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Abstract Troubleshooting is one of the areas where
Bayesian networks are successfully applied [9]. In this
paper we show that the generally defined troubleshooting
task is NP-hard. We propose a heuristic function that
exploits the conditional independence of all actions and
questions given the fault of the device. It can be used as a
lower bound of the expected cost of repair in heuristic
algorithms searching an optimal troubleshooting strategy.
In the paper we describe two such algorithms: the depth
first search algorithm with pruning and the AO* algorithm.

Keywords Decision-theoretic troubleshooting,
Computational complexity, Bayesian networks

1
Introduction
We model the troubleshooting problem with a Bayesian
network encoding relations among the following variables:
faults of the device F 2 F, actions A 2 A – trouble-
shooting steps that may fix the problem, and questions
Q 2 Q – troubleshooting steps that help to identify the
fault. Every action and question has a cost assigned, cA

denotes the cost of an action A and cQ the cost of a
question Q. When there is no risk of confusion we will
abbreviate cAi

to ci. Before we introduce formal definitions
we will start with a simple example.

1.1
Light print example
Suppose a printer prints a page that is too light. The pos-
sible printer faults in the case of a light print problem are
listed in Table 1. Please note, that realistic model of light
print designed by the domain experts invokes 22 faults. Let
us consider a simplified model with four faults only.

There are several actions that may fix these faults
(see Table 2). For example, the action Try another toner

fixes the Distribution problem and Defective toner
with the probability 0.9 (i.e. pðA2 ¼ yes j F1Þ ¼
pðA2 ¼ yes j F2Þ ¼ 0:9), but it does not fix Wrong driver
setting at all, i.e. pðA2 ¼ yes j F4Þ ¼ 0.

Generally, for every action an expert provides us with a
table pðAi ¼ yes j FjÞ. The conditional probability table of
pðA2 ¼ yes j FjÞ is defined in Table 3.

During the troubleshooting session it is often advisable
to ask the user to answer some questions. The answers
may help fix the problem faster by identifying the device
fault. For instance if the answer to question Q1: Is the
configuration page printed light? is negative then the faults:
Distribution problem and Defective toner are eliminated
and the remaining faults are Corrupt data flow and Wrong
driver setting. Generally, we have a table pðQi ¼ yes j FjÞ
for every question Qi. See Table 3 for the definition of the
conditional probability table of pðQ1 ¼ yes j FjÞ. Actions
and questions are conditionally independent if for each
Ai 2 A;Qk 2 Q

pðAijFÞ ¼ pðAijF;VÞ for any V � ðA [ QÞ n fAig
pðQkjFÞ ¼ pðQkjF;UÞ for any U � ðA [ QÞ n fQkg :

When there is only one fault causing a device malfunction
at a time then it is often referred to as the single fault
assumption. The Bayesian network in Fig. 1 reflects both
assumptions.

There are many possible troubleshooting strategies. For
example, first try action A3 : Cycle power and then stop
troubleshooting. Another strategy is: A3 : Cycle power and
if this is unsuccessful, A2 : Try another toner. A third
strategy may require the user first to answer question
Q : Is the configuration page printed light? If the answer is
yes, then A1 : Remove shake and reseat toner. If the answer
is no, then try A3 : Cycle power. One criteria for comparing
different strategies is the expected cost of repair (ECR).
Table 4 shows the calculations of ECR for the three
examples presented above, where cAi

is the cost of action
Ai and cCS is a penalty for not solving the problem. Please
note that real life troubleshooting strategies contain
substantially more actions and questions than those
considered here.

1.2
Troubleshooting task specification
If only actions are considered, then every troubleshooting
strategy can be described as a sequence of actions that are
performed until the problem is fixed. When questions are
part of troubleshooting, then the solution of a trouble-
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shooting task need not to be a sequence. For every answer
to a question, a strategy may be to perform different
troubleshooting steps (or the same steps in different
order). Thus a troubleshooting strategy has generally the
form of a directed tree where branching may occur after
every question. Fig. 2 provides an example of such a
troubleshooting strategy.

There are two types of nodes in the tree – chance nodes
and terminal nodes. In Fig. 2 circles are used to denote
chance nodes and the diamonds to denote terminal nodes.
Each chance node n is labeled by the corresponding
troubleshooting step (action or question) provided by
function stepðnÞ. An example is stepðaÞ ¼ Q1 in Fig. 2.
Every edge coming out from a chance node is labeled by an
outcome of the troubleshooting step corresponding to that

node, outcomeðedgeÞ will denote the function that provides
the edge labels.

A troubleshooting strategy terminates in terminal
nodes. There are two ways for a troubleshooting strategy to
terminate, either by fixing the problem or by giving up.
Thereupon two types of terminal nodes are defined: (1)
Success terminal nodes correspond to fixing the problem.
(2) Failure terminal nodes correspond to giving up the
troubleshooting. In Fig. 2 the success terminal nodes are
shaded while failure terminal nodes are not.

Troubleshooting strategy is a labeled directed tree that
describes the process of performing actions and questions
until the process terminates. The set of all terminal nodes
of a strategy s will be denoted by LðsÞ. Please note that all
leaves of a troubleshooting strategy are terminal nodes.
The root node of all strategies will be denoted #.

Let pathðn1; nkÞ be sequence of edges ni ! niþ1ð Þk�1
i¼1

constituting the path from node n1 to node nk in the
troubleshooting strategy and

en ¼
[

edge2pathð#;nÞ
outcomeðedgeÞ

define the evidence compiled through the performance of
actions and questions in pathð#; nÞ. Further let pðen j emÞ
for em � en denote conditional probability of evidence en

given evidence em, i.e. the probability of getting to node n

Table 3. Conditional probability tables

Fj pðA2 ¼ yes j FjÞ Fj pðQ1 ¼ yes j FjÞ

F1 0.9 F1 1
F2 0.9 F2 1
F3 0 F3 0
F4 0 F4 0

Table 1. Possible faults in the case of light print

Fault pðFiÞ

F1: Distribution problem 0.4
F2: Defective toner 0.3
F3: Corrupted dataflow 0.2
F4: Wrong driver setting 0.1

Table 2. Actions and one question in the light print example

Actions and questions ci

A1: Remove, shake and reseat toner 5
A2: Try another toner 15
A3: Cycle power 1
Q1: Is the configuration page printed light? 2

Table 4. ECR calculations

Strategy ECR

A3
cA3

þ pðA3 ¼ noÞ � cCS

cA3
þ pðA3 ¼ noÞ � cA2A3;A2

þ pðA2 ¼ no;A3 ¼ noÞ � cCS

cQ þ pðQ ¼ yesÞ � cA1

þ pðA1 ¼ no;Q ¼ yesÞ � cCS

Q
A1

A3

�
þ pðQ ¼ noÞ � cA3

þ pðA3 ¼ no;Q ¼ noÞ � cCS

Fig. 1. Bayesian network model

Fig. 2. Troubleshooting strategy
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from node m. Please note that since e# ¼ ;, the probability
of getting to node n from the root is pðenÞ. Finally let the
total cost of actions and questions corresponding to a
pathðn1; nkÞ be tðn1; nkÞ ¼

Pk�1
‘¼1 cstepðn‘Þ. As an example, in

Fig. 2, the evidence corresponding to node b labeled by A1

is Q1 ¼ no, the probability of getting there is pðQ1 ¼ noÞ,
and the total cost of getting there is cQ1

.
A penalty function cðe‘Þ applies for every terminal node

‘. The penalty is defined to be zero if the problem is fixed,
i.e. for all success terminal nodes. The penalty may be
interpreted as a cost of calling service. If the penalty is
constant for all failure terminal nodes then it will be
denoted by cCS. Next, we shall define the expected cost
of repair of a troubleshooting strategy.

Definition 1 Expected cost of repair (ECR) of a trouble-
shooting strategy s is defined as

ECRðsÞ ¼
X

‘2LðsÞ
pðe‘Þ � tð#; ‘Þ þ cðe‘Þð Þ: ð1Þ

Remark 1 If troubleshooting strategy s is a sequence of
actions A1;A2; . . . ;An and the penalty is constant cCS then
ECR of strategy s can be computed by

ECRðsÞ¼ pðA1 ¼ yesÞ � c1

þpðA1 ¼ no;A2 ¼ yesÞ � ðc1 þ c2Þþ �� �

þpðA1 ¼ no; . . . ;An�1 ¼ no;An ¼ yesÞ �
Xn

i¼1

cAi

þpðA1 ¼ no; . . . ;An ¼ noÞ �
Xn

i¼1

cAi
þ cCS

 !

¼ c1 þ
Xn

i¼2

pðA1 ¼ no; . . . ;Ai�1 ¼ noÞ � ci

þpðA1 ¼ no; . . . ;An ¼ noÞ � cCS ð2Þ
For a strategy s and a node m of this strategy, let symbol

sm denote a sub-strategy of s such that m is the root of sm

and all successors of m in s are also contained in sm. Please
note that s ¼ s#.

It will be useful to have Definition 1 generalized so
that the expected cost of repair of a troubleshooting
sub-strategy sm given an evidence em corresponding to root
m of sm is defined. It can be further extended to the case
where an additional evidence e0; e0 \ em ¼ ; is compiled.
Please observe that for m ¼ # and e0 ¼ ; we get
Definition 1.

Definition 2 Let e0; e0 \ em ¼ ; correspond to additional
evidence. Expected cost of repair of a troubleshooting sub-
strategy sm given the evidence e ¼ em [ e0 is defined as

ECRðsm j eÞ ¼
X

‘2LðsmÞ
pðe‘ j eÞ � tðm; ‘Þ þ cðe‘Þð Þ: ð3Þ

Remark 2 Definition 2 allows a troubleshooting step S to
be part of e‘ and e at the same time. However when
searching a strategy minimizing ECR we can exclude such

strategies. Assume fS ¼ o1g 2 e‘ and fS ¼ o2g 2 e.
If o1 ¼ o2 then pðe‘ j eÞ ¼ pðe‘ n fS ¼ o1g j eÞ else
pðe‘ j eÞ ¼ 0. If cS > 0 then no strategy sm containing S can
minimize ECRðsm j eÞ since it can be improved by a
strategy with S excluded.

The following lemma provides directions for a recursive
computation of ECR.

Lemma 1 If e � em, then ECRðsm j eÞ can be computed by
the following recurrent formula:

– If m is a terminal node, then ECRðsm j eÞ ¼ cðeÞ.
– If m is a chance node corresponding to a trouble-

shooting step S (i.e. S is either a question or an ac-
tion) with outcomes s1; s2; . . . ; sr and m1, m2; . . . ;mr

are children of node m, then

ECRðsm j eÞ ¼

cS þ
Xr

i¼1

pðS ¼ si j eÞ � ECRðsmi
j e [ S ¼ siÞ : ð4Þ

The lemma is simple to prove using induction over the tree
structure of a troubleshooting strategy (starting from the
leaves of strategy s).

An optimal strategy given evidence e will be denoted by
s?ðeÞ. Please note that the order in which the previous
troubleshooting steps are performed (so that an evidence e

is achieved) has no impact on the optimal strategy s?ðeÞ.
We will abbreviate ECRðs?ðeÞ j eÞ to ECR?ðeÞ. If e ¼ ;, then
we will simply write s?.

Definition 3 The troubleshooting task is to find a trou-
bleshooting strategy s? such that for all possible strategies
s it holds that ECRðs?Þ � ECRðsÞ:

1.3
Various setups of troubleshooting
It is often reasonable to assume that, if the device is
malfunctioning, then there is only one fault in the device
(single fault assumption) [3]. Otherwise the situation is
referred to as multiple faults. When the faults are inde-
pendent, i.e. p3ðF1; . . . ; FjFjÞ ¼

Q
Fi2F pðFiÞ, we speak

about independent faults [10]. A solution of the trouble-
shooting task can be easily found in the case of indepen-
dent actions, that is in the situations when (1) every action
fixes just one fault and (2) all actions are pairwise
independent.

In the case of independent actions with single fault
assumption it suffices to order actions decreasingly
according to the ratio pðAi¼yesÞ

cAi
(see [5]). In the case of

independent actions with independent faults an ordering
according to pðAi¼yesÞ

cAi
�ð1�pðAi¼yesÞÞ leads to an optimal

sequence [10].
The task becomes harder if some actions fix more

than one fault. This case is referred to as dependent
actions. In any case we assume that all actions and
questions are pairwise independent given the faults.
Please note that these assumptions can be expressed by
different Bayesian network structures. The single fault
assumption leads to a model with one single root node,
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the problem node, having all faults as its states (see
Fig. 1), while the model of independent faults omits the
problem node.

In the next section we shall analyze the complexity of
troubleshooting. We will prove the NP-hardness of general
troubleshooting with dependent actions under either the
single fault assumption, or the independent faults
assumption. If every action fixes at most two faults, we
conjecture the troubleshooting is also NP-hard even if we
show a polynomially solvable special case.

2
Complexity of troubleshooting
To prove that the troubleshooting with dependent actions
is NP-hard we reduce the exact cover by 3-sets to
troubleshooting.

Exact cover by 3-sets: We are given a family
S ¼ fS1; . . . ; Sng of subsets of a set U, such that jUj ¼ 3m
for any integer m, and jSij ¼ 3 for all i. We are asked if
there are m sets in S that are disjoint and have U as their
union. The proof of NP-completeness can be found in a
number of works, including [6].

2.1
Reduction
Let us have an exact cover by 3-sets input hS;Ui. We
construct a troubleshooting task as follows:

– For each element i in U we construct a fault Fi in the
troubleshooter.

– For each set Si 2 S we assign Fi , a set of faults
corresponding to the elements of Si. We construct an
action Ai that solves faults in Fi with probability 1 and
others with probability 0.

– All faults are equally probable; the probability of any
fault is pðFiÞ ¼ 1

3�m.
– All actions have cost 1.
– The cost of the Call Service action CS is high enough to

ensure it is not used in any good strategy. We set it to
cCS ¼ 3 � m � ðm þ 1Þ. We will see later that this is high
enough.

2.2
Single fault
We aim to prove that the exact cover by 3-sets exists if and
only if there is a troubleshooting sequence s with
ECRðsÞ � mþ1

2 . We have to prove three lemmas.

Lemma 2 (Basic properties) For any r, 1 < r � 3m,
and any r faults F1; . . . ; Fr, the single fault assumption
implies

pðF1 ¼ yes _ . . . _ Fr ¼ yesÞ ¼
Xr

i¼1

pðFi ¼ yesÞ ¼ r

3m
;

therefore
pðF1 ¼ no; . . . ; Fr ¼ noÞ ¼ 1 �

Pr
i¼1 pðFi ¼ yesÞ ¼ 3m�r

3m .
Since pðAi j Fj 2 FiÞ ¼ 1 we have

pðA1 ¼ no; . . . ;Ar ¼ noÞ ¼ 1 �
X

F2[r
i¼1

Fi

pðF ¼ yesÞ

¼ 1 � j
Sr

i¼1 Fij
3m

: ð5Þ

The proof comes from the basic probability calculus.

Lemma 3 If we have an exact cover by 3-sets
V ¼ fSj1

; . . . ; Sjm
g, then the corresponding action sequence

Aj1
; . . . ;Ajm

(in any order) has

ECRðAj1
; . . . ;Ajm

Þ ¼ m þ 1

2
:

Proof:
No two actions solve the same fault and each action solves 3

faults, therefore
j[r

i¼1
Fji

j
3m ¼ 3r

3m. Substituting this to (5) we get:

pðAj1 ¼ no; . . . ;Ajr ¼ noÞ ¼ 1 � 3r

3m
¼ m � r

m

Now we calculate the ECR using formula 2 (the penalty
does not apply since the sequence of actions is certain to
solve the problem):

ECRðAj1
; . . . ;Ajm

Þ ¼
Xm

i¼1

pðAj1
¼ no; . . . ;Ajði�1Þ ¼ noÞ � ci :

Please, recall that all actions have cost 1. Therefore:

ECRðAj1
; . . . ;Ajm

Þ ¼
Xm

i¼1

m � ði � 1Þ
m

	 

� 1

¼ðm þ 1Þ � m

2 � m
¼ m þ 1

2
:

Lemma 4 If we have a troubleshooting sequence s solving
the troubleshooting task defined by reduction 2.1, then
ECRðsÞ � mþ1

2 . If there exists an action Ab addressing only
two or fewer unsolved faults (i.e. violating the disjunction
of the corresponding 3-sets) then the value of
ECRðA1; . . . ;Ab; . . . ;ArÞ, is strictly greater than mþ1

2 .

Proof. If a strategy s ¼ ðA1; . . . ;Ar;CSÞ contains a call
service action at the end, then at least one fault F was not
addressed since all addressed faults are solved with
probability 1. Therefore:

ECRðsÞ � pðA1 ¼ no; . . . ;Ar ¼ noÞ � cCS

� pðFÞ � cCS ¼ 1

3m
� 3mðm þ 1Þ >

m þ 1

2
:

Thus we may consider only sequences that are certain to
solve the problem without calling the service.

The probability of taking the first step of trouble-
shooting is 1. Since this step solves at most 3 faults, the
probability of taking the second step is at least
1 � 3

3m ¼ 1 � 1
m. Similarly, the probability of taking the ith

step is at least 1 � ði�1Þ
m . Now we insert these estimates into

the ECR calculation:

360



ECRðA1; . . . ;ArÞ

¼
Xr

i¼1

p A1 ¼ no; . . . ;Ai�1 ¼ noð Þ � ci

�
Xm

i¼1

1 � ði � 1Þ
m

	 

¼ m � 1

m
�
Xm�1

i¼0

i ¼ m þ 1

2
:

If there exists an action Ab solving only two or fewer
faults, we need at least m þ 1 steps to be certain to solve
the problem. The probability of taking the step i, i > b

is greater than or equal to 1 � 2þ3�ði�2Þ
3�m

� �
, so we

conclude:

ECRðA1; . . . ;Ab; . . . ;ArÞ

�
Xb

i¼1

1 � ði � 1Þ
m

	 

þ
Xmþ1

i¼bþ1

1 � 2 þ 3 � ði � 2Þ
3 � m

	 


� m þ 1

2
þ 1

3m
þ 1

3
� b

3m

	 


� m þ 1

2
þ 1

3m
>

m þ 1

2

since m � b.

Theorem 1 Suppose we are given a troubleshooting
problem with dependent actions, single fault assumption,
and a constant K 2 <þ. The decision whether there exists
a troubleshooting sequence s with ECRðsÞ � K is a
NP-complete problem1.

Proof. The problem is nondeterministically polynomial
(NP): Let the computation starts nondeterministically on
any possible sequence s. We calculate ECRðsÞ and compare
whether ECRðsÞ � K. To calculate ECRðsÞ of a sequence is
polynomial time. If at least one computation finds
ECRðsÞ � K then we have a required strategy, otherwise
one does not exist.

To prove the problem is NP-hard we reduce the exact
cover by 3-sets to troubleshooting. Lemmas 3 and 4 show
us that there exists a troubleshooting sequence with
ECRðsÞ � mþ1

2 if and only if there exists an exact cover by
3-sets. Exact cover is a well known NP-hard problem so the
troubleshooting is also NP-hard.

2.3
Independent faults
If we consider that more faults can occur simultaneously,
we must define a model of their dependencies. The sim-
plest model is to assume the faults to be independent. As
compared to troubleshooting with single fault assumption,
this leads to different values of expected cost of repair.
On the other hand, the complexity theorems and solution
methods are similar.

We aim to prove the NP-hardness of troubleshooting
with dependent actions and independent faults.

Suppose the probability of any fault being present
equals pðFÞ then the probability that the fault is not
present is pð:FÞ ¼ 1 � pðFÞ.

Troubleshooting is initiated only if there is evidence of
system failure. The probability of system failure is
p0 ¼ pðsystem is faultyÞ ¼ 1 � pð:FÞ3m.

We denote ECRM the expected cost of repair based on
the independent faults assumption. It has different values
from the ECR based on the single fault case.

The lemmas for independent faults look similar to the
lemmas for a single fault.

Lemma 5 If we have an exact cover by 3-sets
V ¼ fSj1

; . . . ; Sjm
g, then the ECRM of the corresponding

action sequence Aj1
; . . . ;Ajm

(in any order) is

ECRM ¼ m

1 � pð:FÞ3m � 1

pð:FÞ�3 � 1
:

Proof. The probability of taking step ðk þ 1Þ is equal to
one minus the probability of all not-checked faults not
being present. Since no two actions solve the same fault
and since in step k exactly 3k faults were checked, 3m � 3k
faults remain. The probability of taking step ðk þ 1Þ given

system failure is 1�pð:FÞ3m�3k

p0
.

ECRMðAj1
; . . . ;Ajm

Þ

¼
Xm

i¼1

pðAj1
¼ no; . . . ;Ajði�1Þ ¼ noÞ � cji

Therefore

ECRMðAj1
; . . . ;Ajm

Þ

¼
Xm�1

k¼0

1 � pð:FÞ3m�3k

p0
� 1

¼ m

p0
� pð:FÞ3m

p0
�
Xm�1

k¼0

pð:FÞ�3k

¼ m

p0
� pð:FÞ3m

p0
� ðpð:FÞ�3Þm � 1

pð:FÞ�3 � 1

¼ m

1 � pð:FÞ3m � 1

pð:FÞ�3 � 1
:

Lemma 6 If we have a troubleshooting sequence s solving
the troubleshooting task defined by reduction 1, then
ECRMðsÞ � m

1�pð:FÞ3m � 1
pð:FÞ�3�1

. If there exists an action Ab

addressing only two or fewer unsolved faults, then
ECRMðA1; . . . ;Ab; . . . ;ArÞ is strictly greater than

m
1�pð:FÞ3m � 1

pð:FÞ�3�1
.

Proof. The probability of taking the first step of trouble-
shooting given a system fault is 1. Since this step solves at
most 3 faults, the probability of taking the second step is at

1 Of course, for K < minfcig or K >
P

ci the solution is trivial.
The theorem says that any general algorithm solving these
problems is NP-hard.
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least 1
p0
ð1 � pð:FÞ3m�3Þ. Similarly, the probability of taking

the ith step is at least 1
p0
ð1 � pð:FÞ3m�3ði�1ÞÞ. Now we insert

these estimates into the ECRM calculation:

ECRMðA1; . . . ;ArÞ

�
Xr

i¼1

p A1 ¼ no; . . . ;Ai�1 ¼ noð Þ � ci

� 1

p0
�
Xm

k¼1

1 � pð:FÞ3m�3ðk�1Þ
� �

� m

1 � pð:FÞ3m � 1

pð:FÞ�3 � 1
:

If there is an action Ab solving only two or fewer faults, we
need at least m þ 1 steps to be certain to solve the prob-
lem. The probability of taking step i, i > b is greater than

or equal to 1
p0
ð1 � pð:FÞ3m�3ði�2Þ�2Þ so we conclude:

ECRMðA1; . . . ;Ab; . . . ;ArÞ

� 1

p0
�

Pb
k¼1 1 � pð:FÞ3m�3ðk�1Þ
� �

þPmþ1
k¼bþ1 1 � pð:FÞ3m�3ðk�2Þ�2

� �
2
64

3
75

>
m

1 � pð:FÞ3m � 1

pð:FÞ�3 � 1
:

Theorem 2 Given a troubleshooting problem with depen-
dent actions and independent faults assumption and a

constant K 2 <þ, the decision whether there exists a
troubleshooting sequence s with ECRðsÞ � K is a NP-
complete problem.

Proof. Again, we check the correct sequence in polynomial
time.

Lemmas 5 and 6 show us that any exact cover by 3-sets
problem may be reduced to troubleshooting.

2.4
Polynomial problems
Troubleshooting with one fault per action is known to be
polynomially solvable for both single fault assumption and
independent faults [10]. There are other troubleshooting
tasks that are also solvable in polynomial time.

Theorem 3 Let us assume a troubleshooting with n faults
F1; . . . ; Fn and m actions A1; . . . ;Am. Each action can solve
one or two faults with probability 1, the rest with proba-
bility 0. We have either single fault assumption or inde-
pendent faults. All actions have equal cost 1, cost of calling
service is high, cCS > n � ðn þ 1Þ, all faults have equal prior
probability. There is a polynomial Oðn5Þ algorithm to find
the optimal sequence with minimal ECR (either ECR or
ECRM).

We reduce this task to the maximal matching problem.
The maximal matching can be solved in the time Oðn5Þ
(i.e. polynomial).

Maximal matching problem: A matching in a graph G
is a subset of its edges such that no two edges meet

Fig. 3. Troubleshooting model
of the exact 3-sets cover. Every
action corresponds to one set,
the bold-face sets are the exact
cover and corresponding
actions belong to the best
troubleshooting sequenced
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the same vertex. The task is in a given graph to find a
matching of maximum cardinality. The algorithm is
described in [2].
For a given troubleshooting problem we construct a
maximal matching problem as follows (see Fig. 4). We
create a node for every fault, for each action that solves
two faults we construct an edge between the nodes rep-
resenting these faults. The maximal matching solution
gives us a list of edges, we choose actions corresponding to
these edges and for every unsolved fault we choose one
(any) action solving this fault. This is a troubleshooting
sequence with minimal ECR for both single fault and in-
dependent faults assumption. The proof is similar to the
proofs of lemmas 3, 4, 5, and 6, therefore it is omitted.

2.5
Two faults per action troubleshooting
Let as assume each action to solve at most two actions and
any distribution on faults. This case is more difficult. The
straightforward reduction to the optimal (weighted)
matching does not work.

Optimal matching problem: Let G ¼ ðV;EÞ be a complete
graph K2n with non-negative weight function w on the
edges. The task is to find a matching M with the maximal
sum of weights of the edges in M. This problem is
polynomially solvable.

2.5.1
Reduction
Let us try to define a reduction of the troubleshooting
problem with one or two faults per action to optimal
matching. For every fault in the troubleshooting we create
a node; for every action solving two faults we create an
edge between the nodes corresponding to its faults. We
search for a function mapping the probabilities of faults to
the weights on edges.

Lemma 7 There does not exist any function <2 ! < that
would extend reduction 2.5.1 to a reduction mapping an
optimal troubleshooting sequence to the best optimal
matching for all 2-troubleshooting tasks.

Proof. The example in Fig. 5 shows a troubleshooting
model with two different probability distributions of

faults. The second distribution has the same values for the
first four faults; but it has p00ðF6Þ ¼ 0:01, p00ðF7Þ ¼ 0:05
instead of p0ðF6Þ ¼ 0:05, p0ðF7Þ ¼ 0:01. Probabilities
pðF1Þ; . . . ; pðF4Þ are equivalent in both models and
matching on F5; . . . ; F8 is unique therefore the optimal
matching is the same in both models.

There are two candidates for optimal troubleshooting
sequences: s5314 ¼ fA5;A3;A1;A4g and
s52134 ¼ fA5;A2;A1;A3;A4g. In the first model

ECR0ðs5314Þ ¼ 1:82 > ECR0ðs52134Þ ¼ 1:81 ;

while in the second model

ECR00ðs5314Þ ¼ 1:94 < ECR00ðs52134Þ ¼ 1:97 :

It means that each distribution leads to a different optimal
troubleshooting sequence despite the fact that both models
have the same optimal matching.

We proved that troubleshooting with uniform distri-
bution on faults, one or two faults per action and the
probabilities zero or one is polynomially solvable. We
conjecture the general troubleshooting with one or two
faults per action is NP-hard. This is similar to the relation
of the 2SAT and MAX2SAT problems. The 2SAT problem
is known to be polynomial whereas MAX2SAT is NP-hard
[6].

3
Search for an optimal strategy
In the previous section we proved that the general trou-
bleshooting task is NP-hard, which means that there is no
polynomial algorithm providing an optimal strategy unless
P ¼ NP. Nevertheless, some heuristics may direct the
search so that we get an optimal strategy within a
reasonable time. This section summarizes our efforts in
this direction.

Every troubleshooting problem can be represented by a
decision tree. Let n and m be two different nodes in such a
decision tree. If evidence corresponding to node n and m
equal, i.e. en ¼ em then optimal strategies s?ðenÞ ¼ s?ðemÞ.

Fig. 4. Max. two faults per action troubleshooting task and
corresponding maximal matching problem

Fig. 5. Two models with the same optimal matching but different
optimal sequences
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Therefore all decision nodes with the same evidence can be
coalesced to a single node, so that we get a coalesced de-
cision tree. All decision trees in the following text will be
coalesced. The coalesced decision tree for the Light Print
Example is given in Fig. 6. For simplicity, action A3 is
omitted so that the troubleshooting problem consists of
two actions A1;A2 and one question Q1 only.

The decision tree of a troubleshooting problem repre-
sents all possible troubleshooting strategies. As compared
with a single strategy there is one more node type – the
decision node. Every decision node corresponds to the
decision that is made when the next troubleshooting step
is being chosen. Decision nodes are denoted by squares. In
Fig. 6, one possible troubleshooting strategy is highlight-
ed. There are 40 different troubleshooting strategies rep-
resented by the decision tree in Fig. 6. We have omitted
the chance node labels in the figure. Decision nodes are
labeled by corresponding evidence.

3.1
Correspondence to AND/OR graphs
Every decision tree of a troubleshooting problem can be
interpreted as an AND/OR graph. An AND/OR graph of a
troubleshooting problem has the same nodes and edges as
the corresponding decision tree. The only difference is the
interpretation assigned to the nodes. Again there are three
types of nodes: OR nodes, AND nodes, and terminal nodes
in an AND/OR graph. The chance nodes of the decision
tree correspond to the AND nodes, since all their children
must be included in a troubleshooting strategy. The
decision nodes correspond to the OR nodes, since
exactly one of their children must be included in a
troubleshooting strategy. Finally, terminal nodes have
equivalent interpretation in both graph types.

Propsition 1 A subgraph s of the AND/OR graph
corresponds to a troubleshooting strategy if it fulfills the
following conditions:

– s is a tree with the same root # as the AND/OR graph
– If n is an OR node of s, then exactly one of its children

belongs to s.
– If n is an AND node of s, then all its children belong to s

as well.
– Every leaf n of s is a terminal node.

In [7] the conditions listed above define the solution tree
of an AND/OR graph. Consequently, if the AND/OR
graph corresponds to the decision tree, then there is
one-to-one correspondence between the troubleshooting
strategies and the solution trees. Therefore algorithms
used for solving AND/OR graphs can be used to find
optimal troubleshooting strategies. In particular, the
search for an optimal troubleshooting strategy is equiv-
alent to the search for the cheapest solution tree of the
AND/OR graph corresponding to a troubleshooting
problem. Three algorithms will be discussed later in this
section.

3.2
Depth-first search
We have implemented two versions of the depth-first
search algorithm - with and without memory. The
depth-first search algorithm without memory corre-
sponds to the search in the not coalesced decision tree.
In this case equivalent subtrees are searched through
many times.

If the search is performed in the coalesced decision
tree and the minimal values of ECR?ðenÞ are stored for
every expanded node n, then the complexity of the search

Fig. 6. Coalesced decision tree
corresponding to the trouble-
shooting problem consisting
of two actions and one ques-
tion. One troubleshooting
strategy is highlighted
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is substantially reduced. Please note that when using the
recurrent formula (4) to compute ECR?ðenÞ for any node
n, we need to know only the ECR? values of the children
of n in the optimal strategy s?n. The number of explored
nodes for runs on three troubleshooting problems for the
two versions of the depth-first search are compared in
Table 5.

Another option is to reverse the search from top-down
to bottom-up and systematically evaluate all nodes using
the recurrent formula (4) again. Such an algorithm
may be understood as an application of dynamic
programming [5].

In spite of the substantial reduction due to the storage
of the ECR? values of the explored subtrees, the complexity
of the depth-first search algorithm with memory is still
very high, Oð2jAjþjQjÞ. The question arises whether we can
successfully apply classical heuristic search algorithms.
Next, we will discuss two algorithms: a branch & bound
algorithm and the A? algorithm generalized for AND/OR
graphs (in [7] it is called AO? algorithm). For both
algorithms a heuristic function, namely an estimate of
ECR?, is essential.

3.3
Heuristic function
We propose a heuristic function that exploits the condi-
tional independence of all actions and questions given the
device fault. This is the assumption already used when
building the Bayesian network. Please recall that for every
F 2 F strategy s?ðe [ F ¼ yesÞ denotes an optimal strat-
egy given the evidence e [ F ¼ yes and ECR?ðe [ F ¼ yesÞ
provides the ECR of this strategy.

Definition 4 Let E denote the set containing all possible
evidence. The function ECR : E 7!<þ is defined for each
e 2 E by

ECRðeÞ ¼X
F2F

pðF ¼ yes j eÞ � ECR?ðe [ F ¼ yesÞ : ð6Þ

The following theorem claims that function ECR is an
optimistic estimate of ECR?, i.e. its values are always lower
than or equal to the true values of ECR?. This allows the
application of the estimate into the heuristic search
methods.

Theorem 4 The function ECRðeÞ is an optimistic estimate
of ECR of an optimal troubleshooting strategy given
evidence e.

Proof. Let the root of s?ðeÞ be n, i.e. en ¼ e and LðenÞ be
an abbreviation of Lðs?ðenÞÞ denoting the set of leaves of
strategy s?ðenÞ. Using Definition 2 we can write (please

recall that cðe‘Þ denotes is a penalty applied in terminal
node ‘):

ECR?ðeÞ¼ECRðs?ðenÞ j enÞ

¼
X

‘2LðenÞ
pðe‘ j enÞ � cðe‘Þþ tðn; lÞð Þ

¼
X

‘2LðenÞ

X
F2F

pðe‘ j en [F ¼ yesÞ

�pðF ¼ yes j enÞ

 !
� cðe‘Þþ tðn; lÞð Þ

¼
X
F2F

pðF ¼ yes j enÞ �
X

‘2LðenÞ

pðe‘ j en [F ¼ yesÞ

� cðe‘Þþ tðn; lÞð Þ

¼
X
F2F

pðF ¼ yes j enÞ �ECRðs?ðenÞ j en [F ¼ yesÞ :

In the previous formula ECRðs?ðenÞ j en [ F ¼ yesÞ
provides the ECR of strategy s?ðenÞ which need not be
optimal when having the given evidence en [ F ¼ yes. Let
s?ðen [ F ¼ yesÞ be the optimal strategy given evidence
en [ F ¼ yes. It is obvious that for F 2 F

ECRðs?ðenÞ j en [ F ¼ yesÞ

� ECRðs?ðen [ F ¼ yesÞ j en [ F ¼ yesÞ
and consequently the following inequality holds:

ECR?ðeÞ

�
X
F2F

pðF ¼ yes j eÞ � ECR?ðe [ F ¼ yesÞ

� ECRðeÞ ;

which corresponds to the assertion of the theorem.
A basic advantage of this estimate is that computation

of ECR?ðe [ F ¼ yesÞ does not require expensive opera-
tions if the actions are conditionally independent given
the device fault. If the fault is known then there are
usually only few actions that may fix the problem, i.e.
pðA ¼ yes j F ¼ yesÞ > 0. For every fault F 2 F the
actions that are not contained in the evidence e are
ordered according to pðA ¼ yes j F ¼ yesÞ=cA which
gives an optimal strategy for the given evidence
e [ F ¼ yes. Please note that the value of the ECR
estimate is computed using the conditional probabilities
pðA ¼ yes j F ¼ yesÞ that are already available from the
original model. In the light of the new evidence e it is
only necessary to update the probabilities of the faults
pðFÞ.

We have performed experiments on nine different
models designed by domain experts for troubleshooting
laser printers. We measured how far the lower bound was
from the optimal value of ECR. We computed

.k ¼ 100 � ECR?ðekÞ � ECRðekÞ
ECR?ðekÞ

:

For every tested model we computed the average value �..
over all nodes in the decision tree. In most cases the
estimate was quite close to the true values of ECR?, the

Table 5. Number of expanded nodes for the depth-first search
algorithms with and without memory

Depth-first
search

jAj ¼ 6;

jQj ¼ 2

jAj ¼ 9;

jQj ¼ 3

jAj ¼ 12;

jQj ¼ 3

Without memory 5,060 130,328 476,191
With memory 374 4,354 16,881
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average relative difference was �.. ¼ 10%. For one tested
model the value of �.. was 2:5%, and for two models it was
far from the optimal value, �.. ¼ 45% and �.. ¼ 43%.

3.4
Branch & bound algorithm
Our implementation of branch & bound algorithm per-
forms depth first search with pruning. The temporarily
best ECR0ðenÞ is stored for every expanded decision node
n. Pruning of an edge coming from n is performed as soon
as it is certain that any strategy that include the edge
cannot be the optimal one. Next, we describe the pruning
formally.

Let n be a decision node, and m one of its children in
the decision tree. Let childrenðmÞ ¼ fm1; . . . ;mrg be the
set of children of node m corresponding to evidence
emi

¼ em [ S ¼ si where S is a troubleshooting step with
outcomes fs1; . . . ; srg. Further assume that the value of
ECR?ðemÞ has already been computed for the children
m1; . . . ;mq and for the remaining children mqþ1; . . . ;mr

the value of ECRðemÞ is to be provided. The edge from n to
m is pruned immediately after it is realized that

ECR0ðenÞ � cS þ
Xq

i¼1

PðS ¼ si j enÞ � ECR?ðemi
Þ

þ
Xr

i¼qþ1

PðS ¼ si j enÞ � ECRðemi
Þ :

Since the applied function ECR is an optimistic estimate of
ECR?, the optimum solution must be reached.

3.5
AO? algorithm
AO? algorithm is a version of the well known A? algorithm
designed to solve AND/OR graphs (see [7] for details). Our
version of the algorithm traverses the coalesced decision
tree, referred to as coalesced dt in the algorithm. In Fig. 6
an example of a coalesced decision tree is provided. Let #
denote the root of the coalesced decision tree. A trouble-
shooting strategy, referred to as strategy is continuously
being constructed. Fig. 2 provides an example of a

troubleshooting strategy. The main part of AO? algorithm
is described in Table 6.

In the first part of the main cycle of the AO? algorithm a
node from the list frontier is chosen. The list frontier
contains untouched decision nodes that are children of
leaves of the current best strategy. The existence of such
a decision node implies that the strategy is not complete
yet.

Function select node arbitrarily selects one of the
frontier nodes. However, if additionally to the lower bound
ECRðeÞ an upper bound of ECRðeÞ was computed for each
decision node then probably a better option than a ran-
dom selection would be the selection of a frontier node
having the largest difference of the lower and upper
bounds. Its expansion may bring the most information to
restrict the interval for the true value of ECR?ðeÞ.

In Table 7 procedure update decisionðnÞ is presented.
For each untouched grand child of the selected decision
node n (i.e. child of its child) the lower bound estimate
ECRðekÞ is computed. Based on the lower bounds a lower
bound estimate is computed for each child ‘ of node n.
The child with the lowest value of ECR½‘� is the best child
of n. It is denoted as ‘? and stored in best child½n�. The
value of ECR½‘?� is stored in ECR½n�. Symbols paðnÞ and
chðnÞ stand for the set of parents of node n and the set of
children of node n, respectively.

Not only node k but also all preceding decision nodes in
the coalesced dt that can be influenced by the new value of
ECR½k� have to be updated. Nodes that need to have their
lower bounds updated are added to the queue. A queue
means that the first added node is selected first. The queue
guarantees that a node is updated only after all its touched
descendants in the coalesced decision tree.

When all required nodes are updated then the current
best strategy can be traced up. See Table 8 where the
procedure trace up strategy is described. The array
best child containing best child for each touched decision

Table 7. Procedure update decisionðnÞ

touchðnÞ;
for each ‘ 2 chðnÞ do

if is terminal nodeð‘Þ then ECR½‘� :¼ cðe‘Þ
else =�‘ is a chance node �/

if untouchedð‘Þ then
touchð‘Þ;
ECR½‘� :¼ cstepð‘Þ;
for each k 2 chðlÞ do

if is decision nodeðkÞ then
if untouchedðkÞ then

touchðkÞ;
ECR½k� :¼ ECRðekÞ;
for each p 2 paðkÞ n ‘ do

if touchedðpÞ and paðpÞ 62 queue then
queue:pushðpaðpÞÞ;

ECR½‘� :¼ ECR½‘� þ pðek j e‘Þ�ECR½k� ;
‘� :¼ argmin‘2chðnÞ ECR½‘�;
ECR½n� :¼ ECR½‘��;
best child½n� :¼ ‘�;
for each p 2 paðnÞ do

if touchedðpÞ and paðpÞ 62 queue then
queue:pushðpaðpÞÞ;

returnðÞ;

Table 6. AO� algorithm

queue :¼ ;;
frontier :¼ f#g;
complete :¼ false;
repeat

/� a frontier node selection �/
n :¼ select nodeðfrontierÞ;
queue:pushðnÞ;
/� expansion of node n, backward propagation �/
while queue 6¼ ; do

update decisionðqueue:pop nodeÞ;
/� tracing up a strategy, frontier creation �/
strategy:nodes :¼ fbest child½#�g;
strategy:edges :¼ ;;
frontier :¼ ;;
trace up strategyðbest child½#�Þ;

until frontier ¼ ;;
returnðstrategyÞ;
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node is used to construct quickly the current best strategy.
It is described by a list of edges and a list of nodes. At the
same time the list of frontier nodes of the strategy is cre-
ated. It is a consequence of a well-known property of A?

algorithms that if an optimistic estimate of ECR is used (in
our case it is ECRðeÞ) then the first expanded complete
strategy is an optimal strategy.

Remark 3 The AO? algorithm can be used as an anytime
algorithm. The condition in the main cycle of the AO?

algorithm is extended so that it also checks whether there
is a request for a best next troubleshooting step. If this is
the case, then the algorithm returns the root of strategy,
say node r, and continues the search disregarding all
children of root # of coalesced dt except the child r
corresponding to the recommended troubleshooting step
stepðrÞ. When the outcome of step stepðrÞ is known then
the root # of coalesced dt is redefined to be the child of
node r corresponding to the observed outcome of stepðrÞ
and search for a best strategy continues until new request
for the next troubleshooting step appears.

3.6
Approximative methods
Whatever the efficiency of the proposed heuristic algo-
rithms searching for the optimal strategy they only enable
us to determine optimal strategies for domains with less
than 20 troubleshooting steps. Therefore methods that
provide reasonably good troubleshooting strategies in
real-time seem to be necessary.

The Bayesian Automated Troubleshooting System
(BATS) was developed in the Laboratory for Normative
Systems, a joint Hewlett-Packard Company and Aalborg
University project. The basic idea of this method is that a
local computation is performed whenever a new trouble-
shooting step has to be chosen. It is assumed that the
single fault assumption holds. The BATS approach, which
we are not going to discuss in detail here, exploits several
heuristics based on the p=c ratio. For further information,
see [9].

In [4] the strategies obtained by use of suboptimal
methods were compared with the optimal solutions. The
comparisons were performed for nine models designed by
domain experts for troubleshooting of laser printers. The
algorithm used to find the optimal solutions was depth-

first search with memory, discussed in this paper in Sec-
tion 3. The algorithm was implemented in Cþþ, partly by a
DAT3 student group within a student project at Aalborg
University [8] and partly by the authors. The ECR values
of the strategies provided by the BATS troubleshooter were
very close to the optimal values. Thus, in the case of the
troubleshooting of laser printers it turns out that good
troubleshooting strategies can be provided in real time
despite the fact that the search for an optimal strategy is
NP-hard.

4
Conclusions
In this paper we have proved that the general trouble-
shooting task is NP-hard. Troubleshooting with questions
and independent actions is NP-hard as well [12]. Even
though the precise border between polynomial and
NP-hard troubleshooting problems is not known, we were
able to narrow the area of uncertainty. In [11] the
complexity of different troubleshooting problems is
studied in detail.

The proposed heuristic methods used to find an optimal
strategy appeared to be applicable only to domains with a
limited number of actions and questions. A satisfactory
solution can be to use an approximative method either
working on-line or off-line. Off-line approximative meth-
ods find a full suboptimal strategy before a user actually
performs the troubleshooting. Examples of on-line algo-
rithms are the anytime version of the AO? algorithm or the
BATS troubleshooter [9]. In the case of the troubleshoot-
ing of laser printers the suboptimal strategies provided by
the BATS troubleshooter are not far from optimal
ones [4].
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