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Abstract Closure operators (and related structures) are
investigated from the point of view of fuzzy set theory. The
paper is a follow up to [7] where fundamental notions and
result have been established. The present approach gen-
eralizes the existing approaches in two ways: first, com-
plete residuated lattices are used as the structures of truth
values (leaving the unite interval [0,1] with minimum and
other t-norms particular cases); second, the monotony
condition is formulated so that it can reflect also partial
subsethood (not only full subsethood as in other
approaches). In this paper, we study relations induced by
fuzzy closure operators (fuzzy quasiorders and similari-
ties); factorization of closure systems by similarities and
by so-called decrease of logical precision; representation of
fuzzy closure operators by (crisp) closure operators;
relation to consequence relations; and natural examples
illustrating the notions and results.

Keywords Closure operator, Fuzzy equivalence, Fuzzy
quasiorder, Consequence relation

1
Introduction
This is a follow up to my paper [7]. In [7], closure oper-
ators and related structures have been considered from the
point of view of fuzzy approach (graded truth approach;
with complete residuated lattices taken for the structures
of truth values). The aim of this paper is to present further
results on fuzzy closure operators.

The organization and the content of the paper are as
follows: Sect. 2 recalls the notions and main results of [7].
In Sect. 3, we study some induced (fuzzy) relations: fuzzy
quasiorder and equivalence (similarity). We show a way to
factorize the complete lattice of closed (w.r.t. to a given
fuzzy closure operator) fuzzy sets by an a-cut of a
naturally defined similarity relation, parameter a having
the role of controlling the coarsity of the factorization.

Another way to factorize the lattice of closed fuzzy sets is
by a so-called decrease of logical precision. The factor-
ization processes have natural applications if the structure
of closed sets has some natural interpretation and one
needs to simplify the structure (as an example, we
demonstrate the results on factorization of so-called fuzzy
concept lattices). In Sect. 4, we present a natural repre-
sentation of fuzzy closure operators by (classical) closure
operators. Section 5 presents some examples of fuzzy
closure operators. In Sect. 6, fuzzy closure operators and
consequence relations are briefly discussed.

2
Fuzzy closure operators
Closure operators (and closure systems) play a significant
role in both pure and applied mathematics. In the
framework of fuzzy set theory, several particular examples
of closure operators and systems have been considered
(e.g. so-called fuzzy subalgebras, fuzzy congruences, fuzzy
topology etc.). Recently, fuzzy closure operators and fuzzy
closure systems themselves have been studied, see e.g. [8,
9, 15, 16]. As a matter of fact, a fuzzy set A is usually
defined as a mapping from a universe set X into the real
interval ½0; 1� in the above mentioned works. Therefore, the
structure of truth values of the ‘‘logic behind’’ is fixed
to ½0; 1� equipped with minimum being the operation
corresponding to logical conjunction.

A general approach to the study of fuzzy closure
operators has been outlined in [7]. Compared to previous
approaches, there are basically two points of departure:
First, the structure of truth values is assumed to form a
complete residuated lattice. Second, the monotonicity
condition is defined to mean ‘‘if A is almost a subset of B
then the closure of A is almost a subset of the closure of
B’’.

We now recall basic concepts and results (for proofs
and further results we refer to [7]).

Definition 1 A complete residuated lattice is an algebra
L ¼ hL;^;_;�;!; 0; 1i such that

(1) hL;^;_; 0; 1i is a complete lattice with the least element
0 and the greatest element 1;

(2) hL;�; 1i is a commutative monoid, i.e. � is commu-
tative, associative, and x � 1 ¼ x holds holds for each
x 2 L;

(3) �;! form an adjoint pair, i.e.

x � y � z iff x � y ! z ð1Þ
holds for all x; y; z 2 L.
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Residuated lattices play the role of structures of truth
values in fuzzy logic. Introduced originally in the study of
ideal systems of rings [24], residuated lattices have been
introduced into the context of fuzzy logic by Goguen [17].
For logical calculi with truth values in residuated lattices
(and special types of residuated lattices), basic properties
of residuated lattices, and further references we refer to
[18–20].

We only recall that the most studied and applied
residuated lattices are those defined on the real interval
[0,1] (residuated lattices on [0,1] uniquely correspond to
left-continuous t-norms). Three most important structures
pairs of adjoint operations are the following: the
Lukasiewicz one (a � b ¼ maxða þ b � 1; 0Þ,
a ! b ¼ minð1 � a þ b; 1Þ), Gödel one (a � b ¼ minða; bÞ,
a ! b ¼ 1 if a � b and ¼ b else), and product one
(a � b ¼ a � b, a ! b ¼ 1 if a � b and ¼ b=a else).
Another important set of truth values is the set
fa0 ¼ 0; a1; . . . ; an ¼ 1gða0 < � � � < an) with � given by
ak � al ¼ amaxðkþl�n;0Þ and the corresponding ! given by
ak ! al ¼ aminðn�kþl;nÞ. A special case of the latter algebras
is the Boolean algebra 2 of classical logic with the support
2 ¼ f0; 1g.

A nonempty subset K � L is called an �-filter if for
every a; b 2 L such that a � b it holds that b 2 K
whenever a 2 K. An �-filter K is called a filter if
a; b 2 K implies a � b 2 K. Unless otherwise stated, in
what follows we denote by L a complete residuated
lattice and by K an �-filter in L (both L and K possibly
with indices).

An L-set (fuzzy set) [17, 28] A in a universe set X is any
map A : X ! L. By LX we denote the set of all L-sets
in X. The concept of an L-relation is defined obviously.
Operations on L extend pointwise to LX , e.g. ðA _ BÞðxÞ ¼
AðxÞ _ BðxÞ for A;B 2 LX . Following common usage, we
write A [ B instead of A _ B, etc. Given A;B 2 LX , the
subsethood degree [17] SðA;BÞ of A in B is defined by
SðA;BÞ ¼

V
x2X AðxÞ ! BðxÞ. We write A � B if

SðA;BÞ ¼ 1. Analogously, the equality degree EðA;BÞ of A
and B is defined by EðA;BÞ ¼

V
x2XðAðxÞ $ BðxÞÞ. It is

immediate that EðA;BÞ ¼ SðA;BÞ ^ SðB;AÞ. By
fa1=x1; . . . ; an=xng we denote an L-set A for which
AðxÞ ¼ ai if x ¼ xi (i ¼ 1; . . . ; n) and AðxÞ ¼ 0 otherwise.

Recall that a (classical) closure operator on a set X is a
mapping C : 2X ! 2X satisfying the following conditions:
A � CðAÞ, if A1 � A2 then CðA1Þ � CðA2Þ, and
CðAÞ ¼ CðCðAÞÞ, for any A;A1;A2 2 2X . More generally, if
� denotes a partial order, we get the notion of closure
operator in an ordered set [10].

Definition 2 An LK-closure operator (fuzzy closure
operator) on the set X is a mapping C : LX ! LX satisfying

A � CðAÞ ð2Þ
SðA1;A2Þ � SðCðA1Þ;CðA2ÞÞ

whenever SðA1;A2Þ 2 K ð3Þ
CðAÞ ¼ CðCðAÞÞ ð4Þ
for every A;A1;A2 2 LX .

If K ¼ L, we omit the subscript K and call C an
L-closure operator. The set K plays the role of the set of
designated truth values. Condition (3) says that the
closure preserves also partial subsethood whenever the
subsethood degree is designated. Note that for L ¼ f0; 1g,
LK-closure operators coincide with (classical) closure
operators. Note also that for L ¼ ½0; 1�, Lf1g-closure
operators are precisely fuzzy closure operators studied by
Gerla [9, 15, 16].

Definition 3 A systemS ¼ fAi 2 LX j i 2 Ig is called closed
under SK-intersections iff for each A 2 LX it holds that

\
i2I;SðA;AiÞ2K

SðA;AiÞ ! Ai

0
@

1
A 2 S

where

\
i2I;SðA;AiÞ2K

SðA;AiÞ ! Ai

0
@

1
AðxÞ

¼
^

i2I;SðA;AiÞ2K

ðSðA;AiÞ ! AiðxÞÞ

for each x 2 X. A system closed under SK-intersections will
be called an LK-closure system.

For K ¼ L the subscript will again be omitted. 2-closure
systems coincide with closure systems, i.e. systems of sets
closed under intersections. In general, being closed under
arbitrary intersections is a weaker condition then being
closed under SK-intersections. Closedness under SK-
intersections is, however, equivalent to closedness under
intersections of ‘‘K-shifted’’ L-sets. Let for a 2 L, A 2 LX ,
denote by a ! A the L-set defined by
ða ! AÞðxÞ ¼ a ! AðxÞ.

Theorem 4([7]) S is an LK-closure system iff for any
ai 2 L, i 2 I, it holds

T
ai2Kðai ! AiÞ 2 S. Therefore, a

system S which is closed under arbitrary intersections is
an LK-closure system iff for each a 2 K and A 2 S it holds
a ! A 2 S.

The following theorem shows another way to obtain the
closure in an LK-closure system.

Theorem 5([7]) Let S ¼ fAi 2 LXji 2 Ig be an LK-closure
system. Then for each A 2 LX it holds\
i2I;SðA;AiÞ2K

SðA;AiÞ ! Ai ¼
\

i2I;A�Ai

Ai :

A natural idea is to consider the property ‘‘to be closed
(w.r.t. a given fuzzy closure operator C)’’ a graded prop-
erty. An L-set A can be considered to be ‘‘almost closed
w.r.t. C’’ iff ‘‘A almost equals CðAÞ’’. This poses a question
of whether fuzzy closure systems can be defined as systems
of ‘‘almost closed’’ fuzzy sets.

Definition 6 An L-system S 2 LLX
is called an LK-closure

L-system in X if for every A;B 2 LX we have

54



S
\

Ai2LX ;SðA;AiÞ2K

ðSðAiÞ � SðA;AiÞÞ ! Ai

0
@

1
A ¼ 1 ; ð5Þ

SðAÞ � SðA;BÞ � SðB;AÞ � SðBÞ ð6Þ
whenever SðB;AÞ 2 K : ð7Þ
Remark (1) Note that the L-set\
Ai2LX ;SðA;AiÞ2K

ðSðAiÞ � SðA;AiÞÞ ! Ai

in X is defined by
ð
T

Ai2LX ; SðA;AiÞ2KðSðAiÞ � SðA;AiÞÞ ! AiÞðxÞ
¼
V

Ai2LX ; SðA;AiÞ2K ðSðAiÞ � SðA;AiÞÞ ! AiðxÞ.
(2) An LK-closure L-system is therefore an L-set of

L-sets in X. We interpret SðAÞ as the degree to which
A 2 LX is closed. Condition (6) is naturally interpreted as
the requirement that an L-set that is both a subset and a
superset of to an ‘‘almost closed’’ L-set is itself ‘‘almost
closed’’.

Let C be an LK-closure operator in X, S be an
LK-closure system in X, and S be an LK-closure L-system
in X. Define operators CS : LX ! LX and CS : LX ! LX ,
systems of L-sets SC � LX and SS � LX , and L-systems of
L-sets SC 2 LLX

and SS 2 LLX
by

CSðAÞðxÞ¼
^

i2I;SðA;AiÞ2K

ðSðA;AiÞ!AiðxÞÞ ð8Þ

ðCSðAÞÞðxÞ¼
^

Ai2LX ;SðA;AiÞ2K

ðSðAiÞ�SðA;AiÞÞ!AiðxÞð9Þ

SC ¼fA2LX;A¼CðAÞg ð10Þ
SS ¼fA2LX;SðAÞ¼ 1g ð11Þ
SCðAÞ¼EðA;CðAÞÞ ð12Þ
SSðAÞ¼EðA;CSðAÞÞ : ð13Þ
The situation is depicted in Fig. 1.

Theorem 7 ([2]) Under the above notation, CS and CS are
LK-closure operators, SC and SS are LK-closure systems,
SC and SS are LK-closure L-systems, and the diagram in
Fig. 1 commutes.

Each oriented path in the diagram of Fig. 1 defines
a mapping (a mapping composed of the mappings
represented by the arrows). Commutativity of the
diagram in Fig. 1 says that any two mappings corre-
sponding to oriented paths with common starting node
and final node are equal. Particularly, we have that the
mappings defined by (8)–(13) are pairwise inverse
(i.e. we have C ¼ CSC

and C ¼ CSC
, S ¼ SCS

and
S ¼ SSS , and S ¼ SCS

and S ¼ SSS
); furthermore, we

have C ¼ CSSC
etc.

Definition 8 An LK-Galois connection (fuzzy Galois
connection) between the sets X and Y is a pair h";#i of
mappings " : LX ! LY , # : LY ! LX , satisfying

SðA1;A2Þ � SðA"
2;A"

1Þ whenever SðA1;A2Þ 2 K ð14Þ
SðB1;B2Þ � SðB#

2;B#
1Þ whenever SðB1;B2Þ 2 K ð15Þ

A � ðA"Þ# ð16Þ
B � ðB#Þ" : ð17Þ
for every A;A1;A2 2 LX , B;B1;B2 2 LY .

If K ¼ L then we again omit the subscript K. Note also
that an LK-Galois connection between X and Y forms a
Galois connection between the complete lattices hLX;�i
and hLY ;�i [10, 21].

Remark Note that Galois connections between sets [10,
21] are just L-Galois connections for L ¼ 2.

We will need the following results.

Theorem 9 ([7]) Let C be an L-closure operator, and
Y ¼ fCðAÞjA 2 LXg. Then the pair of mappings
"C : LX ! LY , #C : LY ! LX defined for A 2 LX , B 2 LY and
x 2 X, A0 2 Y by

A"CðA0Þ ¼ SðA;A0Þ
B#CðxÞ ¼

^
A2Y

BðAÞ ! AðxÞ

forms an L-Galois connection such that C ¼ "C#C .

Theorem 10 ([2]) For a binary L-relation I 2 LX�Y denote
"I : LX ! LY and #I : LY ! LX the mappings defined for
A 2 LX , B 2 LY by

A"I ðyÞ ¼
^
x2X

ðAðxÞ ! Iðx; yÞÞ ð18Þ

B#I ðxÞ ¼
^
y2Y

ðBðyÞ ! Iðx; yÞÞ : ð19Þ

For an L-Galois connection h"; #i between X and Y denote
Ih";#i the binary L-relation I 2 LX�Y defined for x 2 X,

y 2 Y by Iðx; yÞ ¼ f1
	

xg"ðyÞð¼ f1
	

yg#ðxÞÞ. Then h"I ; #I i is
an L-Galois connection and it holds

h";#i ¼ h"I h" ;#i ;#I h" ;#i i and I ¼ Ih"I ;#I i :Fig. 1. Commuting diagram of Theorem 7
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3
Induced relations: quasiorder and similarity
An L-relation R on a set X is called

reflexive if Rðx; xÞ ¼ 1

symmetric if Rðx; yÞ ¼ Rðy; xÞ
K-transitive if Rðx; yÞ � Rðy; zÞ � Rðx; zÞ

whenever Rðx; yÞ 2 K and Rðy; zÞ 2 K :

An LK-quasiorder on X is an L-relation on X that is
reflexive and K-transitive. An LK-similarity (or LK-
equivalence) on X is an L-relation on X that is reflexive,
symmetric, and K-transitive.

Remark. (1) Clearly, putting L ¼ 2 we get the usual
(bivalent) notion of a quasiorder and an equivalence re-
lation (no matter what K). Thus, the notions of LK-
quasiorder and LK-similarity are generalizations of of the
bivalent notions.

(2) If K is interpreted as the set of sufficiently high
(designated) truth values, then K-transitivity means: ‘‘if
the facts that hx; yi belongs to R and hy; zi belongs to R are
sufficiently true then hx; zi also belongs to R (and is suf-
ficiently true in case K is a filter)’’. For K ¼ L (in which
case we omit the subscript K) we get the usual notions
of L-quasiorder and L-similarity (called usually fuzzy
quasiorder and fuzzy similarity).

Induced L-relations on X

Theorem 11 Let C be an LK-closure operator on X. Then
the relation QC in X defined by

QCðx; yÞ ¼ Cðf1
	

xgÞðyÞ
is an LK-quasiorder.

Proof. Since f1
	

xg � Cðf1
	

xgÞ, reflexivity follows by

Qcðx; xÞ ¼ Cðf1
	

xgÞðxÞ ¼ 1 :

K-transitivity: Let QCðx; yÞ 2 K, QCðy; zÞ 2 K. We have to
show QCðx; yÞ � QCðy; zÞ � QCðx; zÞ. By adjointness and by
definition of QC we thus have to show that

Cðf1
	

xgÞðyÞ � Cðf1
	

ygÞðzÞ ! Cðf1
	

xgÞðzÞ
whenever Cðf1

	
xgÞðyÞ, Cðf1

	
ygÞðzÞ 2 K. We have

SðfCðf1
	

xgÞðyÞ
	
g;Cðf1

	
xgÞÞ ¼ 1, therefore, by (3)

and using CðCðf1
	

xgÞÞ ¼ Cðf1
	

xgÞ, also
SðCðfCðf1

	
xgÞðyÞ

	
gÞ;Cðf1

	
xgÞÞ ¼ 1. Furthermore, by

Cðf1
	

xgÞðyÞ 2 K and (3),

Cðf1
	

xgÞðyÞ ¼ Sðf1
	

yg; fCðf1
	

xgÞðyÞ
	

ygÞ
� SðCðf1

	
ygÞ;CðfCðf1

	
xgÞðyÞ

	
ygÞÞ :

Therefore,

Cðf1
	

xgÞðyÞ � SðCðf1
	

ygÞ;CðfCðf1
	

xgÞðyÞ
	

ygÞÞ
¼ SðCðf1

	
ygÞ;CðfCðf1

	
xgÞðyÞ

	
ygÞÞ

� SðCðfCðf1
	

xgÞðyÞ
	
gÞ;Cðf1

	
xgÞÞ

� SðCðf1
	

ygÞ;Cðf1
	

xgÞÞ
� Cðf1

	
ygÞðzÞ ! Cðf1

	
xgÞðzÞ :

The proof is complete.

Remark. Note that QC actually satisfies a stronger
condition than K-transitivity. Namely, as it follows from
the proof of Theorem 11, QCðx; yÞ � QCðy; zÞ � QCðx; zÞ
whenever QCðx; yÞ 2 K. This property is typical for
Pavelka style fuzzy logic (see [22] and also [18]): Take X
to be the set of all formulas; put K ¼ f1g; let C be the
operator of syntactic consequence, i.e. for an L-set A of
formulas and a formula x 2 X, let CðAÞðxÞ be the degree
of provability of x from A. One easily verifies that C
satisfies the above condition stronger than K-transitivity.
On the other hand, C does not satisfy the in a sense
symmetric condition, i.e. it is not true that if
QCðy; zÞ 2 K then QCðx; yÞ � QCðy; zÞ � QCðx; zÞ.

QCðx; yÞ is naturally interpreted as the truth degree to
which y belongs to the closure of a singleton containing x.
One might wonder what is the relationship between QC

and QSC
defined by

QSC
ðx; yÞ ¼

^
A2SC;AðxÞ2K

AðxÞ ! AðyÞ ;

i.e. the truth degree to which it holds that whenever it is
sufficiently true that x belongs to some closure then y
belongs to that closure as well.

Theorem 12 For any LK-closure operator C we have
QC ¼ QSC

. Therefore, QSC
is an LK-quasiorder.

Proof. On the one hand, Cðf1
	

xgÞðxÞ ¼ 1 2 K yields

QSC
ðx; yÞ ¼

^
A2SC;AðxÞ2K

AðxÞ ! AðyÞ

� Cðf1
	

xgÞðxÞ ! Cðf1
	

xgÞðyÞ
¼ 1 ! Cðf1

	
xgÞðyÞ

¼ Cðf1
	

xgÞðyÞ ¼ QCðx; yÞ :

On the other hand, QCðx; yÞ � QSC
ðx; yÞ is true iff for each

A 2 SC such that AðxÞ 2 K we have Cðf1
	

xgÞðyÞ � AðxÞ
! AðyÞ. Applying adjointness twice, the last inequality is
equivalent to AðxÞ � Cðf1

	
xgÞðyÞ ! AðyÞ which is true.

Indeed, since AðxÞ 2 K, (3) gives

AðxÞ ¼ 1 ! AðxÞ ¼ f1
	

xgðxÞ ! AðxÞ ¼ Sðf1
	

xg;AÞ
� SðCðf1

	
xgÞ;CðAÞÞ ¼ SðCðf1

	
xgÞ;AÞ

� Cðf1
	

xgðyÞ ! AðyÞ :
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If K is, moreover, a filter in L, the fact that QC is an
LK-quasiorder follows from Theorem 14 and the following
statement.

Lemma 13 Let K be an filter in L, S ¼ fAi 2 LX ji 2 Ig be
a system of L-sets. Then the L-relation QS on X given by

QSðx; yÞ ¼
^

i2I;AiðxÞ2K

AiðxÞ ! AiðyÞ

is an LK-quasiorder.

Proof. Reflexivity follows from the fact that
AiðxÞ ! AiðxÞ ¼ 1 and from

V
; ¼ 1. K-transitivity: By

definition, we have to show that if^
i2I;AiðxÞ2K

AiðxÞ ! AiðyÞ 2 K

and^
i2I;AiðxÞ2K

AiðyÞ ! AiðzÞ 2 K

then

^
i2I;AiðxÞ2K

AiðxÞ!AiðyÞ

0
@

1
A�

^
i2I;AiðyÞ2K

AiðyÞ!AiðzÞ

0
@

1
A

�
^

i2I;AiðxÞ2K

AiðxÞ!AiðzÞ

0
@

1
A ;

i.e. to show that for each i 2 I such that AiðxÞ 2 K we have

AiðxÞ �
^

i2I;AiðxÞ2K

AiðxÞ ! AiðyÞ

0
@

1
A

�
^

i2I;AiðyÞ2K

AiðyÞ ! AiðzÞ

0
@

1
A

� AiðzÞ :

This inequality is true. Indeed,V
i2I;AiðxÞ2K AiðxÞ ! AiðyÞ 2 K andV
i2I;AiðxÞ2K AiðxÞ ! AiðyÞ � AiðxÞ ! AiðyÞ gives

AiðxÞ ! AiðyÞ 2 K. As also AiðxÞ 2 K, we have
AiðxÞ � ðAiðxÞ ! AiðyÞÞ 2 K. From
AiðxÞ � ðAiðxÞ ! AiðyÞÞ � AiðyÞ we thus have AiðyÞ 2 K.
Therefore, we conclude

AiðxÞ�
^

i2I;AiðxÞ2K

AiðxÞ! AiðyÞ

0
@

1
A

�
^

i2I;AiðxÞ2K

AiðyÞ ! AiðzÞ

0
@

1
A

� AiðxÞ� ðAiðxÞ ! AiðyÞÞ� ðAiðyÞ ! AiðzÞÞ � AiðzÞ ;

completing the proof.

Indeed, putting S ¼ SC, Lemma 12 yields that QSC
is

an LK-quasiorder. Theorem 12 then completes the argu-
ment.

Remark. (1) A closer look at the proof of Lemma 15
shows that like QC, QS satisfies a stronger form of
K-transitivity: QSðx; yÞ � QSðy; zÞ � QSðx; zÞ whenever
QSðx; yÞ 2 K.

(2) The assumption of Lemma 15 that K be closed w.r.t.
� is essential. As a counterexample, consider I ¼ fi; jg,
X ¼ fx; y; zg, L ¼ ½0; 1� equipped with Lukasiewicz
structure, AiðxÞ ¼ 0:9, AiðyÞ ¼ 0:8, AiðzÞ ¼ 0:7,
AjðxÞ ¼ AjðyÞ ¼ AjðzÞ ¼ 1. Taking K ¼ ½0:9; 1� which is an
�-filter not closed w.r.t. �, we have
QSðx; yÞ � QSðy; zÞ ¼ 0:9 � 1 ¼ 0:9 6� 0:8 ¼ QSðx; zÞ.

It can be easily seen that every LK-quasiorder on X
induces an LK-similarity EQ on X by putting
EQðx; yÞ ¼ Qðx; yÞ ^ Qðy; xÞ. Therefore, for any LK-
-closure operator C on X, the L-relation EC on X defined
by

ECðx; yÞ ¼ QCðx; yÞ ^ QCðy; xÞ
is an LK-similarity on X. We say that an LK-similarity E on
X is compatible with A 2 LX if AðxÞ � Eðx; yÞ � AðyÞ holds
for any x; y 2 X such that AðxÞ 2 K. The condition of
compatibility translates verbally to ‘‘if it is sufficiently true
that x belongs to A and if x and y are similar then y
belongs to A as well’’.

Theorem 14 Let C be an LK-closure operator on X. Then
EC is the largest LK-similarity on X that is compatible w.r.t.
every C-closed L-set (i.e. w.r.t. every A 2 SC).

Proof. The fact that EC is an LK-similarity on X was
established in the above paragraph. Let x; y 2 X, A 2 SC,
AðxÞ 2 K. By Theorem 12,

ECðx; yÞ ¼ QSC
ðx; yÞ ^ QSC

ðy; xÞ � QSC
ðx; yÞ

¼
^

A2SC;AðxÞ2K

AðxÞ ! AðyÞ � AðxÞ ! AðyÞ ;

i.e. AðxÞ � ECðx; yÞ � AðyÞ by adjointness. We proved that
EC is compatible w.r.t. any A 2 SC.

Let E be an LK-similarity that is compatible w.r.t. any
A 2 SC. Take x; y 2 X and an A 2 SC such that AðxÞ 2 K.
Compatibility of E yields AðxÞ � Eðx; yÞ � AðyÞ, i.e.
Eðx; yÞ � AðxÞ ! AðyÞ. Since x; y, and A were chosen
arbitrarily, we conclude

Eðx; yÞ �
^

A2SC;AðxÞ2K

AðxÞ ! AðyÞ � QSC
ðx; yÞ :

Due to the symmetry of E we finally have

Eðx; yÞ � QSC
ðx; yÞ ^ QSC

ðy; xÞ ¼ ECðx; yÞ
proving that EC is the largest LK-similarity compatible with
all A 2 SC.

Factorization of LK -closure systems by similarity For an
LK-closure operator on X, SC is a complete lattice w.r.t. �.
This fact follows directly from the fact that SC is closed
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w.r.t. arbitrary intersections. For various reasons (e.g. for
computational ones), it might not be desirable to distin-
guish the particular L-sets in X. Rather, it can be advan-
tageous to treat L-sets which are similar in terms of
membership degrees of elements of X as if they were the
same, i.e. one might desire to perform a kind of abstrac-
tion by factorization w.r.t. to a suitable similarity defined
on L-sets. A suitable L-similarity relation is described in
the following assertion (see e.g. [4]).

Lemma 15 The L-relation E on X defined by

EðA;BÞ ¼
^
x2X

AðxÞ $ BðxÞ

is an L-similarity on X.

For A;B 2 LX , EðA;BÞ is the truth degree to which it
is true that for any x 2 X, x belongs to A iff x belongs
to B. The first observation states that sufficiently high
similarity between L-sets is preserved by LK-closure
operators.

Theorem 16 For an LK-closure operator C on X and
A;B 2 LX we have EðA;BÞ � EðCðAÞ;CðBÞÞ whenever
EðA;BÞ 2 K.

Proof. It is easy to see that EðA;BÞ ¼ SðA;BÞ ^ SðB;AÞ.
Therefore, EðA;BÞ 2 K yields SðA;BÞ 2 K and SðB;AÞ 2 K.
Applying (3) we get SðA;BÞ � SðCðAÞ;CðBÞÞ and SðB;AÞ �
SðCðBÞ;CðAÞÞ, and thus EðA;BÞ ¼ SðA;BÞ ^ SðB;AÞ � S
ðCðAÞ;CðBÞÞ ^ SðCðBÞ;CðAÞÞ ¼ EðCðAÞ;CðBÞÞ.

Intuitively, the complete lattice SC can be simplified
by putting similar closed L-sets together, i.e. putting
together L-sets A and B for which EðA;BÞ is high. Put-
ting the L-sets together should be compatible w.r.t. the
complete lattice structure on SC. Recall that for any
a 2 L, an a-cut of E is a (bivalent) relation aE on X
defined by hx; yi 2 aE iff a � Eðx; yÞ. It is easy to see
that aE is always a tolerance on X (i.e. a reflexive and
symmetric relation on X). If � ¼ ^, aE is, moreover,
transitive, i.e. an equivalence relation. In general, aE is
not transitive. Factorization of a structure by a com-
patible tolerance relation is, in general, not possible (one
needs transitivity so that operations on the factor set can
be defined). Surprisingly, Czédli [13] showed a way to
factorize lattices by compatible tolerances (for factor-
ization of complete lattices by tolerances see [26]). We
now recall the necessary concepts: Let T be a tolerance
relation on a support V of a complete lattice V ¼ hV;�i.
T is called compatible if it is preserved under arbitrary
infima and suprema, i.e. if hui; vii 2 T (i 2 I) implies
h
V

i2I ui;
V

i2I vii 2 T and h
W

i2I ui;
W

i2I vii 2 T. For v 2 V ,

denote vT ¼
V

hv;v0i2T v0 and vT ¼
W

hv;v0i2T v0, and call

each set of the form ½v�T ¼ ½vT ; vT � ¼ fv0 2 V j vT

� v0 � vTg a block of T. Denote V=T ¼ f½v�T j v 2 Vg
the set of all blocks of T and call it the factor set of V
by T. Introduce a relation �T defined on V=T by
½v�T � ½v0�T iff

V
½v�T �

V
½v0�T (or, equivalently, iff

W
½v�T �

W
½v0�T). The following assertion follows

from [26].

Theorem 17 Let C be an LK-closure operator on X, T
be a compatible tolerance relation on hSC;�i. (1) SC=T is
the set of all maximal blocks of T, i.e. SC =T ¼
fB � SC jB � B � T & ðð8B0 � BÞB0 � B0 6� TÞg.
(2) hSC=T;�Ti is a complete lattice (factor lattice) where
infima and suprema are given by

^
i2I

½Ai�T ¼
\
i2I

Ai

 !T
2
4

3
5

T

and
_
i2I

½Ai�T ¼
_
i2I

Ai

" #
T

:

One may easily verify that if T is, moreover, transitive
(i.e. a complete congruence on V), then hSC;�Ti is the
well-known factor lattice.

To show that the a-cuts aE can be used to factorize SC

by the above described procedure, we need to verify that
aE is compatible w.r.t. �.

Lemma 18 Let C be an LK-closure operator on X. For any
a 2 K, aE is a compatible tolerance relation on the
complete lattice hSC;�i.

Proof. We show that aE is compatible both with infima
and suprema, i.e. we show that hAi;Bii 2 aE (i 2 I) implies
both h

V
i2I Ai;

V
i2I Bii 2 aE and h

W
i2I Ai;

W
i2I Bii 2 aE.

Infima: Suppose hAi;Bii 2 aE, i.e.
a �

V
x2XðAiðxÞ $ BiðxÞÞ (i 2 I). We have to show

a �
^
x2X

^
i2I

AiðxÞ $
^
i2I

BiðxÞ
 !

;

i.e. to show that for each i 2 I we have

a �
^
i2I

AiðxÞ $
^
i2I

BiðxÞ
 !

:

The last inequality is true iff both
a � ð

V
i2I AiðxÞ !

V
i2I BiðxÞÞ and

a � ð
V

i2I BiðxÞ !
V

i2I AiðxÞÞ are valid. Due to symmetry
we verify only a � ð

V
i2I AiðxÞ !

V
i2I BiðxÞÞ which is

equivalent to a �
V

i2I AiðxÞ �
V

i2I BiðxÞ. This inequality
is true. Indeed, by assumption, hAi;Bii 2 aE, i.e.
a �

V
x2XðAiðxÞ $ BiðxÞÞ, from which it follows

a � AiðxÞ � BiðxÞ for any i 2 I, x 2 X. We therefore have

a �
^
i2I

AiðxÞ �
^
i2I

ða � AiðxÞÞ �
^
i2I

BiðxÞ :

Suprema: We have to show a � Eð
W

i2I Ai;
W

i2I BiÞ, i.e.
a � EðCð

S
i2I AiÞ;Cð

S
i2I BiÞÞ. First, observe that ð�Þ

a � Eð
S

i2I Ai;
S

i2I BiÞ: Indeed, the inequality is true iff
both a � Sð

S
i2I Ai;

S
i2I BiÞ and a � Sð

S
i2I Bi;

S
i2I AiÞ

hold. Because of symmetry, we verify only the former one:
by definition, a � Sð

S
i2I Ai;

S
i2I BiÞ is true iff

a � ð
S

i2I AiÞðxÞ ! ð
S

i2I BiÞðxÞ, i.e. iff
a � ð

S
i2I AiÞðxÞ � ð

S
i2I BiÞðxÞ holds for each x 2 X. By

assumption,
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a �
[
i2I

Ai

 !
ðxÞ ¼

_
i2I

ða � AiðxÞÞ �
_
i2I

BiðxÞ

¼
[
i2I

Bi

 !
ðxÞ

establishing ð�Þ.
Now, a � Eð

S
i2I Ai;

S
i2I BiÞ implies both

a � Sð
S

i2I Ai;
S

i2I BiÞ and a � Sð
S

i2I Bi;
S

i2I AiÞ. Since
a 2 K, (3) implies a � SðCð

S
i2I AiÞ;Cð

S
i2I BiÞÞ and

a � SðCð
S

i2I BiÞ;Cð
S

i2I AiÞÞ, i.e.

a � E C
[
i2I

Ai

 !
;C

[
i2I

Bi

 ! !
¼ E

_
i2I

Ai;
_
i2I

Bi

 !

completing the proof.

Remark. (1) Note that the tolerance relation aE used to
factorize SC need not to be supplied from the outside. It is
determined by selecting an appropriate a 2 K.

(2) The role of a 2 K is to control the granularity of
the factorization: since a � b implies bE � aE, the rule is
‘‘the bigger a, the finer the factorization’’. Clearly, for
the extreme cases of a, i.e. a ¼ 0 (note that
0E ¼ SC �SC which is always a compatible relation on
SC) and a ¼ 1 we obtain SC=

0E which is a one-
element lattice and SC=

1E which is a lattice isomorphic
to SC.

(3) Note also that the fact a 2 K is not needed in the
proof of compatibility with infima in SC.

Factorization of LK -closure systems by decrease of logical
precision We now mention another way to factorize a
systemSC of all closed L-sets of an L-closure operator C. Let
thus C be an L1-closure operator on X. It may be the case that
one does not need to distinguish close truth values of L1.
Formally, a kind of a factorization of L1 is taking place.
Assume therefore that there is a complete homomorphism h
of L1 onto L2 (i.e. a homomorphism which preserves arbi-
trary infima and suprema). h induces a mapping
h� : LX

1 ! LX
2 such that for A 2 LX

1 , h�ðAÞ 2 LX
2 is defined by

ðh�ðAÞÞðxÞ ¼ hðAðxÞÞ
for any x 2 X. Since there is no danger of misunder-
standing, we write simply h instead of h�.

One may consider h as representing a decrease of logical
precision (see [6]): Several truth values from L1 may
collapse into one truth value from L2; instead of A 2 LX

1
one may consider h�ðAÞ 2 LX

2 which may be easier to work
with, yet sufficiently granular.

Furthermore, h induces a mapping hðCÞ : LX
2 ! LX

2 as
follows: for B 2 LX

2 take any A 2 LX
1 such that hðAÞ ¼ B

(such an A always exists due to the fact that h is surjective)
and define

ðhðCÞÞðBÞ ¼ hðCðAÞÞ :

Theorem 19 Let C be an L1-closure operator in X, h be a
complete homomorphism of L1 onto L2. Then hðCÞ is an

L2-closure operator in X and A 7! hðAÞ is a complete
lattice homomorphism of SC onto ShðCÞ.

Proof. First, we show that hðCÞ is defined correctly. In
order to do it, take any A1;A2 2 LX

1 such that
hðA1Þ ¼ hðA2Þ. We need to show hðCðA1ÞÞ ¼ hðCðA2ÞÞ. It
is easy to show that hðEðA1;A2ÞÞ ¼ 1. Since
EðA1;A2Þ � EðCðA1Þ;CðA2ÞÞ, monotonicity of h gives
hðEðCðA1Þ;CðA2ÞÞÞ. As hðEðCðA1Þ;CðA2ÞÞÞ ¼ EðhðCðA1ÞÞ;
hðCðA2ÞÞÞ, we infer EðhðCðA1ÞÞ; hðCðA2ÞÞÞ ¼ 1, whence
hðCðA1ÞÞ ¼ hðCðA2ÞÞ. Therefore, hðCÞ is defined correctly.

Let h"C ; #Ci be the L-Galois connection between X and
SC of Theorem 9. Consider an L1-relation I between X
and SC defined for x 2 X and A 2 SC by

Iðx;AÞ ¼ AðxÞ :

Let h"I ; #I i be the L1-Galois connection between X and SC

according to Theorem 10. It is immediate that
h"C ; #Ci ¼ h"I ; #I i. We will show that hðCÞ ¼ "hðIÞ#hðIÞ , i.e. hðCÞ
is a composition of "hðIÞ and #hðIÞ . To this end, take any
A 2 LX

1 . Using repeatedly the fact that h is a complete
homomorphism, we get

hðAÞ"hðIÞ#hðIÞ ¼ � � � ¼ hðA"I#I Þ ¼ hðCðAÞÞ ¼ ðhðCÞÞðAÞ
proving hðCÞ ¼ "hðIÞ#hðIÞ . By Theorem 9, hðCÞ is an
L2-closure operator in X.

Finally, by [6], hA;A"I i 7! hhðAÞ; hðA"I Þi is a complete
lattice homomorphism of BI ¼ fhA;A"I ijA 2 SCg onto
BhðIÞ ¼ fhA;A"hðIÞ ijA 2 ShðCÞg (with the lattice order � on
BI given by hA;A"I i � hB;B"I i iff A � B, similarly for
BhðIÞ). The fact that A 7! hðAÞ is a complete lattice
homomorphism of SC onto ShðCÞ now directly follows by
observing that BI is isomorphic to SC, and BhðIÞ is
isomorphic to ShðCÞ.

ShðCÞ is therefore a homomorphic image of SC, i.e. a
factor lattice of SC.

Remark. The fact that hðCÞ is an L2-closure operator
can be proved directly (without reference to Theorem 9)
as follows: For any A 2 LX

1 we have A � CðAÞ, whence
hðAÞ � hðCðAÞÞ ¼ ðhðCÞÞðAÞ by monotonicity of h,
proving (2). Furthermore, SðA1;A2Þ � SðCðA1Þ;CðA2ÞÞ
implies

SðhðA1Þ; hðA2ÞÞ ¼ hðSðA1;A2ÞÞ � hðSðCðA1Þ;CðA2ÞÞÞ
¼ SðhðCðA1ÞÞ; hðCðA2ÞÞÞ
¼ SððhðCÞÞðA1Þ; ðhðCÞÞðA2ÞÞ

proving (3). Finally,

ðhðCÞÞðhðAÞÞ¼hðCðAÞÞ¼hðCðCðAÞÞÞ
¼ðhðCÞÞðhðCðAÞÞÞ¼ðhðCÞÞððhðCÞÞðhðAÞÞÞ

proving (4).

4
Representation by 2-closure operators
We show that there is a natural one-to-one correspon-
dence between Lf1g-closure operators on X and special
closure operators on X � L. Call a subset
A � X � L(L-set)-representative if (1) for each x 2 X it
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holds hx; ai 2 A and b � a implies hx; bi 2 A, and (2)
for each x 2 X the set fa 2 Ljhx; ai 2 Ag has the greatest
element.

For any L-set A 2 LX put

bAc ¼ fhx; ai 2 X � Lja � AðxÞg : ð20Þ
For any set A � X � L put

dAe ¼ hx; ai 2 X � Lja ¼
_

hx;bi2A

b

8<
:

9=
; : ð21Þ

We have immediately the following result.

Lemma 20 Let A 2 LX be an L-set, A0 � X � L be a rep-
resentative set. Then (1) bAc � X � L is an representative
set, (2) dA0e is an L-set such that (3) A ¼ dbAce,
A0 ¼ bdA0ec.

Definition 21 A 2-closure operator D on X � L is called
commutative w.r.t. bd ec if

bdDðAÞec ¼ DðAÞ ¼ DðbdAecÞ ð22Þ
holds for each A 2 X � L.

Remark. It is easy to verify that (22) holds iff both
bdDðAÞec � DðAÞ and DðbdAecÞ � DðAÞ hold.

For an operator D : X � L ! X � L define an operator
CD : LX ! LX by

CDðAÞ ¼ dDðbAcÞe
for A 2 LX . For an operator C : LX ! LX define an oper-
ator DC : X � L ! X � L by

DCðAÞ ¼ bCðdAeÞc
for A 2 X � L.

Theorem 22 Let C be an Lf1g-closure operator on X and D
be a 2-closure operator on X � L which is commutative
w.r.t. bd ec. Then (1) DC is a 2-closure operator on X which
is commutative w.r.t. bd ec, (2) CD is an Lf1g-closure
operator on X, and (3) C ¼ CDC

and D ¼ DCD
.

Proof. (1) Let A;A1;A2 � X � L. We have

A � bdAec � bCðdAeÞc ¼ DCðAÞ ;

proving extensionality of DC. If A1 � A2 then clearly
SðdA1e; dA2eÞ ¼ 1, hence SðCðdA1eÞ;CðdA2eÞÞ ¼ 1, so

DCðA1Þ ¼ bCðdA1eÞc � bCðdA2eÞc ¼ DCðA2Þ ;

proving monotonicity of DC.

DCðDCðAÞÞ ¼ bCðdbCðdAeÞceÞc ¼ bCðCðdAeÞÞc
¼ bCðdAeÞc ¼ DCðAÞ ;

proving idempotency. Finally,

bdDCðAÞec ¼ bdbCðdAeÞcec ¼ bCðdAeÞc ¼ DCðAÞ ;

and

DCðbdAecÞ ¼ bCðdbdAeceÞc ¼ bCðdAeÞc ¼ DCðAÞ ;

verifying commutativity of DC.
(2) Let A;A1;A2 2 LX . We have

A ¼ dbAce � dDðbAcÞe ¼ CDðAÞ, thus CD is extensional. If
SðA1;A2Þ ¼ 1 then bA1c � bA2c, therefore
DðbA1cÞ � DðbA2cÞ and thus

CDðA1Þ ¼ dDðbA1cÞe � dDðbA2cÞe ¼ CDðA2Þ ;

monotonicity of CD. Using commutativity we further get

CDðCDðAÞÞ ¼ dDðbdDðbAcÞecÞe ¼ dDðDðbAcÞÞe
¼ dDðbAcÞe ¼ CDðAÞ ;

idempotency of CD.
(3) For any A 2 LX we have

CDC
ðAÞ ¼ dbCðdbAceÞce ¼ CðAÞ. For any A � X � L we

have by commutativity of D that
DCD

ðAÞ ¼ bdDðbdAecÞec ¼ DðAÞ.

Remark. Note that commutativity of D is essential in the
foregoing proposition (a counterexample is easy to get).

5
Some examples
In this section we introduce two further properties of
LK-closure operators and show some examples. Call an
L-set A 2 LX finite if fx 2 XjAðxÞ > 0g is a finite set.

Definition 23 An LK closure operator C on X is called
compact (finitary, or algebraic) if

CðAÞ ¼
[

fCðBÞ; jB 2 LX;B � A;B is finiteg
holds for each A 2 LX .

Remark. For L ¼ 2 we get the compact closure operators.

Definition 24 An LK-closure operator C on X is called
topologic if it satisfies

CðA [ BÞ ¼ CðAÞ [ CðBÞ
for any A;B 2 LX .

Remark. For L ¼ 2, topologic LK-closure operators are
just closure operators of topologic spaces. The corre-
sponding system SC consists of the closed sets of the
topology.

Fuzzy subalgebras Let A ¼ hA; Fi be an algebra, i.e. A is a
nonempty set and F is a system of operations on A. An
L-set B 2 LA is called an L-subalgebra of A if for each
f : An ! A of F and every a1; . . . ; an 2 A, it holds

Bða1Þ � � � � � BðanÞ � Bðf ða1; . . . ; anÞÞ :

Denote by L-Sub A the set of all L-subalgebras of A.

Remark. For � ¼ ^, L-subalgebras and their systems
are introduced and investigated in [8]. Note that 2-
subalgebras coincide with the usual subalgebras.

Theorem 25 For any algebra A ¼ hA; Fi, L-Sub A is an
Lf1g-closure system and the corresponding operator
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C ¼ CL-SubA is an algebraic Lf1g-closure operator.
Moreover, if � ¼ ^ (i.e. L is an algebra of intuitionistic
logic (Heyting algebra)), C is an L-closure operator.

Proof. It is easy to see that L-SubA is closed under
arbitrary intersections, hence L-SubA is an Lf1g-closure
system and the corresponding C is an Lf1g-closure oper-
ator. It remains to verify the compactness of C. To this
end, let B 2 LA and put

½B�ðaÞ ¼
_

fBða1Þjx1jt � � � � � BðanÞjxnjt jt 2 Tn ;

ai 2 A; tða1; . . . ; anÞ ¼ ag
where ak ¼ a � � � � � a (k-times), Ti denotes the set of all
i-ary terms of the type of A, and jxijt denotes the number
of occurrences of the variable xi in t. It is a matter of
routine to prove by induction over rank of the term t
(defined by ranðxiÞ ¼ 0 and ranðf ðt1; _ss; tnÞÞ ¼ 1 þ max
franðt1Þ; _ss; ranðtnÞgÞ that ½B� ¼ CðBÞ which implies the
compactness of C.

Let � ¼ ^. We have to prove SðB1;B2Þ � Sð½B1�; ½B2�Þ for
every B1;B2 2 LA which holds iff for each a 2 A we have
½B1�ðaÞ ^ SðB1;B2Þ � ½B2�ðaÞ. Since ^ is idempotent we have

½B1�ðaÞ ^ SðB1;B2Þ ð23Þ

¼
_

t2Tn;tða1;...;anÞ¼a

ðB1ða1Þ ^ � � � ^ B1ðanÞÞ ^ SðB1;B2Þ

¼
_

t2Tn;tða1;...;anÞ¼a

ðB1ða1Þ ^ SðB1;B2Þ ^ � � � ^ B1ðanÞ ð24Þ

^ SðB1;B2ÞÞ ð25Þ

�
_

t2Tn;tða1;...;anÞ¼a

ðB2ða1Þ ^ � � � ^ B2ðanÞÞ ¼ ½B2�ðaÞ :ð26Þ

Remark. Note that in general, C ¼ CL-SubA is not an
L-closure system. As a counterexample consider
L ¼ f0; 1

2 ; 1g with a Lukasiewicz structure, and a four-
element lattice with the support A ¼ fa; b; c; dg with the
least element a, the greatest element d, and two mutually
incomparable elements b and c, i.e. its Hasse diagram is a
45%-rotated square. Let B1;B2 2 LA be given by B1ðaÞ ¼ 0,
B1ðbÞ ¼ B1ðcÞ ¼ B1ðdÞ ¼ 1, B2ðaÞ ¼ 0,
B2ðbÞ ¼ B2ðcÞ ¼ B2ðdÞ ¼ 1

2. Clearly, B2 itself is an L-sub-
algebra of A. On the other hand, ½B1�ðaÞ ¼ 1 since
B1ðbÞ � B1ðcÞ ¼ 1 � ½B1�ðb ^ cÞ ¼ ½B1�ðaÞ. We therefore
have SðB1;B2Þ ¼ 1

2 6� 0 ¼ ½B1�ðaÞ ! ½B2�ðaÞ ¼ Sð½B1�; ½B2�Þ,
i.e. ½ � ¼ C is not an L-closure operator.

Fuzzy relational closures Let R be an L-relation on the
set X, i.e. R 2 LX�X . By a reflexive (symmetric, transi-
tive) closure of R it is meant the least L-relation on X
which is itself reflexive (symmetric, transitive) and
contains R. The reflexive, symmetric, and transitive
closure of R is denoted by Rr , Rs, and Rt, respectively.
Recall that R is reflexive if Rðx; xÞ ¼ 1, symmetric if
Rðx; yÞ ¼ Rðy; xÞ, and transitive if
Rðx; yÞ � Rðy; zÞ � Rðx; zÞ.

It is immediate that Rr ¼ R [x2X f1
	
hx; xig,

Rs ¼ R [ R�1 where R�1ðx; yÞ ¼ Rðy; xÞ. Since R � Rr,
R � Rs, SðR; SÞ � SðRr; SrÞ, SðR; SÞ � SðRs; SsÞ (both of the

inequalities are easy to verify), and Rr ¼ Rrr, Rs ¼ Rss, we
conclude that both r and s are L-closure operators on
X � X. Moreover, by the above description of r and s we
conclude that both of them are compact as well as
topologic.

To show that Rt ¼
S1

i¼1 Ri ¼ R [ R%R [ R%R%R [ � � �
(where ðR%SÞðx; yÞ ¼

W
z2XðRðx; zÞ � Sðz; yÞ) it is enough

to observe that R �
S1

i¼1 Ri; if R � S and S is transitive
then

S1
i¼1 Ri � S; and that

S1
i¼1 Ri is transitive. Since the

two former are evident, we only verify the last condition.S1
i¼1 Ri is transitive iff

[1
i¼1

Ri

 !
ðx; yÞ%

[1
j¼1

Rj

 !
ðy; zÞ

¼
_1
i¼1

Riðx; yÞ
 !

%
_1
j¼1

Rjðy; zÞ
 !

¼
_1
i¼1

_1
j¼1

Riðx; yÞ%Rjðy; zÞ �
_1
k¼1

Rkðx; zÞ

which holds iff for every i; j we have
Riðx; yÞ%Rjðy; zÞ �

W1
k¼1 Rkðx; zÞ. The last statement is true

because Riðx; yÞ %Rjðy; zÞ � Riþjðx; zÞ. It is easy to see that
for K ¼ f1g, the conditions (2)–(4) are satisfied, hence t is
an LK-closure operator on X � X. In general, t is not an L-
closure operator (consider L ¼ f0; 1

2 ; 1g with Lukasiewicz
structure, X ¼ fa; b; cg, Rða; bÞ ¼ Rðb; cÞ ¼ 1,
Sða; bÞ ¼ Sðb; cÞ ¼ 1

2, and Rðx; yÞ ¼ Sðx; yÞ ¼ 0 otherwise).
t is compact since

Rtðx; yÞ ¼
_1
i¼1

Riðx; yÞ

¼
_1
i¼1

_
x¼z1;z2;...;ziþ1¼y

Rðz1; z2Þ � � � � � Rðzi; ziþ1Þ

¼
_1
i¼1

_
x¼z1;z2;...;ziþ1¼y

fRðz1; z2Þ hz1; z2i; . . . ;=

Rðzi; ziþ1Þ hzi; ziþ1igtðx; yÞ
	

:

As it is well-known from the classical case (L ¼ f0; 1g),
t is not topologic.

Remark. An easy inspection shows that if L is a Heyting
algebra (� ¼ ^) then t is even an L-closure operator on
X � X.

Fuzzy concept lattices By Port-Royal logic [1], a concept
is determined by its extent (the collection of all objects
which fall under the concept) and its intent (the collection
of all attributes which fall under the concept). For
instance, the extent of the concept DOG is the collection of
all dogs while its intent is the collection of all attributes
common to dogs (like ‘‘to be a mammal’’, ‘‘to bark’’ etc.).
Port-Royal theory of concepts has been formalized and
developed into a logico-algebraical theory of conceptual
data analysis and knowledge representation by Wille
et al. [14, 25]. The theory is known as formal concept
analysis or theory of concept lattices. The first approach to
generalize formal concept analysis from the point of view
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of fuzzy logic is [11]. Later on, a general approach to the
study of concept lattices from the point of view of fuzzy
logic has been pursued, independently, by Pollandt [23]
and the present author (see e.g. [2–6]). The theory goes as
follows: Let X and Y be non-empty sets interpreted as the
set of objects and the set of attributes, respectively, I be an
L-relation between X and Y . The triple hX;Y; Ii is called a
(formal) L-context. A (formal) L-concept in hX;Y; Ii is a
pair hA;Bi 2 LX � LY (i.e. A is an L-set of attributes, B is
an L-set of attributes) such that B is the L-set of all attri-
butes common to all objects from A, and A is the L-set of
all objects sharing all the attributes from B. These verbal
conditions translate formally as follows: Let "I : LX ! LY

and #I : LY ! LX be defined by (18) and (19). Then
hA;Bi 2 LX � LY is an L-concept in hX;Y; Ii iff A" ¼ B
and B# ¼ A (one easily verifies that the verbal conditions
are expressed exactly by formulas (18) and (19)). The
set B X;Y; Ið Þ ¼ fhA;Bi 2 LX � LY ;A" ¼ B; B# ¼ Ag
equipped with the partial order � defined by

hA1;B1i � hA2;B2i iff A1 � A2 ðiff B2 � B1Þ
is called the L-concept lattice (fuzzy concept lattice)
determined by hX;Y; Ii. Fuzzy concept lattice (which is in
fact a complete lattice) is the basic derived structure which
reveals the conceptual knowledge present in (the input
data) hX;Y; Ii (for more information on the principles
of conceptual data analysis see [14]).

Putting in other words, Theorem 10 says that h"I ; #I i
forms a representative form of L-Galois connection.
Theorem 9 implies that the composite mappings
"I#I : LX ! LX and #I"I : LY ! LX are L-closure operators
on X and Y , respectively, and that the sets
fA 2 LXjA ¼ A"I#Ig and fB 2 LXjB ¼ B"I#Ig are dually
isomorphic L-closure systems. Moreover, Theorem 9
implies that each L-closure operator on X (L-closure sys-
tem in X) can be viewed as being of the form "I#I (or #I"I )
(as the set of all extents (or intents) of an L-concept lattice)
for some L-context hX;Y; Ii.

We now show an application of so-called Main theorem
of L-concept lattices (see [3]) to provide a characterization
of lattices of fixed points of L-closure operators. To this end,
recall that given a complete lattice V ¼ hV;�i, a subset
K � V is called infimally (supremally) dense in V if each
v 2 V is an infimum (supremum) of some subset of K.

Theorem 26 A complete lattice V ¼ hV;�i is isomorphic
to hSC;�i for an L-closure operator C in X iff there are
mappings c : X � L ! V and l : SC � L ! V such that
cðX; LÞ is supremally dense in V, lðSC; LÞ is infimally
dense in V, and a � b � AðxÞ is equivalent to
cðx; aÞ � lðA; bÞ for any a; b 2 L, x 2 X, A 2 SC.

Proof. The proof follows immediately from [3,
Theorem 7], Theorems 9, and 12.

Since B X;Y; Ið Þ is isomorphic to SC for C ¼ "I#I , the
above two factorization procedures for SC yield imme-
diately factorization procedures for fuzzy concept lattices
(see also [4, 6]).

6
Fuzzy closure operators and consequence relations
The concept of a closure operator is an important one
from the point of view of logic. Typically, a closure
operator C in a given logical calculus arises as follows:
for a given set collection A of formulas, the closure CðAÞ
is defined to be the collection of all formulas provable
from A. A detailed study of closure operators in the
context of two-valued logic can be found in [27]. The
situation is analogous in fuzzy logic. Namely, following
the seminal work of Pavelka [22], provability degree of a
formula from a fuzzy set of formulas is defined in fuzzy
logic. Then, a fuzzy closure operator is naturally in-
duced by a fuzzy logical calculus as follows: for a given
fuzzy set A of formulas and a given formula u, the
degree to which u belongs to the closure CðAÞ of A is
defined to be the provability degree of u from A. For a
special structure of truth values (namely, for L ¼ ½0; 1�
equipped with min as the connective modeling
conjunction, i.e. the standard Gödel algebra [18]), fuzzy
closure operators and fuzzy consequence relations
have been studied by Chakraborty (see e.g. [12]) and
Gerla (see e.g. [15]). However, the study of general fuzzy
closure operators and its relations to fuzzy logic is
still an open goal (a paper on this topic is in
preparation).

Our aim in this section is to present a general result on
the relationship between fuzzy closure operators and fuzzy
consequence relations. First, we show that each binary
L-relation between LX (the set of all L-sets in a given set X)
and X induces in a natural way a fuzzy closure system (and
the corresponding fuzzy closure operator). For an L-rela-
tion R between LX and X, and a subset K � L, we say that
an L-set A 2 LX is RK-closed if for any B 2 LX and each
x 2 X we have

SðB;AÞ � RðB; xÞ � AðxÞ
whenever SðB;AÞ 2 K.

Lemma 27 For any R 2 LLX�X and K � L, the set SR of
all L-sets in X that are RK-closed forms an LK-closure
system.

Proof. By definition, we have to show that SR is closed
w.r.t. SK-intersections, i.e. we have to show that for any
A 2 LX , ð

T
B2SR;SðA;BÞ2K SðA;BÞ ! BÞ is RK-closed. Take

any C 2 LX such that
SðC;

T
B2SR;SðA;BÞ2K SðA;BÞ ! BÞ 2 K. We have to show

S C;
\

B2SR;SðA;BÞ2K

SðA;BÞ ! B

0
@

1
A� RðC; xÞ

�
^

B2SR;SðA;BÞ2K

SðA;BÞ ! BðxÞ

is true for any x 2 X. The last inequality holds iff for any
B 2 LX such that SðA;BÞ 2 K we have
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SðA;BÞ � S C;
\

B2SR;SðA;BÞ2K

SðA;BÞ ! B

0
@

1
A� RðC; xÞ

� BðxÞ
which is clearly true provided both
SðA;BÞ � SðC;

T
B2SR;SðA;BÞ2K SðA;BÞ ! BÞ � SðC;BÞ and

SðC;BÞ 2 K are valid. We have

SðA;BÞ � SðC;
\

B2SR;SðA;BÞ2K

SðA;BÞ ! BÞ

� SðA;BÞ � SðC; SðA;BÞ ! BÞ
¼ SðA;BÞ �

^
y2X

ðCðyÞ ! ðSðA;BÞ ! BðyÞÞÞ

¼ SðA;BÞ �
^
y2X

ðSðA;BÞ ! ðCðyÞ ! BðyÞÞÞ

�
^
y2X

ðSðA;BÞ � ðSðA;BÞ ! ðCðyÞ ! BðyÞÞÞÞ

�
^
y2X

CðyÞ ! BðyÞ ¼ SðC;BÞ :

Since SðA;BÞ 2 K and SðC;
T

B2SR;SðA;BÞ2K SðA;BÞ ! BÞ
2 K, we conclude SðC;BÞ 2 K.

In fact, each LK-closure system is induced in the way
described in Lemma 27 by its corresponding LK-closure
operator: Each LK-closure operator C on X induces an
L-relation RC 2 LLX�X by

RCðA; xÞ ¼ CðAÞðxÞ :

Now, applying Lemma 27 to RC we get the LK-closure
system corresponding to C:

Lemma 28 For an LK-closure operator C on X we have
SC ¼ SRC

.

Proof. Let A 2 SC. We show that A is RK-closed. Let
SðB;AÞ 2 K. Then, by (3), SðB;AÞ � SðCðBÞ;CðAÞÞ, i.e. for
each x 2 X we have

SðB;AÞ�RCðB; xÞ¼SðB;AÞ�CðBÞðxÞ�CðAÞðxÞ¼AðxÞ ;

whence A is RK-closed. Conversely, if A is RK-closed then
for any B such that SðB;AÞ 2 K we have
SðB;AÞ � RCðB; xÞ � AðxÞ. Putting B ¼ A and considering
SðA;AÞ ¼ 1 2 K, we conclude

SðB;AÞ � RCðB; xÞ ¼ 1 � RCðA; xÞ ¼ CðAÞðxÞ � AðxÞ ;

thus A 2 SC.
Recall (see e.g. [15]) that a (bivalent) relation ‘ between

2X and X is called a consequence relation in (a given set) X
if (i) X ‘ u holds for each u 2 X; (ii) X ‘ u and X � Y
imply Y ‘ u; and (iii) X [ Y ‘ u and X ‘ w for any w 2 Y
imply X ‘ u.

Definition 29 An L-relation ‘ between LX and X is called
an LK-consequence relation provided it satisfies

ðiÞAðuÞ � ðA ‘ uÞ
ðiiÞðA ‘ uÞ � SðA;BÞ �ðB ‘ uÞ whenever ðB ‘ uÞ 2 K

ðiiiÞð^u2XBðwÞ ! ðA ‘ wÞÞ � ððA [ BÞ ‘ uÞ�ðA ‘ uÞ
whenever ð^u2XBðwÞ ! ðA ‘ wÞÞ 2 K

for any A;B 2 LX;u 2 X

Remark. Note that condition (iii) may be equivalently
replaced by (iii0):

^
u2X

BðwÞ ! ðA ‘ wÞ
 !

� ðB ‘ uÞ � ðA ‘ uÞ

whenever ð
V

u2X BðwÞ ! ðA ‘ wÞÞ 2 K. Indeed,
ðB ‘ uÞ � ððA [ BÞ ‘ uÞ by (ii), whence (iii) implies (iii0).
Conversely, suppose (iii0) and take B0 ¼ A [ B. By
AðwÞ � ðA ‘ wÞ we have^
w2X

ððA [ BÞðwÞ ! ðA ‘ wÞÞ

¼
^
w2X

ðAðwÞ ! ðA ‘ wÞÞ ^
^
w2X

ðBðwÞ ! ðA ‘ wÞÞ

¼
^
w2X

ðBðwÞ ! ðA ‘ wÞÞ :

Therefore,

^
w2X

ðBðwÞ ! ðA ‘ wÞÞ
 !

� ððA [ BÞ ‘ uÞ

¼
^
w2X

ððA [ BÞðwÞ ! ðA ‘ wÞÞ
 !

� ððA [ BÞ ‘ uÞ

¼
^
w2X

ðB0ðwÞ ! ðA ‘ wÞÞ
 !

� ðB0 ‘ uÞ � ðA ‘ uÞ

by (iii0).
For a mapping C : LX ! LX , define an L-relation ‘C

between LX and X by

ðA ‘C uÞ ¼ CðAÞðuÞ :

For an L-relation ‘ between LX and X define a mapping
C‘ : LX ! LX by

C‘ðAÞðuÞ ¼ ðA ‘ uÞ :

Theorem 30 Let C : LX ! LX be a mapping, ‘ 2 LLX�X be
an L-relation. Then (1) C is an LK-closure operator iff‘C is an
LK-consequence relation; (2)‘ is an LK-consequence relation
iff C‘ is an LK-closure operator; (3) C ¼ C‘C

and ‘ ¼ ‘C‘ .

Proof. Clearly, (3) is true. Therefore, it is sufficient to
establish the ‘‘)’’-parts of (1) and (2).

(1) We verify that ‘C is an LK-consequence operator. (i)
and (ii) are direct consequences of (2) and (3). We now
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verify (iii0), a condition equivalent to (iii) (see Remark
following Definition 29):

^
w2X

BðwÞ ! ðA ‘C wÞ
 !

� ðB ‘C uÞ � ðA ‘C uÞ

is by definition equivalent to

^
w2X

BðwÞ ! CðAÞðwÞ
 !

� CðBÞðuÞ � CðAÞðuÞ

which is true iff^
w2X

BðwÞ ! CðAÞðwÞ � CðBÞðuÞ ! CðAÞðuÞ :

The last inequality is valid since
V

w2X BðwÞ ! CðAÞ
ðwÞ 2 K implies^
w2X

BðwÞ ! CðAÞðwÞ ¼ SðB;CðAÞÞ

� SðCðBÞ;CðCðAÞÞÞ � CðBÞðuÞ ! CðAÞðuÞ :

(2) We check that C‘ is an LK-closure operator. (2) and
(3) are direct consequences of (i) and (ii). Putting
B ¼ C‘ðAÞ, (iii0) yields

ðC‘ðC‘ðAÞÞÞðuÞ ¼ 1 � ðC‘ðAÞ ‘ uÞ
¼
^
w2X

ðBðwÞ ! ðA ‘ wÞÞ � ðB ‘ uÞ � ðA ‘ uÞ

¼ C‘ðAÞðuÞ :

Remark. Theorem 30 thus establishes a one-to-one
correspondence between fuzzy closure operators and
fuzzy consequence relations. In [15], Gerla defines
graded consequence relation in X as a fuzzy relation
(Gerla takes L ¼ ½0; 1� and � ¼ min) between 2X (the
power set of X) and X. Gerla then establishes a one-to-
one correspondence between graded consequence rela-
tions and special fuzzy closure operators (Gerla deals, in
our terms, with Lf1g-closure operators), i.e. not all fuzzy
closure operators. As it can be easily seen, the difficulty
is in condition (iii) of the definition of LK-consequence
relation: particularly, the condition ð

V
u2X BðwÞ !

ðA ‘ wÞÞ 2 K is missing in Gerla’s definition. Instead,
Gerla uses (iii00):

V
w2BðA ‘ wÞ �ððA [ BÞ ‘ uÞ � ðA ‘ uÞ

where A;B 2 2X (i.e. are A;B are subsets of XÞ. Clearly,
for A;B 2 2X , (iii0) is equivalent to ð

V
u2X BðwÞ !

ðA ‘ wÞÞ � ððA [ BÞ ‘ uÞ � ðA ‘ uÞ. Now, it is not true
(as Gerla observes) that (iii0) is satisfied by ‘C for any
Lf1g-closure operator C, i.e. (iii00) is too strong and the
above natural relations do not establish a one-to-one
correspondence. Theorem 30 show a way to have a one-
toone correspondence, generalizing fully the bivalent
case.
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