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Abstract
The hybrid minimum principle (HMP) is established for the optimal control of deter-
ministic hybrid systems with both autonomous and controlled switchings and jumps
where state jumps at the switching instants are permitted to be accompanied by changes
in the dimension of the state space and where the dynamics, the running and switching
costs as well as the switching manifolds and the jump maps are permitted to be time
varying. First-order variational analysis is performed via the needle variation method-
ology and the necessary optimality conditions are established in the form of the HMP.
A feature of special interest in this work is the explicit presentations of boundary
conditions on the Hamiltonians and the adjoint processes before and after switchings
and jumps. Analytic and numerical examples are provided to illustrate the results.

Keywords Hybrid systems · Minimum Principle · Needle variations · Nonlinear
control systems · Optimal control · Pontryagin Maximum Principle · Variational
methods

1 Introduction

The minimum principle (MP), also called the maximum principle in the pioneering
work of Pontryagin et al. [1], is a milestone of systems and control theory that led to
the emergence of optimal control as a distinct field of research. This principle states
that any optimal control along with the optimal state trajectory must solve a two-point
boundary value problem in the form of an extended Hamiltonian canonical system, as
well as satisfying an extremization condition of the Hamiltonian function. Whether
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the extreme value is maximum or minimum depends on the sign convention used for
the Hamiltonian definition.

The main objective of this paper is the presentation and proof of the minimum
principle for hybrid systems, i.e., the generalization of the MP for control systems
with both continuous and discrete states and dynamics. It should be remarked that
due to the development of hybrid systems theory in different scientific communi-
ties which are motivated by various applications, the domains of definition of hybrid
systems do not necessarily intersect in a general class of systems. For instance, in
computer science hybrid systems are viewed as finite automata interacting with an
analogue environment, and therefore the emphasis is often on the discrete event
dynamics [2–9], while in the control systems community, the continuous dynam-
ics is more dominant in the discussion. Even in hybrid systems stability theory (see,
e.g., [10–17]) the considered structures for hybrid control inputs are different from
the admissible set of input values considered for optimal control purposes. Moreover,
the definitions and the underlying assumptions for the class of hybrid optimal control
problems in hybrid dynamic programming (HDP) [18–26] differ from those of the
hybrid minimum principle (HMP) literature.

The formulation of the HMP by Clarke and Vinter [27, 28], referred to by them
as “optimal multiprocesses,” provides a minimum principle for hybrid systems of a
very general nature in which switching conditions are regarded as constraints in the
form of set inclusions and the dynamics of the constituent processes are governed
by (possibly nonsmooth) differential inclusions. A similar philosophy is followed by
Sussmann [29, 30]where a nonsmoothMP is presented for hybrid systems possessing a
general class of switching structures. Due to the generality of the considered structures
in [27–30] degeneracy is not precluded, therefore additional hypotheses (typically of
a controllabilty nature) need to be imposed to make the HMP results significantly
informative (see, e.g., [31] for more discussion).

An alternative philosophy, followed by Shaikh and Caines [32], Garavello and
Piccoli [33], Taringoo and Caines [34], and Pakniyat and Caines [35] is to ensure
the validity of the HMP in a non-degenerate form by introducing hypotheses on the
dynamics, transitions and switching events. Then by performing first-order variational
analysis via the needle variation methodology, the necessary optimality conditions are
established in the form of the HMP, with the emphasis of theoretical developments on
generalization of the class of hybrid systems and on relaxation of regularity assump-
tions (see, e.g., [36] for a discussion on regulatory requirements in control theory).
Moreover, non-degeneracy provided by this approach is advantageous in the develop-
ment of numerical algorithms (see, e.g., [37–46]). Other, prior, versions of the HMP
which appeared in its development within hybrid system theory are to be found in the
work of Riedinger and Kratz [47], Xu and Antsaklis [48], Azhmyakov, Boltyanski
and Poznyak [49], and Dmitruk and Kaganovich [50–52].

In past work of the authors (see [35, 53, 54]), a unified general framework for
hybrid optimal control problems is presented within which the HMP, HDP, and their
mutual relationship are valid. Distinctive aspects in this work are the presence of
state dependent switching costs, the consideration of both autonomous and controlled
switchings and jumps, and the possibility of state space and control space dimension
changes. The latter aspect is of particular importance for systemswith hybrid dynamics
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induced by restrictions of certain degrees of freedom (e.g., single- and double-support
modes in legged locomotion [55] and fixed gear modes and transitioning phases in
automotive systems [56, 57]). Within this general framework, it is proved that along
optimal trajectories of a hybrid system, the adjoint process in theHMP, and the gradient
of the value function in HDP are equal almost everywhere (see [53] for a proof method
based on variations over optimal trajectories, and [35] for variations over general (i.e.,
not necessarily optimal) trajectories). Illustrative analytic examples are provided in
[58–60].

In this paper, we further extend this framework to permit time-varying vector fields,
switching manifolds, switching costs and jump transition maps and we present the
statement and the proof of the hybrid minimum principle within this general frame-
work. Distinctive aspects of this work are the explicit presentation of the boundary
conditions on the Hamiltonians and adjoint processes (in contrast to their implicit
expressions in [27–30, 33]), the relaxation of the regularity requirements (relative
to, e.g., [32, 34]) and the presence of both autonomous and controlled switchings and
jumps with switching costs and the possibility of state space dimension change (where
only subsets of these features have been considered for the presentation of other ver-
sions of the HMP). Moreover, the explicit derivation of the boundary conditions in
the HMP is presented within the general class of hybrid optimal control problems
with time-varying vector fields, running and switching costs, jump transition maps
and switching manifolds.

The organization of the paper is as follows: In Sect. 2, a definition of hybrid systems
is presented that covers a general class of nonlinear systems on Euclidean spaces with
autonomous and controlled switchings and jumps allowed at the switching states and
times. Section3 presents a general class of hybrid optimal control problems with
a large range of running, terminal and switching costs. The regularity assumptions
in Sects. 2 and 3 are attempted to be minimal, and they are imposed primarily to
ensure the existence and uniqueness of solutions as well as continuous dependence
on initial conditions. Further generalizations such as the lying of the system’s vector
fields in Riemannian spaces [34, 61], nonsmooth assumptions [18, 19, 27–30], state-
dependence of the control value sets [33], and stochastic hybrid systems [62], as well
as restrictions to certain subclasses, such as those with regional dynamics [23, 24],
and with specified families of jumps [18–21], become possible through variations and
extensions of the framework presented here. The main result which is the statement
and the proof of the hybrid minimum principle (HMP) is presented in Sect. 4 where
first-order variational analysis is performed via the needle variation methodology and
the necessary optimality conditions are established in the formof theHMP.To illustrate
the results, four analytic and numerical examples are provided in Sect. 5. Concluding
remarks are presented in Sect. 6.

2 Hybrid systems

Definition 1 A (deterministic) hybrid system (structure) H is a septuple

H = {H , I , �, A, F, �,M} , (1)
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where the symbols in the expression and their governing assumptions are defined as
below.
A0 H := ∐

q∈Q R
nq is called the (hybrid) state space of the hybrid system H, where

∐
denotes disjoint union, i.e.,

∐
q∈Q R

nq = ⋃
q∈Q

{
(q, x) : x ∈ R

nq
}
, where

Q = {
1, 2, ..., |Q|} ≡ {

q1, q2, ..., q|Q|
}
, |Q| < ∞, is a finite set of discrete states

(components), and
{Rnq }q∈Q is a family of finite-dimensional continuous valued state spaces, where

nq ≤ n < ∞ for all q ∈ Q.
I := � ×U is the set of system input values, where
� with |�| < ∞ is the set of discrete state transition and continuous state jump

events extended with the identity element,
U = {

Uq
}
q∈Q is the set of admissible input control values, where eachUq ⊂ R

mq

is a compact set in Rmq .
The set of admissible (continuous) control inputs U (U ) := L∞ ([t0, T∗) ,U ), is

defined to be the set of all measurable functions that are bounded up to a set of
measure zero on [t0, T∗) , T∗ < ∞. The boundedness property necessarily holds since
admissible inputs take values in the compact set U .

� : H × � → H is a time-dependent (partially defined) discrete state transition
map.

A : Q×� → Q denotes both a deterministic finite automaton and the automaton’s
associated transition function on the state space Q and event set �, such that for a
discrete state q ∈ Q only the discrete controlled and uncontrolled transitions into the
q-dependent subset {A (q, σ ) , σ ∈ �} ⊂ Q occur under the projection of � on its Q
components:� : R×Q×R

n×� → H |Q . In other words,� can only make a discrete
state transition in a hybrid state (q, x) if the automaton A can make the corresponding
transition in q.

� : H × � → H is a time-dependent (partially defined) continuous state jump
transition map. For all ξ ∈ �, the functions ξσ ≡ ξ(·, ·, σ ) : [t0, t f ] × R

nq → R
n p ,

p ∈ A (q, σ ) are assumed to be jointly continuously differentiable in both the time
t ∈ [t0, t f ] and the continuous state x ∈ R

nq .
F is an indexed collection of vector fields

{
fq
}
q∈Q such that there exist k fq ≥ 1

for which fq ∈ Ck fq
([t0, t f ] × R

nq ×Uq → R
nq
)
satisfies a joint uniform Lipschitz

condition, i.e., there exists L f < ∞ such that
∥
∥ fq (t1, x1, u1) − fq (t2, x2, u2)

∥
∥ ≤

L f (|t1 − t2| + ‖x1 − x2‖ + ‖u1 − u2‖) for all q ∈ Q, t1, t2 ∈ [t0, t f ], x1, x2 ∈ R
nq ,

u1, u2 ∈ Uq .
M = {mα : α ∈ Q × Q} denotes a collection of switching manifolds such that, for

any ordered pair α ≡ (α1, α2) = (q, r), mα is a smooth, i.e., C∞ codimension 1 sub-
manifold of [t0, t f ] × R

nq , described locally by mt
α = {

x ∈ R
nα1 : mα (t, x) = 0

}
,

and possibly with boundary ∂mt
α . It is assumed thatmt

α ∩mt
β = ∅, whenever α1 = β1

but α2 = β2, for all α, β ∈ Q × Q, t ∈ [t0, t f ]. ��

We note that the case where mt
α is identified with its reverse ordered version mt

ᾱ

giving mt
α = mt

ᾱ , is not ruled out by this definition, even in the non-trivial case mt
p,p

where α1 = α2 = p. The former case corresponds to the common situation where the
switching of vector fields at the passage of the continuous trajectory in one direction
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through a switching manifold is reversed if a reverse passage is performed by the
continuous trajectory, while the latter case corresponds to the standard example of the
bouncing ball.

Switchingmanifoldswill function in such away thatwhenever a trajectory governed
by the controlled vector field meets the switching manifold transversally there is an
autonomous switching to another controlled vector field or there is a jump transition in
the continuous state component, or both. A transversal arrival on a switching manifold
mt

q,r , at state xq ∈ mt
q,r = {

x ∈ R
nq : mq,r (t, x) = 0

}
occurs whenever

∇mq,r
(
t, xq

)�
fq
(
t, xq , uq

) = 0, (2)

for uq ∈ Uq , and q, r ∈ Q. It is assumed that:
A1 The initial state h0 := (q0, x(t0)) ∈ H is such that mq0,q j (t0, x0) = 0, for all
q j ∈ Q. ��

Definition 2 A hybrid input process is a pair IL ≡ I [
t0,t f )

L := (SL , u) defined on a
half open interval

[
t0, t f

)
, t f < ∞, where u ∈ U and SL = (

(t0, σ0) , (t1, σ1) , · · · ,

(tL , σL)
)
, L < ∞, is a finite hybrid sequence of switching events consisting of a

strictly increasing sequence of times τL := {t0, t1, t2, . . . , tL} and a discrete event
sequence σ with σ0 = id and σi ∈ �, i ∈ {1, 2, · · · , L}. ��
Definition 3 A hybrid state process (or trajectory) is a triple (τL , q, x) consisting
of the sequence of switching times τL = {t0, t1, . . . , tL}, L < ∞, the associ-
ated sequence of discrete states q = {q0, q1, . . . , qL }, and the sequence x(·) ={
xq0(·), xq1(·), . . . , xqL (·)

}
of piece-wise differentiable functions xqi (·) : [ti , ti+1) →

R
n . ��

Definition 4 The input-state trajectory for the hybrid systemH satisfying A0 and A1
is a hybrid input IL = (SL , u) together with its corresponding hybrid state trajectory
(τL , q, x) defined over

[
t0, t f

)
, t f < ∞, such that it satisfies:

(i) Continuous State Dynamics The continuous state component x(·) = {
xq0(·),

xq1(·), . . . , xqL (·)
}
is a piecewise continuous function which is almost every-

where differentiable and on each time segment specified by τL satisfies the
dynamics equation

ẋqi (t) = fqi
(
t, xqi (t), u(t)

)
, a.e. t ∈ [ti , ti+1), (3)

with the initial conditions

xq0(t0) = x0, (4)

xqi (ti ) = ξσi

(
ti , xqi−1(ti−)

) := ξσi

(

lim
t↑ti

t, lim
t↑ti

xqi−1(t)

)

, (5)

for (ti , σi ) ∈ SL . In other words, x(·) = {
xq0(·), xq1(·), . . . , xqL (·)

}
is a piece-

wise continuous function which is almost everywhere differentiable and is such
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ẋ = fp(t, x, u)

x ∈ R
np

u ∈ R
mp

ẋ = fq(t, x, u)

x ∈ R
nq

u ∈ R
mq

ẋ = fr(t, x, u)

x ∈ R
nr

u ∈ R
mr

σpq

xq = ξpq(xp)

σrq

xq = ξrq(xr)

mqr(x) = 0 → σqr

xr = ξqr(xq)

mrp(t, x) = 0 → σrp

xp = ξrp(xr)

xp = ξqp(xq)

σqp

Fig. 1 An example hybrid automata with both autonomous (displayed in red arrows) and controlled (dis-
played in green arrows) switchings (color figure online)

that each xqi (·) satisfies

xqi (t) = xqi (ti ) +
∫ t

ti
fqi
(
s, xqi (s), u(s)

)
ds, (6)

for t ∈ [ti , ti+1).
(ii) Autonomous Discrete Transition Dynamics An autonomous (uncontrolled) dis-

crete state transition from qi−1 to qi together with a continuous state jump ξσi

occurs at the autonomous switching time ti if xqi−1(ti−) := limt↑ti xqi−1(t) sat-
isfies a switching manifold condition of the form

mqi−1qi

(
ti , xqi−1(ti−)

) = 0, (7)

for qi ∈ Q, where mqi−1qi (t, x) = 0 defines a (qi−1, qi ) switching man-
ifold and it is not the case that either (i) x(ti−) ∈ ∂mqi−1qi or (i i)
fqi−1 (ti , x(ti−), u(ti−)) ⊥ ∇mqi−1qi (ti , x(ti−)), i.e., ti is not a manifold ter-
mination instant (see [63]). With the assumptions A0 and A1 in force, such a
transition is well defined and labels the event σi ≡ σqi−1qi ∈ �, that corresponds
to the hybrid state transition

h(ti ) ≡ (
qi , xqi (ti )

) = (
�
(
ti , qi−1, xqi−1(ti−), σi

)
, ξσi

(
ti , xqi−1(ti−)

))
. (8)

(iii) Controlled Discrete Transition Dynamics A controlled discrete state transition
together with a controlled continuous state jump ξσi occurs at the controlled
discrete event time ti if ti is not an autonomous discrete event time and if there
exists a controlled discrete input event σi ∈ � for which

h(ti ) ≡ (
qi , xqi (ti )

) = (
�
(
ti , qi−1, xqi−1(ti−), σi

)
, ξσi

(
ti , xqi−1(ti−)

))
, (9)

with (ti , σi ) ∈ SL and qi ∈ A (qi−1). ��
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To illustrate the notation, Fig. 1 provides an example hybrid automata with both
autonomous and controlled switchings. In this example, the discrete component of
the state takes values from Q = {p, q, r}, i.e., |Q| = 3 |Q| = 3 within each mode
the evolution of the continuous component of the state is governed by a controlled
differential equation.Transitions fromq to r and from r to p are autonomous (displayed
in red arrows)whereas transitions from p toq, fromq to p and fromq to r are controlled
switchings (displayed in green arrows). In this example, there is no direct transition
from p to r . The indexed vector fields, the underlying spaces for the state and input
values, as well as switching manifold and jump maps are displayed in this figured.

A2 For a specified sequence of discrete states {qi }Li=0, the class of input-state trajec-
tories is non-empty. In otherwords, there exist SL = (

(t0, σ0) , (t1, σ1) , · · · , (tL , σL)
)

≡ (
(t0, q0) , (t1, q1) , · · · , (tL , qL)

)
and uqi ∈ L∞

([
ti , ti+1) ,Uqi

)
that together with

its corresponding hybrid state process form an input-state trajectory in Definition 4. ��
Theorem 1 [63] A hybrid system H with an initial hybrid state (q0, x0) satisfying
assumptions A0 and A1 possesses a unique hybrid input-state trajectory on [t0, T∗∗),
where T∗∗ is the least of

(i) T∗ ≤ ∞, where [t0, T∗) is the temporal domain of the definition of the hybrid
system,

(ii) Amanifold termination instant T∗ of the trajectory h(t) = h (t, (q0, x0) , (SL , u)),
t ≥ t0, atwhich either x (T∗−) ∈ ∂mq(T∗−)q(T∗) or fq(T∗−) (x (T∗−) , u (T∗−)) ⊥
∇mq(T∗−)q(T∗) (x (T∗−)). ��

We note that Zeno times, i.e., accumulation points of discrete transition times, are
ruled out by A2.

Lemma 1 State processes of a hybrid system satisfying Assumptions A0-A2 are con-
tinuously dependent on their initial conditions. In other words, for a given {qi }Li=0
and an initial continuous state x0 ∈ R

nq0 , there exist a neighborhood N (x0) and a
constant 0 < K < ∞ such that

∥
∥x(t f ; s, xs) − x(t f ; t0, x0)

∥
∥ ≤ K

(∥
∥xs − x0

∥
∥2 + |s − t0|2

) 1
2
, (10)

for s ≥ t0 and xs ∈ N (x0). ��
Proof See Appendix A. ��

3 Hybrid optimal control problems

A3 Let
{
lq
}
q∈Q , lq ∈ Cnl (Rn ×U → R+) , nl ≥ 1, be a family of cost functions

with nl = 2 unless otherwise stated; {cσ }σ∈� ∈ Cnc (Rn × � → R+) , nc ≥ 1, be a
family of switching cost functions; and g ∈ Cng (Rn → R+) , ng ≥ 1, be a terminal
cost function satisfying the following assumptions:

(i) There exists Kl < ∞ and 1 ≤ γl < ∞ such that |lq(x, u)| ≤ Kl
(
1 + ‖x‖γl

)

and |lq(x1, u1) − lq(x2, u2)| ≤ Kl
(‖x1 − x2‖ + ‖u1 − u2‖

)
, for all x ∈ R

n, u ∈
U , q ∈ Q.
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(ii) There exists Kc < ∞ and 1 ≤ γc < ∞ such that |cσ (x) | ≤ Kc (1 + ‖x‖γc ),
x ∈ R

n, σ ∈ �.
(iii) There exists Kg < ∞ and 1 ≤ γg < ∞ such that |g (x) | ≤ Kg (1 + ‖x‖γg ),

x ∈ R
n . ��

Consider the initial time t0, final time t f < ∞, and initial hybrid state
h0 = (q0, x0). With the number of switchings L held fixed, the set of all hybrid
input trajectories in Definition 2 with exactly L switchings is denoted by IL ,
and for all IL := (SL , u) ∈ IL the hybrid switching sequences take the form
SL = {

(t0, id) ,
(
t1, σq0q1

)
, . . . ,

(
tL , σqL−1qL

)} ≡ {(t0, q0) , (t1, q1) , . . . , (tL , qL)}
and the corresponding continuous control inputs are of the form u ∈ U =⋃L

i=0 L∞
([
ti , ti+1) ,U

)
, where tL+1 = t f .

Let IL be a hybrid input trajectory that by Theorem 1 results in a unique hybrid state
process. Then hybrid performance functions for the corresponding hybrid input-state
trajectory are defined as

J
(
t0, t f , h0, L; IL

) :=
L∑

i=0

∫ ti+1

ti
lqi
(
xqi (s), u(s)

)
ds

+
L∑

j=1

cσ j

(
t j , xq j−1(t j−)

)+ g
(
xqL (t f )

)
(11)

Definition 5 The (Bolza) Hybrid Optimal Control Problem (HOCP) is defined as

Jo
(
t0, t f , h0, L

) = inf
IL∈IL

J
(
t0, t f , h0, L; IL

)
(12)

that is, the infimization of the hybrid cost (11) over the family of hybrid input trajec-
tories IL . ��

4 The hybridminimum principle (HMP)

Theorem 2 Consider the hybrid system H subject to assumptions A0-A3, and the
HOCP (12) for the hybrid performance function (11). Define the family of system
Hamiltonians by

Hq
(
t, xq , λq , uq

) = λ�
q fq

(
t, xq , uq

)+ lq
(
t, xq , uq

)
, (13)

xq , λq ∈ R
nq , uq ∈ Uq, q ∈ Q, and let {qi }Li=0 be a specified sequence of discrete

states with its associated set of switchings. Then for an optimal input uo and along
the corresponding optimal trajectory xo, there exists an adjoint process λo such that

Hq

(
t, xoq (t), λ

o
q(t), u

o
q(t)

)
≤ Hq

(
t, xoq (t), λ

o
q(t), v

)
, (14)
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for all v ∈ Uq, and at almost every t ∈ [t0, t f ], where (xo, λo) satisfy

ẋoq = ∂Hq

∂λq
(t, xoq , λ

o
q , u

o
q) = fq(t, x

o
q , u

o
q), (15)

λ̇oq = −∂Hq

∂xq
(t, xoq , λ

o
q , u

o
q) = − ∂lq(t, xoq , u

o
q)

∂x
−
[
∂ fq(t, xoq , u

o
q)

∂x

]�
λoq , (16)

almost everywhere t ∈ [t0, t f
]
, subject to

xoq0 (t0) = x0, (17)

xoq j

(
toj

)
= ξσ j

(
xoq j−1

(toj −)
)
, (18)

λoqL (t f ) = ∇g
(
xoqL (t f )

)
, (19)

λoq j−1
(toj −) ≡ λoq j−1

(toj ) = ∇ξ�
σ j

λoq j
(toj +) + ∇cσ j + p j∇mqj−1q j , (20)

where p j ∈ R when t j indicates the time of an autonomous switching, subject to the
switching manifold condition mq j−1q j

(
xoq j−1

(t j−)
) = 0, and p j = 0when t j indicates

the time of a controlled switching. Moreover, the Hamiltonian satisfies

Hq j−1

(
toj −, xoq j−1

, λoq j−1
, uoq j−1

)

= Hqj

(
toj +, xoq j

, λoq j
, uoq j

)
− ∂cσ j

∂t
− p j

∂mqj−1q j

∂t
−
[
∂ξσ j

∂t

]�
λoq j

(toj +).

(21)

which, with the expansion of the Hamiltonians from (13), is expressed as

lq j−1

(
toj , x

o
q j−1

(toj −), uoq j−1
(toj −)

)
+ λoq j−1

(toj )
� fq j−1

(
toj , x

o
q j−1

(toj −), uoq j−1
(toj −)

)

= lq j

(
toj , x

o
q j

(toj ), u
o
q j

(toj )
)

+ λoq j
(toj +)� fq j

(
toj , x

o
q j

(toj ), u
o
q j

(toj )
)

−∂cσ j

(
toj , x

o
q j−1

(t j−)
)

∂t

−p j

∂mqj−1q j

(
toj , x

o
q j−1

(t j−)
)

∂t
−
[
∂ξσ j

(
toj , x

o
q j−1

(t j−)
)

∂t

]�
λoq j

(toj +).

(22)

��
Proof First, in the first part of the proof (Sect. 4.1), we study a needle variation to the
optimal input at the last location uoqL at a Lebesgue instant1 t ∈ (tL , tL+1

] ≡ (
tL , t f

]

1 See, e.g., [64] for the definition of Lebesgue points. For any u ∈ L∞([ti , ti+1],U ), u may be modified
on a set of measure zero so that all points are Lebesgue points (see, e.g., [65]).
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to derive the Hamiltonian canonical equations (15) and (16), the adjoint terminal
condition (19), and the Hamiltonian minimization condition (14) in that location. This
part of the proof is similar to the proof of the classical Pontryagin minimum principle.

Next, in the second part of the proof in Sect. 4.2, we perform a variation in the
penultimate, L − 1st, location in order to obtain (i) Hamiltonian canonical equations
(15) and (16), and (i i) the Hamiltonian minimization condition (14) at the location
qL−1, as well as (i i i) the boundary conditions (18) and (20), and (iv) the Hamiltonian
boundary condition (21) at time tL .

Then, in the last part of the proof (Sect. 4.3), we extend the analysis for a general
switching instant t j and prove that (i) to (iv) above hold for all locations.

In order to provide the simplest derivation of the main result we define

x̃q :=
[ θ

zq
xq

]

∈ R
nq+2, (23)

such that θ gives the current time and z provide the incurred cost, i.e., at
t ∈ [t0, t f ], we have θ(t) = t and zq(t) = ∫ t

tNsw(t)
lq
(
xq(s), u(s)

)
ds +

∑Nsw(t)−1
i=0

∫ ti+1
ti

lqi
(
xqi (s), u(s)

)
ds + ∑Nsw(t)−1

j=1 cσ j

(
t j , xq j−1(t j−)

)
with Nsw(t)

denoting the number of incurred switchings over the interval [t0, t). This yields the
augmented vector fields as

˙̃xq = f̃q
(
x̃q , uq

) :=
[ 1
lq (θ, x, u)

fq (θ, x, u)

]

, (24)

subject to the initial condition

h̃0 =
(
q0, x̃q0(t0)

)
=
(

q0,

[ t0
0
x0

])

, (25)

with the switching manifold

m̃ (x̃) := m (θ, x) , (26)

and the extended jump function defined as

x̃q j (t j ) = ξ̃σ j

(
x̃q j−1(t j−)

) :=
[ θ(t j−)

z(t j−) + c
(
θ, x(t j−)

)

ξσ j

(
x(t j−)

)

]

. (27)

This transform the problem into a time invariant,Mayer (without running or switch-
ing cost) HOCP in the form of

J
(
t0, t f , h̃0, L; IL

)
= g̃

(
x̃qL (t f )

) := z(t f ) + g
(
x(t f )

)
. (28)
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4.1 The last discrete state location

First, consider a Lebesgue time t ∈ (tL , tL+1
] ≡ (

tL , t f
]
and the evolution of the

optimal state x̃o(τ ), τ ∈ [t0, t f
]
, governed by the set of differential equations

d

dτ
x̃oqL = f̃qL

(
x̃oqL (τ ), uoqL (τ )

)
, τ ∈ (tL , t f

]
. (29)

We perform a needle variation at a Lebesgue time t in the form of

uε(τ ) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

uoq j−1
(τ ) if τ ∈ [t j−1, t j

)
1 ≤ j ≤ L

uoqL (τ ) if τ ∈ [tL , t − ε)

v if τ ∈ [t − ε, t)

uoqL (τ ) if τ ∈ [t, t f
]

. (30)

This corresponds to a perturbed trajectory x̃ε (τ ) , τ ∈ [t0, t f
]
which coincideswith

the optimal trajectory x̃o (τ ) , τ ∈ [t0, t f
]
over the interval [t0, t − ε) but differs over

[t − ε, t f ]. Denoting δ x̃ε
qL (τ ) := x̃ε

qL (τ ) − x̃oqL (τ ), it necessarily satisfies δ x̃ε
qi (τ ) = 0

for τ ∈ [t0, t − ε), 0 ≤ i ≤ L , and for τ ∈ [t − ε, t f
]
it satisfies

δ x̃ε
qL (τ ) =

∫ t

t−ε

[
f̃qL

(
x̃ε
qL (s), v

)
− f̃qL

(
x̃oqL (s), u

o
qL (s)

)]
ds

+
∫ τ

t

[
f̃qL

(
x̃ε
qL (s), u

o
qL (s)

)
− f̃qL

(
x̃oqL (s), u

o
qL (s)

)]
ds,

(31)

Defining the first-order sensitivity of the (augmented) state as

y(τ ) := d

dε
x̃ε(τ )

∣
∣
∣
∣
ε=0

≡ lim
ε→0

1

ε
δ x̃ε(τ ), (32)

the dynamics and boundary conditions of the first-order sensitivity are derived as

d

dτ
yqL (τ ) = ∂ f̃qL

∂ x̃qL

(
x̃oqL (τ ), uoqL (τ )

)
yqL (τ ), (33)

yqL (t) = f̃qL

(
x̃oqL (t), v

)
− f̃qL

(
x̃oqL (t), u

o
qL (t)

)
. (34)

Denoting the state transition matrix corresponding to (33) by �qL , it is shown by
linearization theory (see, e.g., [63, 66]) that

yqL (t f ) = �qL

(
t f , t

) [
f̃qL

(
x̃oqL (t), v

)
− f̃qL

(
x̃oqL (t), u

o
qL (t)

)]
. (35)
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The optimality of x̃o implies that

g̃
(
x̃ε
qL (t f )

)
≥ g̃

(
x̃oqL (t f )

)
, (36)

which, using (28) and employing first-order Taylor expansion, it is equivalent to

d

dε
J
(
uε
)
∣
∣
∣
∣
ε=0

=
[

∂ g̃

∂ x̃qL

(
x̃oqL (t f )

)]�
yqL (t f ) ≥ 0. (37)

Substitution of (35) into (37) results in

∂ g̃(x̃oqL (t f ))

∂ x̃qL

�
�qL

(
t f , t

)
f̃qL

(
x̃oqL (t), v

)

≥ ∂ g̃(x̃oqL (t f ))

∂ x̃qL

�
�qL

(
t f , t

)
f̃qL

(
x̃oqL (t), u

o
qL (t)

)
. (38)

Defining the (augmented) adjoint variable (process) as

λ̃oqL
�
(t) ≡

[
λoθ,qL (t), λ

o
z,qL (t), λ

o
qL

�
(t)
]

:= ∂ g̃(x̃oqL (t f ))

∂ x̃qL

�
�qL

(
t f , t

)
, (39)

for t ∈ (tL , t f
]
and evaluating it at t = t f we obtain

λ̃oqL (t f ) = ∂ g̃

∂ x̃qL

(
x̃oqL (t f )

)
, (40)

where by the definition (28) for g̃, this is equivalent to

λoθ,qL (t f ) = 0, (41)

λoz,qL (t f ) = 1, (42)

λoqL (t f ) = ∂g(xoqL (t f ))

∂xqL
≡ ∇g

(
xoqL (t f )

)
. (43)

Also by differentiation of (39) with respect to t we obtain the dynamics of the
augmented adjoint process as

d

dt
λ̃oqL (t) = −∂ f̃qL

∂ x̃qL

�
[
�qL (t f , t)

]� ∂ g̃(x̃oqL (t f ))

∂ x̃qL
= −∂ f̃qL

∂ x̃qL

�
λ̃oqL (t), (44)
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which is equivalent to

d

dt
λoθ,qL (t) = 0, (45)

d

dt
λoz,qL (t) = 0, (46)

d

dt
λoqL (t) = −

(
∂lqL

(
t, xoqL (t), u

o
qL (t)

)

∂xqL

)

λoz,qL (t)

−
(

∂ fqL
(
t, xoqL (t), u

o
qL (t)

)

∂xqL

)�
λoqL (t). (47)

The zero dynamics (45) and (46) with the terminal conditions (41) and (42) give
λoθ,qL

(t) = 0 and λoz,qL (t) = 1, for all t ∈ (tL , t f
)
, and equation (47) is equivalent to

λ̇oqL = −
∂HqL

(
t, xoqL , λ

o
qL , u

o
qL

)

∂xqL
, (48)

which is valid on
(
tL , t f

)
and where by definition

HqL

(
t, xqL , λqL , uqL

) = lqL
(
t, xqL , uqL

)+ λ�
qL fqL

(
t, xqL , uqL

)
. (49)

From the definition of Hamiltonian (49) and through a simple differentiation, the
Hamiltonian canonical equation (15) for the state is also verified.

Also from (38) and (49) the Hamiltonian minimization

HqL

(
t, xoqL , λ

o
qL , u

o
qL

)
≤ HqL

(
t, xoqL , λ

o
qL , v

)
, (50)

is obtained for all v ∈ UqL .

4.2 The penultimate location

Now consider a needle variation at time t ∈ (tL−1, tL
]
in the form of

uε(τ ) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

uoq j−1
(τ ), τ ∈ [t j−1, t j

)
, 1 ≤ j ≤ L − 1,

uoqL−1
(τ ), τ ∈ [tL , t − ε) ,

v, τ ∈ [t − ε, t) ,

uoqL−1
(τ ), τ ∈ [t, tL − δε) ,

uoqL (tL) , τ ∈ [tL − δε, tL) ,

uoqL (τ ), τ ∈ [tL , t f
]
,

, (51)

where δε ≥ 0 corresponds to the case when the perturbed trajectory arrives on the
switching manifold m̃ (x̃) := mqL−1qL (x) = 0 at an earlier instant. The case with
a later arrival time, i.e., δε ≤ 0 is handled in a similar fashion, and the case of a
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controlled switching, i.e., with no switching manifold, can be derived similarly by
setting δε = 0.

For τ ∈ [t, tL − δε) we may write

δ x̃ε
qL−1

(τ ) := x̃ε
qL−1

(τ ) − x̃oqL−1
(τ )

=
∫ t

t−ε

[
f̃qL−1

(
x̃ε
qL−1

(s), v
)

− f̃qL−1

(
x̃oqL−1

(s), uoqL−1
(s)
)]

ds

+
∫ τ

t

[
f̃qL−1

(
x̃ε
qL−1

(s), uoqL−1
(s)
)

− f̃qL−1

(
x̃oqL−1

(s), uoqL−1
(s)
) ]

ds,

(52)

At the last switching time tL , the state of the optimal trajectory is determined (see
also Fig. 2 with the consider of n = L) by

x̃oqL (tL) = ξ̃
(
x̃oqL−1

(tL−)
)

= ξ̃

(

x̃oqL−1

(
tL − δε

)+
∫ tL

tL−δε

f̃qL−1

(
x̃oqL−1

(τ ), uoqL−1
(τ )
)
dτ

)

,

(53)

and the state of the perturbed trajectory is calculated as

x̃ε
qL (tL) = ξ̃

(
x̃ε
qL−1

(
tL − δε−)

)
+
∫ tL

tL−δε

f̃qL

(
x̃ε
qL (τ ), uoqL (tL)

)
dτ. (54)

Thus (see also Fig. 2),

δ x̃ε
qL (tL) = x̃ε

qL (tL) − x̃oqL (tL)

= ξ̃
(
x̃ε
qL−1

(
tL − δε−)

)
+
∫ tL

tL−δε

f̃qL

(
x̃ε
qL (τ ), uoqL (tL)

)
dτ

−ξ̃

(

x̃oqL−1

(
tL − δε

)+
∫ tL

tL−δε

f̃qL−1

(
x̃oqL−1

(τ ), uoqL−1
(τ )
)
dτ

)

.

(55)

Now, let us define μL := ε→0lim δε

ε
. If tL is the time of a controlled switching

then μL = 0 since δε = 0 for every ε. In order to determine μL for the case of an
autonomous switching, we note that by the switching manifold conditions (7) it must
be the case for both xo and xε that

m̃
(
x̃oqL−1

(tL−)
) = m̃

(
x̃ε
qL−1

(
tL − δε−) ) = 0, (56)
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since x̃oqL−1
arrives on the switching manifold at tL−, and x̃ε

qL−1
arrives at tL − δε−.

Moreover, from the Taylor expansion of m̃, we have

0 = m̃
(
x̃ε
qL−1

(tL − δε−)
) = m̃

(
x̃ε
qL−1

(tL − δε−) − x̃oqL−1
(tL−) + x̃oqL−1

(tL−)
)

= m̃

(

x̃ε
qL−1

(tL − δε−) −
(

x̃oqL−1
(tL − δε−) +

∫ tL

tL−δε

f̃qL−1

(
x̃o, ũo

)
dτ

)

+ x̃oqL−1
(tL−)

)

= m̃

(

δx̃ε
qL−1

(tL − δε−) −
∫ tL

tL−δε

f̃qL−1

(
x̃o, ũo

)
dτ + x̃oqL−1

(tL−)

)

=��������0
m̃
(
x̃oqL−1

(tL−)
)

+
[

∂m̃
(
x̃oqL−1

(tL−)
)

∂ x̃

]�(
δx̃ε

qL−1
(tL − δε−) −

∫ tL

tL−δε

f̃qL−1

(
x̃o, ũo

)
dτ

)

+ HOT ,

(57)

which yields

lim
ε→0

1

ε

[

δ x̃ε
qL−1

(tL−) −
∫ tL

tL−δε

f̃qL−1

(
x̃o, ũo

)
dτ

]� ∂m̃
(
x̃oqL−1

(tL−)
)

∂ x̃qL−1

= 0. (58)

Noting that, by definition, yqL−1(tL−) = limε→0
1
ε
δ x̃ε

qL−1
(tL−) and that

lim
ε→0

1

ε

∫ tL

tL−δε

f̃qL−1

(
x̃o, ũo

)
dτ = f̃qL−1

(
x̃oqL−1

(tL−), uoqL−1
(tL−)

)
· lim
ε→0

δε

ε
,

(59)

we obtain a closed-form expression for μL from (58) in the form of

μL =

[
∂m̃
(
x̃oqL−1

(tL−)
)

∂ x̃qL−1

]�
yqL−1 (tL−)

[
∂m̃
(
x̃oqL−1

(tL−)
)

∂ x̃qL−1

]�
f̃qL−1

(
x̃oqL−1

(tL−) , uoqL−1
(tL−)

)
. (60)

Hence, by diving both sides of (55) by ε, using a similar Taylor expansion of ξ̃ and
then taking the limit as ε → 0, we obtain the relationship between the values before
and after the switching of the first-order sensitivity of the (augmented) state as

yqL (tL) =
∂ξ̃
(
x̃oqL−1

(tL−)
)

∂ x̃qL−1

yqL−1 (tL−) + μL f̃ ξ̃ ,qL−1

qL ,ξ̃
, (61)
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where

f̃ ξ̃ ,qL−1

qL ,ξ̃
:= f̃qL

(
ξ̃
(
x̃oqL−1

(tL−)
)

, uoqL (tL)
)

−
∂ξ̃
(
x̃oqL−1

(tL−)
)

∂ x̃qL−1

f̃qL−1

(
x̃oqL−1

(tL−) , uoqL−1
(tL−)

)
. (62)

Similar to part A, the dynamics and boundary conditions of the first-order state
sensitivity are derived as

yqL−1(t) = f̃qL−1

(
x̃oqL−1

(t), v
)

− f̃qL−1

(
x̃oqL−1

(t), uoqL−1
(t)
)

, (63)

d

dτ
yqL−1(τ ) = ∂ f̃qL−1

(
x̃oqL−1

(τ ), uoqL−1
(τ )
)

∂ x̃qL−1

yqL−1(τ ), (64)

yqL (tL) = ∂ξ̃
(
x̃oqL−1

(tL−)
)

∂ x̃qL−1

yqL−1 (tL−) + μL f̃ ξ̃ ,qL−1

qL ,ξ̃
, (65)

d

dτ
yqL (τ ) = ∂ f̃qL

(
x̃oqL (τ ), uoqL (τ )

)

∂ x̃qL
yqL (τ ), (66)

and, hence,

yqL (t f ) = μL�qL

(
t f , tL

)
f̃ ξ̃ ,qL−1

qL ,ξ̃

+�qL (t f , tL)
∂ξ̃

∂ x̃qL−1

�qL−1(tL , t)

[
f̃qL−1

(
x̃oqL−1

(t), v
)− f̃qL−1

(
x̃oqL−1

(t), uoqL−1
(t)
)]

. (67)

Therefore, the optimality condition (37) is expressed as

[[
∂ g̃

∂ x̃qL

]�
�qL (t f , tL)

∂ξ̃

∂ x̃qL−1

+ p

[
∂m̃

∂ x̃qL−1

]�]
�qL−1 (tL , t) f̃qL−1

(
x̃oqL−1

(t), v
)

≥
[[

∂ g̃

∂ x̃qL

]�
�qL (t f , tL)

∂ξ̃

∂ x̃qL−1

+ p

[
∂m̃

∂ x̃qL−1

]�]
�qL−1(tL , t)

f̃qL−1

(
x̃oqL−1

(t), uoqL−1
(t)
)
, (68)

with

pL−1 =

[
∂ g̃
(
x̃oqL (t f )

)

∂ x̃qL

]�
�qL

(
t f , tL

)
f̃ ξ̃ ,qL−1

qL ,ξ̃

[
∂m̃
(
x̃oqL−1

(tL−)
)

∂ x̃qL−1

]�
f̃qL−1

(
x̃oqL−1

(tL−), uoqL−1
(tL−)

)
. (69)
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Defining the (augmented) adjoint process in the interval t ∈ (tL−1, tL
]
as

λ̃oqL−1

�
(t) :=

⎡

⎣
[∂ g̃

(
x̃oqL (t f )

)

∂ x̃qL

]�
�qL

(
t f , tL

) ∂ξ̃
(
x̃oqL−1

(tL−)
)

∂ x̃qL−1

+pL−1

⎡

⎣
∂m̃

(
x̃oqL−1

(tL−)
)

∂ x̃qL−1

⎤

⎦

�⎤
⎥
⎦�qL−1 (tL , t) , (70)

and evaluating it at t = tL we obtain

[
λ̃oqL−1

(tL)
]� =

[∂ g̃
(
x̃oqL (t f )

)

∂ x̃qL

]�
�qL

(
t f , tL

) ∂ξ̃
(
x̃oqL−1

(tL−)
)

∂ x̃qL−1

+pL−1

⎡

⎣
∂m̃

(
x̃oqL−1

(tL−)
)

∂ x̃qL−1

⎤

⎦

�

=
[
λ̃oqL (tL+)

]� ∂ξ̃
(
x̃oqL−1

(tL−)
)

∂ x̃qL−1

+ pL−1

⎡

⎣
∂m̃

(
x̃oqL−1

(tL−)
)

∂ x̃qL−1

⎤

⎦

�

(71)

By the definition of ξ̃ in (27), we have

∂ξ̃
(
x̃oqL−1

(tL−)
)

∂ x̃qL−1

=

⎡

⎢
⎢
⎢
⎣

∂ξ̃
∂θ

∂ξ̃
∂z

∂ξ̃
∂x

⎤

⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂θ
∂θ

∂θ
∂z

∂θ
∂x1

· · · ∂θ
∂xn

∂[z+c]
∂θ

∂[z+c]
∂z

∂[z+c]
∂x1

· · · ∂[z+c]
∂xn

∂ξ1
∂θ

∂ξ1
∂z

∂ξ1
∂x1

· · · ∂ξ1
∂xn

...
...

...
. . .

...

∂ξn
∂θ

∂ξn
∂z

∂ξn
∂x1

· · · ∂ξn
∂xn

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 · · · 0
∂c
∂θ

1 ∂c
∂x1

· · · ∂c
∂xn

∂ξ1
∂θ

0 ∂ξ1
∂x1

· · · ∂ξ1
∂xn

...
...

...
. . .

...

∂ξn
∂θ

0 ∂ξn
∂x1

· · · ∂ξn
∂xn

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎣

1 0 0

∂c

∂t
1

[
∂c

∂x

]�

∂ξ

∂t
0

∂ξ

∂x

⎤

⎥
⎥
⎥
⎥
⎥
⎦

(72)
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and since also ∂m
∂z = 0 we have

∂m̃
(
x̃oqL−1

(tL−)
)

∂ x̃qL−1

=

⎡

⎢
⎢
⎣

∂m̃
∂θ

∂m̃
∂z
∂m̃
∂x

⎤

⎥
⎥
⎦ =

⎡

⎢
⎢
⎢
⎢
⎣

∂m

∂t
0

∂m

∂x

⎤

⎥
⎥
⎥
⎥
⎦

(73)

Hence, (71) is equivalent to

λ̃oqL−1
(tL) ≡

⎡

⎢
⎢
⎣

λoqL−1,θ
(tL)

λoqL−1,z(tL)

λoqL−1
(tL)

⎤

⎥
⎥
⎦

=
⎡

⎣
∂ξ̃
(
x̃oqL−1

(tL−)
)

∂ x̃qL−1

⎤

⎦

�

λ̃oqL (tL+) + pL−1

∂m̃
(
x̃oqL−1

(tL−)
)

∂ x̃qL−1

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
∂c

∂t

[
∂ξ

∂t

]�

0 1 0

0
∂c

∂x

[
∂ξ

∂x

]�

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎣

λoqL ,θ (tL+)

λoqL ,z(tL+)

λoqL (tL+)

⎤

⎥
⎦+ pL−1

⎡

⎢
⎢
⎢
⎢
⎣

∂m

∂t
0

∂m

∂x

⎤

⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎣

λoqL ,θ (tL+) + ∂c

∂t
λoqL ,z(tL+) +

[
∂ξ

∂t

]�
λoqL (tL+) + pL−1

∂m

∂t

1

∇ξ�λoqL (tL+) + ∇c + pL−1∇m

⎤

⎥
⎥
⎥
⎥
⎦

, (74)

which, for each of the primary components of the augmented adjoint process, it is
written as

λoqL−1,θ
(tL) = λoqL ,θ (tL+) + ∂c

∂t
+
[
∂ξ

∂t

]�
λoqL (tL+) + pL−1

∂m

∂t
, (75)

λoqL−1,0 (tL) = 1, (76)

λoqL−1
(tL) = ∇ξ�λoqL (tL+) + ∇c + pL−1∇m . (77)

Differentiating (70) with respect to t leads to

d

dt
λ̃oqL−1

(t) = −
(

∂ f̃qL−1

∂ x̃qL−1

(
x̃oqL−1

(t), uoqL−1
(t)
)
)�

λ̃oqL−1
(t), (78)
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which is equivalent to

d

dt
λoqL−1,θ

(t) = 0, (79)

d

dt
λoqL−1,z(t) = 0, (80)

d

dt
λoqL−1

(t) = −
⎛

⎝
∂lqL−1

(
t, xoqL−1

(t), uoqL−1
(t)
)

∂xqL−1

⎞

⎠ λo0(t)

−
⎛

⎝
∂ fqL−1

(
t, xoqL−1

(t), uoqL−1
(t)
)

∂xqL−1

⎞

⎠

�

λoqL−1
(t). (81)

Therefore, λoqL−1,0
(t) = 1 for t ∈ (tL−1, tL) is obtained as before and

λ̇oqL−1
= −

∂HqL−1

(
xoqL−1

, λoqL−1
, uoqL−1

)

∂xqL−1

, (82)

holds for t ∈ (tL−1, tL) with the Hamiltonian defined as

HqL−1

(
t, xqL−1 , λqL−1 , uqL−1

)

= lqL−1

(
t, xqL−1 , uqL−1

)+ λ�
qL−1

fqL−1

(
t, xqL−1 , uqL−1

)
. (83)

Also from (68) the minimization of the Hamiltonian is concluded as

HqL−1

(
t, xoqL−1

, λoqL−1
, uoqL−1

)
≤ HqL−1

(
t, xoqL−1

, λoqL−1
, v
)

, (84)

for all v ∈ UqL−1 , a.e. t ∈ (tL−1, tL). It shall be remarked that the Hamiltonian for the
time-invariant system with the augmented states (23) includes an additional constant
term, i.e.,

H̃q

(
x̃q , λ̃q , uq

)
= λq,θ + Hq

(
t, xq , λq , uq

)
(85)

but λq,θ does not play a role in the adjoint dynamics (82) or in the Hamiltonian
minimization (84).

In order to obtain the Hamiltonian boundary condition (21) (equivalently, (22))
at tL , we evaluate both HqL−1 and HqL at tL and invoke the previously established
relations (as referenced therein) to arrive at

HqL−1(tL−)

= lqL−1

(
tL , xoqL−1

(tL−), uoqL−1
(tL−)

)
+ λoqL−1

(tL−)�

fqL−1

(
tL , xoqL−1

(tL−), uoqL−1
(tL−)

)
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=
(85)

λ̃oqL−1
(tL−)� f̃qL−1

(
x̃qL−1(tL−), uoqL−1

(tL−)
)

− λoqL−1,θ
(tL−)

=
(71)

⎡

⎢
⎣

∂ξ̃
(
x̃oqL−1

(tL−)
)

∂ x̃qL−1

�

λ̃oqL (tL+) + pL−1

∂m̃
(
x̃oqL−1

(tL−)
)

∂ x̃qL−1

⎤

⎥
⎦

�

f̃qL−1

(
x̃ (tL−)

qL−1 , u
o(tL−)

qL−1

)− λoqL−1,θ
(tL−)

=
(69)

−λoqL−1,θ
(tL−) +

⎡

⎣λ̃oqL (tL+)�
∂ξ̃
(
x̃oqL−1

(tL−)
)

∂ x̃qL−1

+
∂ g̃

∂ x̃qL

�
�qL (t f , tL) f̃ ξ̃ ,qL−1

qL ,ξ̃

∂m̃
∂ x̃qL−1

�
f̃qL−1

(
x̃oqL−1

(tL−), uoqL−1
(tL−)

)

[
∂m̃

∂ x̃qL−1

]�
⎤

⎥
⎦ f̃qL−1

(
x̃ (tL−)

qL−1 , u
o(tL−)

qL−1

)

=
(39)

−λoqL−1,θ
(tL−) + ∂ g̃

∂ x̃qL

�
�qL (t f , tL)

∂ξ̃

∂ x̃qL−1

f̃qL−1

(
x̃qL−1(tL−), uoqL−1

(tL−)
)

+
∂ g̃

∂ x̃qL

�
�qL (t f , tL) f̃ ξ̃ ,qL−1

qL ,ξ̃

∂m̃
∂ x̃qL−1

�
f̃qL−1

(
x̃oqL−1

(tL−), uoqL−1
(tL−)

)

[
∂m̃

∂ x̃qL−1

]�
f̃qL−1

(
x̃ (tL−)

qL−1 , u
o(tL−)

qL−1

)

=
(61)

−λoqL−1,θ
(tL−) + ∂ g̃

∂ x̃qL

�
�qL (t f , tL)

∂ξ̃

∂ x̃qL−1

f̃qL−1

(
x̃oqL−1

(tL−), uoqL−1
(tL−)

)

+ ∂ g̃

∂ x̃qL

�
�qL (t f , tL)

[
f̃qL

(
x̃oqL (tL), uoqL (tL)

)

− ∂ξ̃

∂ x̃qL−1

f̃qL−1

(
x̃oqL−1

(tL−), uoqL−1
(tL−)

)
]

= ∂ g̃

∂ x̃qL

�
�qL (t f , tL) f̃qL

(
ξ̃
(
x̃oqL−1

(tL−)
)

, uoqL (tL)
)

− λoqL−1,θ
(tL−)

=
(39)

λ̃oqL (tL+)� f̃qL

(
x̃oqL (tL), uoqL (tL)

)
− λoqL−1,θ

(tL−)

= −λoqL−1,θ
(tL−) + λoqL ,θ (tL+) + lqL

(
xoqL (tL) , uoqL (tL)

)

+λoqL (tL+)� fqL

(
xoqL (tL) , uoqL (tL)

)

=
(75)

HqL (tL+) − ∂c

∂t
−
[
∂ξ

∂t

]�
λoqL (tL+) − pL−1

∂m

∂t
, (86)

which is equivalent to (21).
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Fig. 2 The evolution of the original augmented trajectory x̃o arriving on the (augmented) switchingmanifold
at ton and a perturbed trajectory x̃ε arriving at an earlier time ton − δε

n

4.3 Other locations

We now consider a needle variation at a general Lebesgue time t ∈ (tn−1, tn) in the
form of

uε(τ ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

uoq j−1
(τ ), τ ∈ [t j−1, t j

)
, 1 ≤ j ≤ n − 1,

uoqn−1
(τ ), τ ∈ [tn−1, t − ε) ,

v, τ ∈ [t − ε, t) ,

uoqn−1
(τ ), τ ∈ [t, tn − δε

n

)
,

uoqn (tn) , τ ∈ [tn − δε
n, tn

)
,

uoqk (τ ), τ ∈ [tk, tk+1 − δε
k+1

)
, n ≤ k ≤ L,

uoqk+1
(tk+1) , τ ∈ [tk+1 − δε

k+1, tk+1
)
, n ≤ k < L.

(87)

As before (see also Fig. 2), the first-order sensitivity of the augmented state before
the switching is derived as

yqn−1(tn−) = �qn−1(tn, t)
[
f̃qn−1

(
x̃oqn−1

(t), v
)

− f̃qn−1

(
x̃oqn−1

(t), uoqn−1
(t)
)]

,

(88)
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and its value after the switching is derived as

yqn (tn) =
[

∂ξ̃σn

∂ x̃qn−1

+ 1
[

∂m̃qn−1qn
∂ x̃qn−1

]�
f̃
(
t−n
)

qn−1

f̃
ξ̃σn ,qn−1

qn ,ξ̃σn

[
∂m̃qn−1qn

∂ x̃qn−1

]� ]
yqn−1(tn−).

(89)

Therefore, its propagation until the terminal time is written as

yqL(t f ) =
n∏

k=L

[

�qk (tk+1, tk)
∂ξ̃σk

∂ x̃qk−1

+ γk f̃
ξ̃σk ,qk−1

qk ,ξ̃σk

[
∂m̃qk−1qk

∂ x̃qk−1

]�]

�qn−1 (tn, t)
[
f̃qn−1

(
x̃oqn−1

(t), v
)

− f̃qn−1

(
x̃oqn−1

(t), uoqn−1
(t)
)]

, (90)

where

f̃
ξ̃σk ,qk−1

qk ,ξ̃σk
:= f̃qk

(
ξ̃σk

(
x̃oqk−1

(tk−)
)

, uoqk (tk)
)

− ∂ξ̃σk

∂ x̃qk−1

(
x̃oqk−1

(tk−)
)
f̃qk−1

(
x̃oqk−1

(tk−), uoqk−1
(tk−)

)
(91)

and

γk :=

⎧
⎪⎨

⎪⎩

0, controlled switching,
1

[
∂m̃qk−1qk

∂ x̃qk−1

]�
f̃qk−1

(
x̃oqk−1

(tk−),uoqk−1
(tk−)

) , autonomous switching. (92)

The optimality condition (37) is expressed as

[
∂ g̃

∂ x̃qL

]� n∏

k=L

[

�qk (tk+1, tk)
∂ξ̃σk

∂ x̃qk−1

+ γk f̃
ξ̃σk ,qk−1

qk ,ξ̃σk

[
∂m̃qk−1qk

∂ x̃qk−1

]�]

�qn−1 (tn, t)
[
f̃qn−1

(
x̃oqn−1

(t), v
)

− f̃qn−1

(
x̃oqn−1

(t), uoqn−1
(t)
)]

≥ 0. (93)

Defining the augmented adjoint process within the interval (tn−1, tn
]
by

λ̃oqn−1
(t)� :=

[
∂ g̃

∂ x̃qL

]� n∏

k=L

[

�qk (tk+1, tk)
∂ξ̃σk

∂ x̃qk−1

+γk f̃
ξ̃σk ,qk−1

qk ,ξ̃σk

[
∂m̃qk−1qk

∂ x̃qk−1

]�]
�qn−1 (tn, t) ,

(94)
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which is, after the implementation of the transpose, equivalent to

λ̃oqn−1
(t) = [

�qn−1 (tn, t)
]�

L∏

k=n

⎡

⎣

[
∂ξ̃σk

∂ x̃qk−1

]�
[
�qk (tk+1, tk)

]�

+γk
∂m̃qk−1qk

∂ x̃qk−1

[

f̃
ξ̃σk ,qk−1

qk ,ξ̃σk

]�]
∂ g̃

∂ x̃qL

= [
�qn−1 (tn, t)

]�
⎡

⎣

[
∂ξ̃σn

∂ x̃qn−1

]�
[
�qn (tn+1, tn)

]�

+γn
∂m̃qn−1qn

∂ x̃qn−1

[

f̃
ξ̃σn ,qn−1

qn ,ξ̃σn

]�] L∏

k=n+1

⎡

⎣

[
∂ξ̃σk

∂ x̃qk−1

]�
[
�qk (tk+1, tk)

]�

+γk
∂m̃qk−1qk

∂ x̃qk−1

[

f̃
ξ̃σk ,qk−1

qk ,ξ̃σk

]�]
∂ g̃

∂ x̃qL
, (95)

we may evaluate (95) at t = tn to obtain

λ̃oqn−1
(tn) =

⎡

⎣

[
∂ξ̃σn

∂ x̃qn−1

]�
[
�qn (tn+1, tn)

]� + γn
∂m̃qn−1qn

∂ x̃qn−1

[

f̃
ξ̃σn ,qn−1

qn ,ξ̃σn

]�
⎤

⎦

L∏

k=n+1

⎡

⎣

[
∂ξ̃σk

∂ x̃qk−1

]�
[
�qk (tk+1, tk)

]� + γk
∂m̃qk−1qk

∂ x̃qk−1

[

f̃
ξ̃σk ,qk−1

qk ,ξ̃σk

]�
⎤

⎦ ∂ g̃

∂ x̃qL
,

(96)

or

λ̃oqn−1
(tn) =

[
∂ξ̃σn

∂ x̃qn−1

]�
[
�qn (tn+1, tn)

]�
L∏

k=n+1

⎡

⎣

[
∂ξ̃σk

∂ x̃qk−1

]�
[
�qk (tk+1, tk)

]�

+γk
∂m̃qk−1qk

∂ x̃qk−1

[

f̃
ξ̃σk ,qk−1

qk ,ξ̃σk

]�]
∂ g̃

∂ x̃qL
+ γn

∂m̃qn−1qn

∂ x̃qn−1

[

f̃
ξ̃σn ,qn−1

qn ,ξ̃σn

]�

L∏

k=n+1

⎡

⎣

[
∂ξ̃σk

∂ x̃qk−1

]�
[
�qk (tk+1, tk)

]� + γk
∂m̃qk−1qk

∂ x̃qk−1

[

f̃
ξ̃σk ,qk−1

qk ,ξ̃σk

]�
⎤

⎦ ∂ g̃

∂ x̃qL
.

(97)

Having established (71), we take the (backward) induction hypothesis as
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λ̃oqn (τ ) =
[
�qn (tn+1, τ )

]� L∏

k=n+1

⎡

⎣

[
∂ξ̃σk

∂ x̃qk−1

]� [
�qk (tk+1, tk)

]�

+γk
∂m̃qk−1qk

∂ x̃qk−1

[

f̃
ξ̃σk ,qk−1

qk ,ξ̃σk

]�]
∂ g̃

∂ x̃qL
, (98)

and denote the scalar product

pn := γn

[

f̃
ξ̃σn ,qn−1

qn ,ξ̃σn

]� L∏

k=n+1

⎡

⎣

[
∂ξ̃σk

∂ x̃qk−1

]�
[
�qk (tk+1, tk)

]�

+γk
∂m̃qk−1qk

∂ x̃qk−1

[

f̃
ξ̃σk ,qk−1

qk ,ξ̃σk

]�]
∂ g̃

∂ x̃qL
. (99)

Then equation (97) becomes

λ̃oqn−1
(tn) =

[
∂ξ̃σn

∂ x̃qn−1

]�
λ̃oqn (tn+) + pn

∂m̃qn−1qn

∂ x̃qn−1

. (100)

Since the induction hypothesis (98) is proved to hold as (71) for n = L − 1, and
since (98) for n implies (100), the boundary condition (20) is deduced from (100) in
a similar way as shown in (72) to (77), i.e., (100) is equivalent to

λ̃oqn−1
(tn) ≡

⎡

⎢
⎣

λoqn−1,θ
(tn)

λoqn−1,z(tn)

λoqn−1
(tn)

⎤

⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎣

1
∂c

∂t

[
∂ξ

∂t

]�

0 1 0

0
∂c

∂x

[
∂ξ

∂x

]�

⎤

⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎣

λoqn ,θ (tn+)

λoqn ,z (tn+)

λoqn (tn+)

⎤

⎥
⎦+ p

⎡

⎢
⎢
⎣

∂m

∂t
0

∇m

⎤

⎥
⎥
⎦ . (101)

This gives

λoqn−1,θ
(tn) = λoqn ,θ (tn+) + ∂cσn

∂t
+
[
∂ξσn

∂t

]�
λoqn (tn+) + p

∂mqn−1qn

∂t
, (102)

λoqn−1,z (tn) = 1, (103)

λoqn−1
(tn) = ∇ξ�λoqn (tn+) + ∇cσn + p∇mqn−1qn . (104)
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Differentiating (95) with respect to t leads to

d

dt
λ̃oqn−1

(t) = −
(

∂ f̃qn−1

∂ x̃qn−1

(
x̃oqn−1

(t), uoqn−1
(t)
)
)�

λ̃oqn−1
(t), (105)

which is equivalent to

d

dt
λoqn−1,θ

(t) = 0, (106)

d

dt
λoqn−1,z(t) = 0, (107)

d

dt
λoqn−1

(t) = −
⎛

⎝
∂lqn−1

(
t, xoqn−1

(t), uoqn−1
(t)
)

∂xqn−1

⎞

⎠ λo0(t)

−
⎛

⎝
∂ fqn−1

(
t, xoqn−1

(t), uoqn−1
(t)
)

∂xqn−1

⎞

⎠

�

λoqn−1
(t). (108)

Therefore, the constants λoqn−1,θ
(t) = ∑L

i=n
∂cσi
∂t +

[
∂ξσi
∂t

]�
λoqi (ti+) + p

∂mqi−1qi
∂t ,

and λoqn−1,z(t) = 1, for t ∈ (tn−1, tn) are obtained as before and

λ̇oqn−1
(t) = −

∂Hqn−1

(
t, xoqn−1

(t), λoqn−1
(t), uoqn−1

(t)
)

∂xqn−1

, (109)

holds for t ∈ (tn−1, tn) with the Hamiltonian defined as

Hqn−1

(
t, xqn−1 , λqn−1 , uqn−1

) = lqn−1

(
t, xqn−1 , uqn−1

)

+λ�
qn−1

fqn−1

(
t, xqn−1 , uqn−1

)
. (110)

Also from (93) the minimization of the Hamiltonian is concluded, i.e.,

Hqn−1

(
t, xoqn−1

(t), λoqn−1
(t), uoqn−1

(t)
)

≤ Hqn−1

(
t, xoqn−1

(t), λoqn−1
(t), v

)
, (111)

for all v ∈ Uqn−1 .
In order to obtain the Hamiltonian boundary condition (21) (equivalently, (22)) at

tn , we evaluate both Hqn−1 and Hqn at tn and invoke the previously established relations
(as referenced therein) to arrive at

Hqn−1

(
tn − )

= lqn−1

(
tn, x

o
qn−1

(tn−), uoqn−1
(tn−)

)+ λoqn−1
(tn−)T fqn−1

(
tn, x

o
qn−1

(tn−), uoqn−1
(tn−)

)

=
(85)

[
λ̃oqn−1

(tn−)
]T

f̃qn−1

(
x̃oqn−1

(tn−), uoqn−1
(tn−)

)− λoqn−1,θ
(tn−)
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=
(100)

[
∂ξ̃σn

∂ x̃qn−1

T

λ̃oqn (tn+) + pn
∂m̃

∂ x̃qn−1

]�
f̃qn−1

(
x̃oqn−1

(tn−), uoqn−1
(tn−)

)

−λoqn−1,θ
(tn−)

(99)=
(98)

−λoqn−1,θ
(tn−) +

[

λ̃oqn (tn+)� ∂ξ̃σn

∂ x̃qn−1

+ γn f̃
ξ̃σ

,
n qn−1

qn ,ξ̃σn

Tλ̃oqn (tn+)

∂m̃qn−1qn

∂ x̃qn−1

T]

f̃qn−1

(
x̃oqn−1

(tn−), uoqn−1
(tn−)

)

= −λoqn−1,θ
(tn−) + λ̃oqn (tn+)� ∂ξ̃σn

∂ x̃qn−1

f̃qn−1

(
x̃oqn−1

(tn−), uoqn−1
(tn−)

)

+
f̃
ξ̃σ

,
n qn−1

qn ,ξ̃σn

Tλ̃oqn (tn+)

∂m̃qn−1qn
∂ x̃qn−1

T f̃ (t−n )
qn−1

∂m̃qn−1qn

∂ x̃qn−1

T f̃qn−1

(
x̃oqn−1

(tn−), uoqn−1
(tn−)

)

=
(91)

−λoqn−1,θ
(tn−) + λ̃oqn (tn+)� ∂ξ̃σn

∂ x̃qn−1

f̃qn−1

(
x̃oqn−1

(tn−), uoqn−1
(tn−)

)

+λ̃oqn (tn+)�
[
f̃qn
(
x̃oqn (tn), u

o
qn (tn)

)− ∂ξ̃σn

∂ x̃qn−1

f̃qn−1

(
x̃oqn−1

(tn−), uoqn−1
(tn−)

)]

= −λoqn−1,θ
(tn−) + λ̃oqn (tn+)T f̃qn

(
x̃oqn (tn), u

o
qn (tn)

)

= −λoqn−1,θ
(tn−) + λoqn ,θ (tn) + lqn

(
t, xoqn (tn), u

o
qn (tn)

)

+λoqn (tn+)T fqn
(
t, xoqn (tn), u

o
qn (tn)

)

=
(102)

Hqn (tn+) − ∂cσn

∂t
−
[

∂ξσn

∂t

]�
λoqn (tn) − p

∂mqn−1qn

∂t
, (112)

which is equivalent to (21). This completes the proof of the hybrid minimum principle.
��

5 Analytic examples

5.1 Example 1

Consider a hybrid system with the indexed vector fields:

ẋ = fq1 (x, u) = x + x u, (113)

ẋ = fq2 (x, u) = −x + x u, (114)

and the hybrid optimal control problem

J
(
t0, t f , h0, 1; I1

) =
∫ ts

t0

1

2
u2dt + 1

1 + [x (ts−)]2
+
∫ t f

ts

1

2
u2dt + 1

2

[
x(t f )

]2
,

(115)
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subject to the initial condition h0 = (q(t0), x(t0)) = (q1, x0) provided at the initial
time t0 = 0. At the controlled switching instant ts , the boundary condition for the
continuous state is provided by the jump map x (ts) = ξ (x (ts−)) = −x (ts−).

5.1.1 The HMP formulation

Writing down the hybrid minimum principle results for the above HOCP, the Hamil-
tonians are formed as

Hq1 = 1

2
u2 + λ x (u + 1) , (116)

Hq2 = 1

2
u2 + λ x (u − 1) , (117)

fromwhich theminimizing control input for both Hamiltonian functions is determined
as

uo = −λx . (118)

Therefore, the adjoint process dynamics, determined from (16) and with the sub-
stitution of the optimal control input from (118), is written as

λ̇ = −∂Hq1

∂x
= −λ

(
uo + 1

) = λ (λ x − 1) , t ∈ (t0, ts] , (119)

λ̇ = −∂Hq2

∂x
= −λ

(
uo − 1

) = λ (λ x + 1) , t ∈ (ts, t f
]
, (120)

which are subject to the terminal and boundary conditions

λ(t f ) = ∇g|x(t f ) = x(t f ), (121)

λ (ts−) ≡ λ (ts) = ∇ξ |x(ts−) λ (ts+) + ∇c|x(ts−)

= −λ (ts+) + −2x (ts−)
(
1 + [x (ts−)]2

)2 . (122)

The substitution of the optimal control input (118) in the continuous state dynamics
(15) gives

ẋ = ∂Hq1

∂λ
= x

(
1 + uo

) = −x (λ x − 1) , t ∈ [t0, ts) , (123)

ẋ = ∂Hq2

∂λ
= x

(−1 + uo
) = −x (λ x + 1) , t ∈ [ts, t f

)
, (124)

which are subject to the initial and boundary conditions
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x(t0) = x (0) = x0, (125)

x (ts) = ξ (x (ts−)) = −x (ts−) . (126)

The Hamiltonian continuity condition (21) states that

Hq1 (ts−) = 1

2

[
uo (ts−)

]2 + λ (ts−) x (ts−)
[
uo (ts−) + 1

]

= 1

2
[−λ (ts−) x (ts−)]2 + λ (ts−) x (ts−) [−λ (ts−) x (ts−) + 1]

= Hq2 (ts+) = 1

2

[
uo (ts+)

]2 + λ (ts+) x (ts+)
[
uo (ts+) − 1

]

= 1

2
[−λ (ts+) x (ts+)]2 + λ (ts+) x (ts+) [−λ (ts+) x (ts+) − 1] ,

(127)

which can be written, using (126), as

x (ts−)
[
λ (ts−) − λ (ts+)

] = 1

2

[
x (ts−)

]2
[[

λ (ts−)
]2 − [

λ (ts+)
]2
]
. (128)

5.1.2 The HMP results

The solution to the set of ODEs (119), (120), (123), (124) together with the ini-
tial condition (125) expressed at t0, the terminal condition (121) determined at t f
and the boundary conditions (126) and (122) provided at ts which is not a priori
fixed but determined by the Hamiltonian continuity condition (128), provides the
optimal control input and its corresponding optimal trajectory that minimize the cost
J
(
t0, t f , h0, 1; I1

)
over I1, the family of hybrid inputswith one switching. The numer-

ical results for x0 = 0.5 and t f = 4 are illustrated in Fig. 3. Interested readers are
referred to [58] for further analytic steps to reduce the above boundary value ODE
problem into a set of algebraic equations using the special forms of the differential
equations under study.

5.2 Example 2

Consider the hybrid system with the indexed vector fields

ẋ =
[
ẋ1
ẋ2

]

= f1 (x, u) =
[

x2
−x1 + u

]

, (129)

and

ẋ =
[
ẋ1
ẋ2

]

= f2 (x, u) =
[
x2
u

]

, (130)
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Fig. 3 The optimal state and adjoint processes, optimal inputs and the Hamiltonians for the system in
Example 1 with x0 = 0.5 and t f = 4

where autonomous switchings occur on the switching manifold described by

m (x1 (ts) , x2 (ts−)) ≡ x2 (ts−) = 0, (131)

with the continuity of the trajectories at the switching instant. Consider the hybrid
optimal control problem defined as the minimization of the total cost functional

J =
∫ t f

t0

1

2
u2dt + 1

2
(x1 (ts))

2 + 1

2

(
x2
(
t f
)− vre f

)2 (132)
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5.2.1 The HMP formulation and results

Employing the HMP, the corresponding Hamiltonians are defined as

H1 = λ1x2 + λ2 (−x1 + u) + 1

2
u2, (133)

and

H2 = λ1x2 + λ2u + 1

2
u2 (134)

The Hamiltonian minimization with respect to u (Eq. (14)) gives

uo = −λ2 (135)

for both q = 1 and q = 2.
Therefore the state dynamics (15) and the adjoint process dynamics (16) become

ẋ1 = ∂H1

∂λ1
= x2, (136)

ẋ2 = ∂H1

∂λ2
= −x1 + uo = −x1 − λ2, (137)

λ̇1 = −∂H1

∂x1
= λ2, (138)

λ̇2 = −∂H1

∂x2
= −λ1, (139)

for q = 1, and

ẋ1 = ∂H2

∂λ1
= x2, (140)

ẋ2 = ∂H2

∂λ2
= uo = −λ2, (141)

λ̇1 = −∂H2

∂x1
= 0, (142)

λ̇2 = −∂H2

∂x2
= −λ1, (143)

for q = 2. At the initial time t = t0, the continuous valued states are specified by the
initial conditions

x1 (t0) = x10, (144)

x2 (t0) = x20 (145)
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At the switching instant t = ts , the boundary conditions for the states and adjoint
processes are determined as

x1 (ts) = x1 (ts−) ≡ lim
t↑ts

x1 (t) , (146)

x2 (ts) = x2 (ts−) = 0, (147)

λ1 (ts) = λ1 (ts+) + ∂c

∂x1
+ p

∂m

∂x1
= λ1 (ts+) + x1 (ts) , (148)

λ2 (ts) = λ2 (ts+) + ∂c

∂x2
+ p

∂m

∂x2
= λ2 (ts+) + p (149)

And at the terminal time t = t f , the adjoint processes are determined by (19) as

λ1
(
t f
) = ∂g

∂x1
= 0, (150)

λ2
(
t f
) = ∂g

∂x2
= x2

(
t f
)− vref (151)

Note that unlike t0 and t f which are a priori determined, ts is not fixed and needs
to be determined by the Hamiltonian continuity condition (21) as

H1 (ts−) = λ1 (ts−) x2 (ts−) − λ2 (ts−) x1 (ts−) − 1

2
λ2 (ts−)2

= −λ2 (ts) x1 (ts−) − 1

2
λ2 (ts)

2

= H2 (ts+) = λ1 (ts+) x2 (ts+) − 1

2
λ2 (ts+)2 = −1

2
λ2 (ts+)2 ,

(152)

i.e.,

λ2 (ts) x1 (ts−) + 1

2
λ2 (ts)

2 = 1

2
λ2 (ts+)2 , (153)

that with the insertion of (149), it becomes

(λ2 (ts+) + p) x1 (ts−) + 1

2
(λ2 (ts+) + p)2 = 1

2
λ2 (ts+)2 , (154)

The set of ODEs (136) to (143), together with the initial conditions (144) and
(145) expressed at t0, the boundary conditions (146), (198), (148) and (149) provided
at ts , and the terminal conditions (150) and (151) determined at t f , with the two
unknowns ts and p determined by the Hamiltonian continuity condition (154) and the
switching manifold condition (131), form an ODE boundary value problem whose
solution results in the determination of the optimal control input and its corresponding
optimal trajectory that minimize the cost J

(
t0, t f , h0, 1; I1

)
over I1, the family of

hybrid inputs with one switching on the switching manifold (131).
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5.2.2 Analytical solution to the HMP

Similar to the previous example, further steps can be taken in order to reduce the above
boundary value ODE problem into a set of algebraic equations using the special forms
of the differential equations under study. This has been done in detail in [60], and a
brief version is provided here.

From (142) and (148) we may write

λ1 (t) = 0, t ∈ (ts, t f
]
. (155)

Therefore, the dynamics of the second component of the adjoint process in
(
ts, t f

]

is determined from (143) as

λ̇2 = 0, t ∈ (ts, t f
]
, (156)

which from (151) we conclude that

λ2 (t) = x2
(
t f
)− vref t ∈ (ts, t f

]
.

(157)

The boundary conditions (148) and (149) on adjoint processes at the switchings
instant give

λ1 (ts) = λ1 (ts+) + x1 (ts) = x1 (ts) , (158)

λ2 (ts) = λ2 (ts+) + p = x2
(
t f
)− vre f + p, (159)

The conditions (158) and (159) serve as terminal conditions for the adjoint processes
dynamics (138) and (138) which have a general solution of the form

λ1 = A sin (t + α) , t ∈ [t0, ts] , (160)

λ2 = A cos (t + α) , t ∈ [t0, ts] . (161)

Therefore, the state dynamics (136) and (137) are written as

ẋ1 = x2, (162)

ẋ2 = −x1 − λ2 = −x1 − A cos (t + α) , (163)

for t ∈ [t0, ts], which have a general solution of the form

x1 (t) = −1

2
At sin (t + α) + B sin (t + β) , (164)

x2 (t) = −1

2
At cos (t + α) − 1

2
A sin (t + α) + B cos (t + β) , (165)
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for t ∈ [t0, ts) = [0, ts), subject to the initial conditions

x1 (t0) = B sin β = x10, (166)

x2 (t0) = −1

2
A sin (α) + B cos (β) = x20. (167)

At the switching time ts the continuity condition for x1 and x2 are written as

x1 (ts+) ≡ x1 (ts) = x1 (ts−) , (168)

x2 (ts+) ≡ x2 (ts) = x2 (ts−) = 0, (169)

which form the initial conditions for the state dynamics in q2 and t ∈ [ts, t f
]
, deter-

mined from (140) and (141) as

ẋ1 = x2, (170)

ẋ2 = −λ2 = vre f − x2
(
t f
)
. (171)

The above equations have the solution

x1 (t) = x1 (ts) + 1

2

(
vre f − x2

(
t f
))

(t − ts)
2 , (172)

x2 (t) = (
vre f − x2

(
t f
))

(t − ts) , (173)

for t ∈ [
ts, t f

]
. Since (173) is expressed implicitly in terms of x2

(
t f
)
, we evaluate

(173) at t f to write an explicit form for x2 as

x2
(
t f
) = (

vre f − x2
(
t f
)) (

t f − ts
)
, (174)

which gives

x2
(
t f
) = vre f

(
t f − ts

)

1 + t f − ts
. (175)

Substitution of (175) into (172) and (173) results in

x1 (t) = x1 (ts) + vref

2
(
1 + t f − ts

) (t − ts)
2 , (176)

x2 (t) = vref

1 + t f − ts
(t − ts) , (177)

for t ∈ [ts, t f
]
. This gives the adjoint boundary conditions (158) and (159) as
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Fig. 4 The optimal trajectory components xo1 and xo2 , the corresponding adjoint process components λo1
and λo2, the optimal control input uo and the corresponding Hamiltonian H

(
xo, λo, uo

)
in Example 2 with

t0 = 0, x10 = 1, x20 = −0.5, t f = 5 and vref = 1
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A

(

1 + ts
2

)

sin (ts + α) = B sin (ts + β) , (178)

A cos (ts + α) = vref

1 + t f − ts
+ p. (179)

The switching manifold condition (169) states that

−1

2
Ats cos (ts + α) − 1

2
A sin (ts + α) + B cos (ts + β) = 0, (180)

and the Hamiltonian continuity condition (154) gives

A cos (ts + α)

(−1

2
Ats sin (ts + α) + B sin (ts + β)

)

+1

2
A2 cos2 (ts + α) = 1

2

(
vref

1 + t f − ts

)2

. (181)

Hence, by solving simultaneously the set of 6 equations (166), (167), (178), (179),
(180), and (181) for the given t0 = 0, t f < ∞, x (t0) ≡ [x10, x20]T and vref the values
of the 6 unknown parameters A, α, B, β, ts and p are determined. For the values of
t0 = 0, x10 = 1, x20 = −0.5, t f = 5 and vref = 1 the results are demonstrated in
Fig. 4.

5.3 Example 3

Consider the hybrid system with the indexed vector fields

ẋ =

⎡

⎢
⎢
⎣

ẋ1
ẋ2
ẋ3
ẋ4

⎤

⎥
⎥
⎦ = f1 (x, u) =

⎡

⎢
⎢
⎣

0 1 0 0
0 0 1 0
0 0 0 1

−3 −2 −4 −1

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

x1
x2
x3
x4

⎤

⎥
⎥
⎦+

⎡

⎢
⎢
⎣

0
0
0
1

⎤

⎥
⎥
⎦ u, (182)

and

ẋ =
⎡

⎣
ẋ1
ẋ2
ẋ3

⎤

⎦ = f2 (x, u) =
⎡

⎣
0 1 0
0 0 1

−6 −11 −6

⎤

⎦

⎡

⎣
x1
x2
x3

⎤

⎦+
⎡

⎣
0
0
1

⎤

⎦ u, (183)

where autonomous switchings occur on the switching manifold described by

m
(
x(ts−)

) ≡ m
( [

x1(ts−) x2(ts−) x3(ts−) x4(ts−)
]� ) = x3(ts−) = 0, (184)
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with the jump map

x(ts) ≡
⎡

⎣
x1(ts)
x2(ts)
x3(ts)

⎤

⎦ = ξ
(
x(ts−)

) =
⎡

⎣
2 0 0 0
0 1

2 0 0
0 0 0 3

⎤

⎦

⎡

⎢
⎢
⎣

x1(ts−)

x2(ts−)

x3(ts−)

x4(ts−)

⎤

⎥
⎥
⎦ (185)

Consider the hybrid optimal control problem defined as the minimization of the total
cost functional

J =
∫ t f

t0

1

2
u2dt + 1

8
‖x(ts−)‖2 + 2

∥
∥x(t f )

∥
∥2 (186)

5.3.1 The HMP formulation and results

Employing the HMP, the corresponding Hamiltonians are defined as

H1(x, λ, u) = 1

2
u2 + λ�(A1x + B1u), (187)

H2(x, λ, u) = 1

2
u2 + λ�(A2x + B2u). (188)

The Hamiltonian minimization with respect to u (Eq. (14)) yields

uo = −B�
1 λ = λ4, q = 1, (189)

uo = −B�
2 λ = λ3, q = 2. (190)

Therefore the state dynamics (15) and the adjoint process dynamics (16) become

ẋ = A1x − B1λ4 (191)

λ̇ = −A�
1 λ (192)

for q = 1, and

ẋ = A2x − B2λ3 (193)

λ̇ = −A�
2 λ (194)

for q = 2.
At the initial time t = t0, the continuous valued states are specified by the initial

condition

x (t0) = x0. (195)

At the switching instant t = ts , the switching manifold condition

x3 (ts−) = 0, (196)
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must hold, and the boundary conditions for the states and adjoint processes are deter-
mined as

x1 (ts) = 2 x1 (ts−) , (197)

x2 (ts) = 1

2
x2 (ts−) , (198)

x3 (ts) = 3 x4 (ts−) , (199)

λ1 (ts) = 2 λ1 (ts+) + 1

4
x1 (ts−) (200)

λ2 (ts) = 1

2
λ2 (ts+) + 1

4
x2 (ts−) (201)

λ3 (ts) = p + 1

4
x3 (ts−) (202)

λ4 (ts) = 3 λ4 (ts+) + 1

4
x4 (ts−) (203)

And at the terminal time t = t f , the adjoint processes are determined by (19) as

λ1
(
t f
) = 4 x1

(
t f
)
, (204)

λ2
(
t f
) = 4 x2

(
t f
)
, (205)

λ3
(
t f
) = 4 x3

(
t f
)
. (206)

Note that unlike t0 and t f which are a priori determined, ts is not fixed and, together
with the unknown parameter p, they need to be determined by the switching manifold
condition (196) and the Hamiltonian continuity condition (21) as

H1 (ts−) ≡ λ(ts)
�A1 x(ts−) − 1

2
λ(ts)

�B1B
�
1 λ(ts)

= λ(ts)
�A2 x(ts) − 1

2
λ(ts+)�B2B

�
2 λ(ts+) ≡ H2 (ts+) . (207)

5.3.2 Numerical solution to the HMP

In order to numerically solve the HMP results, we employ the HMP–MAS Concep-
tual Algorithm presented in [67] and we exploit the analytical availability of trajectory
solutions due to the linearity of dynamics before and after switching to expedite the
algorithm. More specifically, the algorithm initiation consists of selecting arbitrary
switching time t0s ∈ (t0, t f ) and pre-switching state x0s ∈ R

4 such that the switching
manifold conditionm(x0s ) = 0 holds. Then, at each iteration k the hybrid optimal con-
trol problem decomposes into two decoupled auxiliary classical (non-hybrid) optimal
control problems, one with the dynamics ẋ = A1x + B1u with fixed initial and ter-

minal states x0 at t0 and xks at tks with the cost J1 = ∫ tks
t0

1
2u

2ds and the other with the

dynamics ẋ = A2x+B2u with a fixed initial state
[

2 0 0 0
0 1/2 0 0
0 0 0 3

]
xks at t

k
s and a free terminal
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Fig. 5 The optimal trajectory xo, the corresponding adjoint process λo and the corresponding Hamiltonian

H
(
xo, λo, uo

)
in Example 3 over the horizon [t0, t f ] = [0, 3]with x0 = [−2 0 3 −2

]�, an autonomous

switching with the switching manifold x(3)(ts−) = 0, and the jumpmaps
[
x(1)(ts ) x(2)(ts ) x(3)(ts )

]� =
[

2x(1)(ts−)
1

2
x(2)(ts−) 3x(4)(ts−)

]�
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state and with the cost J2 = ∫ t f
tks

1
2u

2ds. At each iteration, the adjoint process of the

first auxiliary problem is determined from λkq1(t) = exp(−A�
1 t)[G(t0, tks )]−1

(
x0 −

exp(−A1(tks − t0))xks
)
where G(t0, tks ) = ∫ tks

t0
exp(−A1τ)B1B�

1 exp(−A�
1 τ)dτ is

the controllability Gramian; and the adjoint process of the second auxiliary prob-
lem is determined from λkq2(t) = �2(t)x(t), where �2 is the solution of the Riccati

equation �̇2 = �2B2B�
2 �2 − A�

2 �2 − �2A2 subject to the terminal condition
�2(t f ) = 4 I3×3.

Then the algorithm updates tks and xks according to

tk+1
s = tks − rk

(
Hk
1 (tks −) − Hk

2 (tks +)
)

(208)

xk+1
s = xki − rk

⎛

⎜
⎜
⎝

⎡

⎢
⎢
⎣

2 0 0
0 1

2 0
0 0 0
0 0 3

⎤

⎥
⎥
⎦ λkq2(t

k
s +) + 1

4
xks + pk

⎡

⎢
⎢
⎣

0
0
1
0

⎤

⎥
⎥
⎦− λkq1(t

k
s )

⎞

⎟
⎟
⎠

− rk m(xks )

⎡

⎢
⎢
⎣

0
0
1
0

⎤

⎥
⎥
⎦ (209)

where rk ∈ (0, 1) is a set of monotonically non-decreasing sequence of step sizes and

pk =
Hk
2(tk

s+)
−Hk

1(tk
s−)

+(A1xks −B1B�
1 λk

q
(tks )

1

�)�
⎛

⎝λk

q
(tks )

1

−
⎡

⎣

2 0 0

0 1
2 0

0 0 0

0 0 3

⎤

⎦λk

q
(tk
s+ )

2

− 1
4 x

k
s

⎞

⎠

[
0 0 1 0

] (
A1xks − B1B�

1 λkq1(t
k
s )�

)

(210)

For the initial condition x0 = [−2 0 3 −2
]�, over the time horizon [0, 3] and with

the initial guesses t0s = 1.5, x0s = [
0 2 0 −1

]�, the algorithm converges with ε =

0.001 to |Hk
2 (tks +)−Hk

1 (tks −)|2+
∥
∥
∥
∥
∥
∥
λkq1(t

k
s ) −

⎡

⎣

2 0 0

0 1
2 0

0 0 0

0 0 3

⎤

⎦λkq2(t
k
s +) − 1

4 x
k
s

∥
∥
∥
∥
∥
∥

2

+|m(xks )|2

within the order of 105 steps and the corresponding results are displayed in Fig. 5.

5.4 Example 4

Consider the hybrid model of an electric vehicle equipped with a dual planetary trans-
mission (presented in detail in [56]) with the set of (active) vector fields F given
as
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fq1 (x, u) = −A1x
2 + B1u − C1x − D1 , (211)

fq2 (x, u) = −A2x
2 + B2

u

x
− C2x − D2 , (212)

f (1)
q3 (x, u) = −ASSx

(1) + ASRx
(2) − ASA

(
x (1) + R2x

(2)
)2

+ BSM
u(1)

x (1) + R1x (2)
+ BSSu

(2) − BSRu
(3) − DSL ,

f (2)
q3 (x, u) = ARSx

(1) − ARRx
(2) − ARA

(
x (1) + R2x

(2)
)2

+ BRM (1 + R1)
u(1)

x (1) + R1x (2)
− BRSu

(2) + BRRu
(3) − DRL ,

(213)

fq4 (x, u) = −A4x
2 + B4

u

x
− C4x − D4 , (214)

where xq1 , xq2 , xq4 ,∈ R, xq3 ∈ R
2 are the continuous components of the hybrid

state, with the notation x ( j)
qi used for denoting the j th component, and uq1 , uq2 , uq4 ∈

[−1, 1] ⊂ R, uq3 ∈ [−1, 1]3 ⊂ R
3 are the continuous components of the hybrid

input, with the coefficients on the right hand side of equations assumed to have deter-
ministically known values. In this example, transition from q1 to q2 is an autonomous
switching, the transition from q2 to q3 is a controlled switching accompanied by a
dimension change, and transition from q3 to q4 is an autonomous switching accompa-
nied by a dimension change. The set of switching manifolds M for the autonomous
switchings are given by

mq1q2 ≡ x − k1 = 0 , (215)

mq3q4 ≡ x (1) = 0 , (216)

and the set of jump transition maps � is provided as

ξq1q2 : x → x . , (217)

ξq2q3 : x →
[
g1tr x
0

]

, (218)

ξq3q4 :
[
x (1)

x (2)

]

→ g2tr x
(2) . (219)

Let the performance measure be given as

J
(
t0, t f , (q1, 0) , 3; I3

) =
∫ ts1

t0
lq1 (x, u) dt +

∫ ts2

ts1

lq2 (x, u) dt

+
∫ ts3

ts2

lq3 (x, u) dt +
∫ t f

ts3

lq4 (x, u) dt + g
(
x
(
t f
))

,

(220)

123



Mathematics of Control, Signals, and Systems (2024) 36:21–70 61

where the running costs lqi ’s are the power consumption rates, determined from the
motor efficiency map in [56] as

lq1 (x, u) = a1u
2 + b1xu + c1u + d1x , (221)

lq2 (x, u) = a2
u2

x2
+ b2u + c2

u

x
+ d2x , (222)

lq3 (x, u) = a3

(
u(1)

)2

(
x (1) + R1x (2)

)2 + b3u
(1)

+ c3
u(1)

x (1) + R1x (2)
+ d3

(
x (1) + R1x

(2)
)

, (223)

lq4 (x, u) = a4
u2

x2
+ b4u + c4

u

x
+ d4x , (224)

g
(
x
(
t f
)) = d0 + d1x

(
t f
)+ d2x

(
t f
)2

. (225)

5.4.1 The HMP results and solution

Based on the HMP (details of the derivation are presented in [56]), optimal inputs
are determined as

uoq1 (t) = sat
[−1,1]

(
−(b1x (t) + c1 + B1λ (t)

)

2a1

)

, (226)

uoq2 (t) = sat
[−1,1]

(
−x (t)

(
b2x (t) + c2 + B2λ (t)

)

2a2

)

, (227)

uo(1)q3 (t) = sat
[−1,1]

(
−
(
x (1)
(t) +R1x

(2)
(t)

)[
b3
(
x (1)
(t) +R1x

(2)
(t)

)
+c3+B4

SMλ
(1)
(t) +B4

RMλ
(2)
(t)

]

2a3

)

,

uo(2)q3 (t) =
{−1 if BSSλ

(1) (t) − BRSλ
(2) (t) ≥ 0

0 if BSSλ
(1) (t) − BRSλ

(2) (t) < 0
,

uo(3)q3 (t) =
{−1 if BRRλ(2) (t) − BSRλ(1) (t) ≥ 0

0 if BRRλ(2) (t) − BSRλ(1) (t) < 0
,

(228)

uoq4 (t) = sat
[−1,1]

(
−x (t)

(
b4x (t) + c4 + B4λ (t)

)

2a4

)

, (229)

where λ (t) ≡ λoqi (t) are governed by the set of differential equations

λ̇q4 =
2a4

(
uoq4 (t)

)2

(
xq4 (t)

)3 + c4uoq4 (t)
(
xq4 (t)

)2 − d4

+ λq4 (t)

(

2A4xq4 (t) + B4
uoq4 (t)
(
xq4 (t)

)2 + C4

)

, (230)
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Fig. 6 Optimal state and adjoint processes, optimal input and the corresponding Hamiltonians for the
example of vehicle with transmission
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λ̇(1)
q3 =

2a3
(
uo(1)q3 (t)

)2

(
x (1) + R1x (2)

)3 + c3u
o(1)
q3 (t)

(
x (1) + R1x (2)

)2 − d3

+ λ(1)
q3

(

ASS + 2ASA

(
x (1) + R2x

(2)
)

+ BSM (1 + R1) u
o(1)
q3

(
x (1) + R1x (2)

)2

)

+ λ(2)
q3

(

−ARS + 2ARA

(
x (1) + R2x

(2)
)

+ BRM (1 + R1) u
o(1)
q3

(
x (1) + R1x (2)

)2

)

, (231)

λ̇(2)
q3 =

⎛

⎜
⎝
2R1a3

(
uo(1)q3 (t)

)2

(
x (1) + R1x (2)

)3 + R1c3u
o(1)
q3 (t)

(
x (1) + R1x (2)

)2 − R1d3

⎞

⎟
⎠

+ λ(1)
q3

(

−ASR + 2R2ASA

(
x (1) + R2x

(2)
)

+ R1BSM (1 + R1) u
o(1)
q3

(
x (1) + R1x (2)

)2

)

+ λ(2)
q3

(

ARR + 2R2ARA

(
x (1) + R2x

(2)
)

+ R1BRM (1 + R1) u
o(1)
q3

(
x (1) + R1x (2)

)2

)

,

(232)

λ̇q2 =
2a2

(
uoq2 (t)

)2

(
xq2 (t)

)3 + c2uoq2 (t)
(
xq2 (t)

)2 − d2 + λq2 (t)

(

2A2xq2 (t)

+ B2
uoq2 (t)
(
xq2 (t)

)2 + C2

)

, (233)

λ̇q1 = −b1u
o
q1 (t) − d1 + λq1 (t)

(
2A1xq1 (t) + C1

)
, (234)

subject to the terminal and boundary conditions:

λq4
(
t f
) = d1 + 2d2xq4

(
t f
)

, (235)

λq3
(
ts3
) =

[
0
g2tr

]

λq3
(
ts3+

)+ p3

[
1
0

]

, (236)

λq2
(
ts2
) = [

g1tr 0
]
[

λ
(1)
q3

(
ts2+

)

λ
(2)
q3

(
ts2+

)

]

= g1trλ
(1)
q3

(
ts2+

)
, (237)

λq1
(
ts1
) = λq2

(
ts1+

)+ p1 , (238)

where the optimal switching instances ts1 , ts2 , ts3 together with the unknown scalar p1
and p3 are determined from switching manifold conditions and Hamiltonian conti-
nuity conditions. The associated results are illustrated in Fig. 6. Interested readers are
referred to [56] for further details about hybrid systems modeling and the determina-
tion of the HMP results for this system.
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6 Concluding remarks

The hybrid minimum principle (HMP) presented and proved in this paper exhibits
several distinctive characteristics of hybrid systems which are not simultaneously
present in other versions of the HMP available in the literature. One of the key aspects
of the established HMP is the explicit presentation of the boundary conditions on
the Hamiltonians and adjoint processes (in contrast to their implicit expressions in
[27–30, 33] in the form of transversality conditions), the relaxation of the regularity
requirements (relative to, e.g., [32, 34]) and the presence of time-varying switching
manifolds and jump maps corresponding to both autonomous and controlled, together
with time varying switching costs and the possibility of state space dimension change
(where only subsets of these features have been considered for the presentation of
other versions of the HMP).

It is worth remarking that the statement of the HMP (like other versions of the HMP
established in the literature) is along a fixed sequence of discrete states and while the
associated switching times are not a priori fixed (and are part of the solution to the
HMP), the currently available versions of the HMP are silent about the optimality of
a sequence of discrete states. In other words, the adjoint process in the HMP is only in
adjoint relationship with variations of the continuous state process while, to the best
of our knowledge, the determination of an adjoin-type variable for discrete-valued
processes (including especially the discrete component of the state of hybrid systems)
is still an open problem. In contrast, one can obtain the optimal switching sequence
using hybrid dynamic programming (HDP) (see, e.g., [18, 35]) at the expense of being
required to solve multiple partial differential equations and possibly encountering the
curse of dimensionality in the associated numerical algorithms. An interesting future
line of research would be the development of numerical algorithms based upon the
intrinsic relationship between the HMP and HDP [35] where the optimality results of
the HMP are combined with HDP in order to also determine the optimal sequence of
discrete states.
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Appendix A Proof of Lemma 1

Proof Let us define

K1 = sup
{∥
∥ fq (t, x, u)

∥
∥ : (t, q, x, u) ∈ [t0, t f ] × Q × Br ×U

}
, (A1)
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where Br := {
x ∈ R

nq : ‖x‖2 < r2
}
.

we first consider the stage where no remaining switching is available and hence
t ∈ (tL , tL+1) = (

tL , t f
)
. In this the case that

x
(
t f ; t, xt

) = xt +
∫ t f

t
fqL (τ, xτ , uτ ) dτ, (A2)

which gives

∥
∥x
(
t f ; t, xt

)− xt
∥
∥ ≤ K1

∣
∣t f − t

∣
∣+

∫ t f

t
L f ‖x (τ ; t, xt ) − xt‖ dτ, (A3)

where L f is defined in assumptions A0. By the Gronwall-Bellman inequality this
results in

∥
∥x
(
t f ; t, xt

)− xt
∥
∥ ≤ K1

∣
∣t f − t

∣
∣+

∫ t f

t
L f K1 (τ − t) eL f (t f −τ)dτ

≤ K2
∣
∣t f − t

∣
∣ ≤ K2

∣
∣t f − tL

∣
∣ , (A4)

where K2 = max
{
K1, L f K1

(
t f − tL

)
eL f (t f −tL)

}
. Hence, by the semi-group prop-

erties of ODE solutions and by use of (A4), for s ≥ t and xs ∈ Nrx (xt ) we have

∥
∥x
(
t f ; t, xt

)− x
(
t f ; s, xs

)∥
∥ ≤ ‖xt − xs‖ + ‖x (s; t, xt ) − xt‖

+
∫ t f

s
L f ‖x (τ ; t, xt ) − x (τ ; s, xs)‖ dτ

≤ ‖xt − xs‖ + K2 |s − t |
+
∫ t f

s
L f ‖x (τ ; t, xt ) − x (τ ; s, xs)‖ dτ, (A5)

and therefore, by the Gronwall inequality we have

∥
∥x
(
t f ; t, xt

)− x
(
t f ; s, xs

)∥
∥ ≤ (‖xt − xs‖ + K2 |s − t |) eL f (t f −s)

≤ (‖xt − xs‖ + K2 |s − t |) eL f (t f −tL)

≤ K
(
‖xt − xs‖2 + |s − t |2

) 1
2
, (A6)

for some K < ∞ which depends only on t f − tL , K1 and K̃ f and not on the control
input.

Now consider t, s ∈ (
t j , t j+1

)
where t j+1 indicates a time of an autonomous

switching for the trajectory x (τ ; t, xt ), and consider for definiteness the case where
x (τ ; s, xs) arrives on the switching manifold described locally by m (x) = 0 at a
later time t j+1 + δt (the case with an earlier arrival time can be handled similarly by
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considering δt < 0). It directly follows by replacing fqL and t f by fq j and t j+1− in
the above arguments, that

∥
∥x
(
t j+1−; t, xt

)− x
(
t j+1−; s, xs

)∥
∥ ≤ K ′ (‖xt − xs‖2 + |s − t |2

) 1
2
. (A7)

Now since

∥
∥x
(
t j+1 + δt−; s, xs

)− x
(
t j+1−; s, xs

)∥
∥ ≤ K2

∣
∣t j+1 + δt − t j+1

∣
∣ = K2 |δt | ,

(A8)

and

∥
∥x
(
t j+1 + δt−; s, xs

)− x
(
t j+1−; t, xt

)∥
∥2

≤ ∥
∥x
(
t j+1 + δt−; s, xs

)− x
(
t j+1−; s, xs

)∥
∥2

+ ∥∥x (t j+1−; t, xt
)− x

(
t j+1−; s, xs

)∥
∥2 , (A9)

it is sufficient to show that the upper bound for |δt | is proportional to ( ‖xt − xs‖2
+ |s − t |2 ) 12 . This can be shown to hold by considering the fact that

m
(
x(t j+1 + δt−; s, xs)

) = m

(

x(t j+1−; s, xs) +
∫ t j+δt

t j
fq j

(
x(τ ; s, xs), ut j−

)
dτ

)

= m

(

x(t j+1−; t, xt ) + δx(t j+1−) +
∫ t j+δt

t j
fq j

(
x(τ ; s, xs), ut j−

)
dτ

)

= m
(
x
(
t j+1−; t, xt

)) = 0. (A10)

For
∥
∥δx

(
t j+1−

)∥
∥ < ε j+1 sufficiently small,

∇m�
(

δxt j+1− +
∫ t j+δt

t j
fq j

(
x (τ ; s, xs) , ut j−

)
dτ

)

+ O
(
ε2j+1

)
= 0, (A11)

which is equivalent to

∇m�δx
(
t j+1−

)+
∫ t j+δt

t j
∇m� fq j

(
x (τ ; s, xs) , ut j−

)
dτ + O

(
ε2j+1

)
= 0.

(A12)

Due to the transversal arrival of the trajectories with respect to the smooth switching
manifold,

∣
∣∇m� fq j

∣
∣ is lower bounded by a strictly positive number km, f (see (2)) and
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hence,

∣
∣
∣∇m�δx

(
t j+1−

)+ O
(
ε2j+1

)∣
∣
∣ =

∣
∣
∣
∣
∣

∫ t j+δt

t j
∇m� fq j

(
x (τ ; s, xs) , ut j−

)
dτ

∣
∣
∣
∣
∣

≥
∫ t j+δt

t j

∣
∣
∣∇m� fq j

(
x (τ ; s, xs) , ut j−

)∣∣
∣ dτ ≥ km, f |δt | , (A13)

which gives

|δt | ≤ 1

km, f

(
‖∇m‖ ∥∥δx (t j+1−

)∥
∥+

∣
∣
∣O
(
ε2j+1

)∣
∣
∣
)

≤ 1

km, f
‖∇m‖ ε j+1 + ε j+1 ≤

(‖∇m‖
km, f

+ 1

)

ε j+1 = K j+1ε j+1. (A14)

Hence, for t ∈ (
t j , t j+1

)
and xt ∈ Br there exist a neighborhood Nrx (xt )

such that for s ∈ (
t j , t j+1

)
and xs ∈ Nrx (xt ) we have

∥
∥δx

(
t j+1−

)∥
∥ ≤

K ′ (‖xt − xs‖2 + |s − t |2) 12 < ε j+1 in order to ensure that δt ≤ K j+1ε j+1 and
consequently

∥
∥x
(
t j+1 + δt−; s, xs

)− x
(
t j+1−; t, xt

)∥
∥ ≤ K

(
‖xt − xs‖2 + |s − t |2

) 1
2
,

(A15)

for K independent of the control. Since ξ is smooth and time invariant, it is therefore
Lipschitz in x uniformly in time. ��
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