discussed in a
dedicated subsection.

The discussion of the immune system will begin by
highlighting the main types of immune cells and mole-

cules, and how they are generated. This follows with a
description of a mechanism used to explain how the
immune system copes with nonself antigens, coupled with
the self/nonself discrimination problem. Finally, a network
theory of the immune system is presented. These topics
were chosen, as they inspired the development of a
number of works composing the proposed framework
used to develop artificial immune systems.

2.1
Physiology of the immune system
There are two organs responsible for the generation and
development of immune cells: the bone marrow and the
thymus. The bone marrow is the site where all blood cells
are generated and where some of them develop. The
thymus is the organ to which a class of immune cells
named T-cells migrates and maturates.

There are also several types of immune cells, but the
focus will only be concentrated on the lymphocytes.
Lymphocytes are white blood cells specialized mainly in
the recognition of pathogens. There are two main types of
lymphocytes: B-cells and T-cells, both originated in the
bone marrow. Those lymphocytes that develop within the
bone marrow are named B-cells, and those that migrate to
and develop within the thymus are named T-cells. Both
cell types present receptor molecules on their surfaces re-
sponsible for recognizing the antigenic patterns displayed
by pathogens or some of their fragments. Figure 1
illustrates a B-cell and a T-cell with their surface receptor
molecules detached. Note that both cell types have a
number of identical cell receptors on their surfaces. The
T-cell receptor is called TCR and the B-cell receptor is
called BCR or antibody (Ab).

2.1.1
The bone marrow
The bone marrow is a soft tissue located in the cavity of
the most elongated bones. Specifically, it is the site where
all blood cells are generated and some of them differentiate
into B-cells.

During the differentiation of a blood cell into a B-cell, it
produces and displays an antibody molecule on its surface,
as illustrated in Fig. 1a. An antibody molecule has two
main functions: (1) to bind with (recognize) an antigen,
and (2) to perform an effector function.

Figure 2 illustrates that the antibody molecule is com-
posed of two main regions in a Y-shaped form. One major

Fig. 1. Lymphocytes and their surface receptor molecules.
a B-cell receptor (BCR) or antibody. b T-cell receptor (TCR)
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region named variable region, is highly variable and is
responsible for the recognition of antigens. The other
region named constant region, can assume a few different
types and is responsible for attaching the antibody to the
cell surface and to perform effector functions. Antibodies
are originally attached to the B-cell surface but can be
released to the blood stream during an immune response.

Antibody molecules are generated in the bone marrow
through processes of DNA rearrangement. Genes contained
in several gene libraries are concatenated to form the
antibody molecules (Tonegawa, 1983). A simplified view of
how an antibody molecule is generated from a set of genes
collected from gene libraries is illustrated in Fig. 3.

2.2
Pattern recognition in the immune system
Pattern recognition in the immune system occurs basically
at the molecular level. The surface receptors of B-cells and
T-cells present a certain ‘‘shape’’ that has to be matched by
the shape of an antigen, as illustrated in Fig. 4. There are
other features that are involved in the recognition of an
antigen by a cell receptor, however these are outside the
scope of this paper.

Both B-cells and T-cells present surface receptors for
antigens. The distinguishing features between them are the
basic structures of the receptors (antibodies and TCRs)
and the types of antigens each one is able to recognize.
While antibodies can recognize and bind with antigens
free in solution, TCRs can only recognize and bind with
antigens presented by molecules of our own body, known
as major histocompatibility complex (MHC). TCRs thus,

recognize molecules known as peptide/MHC complexes, as
illustrated in Fig. 4b. Peptides are simply processed (bro-
ken down) portions of the antigen.

It is important to note that the recognition in the im-
mune system is based on shape complementarity. Antigens
and cell receptors have to have complementary shapes so
that they can bind together. It is the binding together of
the receptor with the antigens that trigger an immune
response, i.e. the reaction of the immune system against
the pathogen that displays the antigen recognized.

2.3
Clonal selection
The paper has already discussed how the immune cells are
generated and how they recognize antigens. The question
now remains: what happens then after recognition?

After successful recognition the adaptive immune re-
sponse is elicited. One important immune mechanism of
defense is to reproduce those cells capable of recognizing
and binding with antigens. The cellular reproduction in
the immune system is based on cloning (mitosis), i.e. the
creation of offspring cells that are copies of their parent
cells subject to mutations. This proliferation will result in
the production of a clone of cells of the same type. Due to
the mutations, the cells within a clone are all similar but
present slight differences and are capable of recognizing
the antigen that triggered the immune response. A
selective mechanism guarantees that those offspring cells
(in the clone) that better recognize the antigen, which
elicited the response, are selected to have long life spans;
these cells are named memory cells. This is the strategy by
which evolution shaped our immune systems so that they
became capable of dealing with antigens it has encoun-
tered in the past. This is also the principle used for
vaccination purposes. The whole process of antigen
recognition, cell proliferation and differentiation into
memory cells is named clonal selection (Burnet, 1959; Ada
and Nossal, 1987) and is summarized in Fig. 5.

2.3.1
Affinity maturation
The term affinity maturation is given to the combined
processes of mutation that affect the portions of the
receptor that bind with the antigen and the selection that

Fig. 2. Antibody molecule detaching its variable region, i.e. the
portion of the molecule responsible for recognizing antigens

Fig. 3. Simplified view of how an antibody molecule is generated
in the bone marrow. One gene segment from each library is
selected and concatenated together with others in order to form
portions of an antibody molecule

Fig. 4. Pattern recognition in the immune system. a Recognition
of an antigen by a B-cell receptor. Antibodies can recognize an-
tigens free in solution. b Recognition of an MHC/peptide complex
by a TCR (T-cell receptor). In order for a TCR to recognize an
antigen, it has to be broken down into fragments (peptides) and
presented to the TCR by an MHC molecule
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guarantees the survival of the variant offspring that better
match the antigen. Affinity refers to the degree of binding
of the cell receptor with the antigen. The higher the affinity
the stronger the binding and thus the better the immune
recognition and response. This immune response is said to
be adaptive because it allows, through mutation followed
by selection, the cell receptors to adapt themselves to an-
tigens. This guarantees that successive encounters with a
certain type of antigen leads to ever more powerful
responses against this antigen.

As the lymphocytes of the immune system are somatic
cells, i.e. cells not involved in the reproduction of the or-
ganism, the mutation that occurs during affinity matura-
tion is named somatic mutation. In addition, the rates of
mutation that occur during cloning (reproduction) have
high rates, suggesting the terminology somatic hypermu-
tation. Somatic hypermutation is believed to be inversely
proportional to the cell affinity: the higher the affinity a
cell receptor has with an antigen, the lower the mutation
rate and vice-versa (Berek and Ziegner, 1993). This is
another strategy the immune system found to preserve the
high affinity variants (offspring cells) at the same time it
offers a higher probability of generating major variants of
the receptor selected.

Inversely to the somatic mutation, the proliferation rate
of a cell is directly proportional to its affinity with the
antigen. When a nonself antigen invades an organism,
some a number of immune cells recognize this antigen
with different degrees of affinity. These cells then undergo
clonal selection and affinity maturation. The number of
offspring a cell has is proportional to its affinity with the
antigen: the higher the affinity, the higher the number of
offspring generated and vice-versa.

Clonal selection affect both B-cells and T-cells, but
affinity maturation has only been observed in B-cells.

2.4
Self/nonself discrimination
If the immune system is capable of recognizing any
antigenic pattern (shape) that is the complement of the
immune cell receptors, how does the immune system

behave when it is confronted with a self antigen? The an-
swer to this question is rather complex, controversial and
involves different mechanisms for B-cells and T-cells. Due
to the focus of this paper, the discussion will be restricted
to the thymic negative selection of T-cells. This is the
process responsible for eliminating all T-cells whose
receptors recognize and bind with self antigens presented
in the thymus (Nossal, 1994; Mannie, 1999).

The thymus is an organ located in the upper region of
the chest and to which some white blood cells (naı̈ve
T-cells) migrate after being produced by the bone marrow.
These immature or naı̈ve T-cells will then suffer a process
of negative selection within the thymus. A blood thymic
barrier avoids nonself antigens to be present within the
thymus. Thus all antigens present in the thymus are self
antigens. As a consequence, the naı̈ve T-cells that recog-
nize self antigens within the thymus are purged from the
population of T-cells. The naı̈ve T-cells that do not rec-
ognize any self antigen become immunocompetent T-cells,
i.e. T-cells capable of performing an immune response.
These are then released to the blood stream and patrol the
body in the search for nonself antigens (presented by MHC
molecules). This simplified process of negative selection in
the thymus is illustrated in Fig. 6.

2.5
Immune network theory
Clonal selection is the theory used to explain how the
immune system responds to nonself antigens. Negative
selection in contrast, is one of the strategies used by the
immune system to eliminate self-reactive cells, i.e. cells
that recognize self antigens. There is still another crucial
question to be answered: how does the cells of the immune
system interact with other cells of the immune system?

Intrigued by this problem, Jerne (1974) proposed a
network theory for the immune system. This theory is
difficult to be proven experimentally; a reason why it has
been refuted by some immunologists (e.g. Langman and
Cohn, 1986). Despite the controversies about the validity
of this immune network theory, it is very interesting and

Fig. 5. Clonal selection. Those immune cells whose receptors
recognize and bind with a nonself antigen are selected to prolif-
erate (subjected to mutation) and differentiate into long living
(memory) cells

Fig. 6. Simplified view of the thymic negative selection. The naive
T-cells that recognize self antigens are purged from the reper-
toire. In contrast, those that do not recognize any self antigen
become immunocompetent cells and are released to the lymph
and blood stream
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has been widely used in the development of artificial
immune systems.

Simply stated, the immune network theory suggests that
antibody molecules have portions of their receptors that
can be recognized by other antibody molecules. This way,
antibodies cannot only recognize nonself antigens but also
self antigens, i.e. those presented by other antibodies.
As an outcome of this mutual recognition of antibody
molecules, a network of communication arises within the
immune system; this is called the immune network.
According to this new perspective of the immune
interactions, a nonself antigen is no longer necessary to
promote a dynamic behavior in the immune system. The
interactions of the immune cells are going to result in a
network with a natural eigen-behavior whose state will be
disturbed by nonself antigens. An antibody Ab1 that rec-
ognizes a nonself antigen Ag is also capable of recognizing
another antibody Ab2. As both Ag and Ab2 are recognized
by the same antibody Ab1, Ab2 is said to be the internal
image of the antigen Ag. Figure 7 summarizes the princi-
ples of the immune network theory.

3
Artificial immune systems
The establishment of the field of artificial immune systems
(AIS) has been difficult for a number of reasons. First, the
number of people active in the research area is still small,
but has been increasing in the past few years. Secondly,
most researchers found it difficult to identify the differ-
ence between an AIS and work undertaken in theoretical
immunology. Thirdly, the application domains of artificial
immune systems are very wide range. Finally, only very
recently the first textbook proposing a general framework
to design AIS has been published.

There were a limited number of attempts to define the
field of artificial immune systems. The present work
adopts the concept in which artificial immune systems are
defined as computational systems inspired by theoretical
immunology and observed immune functions, principles
and models, applied to solve problems (de Castro and
Timmis, 2002a). This definition covers some of the aspects
mentioned above by drawing a fine line between AIS and
theoretical immunology: the applicability. While works on
theoretical immunology are usually aimed at modeling and
providing a better understanding of the immune func-
tioning and laboratory experiments, works on AIS are
applied to solve problems in computing, engineering and
other research areas as well. This is more akin to a soft
computing paradigm.

The proposal of a framework to design artificial
immune systems fills some of the gaps necessary to answer
the remaining questions. Initially we have to give our own

viewpoint of what we mean by framework. Assume the
case of other soft computing approaches inspired by
biology, such as ANN and EAs.

A set of artificial neurons can be arranged together so as
to form an artificial neural network. In order to acquire
some knowledge, these neural networks suffer an adaptive
process, named learning or training, that alters (some of)
their free parameters. Thus, in a simplified form, a
framework to design an ANN is composed of a set of
artificial neurons, a pattern of interconnection for these
neurons and a learning algorithm.

In evolutionary algorithms, there is a set of ‘‘artificial
chromosomes’’ representing a population of individuals
that will iteratively suffer processes of reproduction, ge-
netic variation and selection. As a result of this adaptive
process, a population of evolved artificial individuals
arises. A framework, in this case, would correspond to the
genetic representation of the individuals of the population,
plus the procedures for evaluation, reproduction, genetic
variation and selection.

Therefore, in our viewpoint, a framework to design a
computationally inspired algorithm requires, at least, the
following basic elements:

� A representation for the components of the system;
� A set of mechanisms to evaluate the interaction of

individuals with the environment and each other. The
environment is usually simulated by a set of input
stimuli, one or more fitness function(s), or other
mean(s);

� Procedures of adaptation that govern the dynamics of
the system, i.e. how its behavior varies over time.

This is the basis of the proposed framework to design
artificial immune systems as well: a representation to
create abstract models of immune organs, cells and
molecules; a set of functions, termed affinity functions, to
quantify the interactions of these ‘‘artificial elements’’, and
a set of general purpose algorithms to govern the dynamics
of the AIS. Figure 8 summarizes the elements involved in
the framework to engineer an AIS: this can be thought of
as a layered approach of the design procedure.

3.1
A representation scheme
In Sect. 2, B-cells and T-cells were described as some of the
most important cells in the immune system. It was noted

Fig. 7. Summary of the immune network theory. Ab1 recognizes
Ag and Ab2, thus Ab2 is said to be the internal image of Ag. Ab1

and Ab2 recognize each other mutually Fig. 8. The framework to engineer AIS and its layered structure
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that they present surface receptor molecules whose shapes
are complementary to the shapes of antigens, allowing
them to recognize the disease-causing agents and then
perform an effector function. The immune cells and mol-
ecules are therefore the elements that have to be modeled
and used to create AIS.

Perelson and Oster (1979) first proposed the concept of
shape-space (S). Bearing in mind that the recognition of
antigens is performed by the cell receptors, shape-spaces
allow a quantitative description of the interactions of
receptor molecules and antigens. As in the biological
immune system, in a shape-space S, the degree of binding
(degree of match or affinity) between an antigenic receptor
(Ab or TCR) and an antigen (Ag), is measured via regions
of complementarity. This is illustrated in Fig. 9.

The set of features that describe the relevant properties
of a molecule from a recognition perspective is termed its
generalized shape. The generalized shape of an antibody is
described by a set of L parameters. Thus, a point in an
L-dimensional shape-space, SL, specifies the generalized
shape of an antibody binding region with regard to its
antigen binding properties.

A population (repertoire) of N individuals (cell recep-
tors) corresponds to a shape-space with a finite volume V
containing N points. As the antigen-antibody interactions
are measured via regions of complementarity, the anti-
genic determinants are also characterized by generalized
shapes whose complements lie within the same volume V.
This binding between antigen and antibody can be thought
of, in simple terms, as a lock and a key. A perfectly
complementary key to the lock will open it. However, it is
possible to find a key that will insert into a lock, but not
open it. In this situation there is a lower affinity between
the two; the bind is not complete. If the antigens and
antibodies are not quite complementary, then the two
molecules may still bind, but with lower affinity.

It is assumed that each antibody specifically interacts
with all antigens whose complements are within a small
surrounding region. This region is characterized by a pa-
rameter e, called affinity threshold. The volume Ve result-
ing from the definition of the affinity threshold is called
recognition region. It is possible that an antigen may
present some different forms, that is, be a slight variation
of the same antigen. As each antibody can recognize all
antigens whose complements lie within Ve, it holds that a
finite number of antibodies can recognize an almost infi-
nite number of points (Ag) within the volume Ve. This is
related to cross-reactivity (Smith, 1997; Hodgkin, 1998),
where similar patterns occupying neighboring regions of

the shape-space can be recognized by the same antibody
shape, as far as an adequate e is provided. Figure 10
illustrates the shape-space S, detaching antibodies,
antigens and the affinity threshold.

3.1.1
Shape-spaces and affinity measures
The type of shape-space (representation) used to model an
antibody and an antigen will partially determine a measure
to calculate their affinity. Mathematically, the generalized
shape of a molecule (m), either an antibody (Ab) or an
antigen (Ag), can be represented as an attribute string (set
of coordinates) m ¼ Æm1, m2, . . ., mLæ, m ˛ SL ˝ RL, or
other more elaborate structures such as a neural network
or a Petri net. The discussion here will focus only on
attribute strings. For more complex structures, please
refer to de Castro and Timmis (2002a).

As the Ag–Ab affinity is related to their distance, it can
be estimated via any distance measure between two strings
or vectors, such as the Euclidean, the Manhattan, or the
Hamming distance. Hence, if the coordinates of an anti-
body are given by Ab ¼ hAb1;Ab2; . . . ;AbLi and those of
an antigen are given by Ag ¼ hAg1;Ag2; . . . ;AgLi, then the
distance D between them can be defined as:

D ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

L

i¼1

ðAbi � AgiÞ
2

v

u

u

t ; ð1Þ

D ¼
X

L

i¼1

Abi � Agi

�

�

�

� ; ð2Þ

D ¼
X

L

i¼1

di; where di ¼ 1 if Abi 6¼ Agi

0 otherwise

n

; ð3Þ

where Eq. (1) is the Euclidean distance, Eq. (2) the
Manhattan distance and Eq. (3) the Hamming distance.

Given a representation for the molecules, the shape-
space formalism defines a space S with a finite volume V in
which all molecules are represented. If we assume a given
antigen to be recognized, it is possible to introduce the
concept of an affinity landscape as a representation of the
space of all possible affinities of the antigen-binding sites
(antibodies or TCRs) in relation to this antigen, as
illustrated in Fig. 11.

Fig. 9. Recognition via regions of complementarity

Fig. 10. In shape-space S, there is a volume V in which the shape
of an antibody (•) and that of the complement of an antigen (·)
are located. An antibody can recognize any antigen whose com-
plement is situated in a volume Ve around it (after Perelson, 1989)
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Many current implementations of AIS assume a binary
shape-space, i.e. a shape-space in which binary strings
(bitstrings) represent the molecules. In this case, the
affinity between an antibody bitstring and an antigen
bitstring can be determined by using several different
measures. The most widely used are: (1) Hamming dis-
tance (Eq. 3), (2) r-contiguous bit rule, and (3) multiple
r-contiguous bit rule.

The Hamming distance can be computed by applying
the exclusive-or operator (XOR) to the binary strings
(Forrest and Perelson, 1992; Hajela, and Lee, 1996;
Hightower, et al., 1996). The r-contiguous bit rule
measures the number of r-contiguous complementary
symbols (Forrest et al., 1994; Dasgupta, and Forrest, 1996)
between two strings. In the multiple r-contiguous bit rule
(Hunt, and Cooke, 1996), extensive complementary
regions are supposed to be interesting for the detection of
similar characteristics in symmetric regions of the
molecules. It is defined according to Eq. (4).

D ¼ DH þ
X

i

2li ; ð4Þ

where DH is the total Hamming distance given by Eq. (3),
and li is the length of each complementary region i with at
least two consecutive complementary bits. The computa-
tion of these three affinity measures is illustrated in
Fig. 12.

3.1.2
Generating the initial repertoires
The immune cells and molecules are generated in the bone
marrow. The genes used to encode the receptor molecules
are stored in separate and distinct libraries. The encoding
of these molecules occurs through the concatenation of
different gene segments that are randomly selected from
each of the gene libraries. Bone marrow models are used to
create the attribute strings that represent the immune
receptors. Note that up to now, no distinction was made

between a cell and its receptor; both are represented by
attribute strings. This is mainly due to the fact that each
immune cell presents several receptors of same shape on
its surface. While discussing immune network models,
more complex cell models will be reviewed.

The simplest bone marrow model is the one that gen-
erates attribute strings of length L in SL using a (pseudo-)
random number generator. In the case of real-valued
shape-spaces, one has simply to determine the interval in
which m is going to be defined, e.g. m 2 ½0; 1�L. In the case
of Hamming shape-spaces, the string that represents m
must be composed of elements belonging to a pre-defined
alphabet, e.g. m 2 f0; 1g for binary strings (bitstrings).

The more sophisticated, and biologically appealing,
models to construct repertoires of immune cells, demand
the use of gene libraries from which the molecules will be
rearranged or evolved. Hightower, et al. (1995), Perelson,
et al. (1996) and Oprea (1999) employed a genetic algo-
rithm (GA) to study the effects of evolution in the genetic
encoding of the antibody molecules. One characteristic of
this encoding is that not all genes existent in the genotype
(total collection of genes) are expressed in the phenotype
(expressed antibody molecules). In these models,
libraries of gene segments contain the genes that will be
recombined to the generation of the antibody molecules,
as depicted in Fig. 13.

Another important feature of this model is that with a
relatively small number of genes in the libraries, a large
number of different receptor molecules (attribute strings)
can be generated. Assume that the AIS contains l libraries,
each of which with c components, then cl antibody
molecules can be generated.

3.2
Algorithms and processes
The first steps for the design of an AIS have now been
described. It was suggested that an attribute string is, in
most cases, a suitable representation for a cell receptor and
an antigen. Attention was then given on, the evaluation of
their interactions, and how to generate an initial popula-
tion of strings using a bone marrow model. The type of
attributes will partially define a function to evaluate the
interactions (quantify recognition) of the cell receptors
with the environment (antigens) and each other (other cell
receptors). The next step in the framework corresponds to
the application of some (usually) iterative procedure of
adaptation that will govern how the AIS will behave over
time.

The algorithms resulting from the modeling of the
processes described in Sect. 2 have been widely used, and
sometimes slightly modified and then applied to problem

Fig. 11. Pictorial affinity landscape for an Euclidean shape-space
of dimension 2

Fig. 12. Affinity measures for the binary
Hamming shape-space. a Total number
of complementary bits (Eq. 3). b r-con-
tiguous bit rule. c Multiple r-contiguous
bit rule (Eq. 4)
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solving. Thus, they currently constitute some of the basic
iterative procedures of adaptation employed in AIS. To
make the exposition clearer, we propose the following
taxonomy for AIS algorithms: population-based and
network-based (Fig. 14). We classify clonal and negative
selection algorithms as population-based, and network
models are divided into continuous and discrete.

3.2.1
Clonal selection
In de Castro and Von Zuben (2000a) the authors focused
on the clonal selection principle and affinity maturation
process of the adaptive immune response in order to
develop an algorithm suitable to perform tasks such as
machine learning, pattern recognition, and optimization.
Their algorithm was evaluated in a simple binary character
recognition problem, multimodal optimization tasks and a
combinatorial optimization problem; more specifically the
travelling salesman problem (TSP). The main immune
aspects taken into account to develop the algorithm,
named CLONALG, were: selection and cloning of the most
stimulated cells proportionally to their antigenic affinity;
death of non-stimulated cells; affinity maturation and
selection of cells proportionally to their antigenic affinity;
and generation and maintenance of diversity. The
algorithm CLONALG works as follows:

1. Generate a set of N candidate solutions (antibody rep-
ertoire) in a shape-space to be defined by the problem
under study;

2. Select n1 highest affinity cells in relation to the antigen
set to be recognized or to the function being
optimized;

3. Clone (generate identical copies of) these n selected
cells. The number of copies is proportional to their
affinities: the higher the affinity, the larger the clone size
(number of offspring);

4. Mutate with high rates (hypermutation) these n selected
cells with a rate inversely proportional to their affinities:
the higher the affinity, the smaller the mutation rate (see
further discussion);

5. Re-select n2 highest affinity mutated clones to compose
the new repertoire;

6. Replace some low affinity cells by new ones;
7. Repeat steps 2 to 6 until a given stopping criterion is

met.

The authors characterized CLONALG as an evolutionary-
like algorithm with the main features of population-
based search guided by the mechanisms of reproduction,
genetic variation and selection. It is important to note
however, that though CLONALG is a type of evolu-
tionary algorithm, it was developed using inspiration
from the immune system. In contrast, the standard
evolutionary algorithms were devised inspired by the
neo-Darwinian theory of evolution. Thus, in the former
case (CLONALG) the evolutionary theory is used to
explain how the algorithm behaves, and in the latter
case (EAs) the evolutionary theory was used to create
the algorithm.

There are however, some important differences
between CLONALG and a GA for example. CLONALG
performs not only affinity proportionate selection, but
also affinity proportional mutation, and there is no
crossover. Similarity does exist however, in the fact that
both algorithms encode the individuals of the popula-
tion. When compared with the evolution strategies
(Rechenberg, 1994), for example, again, differences exist
between the algorithms. Evolution strategies work with
real-valued encoding, while CLONALG works with
binary representation, and the affinity proportional
mutation in CLONALG is not controlled by Gaussian
distributions. Therefore, no matter which type of evo-
lutionary algorithm is compared with CLONALG, there
are always enough differences between them, in terms
of inspiration and computation that justify the proposal
of CLONALG as an evolutionary algorithm inspired by
immunology.

Fig. 13. Process of synthesizing an anti-
body molecule from gene libraries. One
component of each library is concate-
nated with others to create an attribute
string that represents an immune recep-
tor

Fig. 14. A taxonomy for AIS algorithms
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3.2.2
Affinity maturation
In order to promote and maintain diversity of antibodies,
the immune system employs a mechanism known as
somatic hypermutation. This mechanism also allows the
immune system to increase the affinity (recognition
capability) of the antibodies in relation to the selective
antigens; a process named affinity maturation.

As the shape-space formalism allows for the represen-
tation of any cell receptor and antigens through attribute
strings, it is possible to use several algorithms to insert
variations in the encoding of these components. These
algorithms can be the same as the mutation operators
employed in evolutionary algorithms (e.g. single- and
multi-point mutation for bitstrings, and inductive muta-
tion for real-valued vectors), providing the appropriate
shape-space is respected.

One important aspect of the somatic hypermutation is
that each candidate solution (attribute string) will have an
independent mutation rate proportional to its affinity with
the nonself antigen. Thus, candidates in higher peaks of
the affinity landscape will be subject to smaller mutation
rates while candidates located far from optima solutions
will suffer larger mutation rates. The idea behind this
approach is that candidates close to a local optimum must
be fine-tuned, while candidates far from an optimum can
perform large steps towards an optimum or another region
of the affinity landscape.

However, one problem with this approach is that usu-
ally, nothing is known a priori about the optima solutions
of a function (or problem). In this case, one can evaluate
the relative affinity at each time step of each candidate by
scaling (normalizing) their affinities. The inverse of an
exponential function can be used to establish a relation-
ship between the hypermutation rate a and the normal-
ized affinity D�, as described in Eq. (5) and depicted in
Fig. 15.

aðD�Þ ¼ expð�qD�Þ ; ð5Þ

where q is a parameter that controls the smoothness of the
inverse exponential, and D� is the normalized affinity that
can be determined by D� ¼ D=Dmax.

Kepler and Perelson (1993) proposed an optimal con-
trol treatment for the affinity maturation of an immune
response that is different from the one described above.
The authors suggested that the maturation of the immune
response by somatic hypermutation is marked by a rapid
and dramatic increase in affinity for the antigen causing
the immune response. An optimal mutation schedule
would be the one in which periods of rapid mutation
alternate with periods of mutation free growth.

3.2.3
Negative selection
The negative selection of T-cells eliminates those cells
whose receptors are capable of recognizing self antigens.
This way, all T-cells that survive negative selection are
assumed to recognize only nonself antigens. This is a very
interesting idea for the development of algorithms that
monitor a system against an anomaly or unusual behavior.

Inspired by this idea, Forrest, et al. (1994) developed an
anomaly detection algorithm based upon the negative se-
lection of T-cells within the thymus. It was named negative
selection algorithm and its original application was in
computer security. The interesting aspect of this algorithm
is that it can be used to perform tasks like pattern rec-
ognition by storing information about the set of patterns
that are unknown to the system.

The negative selection algorithm is simple and works as
follows. Given a self set S of patterns (strings) to be
protected, generate a set A of pattern recognizers, named
detectors, that does not match any string that belong to S.
The iterative process of generating the set A can be
described as follows and is summarized in Fig. 16.

1. Randomly generate strings and place them in a set P;
2. Determine the affinity of all strings in P with all strings

of the self set S;
3. If the affinity of a string of P with at least one string of S

is greater than or equal to a given affinity threshold �,
then the string in P recognizes the self-string and has to
be eliminated (negatively selected); else the string in P
belongs to the nonself set and is introduced into the set
A.

Fig. 15. Trade-off between the normalized antibody affinity D�

and its mutation rate a, according to (Eq. 5), for different values
of q Fig. 16. A negative selection algorithm
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3.3
Immune network models
The original immune network theory, proposed by Jerne
(1974), suggested an immune system with a dynamic be-
havior even in the absence of nonself antigens. This pro-
posal was different from clonal and negative selection, as it
suggested that B-cells were capable of recognizing each
other. This would endow the immune system with a cer-
tain type of eigen-behavior and network of communica-
tion among cell receptors.

Several theoretical immunologists were interested in
creating models of immune networks so as to introduce
new ways of explaining how the immune systems works
(Perelson, 1989; Farmer et al., 1986). Once researchers in
computational intelligence (soft computing) became
aware of these works, interest was established in
applying these new immune inspired models to solve
problems in computing, engineering and other domain
areas. The first network models were mainly based on
sets of differential equations governing the variations in
population sizes of antibody molecules and B-cells. We
classify these works as continuous immune network
models. They have been widely used by the AIS com-
munity in applications such as robotics, optimization
and control (Ishiguro et al., 1997; Bersini, 1991; Bersini
and Varela, 1994). The immune networks also served as
inspiration to the development of machine learning
network models with applications mainly in data anal-
ysis (Timmis, 2000; de Castro and Von Zuben, 2001a).
The latter have been classified as discrete immune
network models as they are not based on differential
equations, but iterative procedures of adaptation or
difference equations.

The following subsections review a continuous immune
network model that has been widely used by researchers
on AIS and two discrete immune networks also widely
used by researchers in the field.

3.3.1
A continuous immune network model
Farmer et al. (1986) represented immune cells and mole-
cules as bitstrings in a Hamming shape-space, as illus-
trated in Fig. 17. An antibody molecule was represented by
two concatenated portions: one named epitope (e) and
another named paratope (p). The epitope being the por-
tion of the antibody molecule that can be recognized by
the paratopes of other antibodies.

Strings were allowed to match complementarily in any
possible alignment, modeling the fact that two molecules
may react in more than one way. Equation (6) specifies a
matrix of matching mi,j that corresponds to the degree of
matching of each element in the AIS.

mi;j ¼
X

k

G
X

n

eiðnþ kÞ ^ pjðnÞ � eþ 1

 !

; ð6Þ

where ei(n) is the n-th bit of the i-th epitope, pj(n) is the n-
th bit of the j-th paratope, ^ corresponds to the Hamming
distance between ejð�Þ and pjð�Þ and e corresponds to the
affinity threshold. The parameter k corresponds to a given
alignment between a paratope and an epitope. If matches
occur in more than one alignment, their strengths are
summed, including the case of strings with different
lengths. The function G(�) measures the strength of a
possible reaction between an epitope and a paratope as
given by Eq. (7).

GðxÞ ¼ x x > 0
0 otherwise

n

ð7Þ

To quantify the dynamics of the network, it was assumed
N antibody types with concentrations {c1,. . .,cN} and M
antigens with concentrations {y1,. . .,yM}. The rate of
change of antibody concentration is given by

dci

dt
¼ k1

X

N

j¼1

mj;icicj � k2

X

N

j¼1

mi; jcicj

"

þ
X

M

j¼1

mj;iciyj

#

� k3ci ;

ð8Þ

where the first term represents the stimulation of the
paratope of an antibody type i by the epitope of an anti-
body type j. The second term represents the suppression of
antibody of type i when its epitope is recognized by the
paratope of type j. The parameter k1 is a rate constant that
depends on the number of collisions per unit time and the
rate of antibody production stimulated by a collision.
Constant k2 represents a possible inequality between
stimulation and suppression. The third term models the
concentration of antigens and the last term models the
tendency of cells to die.

Equation (8) controls the dynamics of the network. This
is in the sense that antibodies which recognize antigens or
other antibodies are amplified in number, whereas
antibodies which do not are eliminated. The production
of novel antibodies provides the system with the ability
to cope with unexpected (or unseen) antigens.

3.3.2
Discrete immune network models
The discrete immune networks differentiate from the
continuous models in the sense that their adaptation
procedures are not based upon a set of differential equa-
tions, but an iterative process of adaptation. This section
details the learning algorithms for two discrete immune
network models. These were originally developed for
pattern recognition, data clustering and data compression.
However, it is suggested that these learning algorithms can
be considered as generic and can therefore be applied to
other domains such as optimization, control and robotics.
Each learning algorithm can be used to construct an ar-
tificial immune network capable of extracting information
from a set of input patterns that corresponds to the

Fig. 17. Bitstrings representing the epitope and paratope of two
antibody molecules
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antigenic universe. For both algorithms, B-cells and
antibodies (Ab) are the main elements of the immune
networks, and antigens (Ag) correspond to the input
patterns.

3.3.2.1
RAIN
Timmis (2000) proposed an immune network learning
algorithm named RAIN (Resource limited Artificial
Immune Network). Each network element corresponds to a
B-cell composed of an antibody (e.g. an attribute string in
an Euclidean shape-space), a stimulation level and a re-
cord of the number of resources held. A resource allocation
mechanism is used to control B-cell population and will be
discussed later. The network antibodies are initialized by
randomly taking a sub-section of the input patterns (Ag),
and the stimulation level and record of resources are all
initialized with zero.

The next stage is the presentation of the antigenic
patterns. Each pattern is presented to each network cell
and the stimulation level si is determined after presenting
all antigens to the cell i, according to Eq. (9).

si ¼
X

M

j¼1

ð1� Di; jÞ þ
X

n

k¼1

ð1� Di;kÞ �
X

n

k¼1

Di;k ð9Þ

where M is the number of antigens, n is the number of
connected B-cells, Di,j is the Euclidean distance (Eq. 1)
between each antigen j and the B-cell i, and Di,k is the
Euclidean distance between the cell i and a B-cell k to
which it is connected. Note that (1� Di;j) corresponds to
the affinity of a B-cell with antigens or other B-cells in the
network. In this case, affinity is inversely proportional to
distance.

The stimulation level determines which cells are se-
lected for expansion (clonal expansion) and which cells are
removed from the network (metadynamics). In order to
decide which cells are to be maintained within the net-
work, a resource allocation mechanism is employed. There
are a predefined maximum number of resources in the
network, for which each B-cell must compete. Each B-cell
is allocated a number of resources in proportion to its
stimulation level: the higher the stimulation level, the
higher the number of resources allocated. If the number of
resources allocated is greater than the maximum number
allowed, then the B-cells that hold the least number of
resources are removed from the network. This is repeated
until the number of resources allocated is less than or
equal to the maximum number allowed.

Some of the remaining network cells will be selected for
clonal expansion based upon their stimulation level: the
higher the stimulation the higher the probability of
cloning. Those cells selected for cloning also reproduce
in proportion to their stimulation level: the higher the
stimulation level the higher the number of clones to be
produced.

Affinity maturation allows selected network cells to
adapt their antibodies to the antigenic pattern presented.
Each antibody is mutated inversely proportional to its
B-cell stimulation level: the higher the stimulation the
lower the mutation rate. Finally, the mutated clones are

matched against all network cells and their affinity is
calculated. If their affinity falls below a given threshold,
they are linked together.

These processes are repeated until either a fixed number
of iterations is performed, or the network reaches a period
of stability, i.e. the number of network B-cells remains
constant over a given period of time.

The network learning algorithm can be summarized as
follows:

1. Initialization: create an initial network out of a
sub-section of the antigens;

2. Antigenic presentation: for each antigenic pattern, do:
2.1. Clonal selection and network interactions: for

each network cell, determine its stimulation level
according to Eq. (9);

2.2. Metadynamics: eliminate network cells with low
stimulation level via the resource allocation
mechanism;

2.3. Clonal expansion: select the most stimulated
network cells and reproduce them proportionally
to their stimulation;

2.4. Somatic hypermutation: mutate each clone in-
versely proportional to its stimulation level;

2.5. Network construction: select mutated clones to
incorporate into the network;

3. Cycle: Repeat step 2 until a stopping criterion is met.

3.3.2.2
aiNet
In the immune network learning algorithm proposed by
(de Castro and Von Zuben, 2000b), named aiNet (Artificial
Immune Network), the network is initialized with a small
number of elements randomly generated. Each network
element corresponds to an antibody molecule, i.e an
attribute string represented in an Euclidean shape-space.

The next stage is the presentation of the antigenic
patterns. Each pattern is presented to each network cell
and their affinity is determined according to Eq. (1).
A number of high affinity antibodies are selected and
reproduced (clonal expansion) according to their affinity:
the higher the affinity, the higher the number of clones to
be produced. The clones generated undergo somatic mu-
tation inversely proportional to their antigenic affinity: the
higher the affinity, the lower the mutation rate. A number
of high affinity clones is selected to be maintained in the
network, constituting what is defined as a clonal memory.

The affinity between all remaining antibodies is deter-
mined. Those antibodies whose affinity is less than a given
threshold are eliminated from the network (clonal sup-
pression). All antibodies whose affinity with the antigen is
less than a given threshold are also eliminated from the
network. Additionally, a number of new randomly
generated antibodies are incorporated into the network
(metadynamics).

The remaining antibodies are incorporated into the
network, and their affinity with the existing antibodies is
determined. All but one antibody whose affinity is less
than a given threshold are eliminated.

The aiNet learning algorithm can be summarized as
follows:
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1. Initialization: create an initial random population of
network antibodies;

2. Antigenic presentation: for each antigenic pattern, do:
2.1. Clonal selection and expansion: for each network

element, determine its affinity with the antigen
presented. Select a number of high affinity
elements and reproduce (clone) them propor-
tionally to their affinity;

2.2. Affinity maturation: mutate each clone inversely
proportional to affinity. Re-select a number of
highest affinity clones and place them into a
clonal memory set;

2.3. Clonal interactions: determine the network
interactions (affinity) among all the elements of
the clonal memory set;

2.4. Clonal suppression: eliminate those memory
clones whose affinity is less than a pre-specified
threshold;

2.5. Metadynamics: eliminate all memory clones
whose affinity with the antigen is less than a pre-
defined threshold;

2.6. Network construction: incorporate the remaining
clones of the clonal memory with all network
antibodies;

2.7. Network interactions: determine the similarity
between each pair of network antibodies;

2.8. Network suppression: eliminate all network
antibodies whose affinity is less than a
pre-specified threshold;

3. Cycle: repeat steps 2 to 4 until a pre-specified number of
iterations is reached.

Comparison of the discrete immune network models
Although both algorithms may seem rather similar, there
are major differences between them in several levels, such
as basic network element, immune network interactions,
population control mechanism, and interpretation.

In RAIN, the basic element is a B-cell comprised of an
antibody attribute string, a stimulation level and a re-
source allocation indicator, whereas in aiNet the basic
element is primarily an antibody attribute string. However,
the same way that the stimulation level is part of a B-cell in
RAIN, the antibody affinity with antigens and other
antibodies could also be viewed as parameters contained
within a B-cell in aiNet.

To determine the stimulation level of each network
B-cell, RAIN employs a difference equation version of the
differential equation proposed by Farmer and collabora-
tors (Eq. 8). This stimulation level takes into account
antigenic stimulation and network interactions, thus
dictating B-cell survival and reproduction. Similarly, aiNet
uses an affinity measure to quantify the degree of antigenic
recognition and the degree of interaction with other net-
work antibodies. However, this is performed in different
time scales during learning, and not combined into a
single equation as in RAIN.

To prevent an exponential growth of the network
population, both algorithms employ a population control
strategy. In RAIN, a resource allocation mechanism
encourages highly stimulated B-cells to survive in the

network. This promotes the control of the network size and
the creation of a representative internal image of the
antigenic universe. In contrast, aiNet attempts to reduce
redundancy by eliminating similar antibodies, based upon
their degree of similarity (affinity) with other network
antibodies. This has the effect of controlling the population
size.

Finally, what network results from the learning
algorithm? The RAIN learning algorithm produces a
topological representation of the antigenic patterns. This
allows the identification of important features contained
within the antigenic universe, such as clusters and inter-
relationships between data items. A special tool has been
designed to visualize the network structure (Timmis, 2001).
In aiNet, a reduced discrete set of antibodies is constructed
so as to follow the spatial distribution of the antigenic uni-
verse. In order to interpret the resultant aiNet various graph
concepts and hierarchical clustering techniques can be
utilized (de Castro and Von Zuben, 2001d), such as
minimum spanning trees and dendrograms.

As general comments for both learning algorithms, it is
important to note that these networks also follow the same
structure as the continuous networks. The behavior of the
population of network cells is a function of the antigenic
and network interactions, added to the metadynamics ef-
fects, i.e. influx of new elements and death of unstimulated
ones. In addition, although both algorithms were origi-
nally implemented using real-valued vectors in an Eu-
clidean shape-space, they are not necessarily restricted to
this shape-space.

3.4
An overview of the framework
The framework to design artificial immune systems was
inspired by the design methods used in other biologically
motivated computing paradigms such as neural networks
and evolutionary algorithms. The framework has reviewed
and expanded a scheme to create abstract models of the
immune cells and molecules. A set of functions can be
employed to quantify the interactions of these cells and
molecules. Finally, immune algorithms can be employed to
govern the dynamics of the AIS, i.e. the behavior along
time of the cells and molecules composing the system.
Given this framework, the design of an AIS is straight-
forward.

1. Choose suitable shape-spaces and affinity measures.
These are usually problem dependent or determined
according to some heuristics.

2. Apply any of the algorithms described (or a new one) to
determine how the system is going to behave over time.

Table 1 summarizes all the parts of the framework
stressing their main features and rationale.

The four types of immune algorithms (clonal and
negative selection, and continuous and discrete network
models) have some (but are not restricted to) main
domains of application:

� Clonal selection: pattern recognition and optimization;
� Negative selection: anomaly and fault detection;
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� Continuous immune network models: control, robotics,
optimization and pattern recognition;

� Discrete immune network models: pattern recognition,
data analysis, machine learning and optimization.

4
AIS in context with other SC approaches
The previous section has proposed a simple framework for
the design of artificial immune systems. A selected number
of existing algorithms (the most widely used ones) with
broad application domains were selected to compose this
framework. Now that a definition and outline for these AIS
has been proposed, it is possible to describe some simi-
larities and differences between artificial immune systems,
artificial neural networks, evolutionary algorithms and
fuzzy systems. It is assumed that the reader is familiar with
the already established soft computing strategies. For good
textbooks, please refer to Haykin (1999), Bäck et al.
(2000a b), and Pedrycz and Gomide (1998).

The focus of this section will be on the basic elements
of the framework:

� Representation: what are the main features that char-
acterize an element of a given system and how it differs
from the other paradigms;

� Functions: what kind of function governs the interac-
tions of the elements of the system with each other and
the environment;

� Algorithms: which paradigm governs the adaptation of
each strategy, such as evolution, learning and rules of
inference.

In population-based AIS, attribute strings represent cells
and molecules in a shape-space. In network-based AIS, in
addition to the attribute strings, there are connections
among network cells and molecules, and other parameters,
such as affinity with other cells and stimulation level
measures. Neural networks have artificial neurons
typically composed of an activation function, connection

strengths and activation thresholds. These artificial
neurons constitute mathematical models of the biological
neurons, which perform the inner product of a vector of
inputs and the neuron weight vector, and then apply an
activation function to this product in order to produce the
neuron output. Note that in population-based AIS, the
immune cells are basically discrete elements responsible
for storing information about the environment. However,
in network-based AIS, the immune cells are information
processors that determine the affinity with self and nonself
antigens (based upon an affinity measure). Evolutionary
algorithms are composed of strings representing individ-
ual chromosomes. In essence, there is no difference be-
tween a chromosome in an EA and an attribute string in a
population-based AIS. Fuzzy systems are composed of
fuzzy numbers and/or sets characterized by membership
functions of linguistic variables mapping elements from
one domain, space or universe of discourse, into a unitary
interval.

Within artificial immune systems, there are basically
two types of functions employed to quantify the interac-
tions of individual cells and molecules: fitness and affinity
functions. Fitness functions are used when the quality of
the elements of the AIS is evaluated in tasks that do not
involve comparing them with other elements, in this latter
case an affinity function is used. It means that, for exam-
ple, in pattern recognition applications where an immune
cell is compared with another attribute string in order to
evaluate their degree of interaction (similarity or differ-
ence), an affinity measure (such as Eqs. (1)–(3)) is used.
Evolutionary algorithms typically have a fitness function
that evaluates the quality of each individual of the popu-
lation in relation to the environment. The structure of a
fuzzy system is in most cases based upon a discrete set of
membership functions for the linguistic variables, and
fuzzy rules that determine the relations of the variables.
A set of norms is used to compute with the fuzzy rules
and numbers.

Table 1. The components of the framework, their main features and rationale

Framework Main Features Rationale

Shape-space A space of attribute strings that correspond
to the shapes of cells and molecules

Abstract representation scheme for the immune
cells and molecules

Bone marrow models Processes of generating or concatenating
attributes into a string

Generation of cells and molecules in a shape-space

Clonal selection Evolutionary-like procedure of adaptation in
which selection, reproduction and mutation
are proportional to affinity

Governs the interactions of the immune cells
and molecules when presented with a nonself
antigen

Affinity maturation Mutation process followed by selection and
responsible for improving the affinities of
cell receptors

Describes how to the elements of the AIS adapt
themselves, i.e. alter their attribute strings

Negative selection Iterative process of comparing (matching) strings Generates a set of detectors that does not recognize
the self antigens

Continuous network Set(s) of coupled differential equations usually
containing terms that account for nonself
antigens and the elimination and introduction
of new elements

Governs the interaction of immune cells with each
other and nonself antigens

Discrete network Iterative procedure of adaptation that accounts
for nonself antigens and the elimination
and introduction of new elements

Governs the interactions of immune cells with each
other and nonself antigens
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Adaptation in artificial immune systems may involve
different paradigms such as learning and/or evolution.
Population-based AIS usually have an evolutionary-like
type of adaptation. Immune network models by contrast,
might present a mixture of evolution and (un)supervised
learning in their adaptation algorithms. Most neural net-
works have a learning algorithm (e.g. Hebb rule or back-
propagation of errors) or rule (e.g. pseudo-inverse method
in discrete Hopfield (1984) networks) falling into one of
three major paradigms: supervised, unsupervised and re-
inforcement learning. In fuzzy reasoning, the fuzzy rules
fired by a given input stimulus are aggregated by a com-
positional rule in order to infer an output. The environ-
ment might be represented by a crisp or a fuzzy number
that is going to activate (fire) one or more fuzzy rule.

5
A survey of hybrid models
Soft computing is mainly concerned with the integration
of computational intelligence paradigms in order to create
hybrids with the benefit of combining different paradigms.
After introducing the field of artificial immune systems
and discussing similarities and differences between AIS
and the other approaches, the focus now turns into a
survey of the works from the literature that propose
hybrids of AIS with artificial neural networks (ANN),
evolutionary algorithms (EA) and fuzzy systems (FS).
For a broader theoretical comparison of these paradigms
with AIS, please refer to de Castro and Timmis, (2002a).

Generally speaking, ANN, EA and FS have a great
potential to interact with artificial immune systems. The
majority of the works that are described in the literature
trying to integrate one or more of these soft computing
paradigms with AIS, involve artificial neural and immune
network models, or immune and evolutionary algorithms.
The review focuses on how the strategies benefit from the
integration.

5.1
Artificial immune systems and artificial neural networks
Trades-off between the immune and the nervous systems
date back from the early days of theoretical immunology.
However, the proposal of the immune network theory by
Jerne in 1974 stimulated several researchers to look into
both systems and to try and trace new parallels between
them. As a natural outcome of this interdisciplinary re-
search, immune network models have been used as novel
approaches for the development and improvement of
neural network models and vice-versa.

In Dasgupta (1997), the author performed one of the first
attempts at comparing AIS with ANN models. However, the
main focus of this work was on the biological nervous and
immune systems. A further attempt was undertaken by
de Castro and Von Zuben (2001a) where the authors
compared their artificial immune network model (aiNet)
with ANNs, focusing self-organizing neural networks.

Hoffmann (1986) and Hoffmann et al. (1986) used the
analogy between the immune network theory and the
central nervous system to formulate a neural network
model. The immune system was viewed as an L-dimen-
sional system containing a very large number of singular

points representing attractors. Learning in this system
corresponded to altering the strength of the stimuli being
presented to the network, with the connection strengths
among cells being kept fixed. This approach is in contrast
with the traditional artificial neural networks, in which the
weight vectors are adapted to the input data.

The works of Vertosick and Kelly (1989, 1991) proposed
that the immune system might represent an alternative
paradigm in which to search for neural network archi-
tectures. Based on the Parallel Distributed Processing
(PDP) theory (Rumelhart et al., 1986), they tried to map
the immune network theory into a PDP immune network.
No learning algorithm was explicitly presented, though the
authors strongly suggested that the learning behavior of
the immune system is unsupervised.

Based on the immune metadynamics, i.e. the capability
of recruiting new cells and molecules into the system and
disposing the not useful ones, Abbattista et al. (1996) de-
veloped a discrete associative network. This mechanism
was used to define a population of points in a Hamming
shape-space. The best points of this population were taken
as the attractors representing the network memories. As in
the discrete Hopfield network case, this algorithm was
composed of a learning (storing) phase and a recall phase.

In de Castro and Von Zuben (2002), the authors de-
veloped a growing Boolean competitive network based on
the clonal selection and affinity maturation principles of
the immune system. The main features of the proposed
algorithm are competitive learning, automatic generation
of the network with growing and pruning phases, and
binary representation of the connection strengths in a
Hamming shape-space. The weight updating procedure is
a guided mutation search that simulates the affinity mat-
uration process of the antibody repertoire, such that the
weights (antibodies) become a more perfect complement
of the antigens to be recognized.

An approach to develop a simulated annealing algo-
rithm (Kirkpatrick et al., 1987) based on the immune
metaphor was proposed by de Castro and Von Zuben
(2003). This was applied to the problem of initializing
multilayer feedforward neural networks trained using an
error backpropagation algorithm. The authors argued that
the correlation between the quality of the initial network
weights and the quality of the network output could be
likened to the quality of the initial antibody repertoire and
the quality of the immune response. The authors extracted
the metaphors of creating antibody diversity using the idea
of an Euclidean shape-space. They proposed an algorithm
capable of generating a set of initial weight vectors diverse
enough to reduce the likelihood of the feedforward neural
network to converge to a local optimum.

The immune network model called aiNet described
previously was used by de Castro and Von Zuben (2001c)
to implement an unsupervised approach to determine the
number and position of radial basis functions to be used in
RBF neural networks. The main goals of the algorithm
were to cluster and filter unlabeled numerical data sets.
The authors employed an Euclidean shape-space to
represent the molecules. Here an antibody corresponded
to a candidate center for the RBF neural network and
an antigen was equivalent to an input pattern.
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5.2
Artificial immune systems and evolutionary algorithms
A great number of the AIS currently developed can be
characterized as having an adaptation akin to an evolu-
tionary algorithm. This section describes those works that
explicitly take into account an evolutionary algorithm as
part of its processing or which combines it with an AIS in
order to improve individual performances. The focus will
be given to artificial immune systems that account for the
formation of niches, species and diverse populations
(basically those applied to multimodal function optimi-
zation), and to the ones that integrate with a genetic
algorithm (GA) or a genetic programming (GP) approach.

A binary immune system model was used by Forrest
et al. (1993) in order to study pattern recognition and
learning in artificial immune systems. A genetic algorithm
was used to study the maintenance of diversity and gen-
eralization capability of an AIS. In this case, generalization
means the detection of common schemas that are shared
among many antigens. Population diversity in contrast,
corresponds to a set of individuals capable of broadly
covering the affinity landscape. The authors used a simple
binary Hamming shape-space to represent the molecules
and the Hamming distance as the affinity measure.

Hightower et al. (1995) studied the effects of evolution
on the genetic encoding for antibody molecules and the
application of an evolutionary algorithm to the production
of initial repertoires of cells and molecules for AIS. They
used a bone marrow model similar to the one described in
Sect. 3.1. For further works in this area see Perelson et al.
(1996), and Oprea and Forrest (1999).

Potter and de Jong (1998) presented an approach for
concept learning in which a co-evolutionary genetic algo-
rithm was used to construct an artificial immune system
whose antibodies were capable of discriminating examples
from counter examples, i.e. self from nonself. They
explored the generality and diversity controlling
mechanisms of their AIS.

Hajela and Yoo (1999) proposed that the immune sys-
tem capabilities of performing pattern (schema) recogni-
tion and adaptation could be used advantageously to
improve the performance of genetic algorithms in struc-
tural optimization problems. Their work focused on two
aspects: using the immune system capabilities to enhance
the convergence of a GA approach, and handling the
design of constraints in the GA-based optimization.

Hart and Ross (1999) investigated whether an AIS could
be evolved using a genetic algorithm and then be used to
produce sets of schedules, which collectively cover a range
of contingencies, both predictable and unpredictable.
Their model included evolution through gene libraries,
affinity maturation of the immune response and the clonal
selection principle.

Dasgupta et al. (1999) proposed what they called an
immunogenetic approach to recognize spectra for chemi-
cal analysis. In their approach, a standard genetic algo-
rithm was used to create a library of specialists to perform
the central administration of spectrum recognition.

Nikolaev et al. (1999) introduced an immune version of
Genetic Programming (GP). In this immune-GP version

(iGP), the progressive search was controlled by a dynamic
fitness function, based on an analogy with an immune
network model. The programs were reinforced with re-
wards for matching important examples and stimulated to
match different examples. The fitness function consisted of
two dynamic models that exerted influence on each other:
(1) a model for propagating programs that match more
important examples, and (2) a model for changing the
importance of examples in relation to the number of
programs that recognize it.

5.3
Artificial immune systems and fuzzy systems
In the immune system, antigenic recognition is approxi-
mate, i.e. an immune response can be elicited even when
the binding between an antigen and an antibody is not
perfect; an approximate binding might suffice. Together
with cross-reactivity, these characteristics stress the pres-
ence of ‘‘fuzzyness’’ within the immune systems, suggest-
ing that fuzzy logic might be appropriate to model several
aspects and mechanisms of the immune system. Conse-
quently, fuzzy systems and artificial immune systems may
provide fruitful interactions; will be reviewed in the
following examples.

Krishnakumar et al. (1995) proposed a computational
system employing immune metaphors and other soft
computing techniques. The proposed hybrid system was
composed of combinations of artificial immune systems
with artificial neural networks, fuzzy systems and evolu-
tionary algorithms, according to the problem under study.
This approach was evaluated in a control application. In
this particular case, several elements of the immune sys-
tem were equated to different levels of control strategies.
As examples, the innate immunity was likened to a robust
feedback controller and B-cell activation was compared to
a process capable of modifying parameters of the con-
troller. Immune processes such as affinity maturation were
stressed as important for control, but the approach
focused on parallels between the immune system and
the control problem.

Baldwin (1896) suggested that characteristics learnt or
acquired during the lifetime of an individual could become
part of the genetic makeup of succeeding generations
without Lamarckian inheritance. He argued that the
learning of the acquired useful characteristics increase in-
dividual survival probabilities, even if these characteristics
are not genetically transmitted. Hightower et al. (1996)
used a non-linear (sigmoid) binding function to determine
the binding value between two molecules. The authors ar-
gued that a non-linear function is more plausible from an
immunological perspective and a necessary requirement
for the Baldwin effect to occur while evolving a binary
immune system model using an evolutionary algorithm.

In the works of Lee et al. (1999) and Jun et al. (1999),
the authors used different types of antibodies, each with a
specific task. In those papers, a stimulation level of a given
antibody was a function of its percentage of success in the
execution of a given task, based on a function similar to
the one presented in Fig. 18. This function is typical in
fuzzy systems, where the universe of discourse of a
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variable (in this case the percentage of success) is
partitioned into several intervals, leading to an approxi-
mate representation of the variable under study.

In de Castro and Von Zuben (2001d), the authors
proposed an artificial immune network model to perform
data analysis, in particular data clustering. In this paper,
the representation of clusters by their centroids allowed
them to assign membership levels to each immune net-
work cell in relation to the determined clusters, yielding a
fuzzy clustering scheme. This scheme extended the notion
that each network cell belongs to a single cluster and
associates each cell with every network cluster using a
fuzzy membership function.

6
Trends on the creation of novel hybrid models
The practical application of most of the soft computing
paradigms discussed so far requires the specification of
some features of the algorithms such as model selection
and adaptation parameters.

Model selection corresponds to the definition of a
suitable structure for the system. In neural networks, it
involves basically the definition of the number of con-
nections, neurons and layers to be used in the network.
Evolutionary algorithms usually have a fixed number of
individuals (chromosomes) in the population that has to
be defined a priori. In fuzzy systems, the number of
partitions for each linguistic variable and the fuzzy rules
also have to be set up a priori.

Another important aspect that affects most of the soft
computing approaches, is the necessity to a priori define
some adaptation parameters. In neural networks, para-
meters like learning rates, momentum terms, activation
functions, and neighborhood decaying rates, have to be
defined according to the network type and/or learning
algorithm. In the case of evolutionary algorithms, genetic
variation probabilities, selection and reproduction strate-
gies are part of the user-defined parameters. In fuzzy
systems, different types of membership functions (Gauss-
ian, triangular, trapezoidal, etc.) lead to different perfor-
mances of the algorithm. In addition, several types of
t-norms and s-norms are available for use, and the choice
is in most cases dependent upon the problem under study
or the designers’ preference or expertise.

6.1
What has already been done
The survey presented in the previous section shows that
some of these problems have already been tackled by the

hybrids of AIS with neural networks, evolutionary algo-
rithms and fuzzy systems. Based on this survey, Table 2
summarizes the main outcomes already resulted from the
combination of AIS with each of these approaches
separately.

6.2
Hints on what can still be done
Last but not least it is possible highlight some future
avenues for the integration of AIS with the other soft
computing paradigms.

Evolutionary algorithms have been widely used to
model and parameter selection for other approaches. For
example, they can be used to evolve artificial neural net-
work architectures (Harrald and Kamstra, 1997; Maniezzo,
1994; Friedrich and Moraga, 1996; Opitz and Shavlik,
1997) or to design fuzzy systems (Chan et al., 1997; Shi
et al., 1999; Belarbi and Titel, 2000). Neurofuzzy systems,
i.e. the combination of ANN with fuzzy systems, usually
have the advantage of allowing an easy translation of the
final system into a set of if-then rules, and the fuzzy system
can be viewed as a neural network structure with knowl-
edge distributed throughout connection strengths (Kosko,
1992). Several examples of neurofuzzy systems can be
found in the literature (e.g. Kuo et al., 1993; Kwan and Cai,
1994; Chiang and Gader, 1997; Juang, 2000; Pal et al.,
2000). More complex hybrids, combining fuzzy, neural
and evolutionary algorithms are also available in the lit-
erature (e.g. Krishnakumar et al., 1995; Iyoda et al., 1999).

All these works suggest that evolutionary algorithms
can also be used to search for an adequate model selection

Fig. 18. Function that determines the stimulation level of a given
antibody

Table 2. Integrative benefits shared by AIS, ANN, EA and FS

Integration Outcome

AIS $ ANN • AIS have suggested new ANN models,
architectures and learning algorithms

• AIS provided increased memory capacities for
ANN

• AIS were used to develop new intialization
techniques for ANN

AIS $ EA • EAs provide new definition of intial repertories
for AIS

• EAs have been used to study the evalution of the
genetic encoding of AIS

• AIS were used to enhance GA convergence
• AIS have been used to handle constraints in GAs
• AIS were used to develop co-evolutionary GAs
• AIS have been used to promote and maintain

niches, species and diversity in evolutionary
algorithms

• An immune version of genetic programming was
proposed

AIS $ FS • Fuzzy logic has been used to model approximate
binding in AIS

• FS lead to more biologicaly appealing AIS
algorithms

• A fuzzy binding was used to simulate the
Baldwin effect in AIS

• AIS have provided alternative fuzzy clustering
schemes

• AIS can be used to model selection in FS
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and automatic parameter definition for artificial immune
systems. Also, the integration of fuzzy logic with AIS may
lead to hybrid systems that are more biologically plausible,
that can be expressed in the form of a set of if-then rules,
and that can compute with fuzzy or incomplete informa-
tion. Neural networks can provide alternative learning
algorithms, network architectures, types of cells and non-
linearities for immune networks, and vice-versa.

The problem of model selection in ANN can be dealt
with several approaches, among which constructive (Kwok
and Yeung, 1997; Fritzke, 1994) and pruning strategies
(Reed, 1993; de Castro and Von Zuben, 1999) are the most
common. Evolutionary algorithms with adaptive popula-
tion sizes can also be found in the literature (e.g. Arabas
et al., 1994; Krink et al., 1999). Automatic methods to
define the number of partitions and their respective
positions for linguistic variables in fuzzy systems were
suggested in Caminhas et al. (1995). Strategies to
automatically determine user-defined parameters have
also been implemented in all the SC approaches (e.g. Yu
and Chen, 1997; Lobo, 2000; Angeline, 1995). It is possible
that all these strategies applied to other SC approaches
may shed some light into the solution of the respective
problems in AIS: model selection and automatic determi-
nation of adaptation parameters.

As one last question to be raised ‘How equivalent are
AIS with other computational intelligence and search
methods?, This is an interesting and intriguing matter that
requires exploration far beyond the scope of this paper.
Work can be found in the literature that draws parallels
between evolutionary and gradient-based search strategies
(e.g. Salomon, 1998) and fuzzy logic systems with specific
neural network architectures (e.g. Jang and Sun, 1993;
Hunt et al., 1996; Li and Chen, 2000), suggesting that
similar equivalencies could be made between AIS and
these paradigms. This is still an open question even for the
more established fields of research.

7
Discussion
Artificial immune systems constitute a novel computa-
tional intelligence paradigm inspired by the immune sys-
tem. Like neural networks and evolutionary algorithms,
AIS are highly abstract models of their biological coun-
terparts applied to solve problems in different domain
areas. AIS have also been used in conjunction with other
soft computing paradigms in order to create more
powerful models and improve individual performances,
supporting the claim that they compose a new and very
useful soft computing approach.

This paper explored several aspects of artificial immune
systems. It first presented a brief introduction to the
vertebrate immune system in order to provide the reader
with the necessary biological background to understand,
develop, implement and hybridize AIS. The second main
contribution of this paper was the proposal of a general
framework for designing AIS. To develop this framework,
we were inspired by the basic design principles of other
soft computing approaches motivated by biology, such as
neural networks and evolutionary algorithms. Under this
perspective, the framework is conceptually simple: it is

composed of a formal methodology to represent the
components of the system, a set of functions that evaluate
the quality of each of these components in a given envi-
ronment, and a set of algorithms that govern the overall
behavior of the system. Each of these three layers of the
framework was described, and the role played by all of
them summarized in a single section. It is hoped that this
framework sheds some light into the development and
understanding of AIS.

The paper followed with a conceptual comparison of
AIS with artificial neural networks, evolutionary algo-
rithms and fuzzy systems. This comparison was made
based upon the framework proposed, i.e. what is the basic
representation, functions and algorithms involved in each
paradigm, and how they differ from each other. There then
followed a survey of works from the literature that hy-
bridize AIS with all the other approaches, and a discussion
of the benefits of this integration was provided. It was
argued that more useful and powerful algorithms have
already arisen and can still arise when two or more of the
different paradigms are hybridized. The main results of
integrating the already established soft computing tech-
niques (ANN, EA and FS) were reviewed, and it was sug-
gested that similar hybridization with AIS could be
performed.
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