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Abstract
In the last decades, control problems with infinite horizons and discount factors
have become increasingly central not only for economics but also for applications
in artificial intelligence and machine learning. The strong links between reinforce-
ment learning and control theory have led to major efforts toward the development of
algorithms to learn how to solve constrained control problems. In particular, discount
plays a role in addressing the challenges that come with models that have unbounded
disturbances. Although algorithms have been extensively explored, few results take
into account time-dependent state constraints, which are imposed in most real-world
control applications. For this purpose, here we investigate feasibility and sufficient
conditions for Lipschitz regularity of the value function for a class of discounted infi-
nite horizon optimal control problems subject to time-dependent constraints.We focus
on problems with data that allow nonautonomous dynamics, and Lagrangian and state
constraints that can be unbounded with possibly nonsmooth boundaries.

Keywords Infinite horizon control problems · State constraints · Regularity of value
functions · Viability
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1 Introduction

Infinite time horizon models arising in mathematical economics and engineering typ-
ically involve control systems with restrictions on both controls and states. Models
of optimal allocation of economic resources were, in the late 50 s, among the key
incentives for the creation of the mathematical theory of optimal control. Constrained
optimal control problems are often solved in practical control applications, which are
more challenging to deal with than unconstrained ones.

Over the last few decades, an increasingly central role has been given to infinite
horizon control problems with discount factors not only for applications in finance
but for applications to artificial intelligence and machine learning. Strong connec-
tions between reinforcement learning and control theory have prompted a major effort
toward developing algorithms to learn optimal solutions. Discounting plays a role
in addressing the challenges that come with models where unbounded disturbances
are present. The discount configuration is common in many stochastic control prob-
lems [7, 23, 24, 33], reinforcement learning [8], and financial engineering [19, 30].
Discount factors ensure the feasibility of constrained optimal control problems with
potentially unbounded perturbations. In dynamic programming, discounting is often
used to ensure well-posedness of problems with infinite horizons and possibly unlim-
ited costs [6, 9]. Moreover, with an appropriate value of the discount factor, stability
is guaranteed [31].

Much of the present works in the literature focuses on manage constraints in con-
trol problems. In general, state constraints imply non-convex feasible sets. So, there
are several ways to provide amenable approximations in deterministic and proba-
bilistic frameworks, e.g., using available informations from probability distributions
[32], deterministic approximation methods jointly with confidence sets [25], deter-
ministic and stochastic tubes [5, 12], attainable sets [22] or conservative approach
with probabilistic inequalities [17, 21] and random methods [11, 26]. Although deter-
ministic algorithms have been widely investigated to solve the optimal regulation
problems, few results consider the solution of optimal synthesis in the presence of
time-dependent state constraints, needed for most real-world control applications (cfr.
Sect. 2). A fundamental point in constrained cases is how to ensure desirable prop-
erties, as existence of viable solutions and stability, including regularity of the value
function. This is particularly evident in reinforcement learning, where value functions
necessitates employing a function approximator with a limited set of parameters. Sev-
eral researchers have emphasized that integrating reinforcement learning algorithms
subject to state constraints with general approximation systems, such as neural net-
works, fuzzy sets, or polynomial approximators, can lead to unstable or divergent
outcomes, even for straightforward problems (cfr. [2, 10, 20]).

In this settings, a key role is given by the dynamic programming principle and the
Hamilton–Jacobi–Bellman (HJB) equation associatedwith the control problem [6, 34].
The value function, when differentiable, solves theHJB equation in the classical sense.
However, it is well known that such a kind of notion turns out to be quite unsatisfactory
for HJB equations arising in control theory and the calculus of variations (we refer the
interested reader to the pioneer works [13, 14] and [3] for further discussions). Indeed,
the value function loses the differentiability property whenever there are multiple
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optimal solutions at the same initial condition or additional state constraints are present.
The lack of classical (smooth) solutions to HJB equations for regular data led to the
need of a new notion—i.e., weak or viscosity solution—of this equation, in the class
of Lipschitz continuous functions. Such regularity is not taken for granted especially
when time-dependent state constraints are imposed on the control problem [4, 6].

In this paper, we focus on analyzing the Lipschitz regularity of the value function
of infinite horizon control problems, specifically those with discount factors and time-
dependent state constraints of a functional type. Our approach is designed to provide
a comprehensive and rigorous analysis of this problem. We carefully consider the
impact of the presence of time-dependent state constraints and discount factors, as
these factors can significantly alter the optimal control strategy and lead to unexpected
system behavior. To ensure feasibility and obtain neighboring estimates on the set of
feasible trajectories, sufficient conditions on the constraint set by means of inward
pointing conditions are imposed (cfr. Sects. 3 and 4). More specifically, by employing
recent viability results that were investigated in [3], we establish Lipschitz regularity
of the value function and viability of the system. We also demonstrate that the value
function vanishes at infinity on the feasible set for all sufficiently large discount factors.
This result is significant, as it implies that the value function is bounded on such set,
which has important implications for the stability of the system. Overall, our analysis
sheds light on the behavior and regularity of weak—or viscosity—solutions of HJB
equations.

The outline of the present paper is as follows. In Sect. 2 we describe the general
formulation of the optimal control problem addressed here, with notations and back-
grounds on nonsmooth analysis. Section 3 is devoted to a controllability condition
on constraint set. We give a viability and neighboring estimate results in Sect. 4 for
feasible trajectories on infinite horizon. Meanwhile, in Sect. 5 we show the desiderate
Lipschitz continuity for the value function.

2 Problem’s formulation and backgrounds

In this paper, we address the following infinite horizon control problem subject to
functional constraints

minimize
∫ +∞

t
e−λsL(s, x, u)ds (P)

subject to x ′ = f(s, x, u) a.e. s

x(t) = x̄

u(s) ∈ U (s) a.e. s

h1(s, x(s)) ≤ 0 ∀s ≥ t

...

hm(s, x(s)) ≤ 0 ∀s ≥ t .
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We assume:

• the controls u takes values in Rm and are Lebesgue measurable;
• U is a measurable set-valued map with nonempty closed images in Rm ;
• hi ’s are real-valued functions, measurable in time and space-�1,θ regular,
uniformly in time;

where�1,θ stands for the class of continuously differentiable functionswith θ -Höelder
continuous and bounded differential, i.e., for θ ∈]0, 1[

ψ ∈ �1,θ ⇐⇒ ψ ∈ C1 with ∇ψ bounded,

∃k > 0 : |∇ψ(x) − ∇ψ(y)| ≤ k|x − y|θ .

The optimal control problem described above is applicable to several scenarios within
the fields of economics and engineering sciences (cfr. [15, 18, 27]). In these fields
of applications, functional constraints often appear as functions affine in space with
measurable time-dependent terms, specifically, hi (s, x) = A(s)xk + B(s) which falls
under the framework of the proposed model. This family of functions extends to
include hi (s, x) = A(s)ψi (x) + B(s), with ci ∈ R

n a parameter and ψi ∈ �1,θ . It is
worth to notice that the autonomous case with θ = 1 was previously studied in [6].

2.1 Preliminaries and notations

Let B(x, δ) stand for the closed ball in R
n with radius δ > 0 centered at x ∈ R

n and
set B = B(0, 1), Sn−1 = ∂B. Denote by | · | and 〈·, ·〉 the Euclidean norm and scalar
product, respectively. Let C ⊂ R

n be a nonempty set. We denote the interior of C by
intC and the convex hull of C by coC . The distance from x ∈ R

n to C is defined
by dC (x) := inf{|x − y| : y ∈ C}. If C is closed, we let �C (x) be the set of all
projections of x ∈ R

n onto C .
For p ∈ R

+ ∪ {∞} and a Lebesgue measurable set I ⊂ Rwe denote by L p(I ;Rn)

the space of Rn-valued Lebesgue measurable functions on I endowed with the norm
‖·‖p,I . We say that f ∈ L p

loc(I ;Rn) if f ∈ L p(J ;Rn) for any compact subset J ⊂ I .
Let I be anopen interval inR. For any f ∈ L1

loc(I ;Rn)wedefine θ f : [0, μ(I )) → R
+

by

θ f (σ ) = sup

{∫
J
| f (τ )| dτ : J ⊂ I , Lebesgue measure of J ≤ σ

}
.

We denote by Lloc the set of all functions f ∈ L1
loc(R

+;R+) such that
limσ→0 θ f (σ ) = 0. Notice that L∞(R+;R+) ⊂ Lloc and, for any f ∈ Lloc,
θ f (σ ) < ∞ for every σ > 0.

Let � : R � R
n , F : I × R

n � R
n , and G : Rm � R

n be set-valued maps
with nonempty values. G is said to be L-Lipschitz continuous, for some L ≥ 0, if
G(x) ⊂ G(x̃) + L|x − x̃ |B for all x, x̃ ∈ R

m . We say that F has a sub-linear growth

123



Mathematics of Control, Signals, and Systems (2024) 36:423–450 427

(in x) if, for some c ∈ L1
loc(I ;R+),

sup
v∈F(t,x)

|v| ≤ c(t)(1 + |x |) a.e. t ∈ I , ∀x ∈ R
n .

Definition 2.1 Let γ ∈ L1
loc(I ;R+). We say that F is γ -left absolutely continuous,

uniformly wrt �, if

F(s, x) ⊂ F(t, x) +
∫ t

s
γ (τ) dτB ∀s, t ∈ I : s < t, ∀x ∈ ∪τ∈[s,t]�(τ).

(2.1)

If F does not depends explicitly from x , in that case we simply say that F is γ -left
absolutely continuous.

If I = [S, T ], then we have the following characterization of uniform absolute con-
tinuity from the left: F is γ -left absolutely continuous, uniformly wrt �, for some
γ ∈ L1

loc(I ;R+), if and only if for every ε > 0 there exists δ > 0 such that for any
finite partition S ≤ t1 < τ1 ≤ t2 < τ2 ≤ ... ≤ tm < τm ≤ T of [S, T ],

m∑
i=1

(τi − ti ) < δ �⇒
m∑
i=1

exc(F(ti , x)|F(τi , x)) < ε ∀ x ∈ ∪τ∈[S,T ]�(τ)

where the excess of A given B is defined by

exc(A|B) := sup{dB(a)|a ∈ A} ∈ R
+ ∪ {+∞}.

3 Controllability

In what follows, we take the notation

�(t) :=
m⋂
i=1

�i (t), �i (t) := {x ∈ R
n : hi (t, x) ≤ 0}.

Consider the following condition

Assumptions 3.1 Let θ ∈]0, 1[ and hi : R+ × R
n → R be m real-valued functions

satisfying for any i = 1, ...,m:

• hi (., x) is measurable for any x .
• hi (t, .) is �1,θ regular, uniformly wrt t .

The proposition below states a geometric result for a Inward Pointing Field Condi-
tion (also known as Inward Pointing Condition) on infinite horizon wrt the constraints
�(t) and a vector fields F(t, x).
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Proposition 3.1 [Inward Pointing Fields Condition] Consider the Assumptions 3.1.
Let F : R × R

n � R
n be a set-valued map with nonempty closed values satisfying

∃M ≥ 0, ϕ > 0 :
(a) sup{|v| : v ∈ F(t, x), t ∈ R

+, x ∈ ∂�(t)} ≤ M

(b) F(t, ·) is ϕ-Lipschitz continuous for any t ≥ 0.

Assume that

for some δ > 0, r > 0and for all t ∈ R
+, x ∈ ∂�(t)

there exists v ∈ co F(t, x) satisfying

〈∇hi (t, x), v〉 ≤ −r ∀ i ∈
⋃

z∈B(x,δ)

I (z)
(3.1)

where I (z) = {i ∈ I : z ∈ ∂�i (t)} and I := {1, ...,m}. Then

for some ε > 0, η > 0 and every t ∈ R
+, x ∈ (∂�(t) + ηB) ∩ �(t)

there exists v ∈ co F(t, x) satisfying

{y + [0, ε](v + εB) : y ∈ (x + εB) ∩ �(t)} ⊂ �(t).

(3.2)

Proof Let us set J (x) := ⋃
z∈B(x,δ) I (z) for all x ∈ ∂�(s) and s ≥ 0. Fix t ∈ R

+, x ∈
∂�(t), and v ∈ co F(t, x) satisfying 〈∇hi (t, x), v〉 ≤ −r for all i ∈ J (x). Pick

k > max
i∈I sup

x �=y

|∇hi (t, x) − ∇hi (t, y)|
|x − y|θ

L > max
i∈I sup

x∈Rn
|∇hi (t, x)|.

We proceed by steps.
(i): We claim that there exists η′ > 0, not depending on (t, x), such that for all

y ∈ B(x, η′) we can find w ∈ co F(t, y), with |w − v| ≤ r/4 L , satisfying for all
i ∈ J (x),

〈∇hi (t, y), w〉 ≤ −r/2.

Indeed, for all i ∈ J (x) and y ∈ B(x, θ
√
r/4 kM) we have

〈∇hi (t, y), v〉 = 〈∇hi (t, y) − ∇hi (t, x), v〉 + 〈∇hi (t, x), v〉
≤ kM |y − x | − r ≤ −3r

4

and for all w ∈ R
n such that |w − v| ≤ r/4L

〈∇hi (t, y), w〉 = 〈∇hi (t, y), w − v〉 + 〈∇hi (t, y), v〉
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≤ L|w − v| − 3r/4 ≤ − r

2
.

Since F(t, ·) is ϕ-Lipschitz continuous, there exists w ∈ co F(t, y) such that
|w − v| ≤ r/4L whenever |y − x | ≤ r/4ϕL . So the claim follows with η′ =
min{r/4ϕL, θ

√
r/4kM}.

(ii): We claim that there exists ε′ > 0, not depending on (t, x), such that for all
y ∈ B(x, η′) we can find w ∈ co F(t, y) such that

〈∇hi (t, z), w̃〉 ≤ −r/4 ∀ z ∈ B(y, ε′)∀ w̃ ∈ B(w, ε′)∀ i ∈ J (x).

Indeed, let y ∈ B(x, η′) and w ∈ co F(t, y) be as in (i). Then for any w̃ ∈ R
n such

that |w̃ − w| ≤ r/8 L and for all i ∈ J (x) and z ∈ R
n ,

〈∇hi (t, z), w̃〉
= 〈∇hi (t, z) − ∇hi (t, y), w̃〉 + 〈∇hi (t, y), w̃ − w〉 + 〈∇hi (t, y), w〉
≤ k(M + r/4L + r/8L)|z − y| + r/8 − r/2.

So the claim follows with ε′ = min{k−1(M + r/2 L)−1r/8, r/8 L}.
(iii): We prove that there exist η > 0, ε > 0, not depending on (t, x), such that for

all y ∈ B(x, η) ∩ �(t) we can find w ∈ co F(t, y) satisfying

z + τw̃ ∈ �(t) ∀ z ∈ B(y, ε) ∩ �(t), ∀ w̃ ∈ B(w, ε), ∀ 0 ≤ τ ≤ ε. (3.3)

Let y ∈ B(x, η′) ∩ �(t) and w ∈ co F(t, y) be as in (ii). Then, by the mean value
theorem, for any τ ≥ 0, any z ∈ B(y, ε′)∩�(t), any w̃ ∈ B(w, ε′), and any i ∈ J (x)
there exists στ ∈ [0, 1] such that

hi (t, z + τw̃) = hi (t, z) + τ 〈∇hi (t, z + στ τw̃), w̃〉
≤ τ 〈∇hi (t, z), w̃〉 + k(M + r/4L + ε′)2τ 2

≤ −rτ

4
+ k(M + r/4L + ε′)2τ 2.

Choosing η ∈]0, η′] and ε ∈]0, ε′] such that η + ε(M + r/4L + ε) ≤ δ and ε ≤
k−1(M + r/4L + ε′)−2r/4, it follows that for all z ∈ B(y, ε) ∩ �(t), w̃ ∈ B(w, ε),
and all 0 ≤ τ ≤ ε

z + τw̃ ∈ B(x, δ) (3.4)

and

hi (t, z + τw̃) ≤ 0 ∀ i ∈ J (x). (3.5)
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Furthermore, by (3.4) and since B(x, δ) ⊂ � j (t) for all j ∈ I\J (x), we have for all
z ∈ B(y, ε) ∩ �(t), w̃ ∈ B(w, ε), and all 0 ≤ τ ≤ ε

hi (t, z + τw̃) ≤ 0 ∀ i ∈ I\J (x). (3.6)

The conclusion follows from (3.5) and (3.6). ��

4 Viability and distance estimates on trajectories

We provide here sufficient conditions for uniform linear L∞ estimates on intervals of
the form I = [t0, t1], with 0 ≤ t0 < t1, for the state constrained differential inclusion

x ′(t) ∈ F(t, x(t)) a.e. t ∈ I

x(t) ∈ �(t) ∀ t ∈ I

where F : R+ ×R
n � R

n is a given set-valued map. A function x : [t0, t1] → R
n is

said to be:

• F-trajectory if it is absolutely continuous and x ′(t) ∈ F(t, x(t)) for a.e. t ∈ [t0, t1].
• feasible F-trajectory if x(·) is an F-trajectory and x(t) ∈ �(t) for all t ∈ I .

Assumptions 4.1 We assume the following on F(·, ·):
(1) F has closed and nonempty values, a sub-linear growth, and F(·, x) is Lebesgue

measurable for all x ∈ R
n .

(2) There exist M ≥ 0 and α > 0 such that

sup{|v| : v ∈ F(t, x), t ∈ R
+, x ∈ ∂�(t) + αB} ≤ M .

(3) There exists ϕ ∈ Lloc such that F(t, ·) is ϕ(t)-Lipschitz continuous for all t ∈ R
+.

(4) There exist η̃ > 0 and γ ∈ Lloc such that F is γ -left absolutely continuous,
uniformly wrt ∂� + η̃B.

Before to state the main result of this section, we recall a definition and a viability
result for tubes ([3]-Corollary 4.5).

Definition 4.1 Consider a closed interval I ⊂ R. We say that a set-valued map � :
I � R

k is of locally bounded variations if:

• � takes nonempty closed images.
• For any [a, b] ⊂ I

sup
m−1∑
i=1

exc(�(ti+1) ∩ K |�(ti )) ∨ exc(�(ti ) ∩ K |�(ti+1)) < +∞

where the supremum is taken over all compact subsetK ⊂ R
k and all finite partition

a = t1 < t2 < ... < tm−1 < tm = b.
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In the next result, we need to recall the definition of Boulingad (or contingent) cone.
Consider a closed set G ⊂ R

n . The Boulingad tangent cone at x ∈ G is defined by
TG(x) := {v ∈ R

n : ∃ti → 0+, ∃vi → v, x + tivi ∈ G ∀i}.
Proposition 4.1 (Existence of Viable Trajectories, [3] Let E : R

+ � R
d be con-

tinuous,1 of locally bounded variations in the sense of Definition 4.1, and consider
� : R+ ×R

d � R
d a set-valued map with nonempty convex closed values such that:

− �(., x) is measurable for any x

− ∃� ∈ L1
loc(R

+;R+)

∀r > 0 ∃ kr : R+ → R
+ locally bounded: for a.e. t

sup
v∈�(t,x)

|v| ≤ �(t)(1 + |x |) and �(t, .) is kr (t) − Lipschitz on rB.

If for a.e. t > 0 and all y ∈ E(t) it holds

cl co Tgraph E (t, y) ∩ ({1} × �(t, y)) �= ∅, (4.1)

then for any t0 ∈ R
+ and x0 ∈ E(t0) there exists an absolutely continuous viable

solution

x ′(t) ∈ �(t, x(t)) a.e. t > t0
x(t0) = x0
x(t) ∈ E(t) ∀t > t0.

Remark 4.1 (1) Proposition 4.1 extends classical viability results under restricted con-
ditions on the regularity of the tube E (we refer the interested reader to the
bibliography therein [3]). Furthermore, it is straightforward to see that Lipschitz
continuity for set-valued maps imply the locally bounded variations property.

(2) We notice that, whenever Proposition 3.1 applies, then condition (3.1) on
�(t, x) = {f(t, x, u) : u ∈ U (t)} ensure the non-triviality intersection (4.1)
for E(t) = �(t).

We have the following

Theorem 4.1 (Neighboring Trajectories Estimates) Consider Assumptions 4.1. Sup-
pose that hi ’s satisfy the viability condition (3.1) and there exists L ≥ 0 such
that

the set-valued map � : R+ � R
n is L − Lipschitz continuous. (4.2)

Then for every δ > 0 there exists a constant β > 0 such that for any [t0, t1] ⊂ R
+

with t1 − t0 = δ, any F-trajectory x̂(·) defined on [t0, t1] with x̂(t0) ∈ �(t0), and any

1 In the sense of set-valued maps, see e.g. [1]-Section 1.4.
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� > 0 satisfying

sup
t∈[t0,t1]

d�(t)(x̂(t)) ≤ �

we can find an F-trajectory x(·) on [t0, t1] such that

x(t0) = x̂(t0)

‖x̂ − x‖∞,[t0,t1] ≤ β�

x(t) ∈ int �(t) ∀ t ∈]t0, t1].

Proof Fix δ > 0 and let [t0, t1] ⊂ R
+ with t1 − t0 = δ.

We first show the statement whenever F = co F . Let

ε > 0, k > 0, � > 0, �̄ > 0, and m ∈ N
+ (4.3)

be such that

� ≤ ε, �̄ + M� < ε, k�̄ < ε, k > 1/ε, 4�M ≤ η̂ (4.4)

eθϕ(�)(θγ (�) + θϕ(�)M) < ε, 2eθϕ(�)(θγ (�) + θϕ(�)M)k < (kε − 1) (4.5)

and

δ

m
≤ �. (4.6)

Notice that all the constants appearing in (4.3) do not depend on the time interval
[t0, t1], the trajectory x̂(·), and �.

1) � ≤ �̄ and δ ≤ �.
We observe that, by the last inequality in (4.4), if

x̂(t0) ∈ �(t0)\(∂�(t0) + η̂

2
B)

then x(·) = x̂(·) is as desired. Indeed, without loss of generality, assume x̂(t0) ∈
(∂�(t0) + η̂

2 S
n−1) ∩ �(t0) and suppose by contradiction that

R := {t ∈]t0, t1] : x̂(t) ∈ cl (Rn\�(t))} �= ∅.

Put s := inf R and notice that s �= t0. Then, we have

d∂�(t0)(x̂(s)) ≤ dist(∂�(t0), ∂�(s)) + d∂�(s)(x̂(s)) ≤ L|s − t0|

where dist(A, B) stands for the standard Euclidean distance between two sets A and
B. Since

d∂�(t0)(x̂(t0)) − d∂�(t0)(x̂(s)) ≤ |x̂(s) − x̂(t0)|
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it follows that

η̂/4 − L|s − t0| ≤ M� ≤ η̂/4,

a contradiction. Next we assume that x̂(t0) ∈ (∂�(t0) + η̂
2B) ∩ �(t0).

From Proposition 3.1, let v ∈ F(t0, x̂(t0)) be as in (3.2) and define

y : [t0, t1] → R
n

by

y(t0) = x̂(t0), y′(t) =
{

v t ∈ [t0, (t0 + k�) ∧ t1]
x̂ ′(t − k�) t ∈]t0 + k�, t1] ∩ J

(4.7)

where J = {s ∈]t0 + k�, t1] : x̂ ′(s − k�) exists}. Hence

‖x̂ − y‖∞,[t0,t1] ≤ 2Mk�. (4.8)

By Filippov’s theorem (cfr. [1]) there exists an F-trajectory x(·) on [t0, t1] such that
x(t0) = y(t0) and

‖y − x‖∞,[t0,t] ≤ e
∫ t
t0

ϕ(τ) dτ
∫ t

t0
dF(s,y(s))(y

′(s)) ds (4.9)

for all t ∈ [t0, t1]. Then, using Assumptions 4.1–3, (2.1), and (4.7), it follows that

dF(s,y(s))(y
′(s)) ≤

{
θγ (�) + ϕ(s)M(s − t0) a.e. s ∈ [t0, (t0 + k�) ∧ t1]
ϕ(s)Mk� + ∫ s

s−k� γ (τ ) dτ a.e. s ∈]t0 + k�, t1].

Hence, we obtain for any t ∈ [t0, (t0 + k�) ∧ t1]
∫ t

t0
dF(s,y(s))(y

′(s)) ds ≤ (θγ (�) + θϕ(�)M)(t − t0)

and, using the Fubini theorem, for any t ∈]t0 + k�, t1]
∫ t

t0+k�
dF(s,y(s))(y

′(s)) ds ≤ (θϕ(�)M + θγ (�))k�.

Thus, by (4.9), for all t ∈ [t0, (t0 + k�) ∧ t1]

‖y − x‖∞,[t0,t] ≤ eθϕ(�)(θγ (�) + θϕ(�)M)(t − t0) (4.10)

and

‖y − x‖∞,[t0,t1] ≤ 2eθϕ(�)(θγ (�) + θϕ(�)M)k�. (4.11)
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Finally, taking note of (4.8), it follows that

‖x̂ − x‖∞,[t0,t1] ≤ β1�,

where we put β1 = 2(M + eθϕ(�)(θγ (�) + θϕ(�)M))k.
We claim next that

x(t) ∈ int�(t) ∀t ∈]t0, t1].

Indeed, if t ∈]t0, (t0 + k�) ∧ t1], then from (3.2), the first condition in (4.4), and (4.7)
it follows that

y(t) + (t − t0)εB = x̂(t0) + (t − t0)(v + εB) ⊂ �(t)

and it is enough to use (4.10) and the first inequality in (4.5).
On the other hand, if t ∈]t0 + k�, t1], then for π(t) ∈ ��(t)(x̂(t − k�)) we have
|x̂(t − k�) − π(t)| = d�(t)(x̂(t − k�)) ≤ �, and, from (4.7), it follows that

y(t) ∈ π(t) + k�v + �B. (4.12)

Now, since |π(t) − x̂(t0)| ≤ |x̂(t − k�) − π(t)| + |x̂(t − k�) − x̂(t0)| ≤ �̄ + M�,
from Proposition 3.1 and the 2nd inequality in (4.4)

π(t) + k�v + k�εB = π(t) + k�(v + εB) ⊂ �(t). (4.13)

Finally, (4.12) and (4.13) imply that y(t)+ (kε −1)�B ⊂ �(t). So, the claim follows
from (4.5)-(i i) and (4.11).

2) � > �̄ and δ ≤ �.
By Proposition 4.1, there exists a feasible F-trajectory x̄(·) on [t0, t1] starting from
x̂(t0). Note that d�(t)(x̄(t)) = 0 for all t ∈ [t0, t1]. By the Case 1, replacing x̂(·)
with x̄(·), it follows that there exists a feasible F-trajectory x(·) on [t0, t1] such that
x(t0) = x̂(t0) and x(t) ∈ int �(t) for all t ∈]t0, t1]. Hence, by Assumption 4.1-2, we
have ‖x̂ − x‖∞,[t0,t1] ≤ 2M� ≤ β2�, with β2 = 2M�

�̄
.

3) δ > �.
The above proof implies that in Cases 1 and 2, β1, β2 can be taken the same if δ is
replaced by any 0 < δ1 < δ. Define β̃ = β1 ∨ β2 and let {[τ i−, τ i+]}mi=1 be a partition
of [t0, t1] by the intervals with the length at most δ/m. Put x0(·) := x̂(·). From Cases
1 and 2, replacing [t0, t1] by [τ 1−, τ 1+] and setting

�0 = �

we conclude that there exists an F-trajectory x1(·) on [τ 1−, τ 1+] = [t0, τ 1+] such that
x1(t0) = x̂(t0), x1(t) ∈ int �(t) for all t ∈]t0, τ 1+], and

‖x1 − x0‖∞,[τ 1−,τ 1+] ≤ β̃�0.
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Using Filippov’s theorem, we can extend the trajectory x1(·) on whole interval [t0, t1]
so that

‖x1 − x0‖∞,[t0,t1] ≤ e
∫ t1
t0

ϕ(τ) dτ
β̃�0 ≤ K β̃�0

where K := eθϕ(δ). Repeating recursively the above argument on each time interval
[τ i−, τ i+], we conclude that there exists a sequence of F-trajectories {xi (·)}mi=1 on
[t0, t1], such that:

• xi (t0) = x̂(t0) for all i = 1, ...,m;
• xi (t) ∈ int �(t) for all t ∈]t0, τ i+] and all i = 1, ...,m;
• x j (·)|[t0,τ j−1

+ ] = x j−1(·) for all j = 2, ...,m;

and

‖xi − xi−1‖∞,[t0,t1] ≤ K β̃�i−1 ∀ i = 1, ...,m (4.14)

where

�i−1 = max{�, sup
t∈[t0,t1]

d�(t)(xi−1(t))}.

Notice that

�i ≤ �i−1 + ‖xi − xi−1‖∞,[t0,t1] ∀ i = 1, ...,m. (4.15)

Taking note of (4.14) and (4.15) we get for all i = 1, ...,m

‖xi − xi−1‖∞,[t0,t1] ≤ K β̃(�i−2 + ‖xi−1 − xi−2‖∞,[t0,t1])
≤ K β̃(1 + K β̃)�i−2

≤ ...

≤ K β̃(1 + K β̃)i−1�0.

Then, letting x(·) := xm(·) and observing that �0 ≤ �, we obtain

‖x − x̂‖∞,[t0,t1] ≤
m∑
i=1

‖xi − xi−1‖∞,[t0,t1]

≤ K β̃�0

m∑
i=1

(1 + K β̃)i−1 ≤ β3�,

where β3 = (1 + K β̃)m − 1.
Then all conclusions of the theorem follow with β = β̃ ∨ β3. Observe that β

depends only on ε, η̂, M , δ, and on functions γ (·) and ϕ(·).
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Now, assume F �= co F . From the first part of the proof, we have that there exist
β > 0 (that does not depend on the reference trajectory x̂(·) on [t0, t1]) and a co F
trajectory x̄(·) : [t0, t1] → R

n , strictly feasible on ]t0, t1], such that

∥∥x̄ − x̂
∥∥∞,[t0,t1] ≤ β�.

Let {si }i ⊂]t0, t1]with s1 = t1 be a decreasing sequence such that si → t0. Since x̄(·) is
strictly feasible on ]t0, t1]we can find a sequence of decreasing numbers {εi }i ⊂]0, �[
such that εi → 0 and

x̄(σ ) + εiB ⊂ �(σ) ∀σ ∈ [si , t1] ∀i ≥ 2. (4.16)

Without loss of generality, we can assume that εi ≤ 1
4 ∧ � for all i ∈ N

+. Put
C := e

∫ t1
t0

ϕ(σ)dσ and define ak := εk
Ck for all k ∈ N. Notice that

∞∑
k=i

Ckak <
εi

2
∀i ≥ 2.

We recall the following known relaxation result.

Lemma 4.1 (Relaxation, [34]) Consider a measurable set-valued map F : [S, T ] ×
R
n � R

n with closed and nonempty values. Assume that there exist ϕ,ψ ∈
L1(S, T ;R) such that

F(t, x) ⊂ F(t, y) + ϕ(t)B ∀t ∈ [S, T ] ∀x, y ∈ R
n

F(t, x) ⊂ ψ(t)B ∀(t, x) ∈ [S, T ] × R
n .

Take any feasible co F-trajectory x(·) and any ε > 0. Then there exists an F-trajectory
y(·) that satisfies y(S) = x(S) and

‖y − x‖∞,[S,T ] < ε.

From the above lemma, there exist a sequence of F-trajectories xi : [si , t1] → R
n

such that, for all i ≥ 2, we have xi (si ) = x̄ (si ) and

‖xi − x̄‖∞,[si ,t1] ≤ ai . (4.17)

For each integer j ≥ 2, we construct an F-trajectory y j : [
s j , t1

] → R
n as follows:

y2(·) := x2(·) and for all j > 2

• y j (·) is the restriction of x j (·) on ]s j , s j−1].
• for all 1 ≤ k ≤ j − 2, y j (·) restricted to ]s j−k, s j−k−1] is an F-trajectory with
initial state y j

(
s j−k

)
, obtained by applying Filippov’s theorem with reference

trajectory y j−1(·).
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Now fix an integer j > 2. From Filippov’s theorem and since xi (si ) = x̄(si ), for any
2 ≤ i < j

∥∥y j − xi
∥∥∞,[si ,si−1] ≤ C

∣∣y j (si ) − x̄ (si )
∣∣

∥∥∥y′
j − x ′

i

∥∥∥
1,[si ,si−1]

≤ C
∣∣y j (si ) − x̄ (si )

∣∣ .

From these relations and (4.17), it follows that for each 2 ≤ i < j and any l ∈ N
+

∥∥y j − x̄
∥∥∞,[si ,si−1] ≤

j∑
k=i

Ck−i ak (4.18)

∥∥∥y′
j+l − y′

j

∥∥∥
1,[si ,si−1]

≤ 2
j+l∑

k=i+1

Ck−i ak . (4.19)

Notice that y j (s j ) = x̄(s j ) for any j ≥ 2. Hence, we can extend each F-trajectory y j
as an co F trajectory towhole interval [t0, t1], by setting y j (σ ) = x̄(σ ) forσ ∈ [

t0, s j
]
.

Since the trajectories {yi }i have initial value x̂(t0) and owing the sub-linear growth of
F , taking a subsequence and keeping the same notation, we have

∃ co F-trajectory x(·) : yi → x uniformly on [t0, t1], with x(t0) = x̂(t0).

We conclude to show that x(·) satisfy all the conclusions with β replaced by β + 1.
Indeed, due to (4.19), for each k ≥ 2 the F-trajectories {yi }i , restricted to

[
sk, sk−1

]
,

forms a Cauchy sequence on W 1,1 (sk, sk−1).2 So, it follows that the limiting co F-
trajectory x(·) is an F-trajectory and, since εi ≤ � for all i ≥ 2,

‖x̂ − x‖∞,[t0,t1] ≤ ∥∥x̂ − x̄
∥∥∞,[t0,t1] + ‖x − x̄‖∞,[t0,t1] ≤ (β + 1)�.

Moreover, notice that x(·) is strictly feasible on ]t0, t1]. Indeed, consider σ ∈]t0, t1].
We have σ ∈]si , si−1] for some i ≥ 2. From (4.18), (4.17), and (4.16) we get

y j (σ ) ∈ x̄(σ ) + εi

2
B ⊂ int �(σ) for all j ≥ i .

Since the {y j } j converge uniformly to x ,

x(σ ) ∈ x̄(σ ) + εi

2
B ⊂ int�(σ).

This concludes our proof. ��
Now, consider the following state constrained differential inclusion:

x ′(t) ∈ F(t, x(t)) a.e. t ∈ [t0,+∞[
2 Here W 1,1(a, b) stands for the space of all absolutely continuous functions on [a, b] endowed with the
norm ‖g‖ = g(a) + ∫ b

a g′(s)ds.
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x(t) ∈ �(t) ∀ t ∈ [t0,+∞[,

where t0 ≥ 0. A function x : [t0,+∞[→ B
n is said to be:

• F∞-trajectory if x |[t0,t1](·) is an F-trajectory.
• feasible F∞-trajectory if x |[t0,t1](·) is a feasible F-trajectory for all t1 > t0.

Theorem 4.2 Consider Assumptions 4.1. Suppose that conditions in (3.2) hold true
and

lim sup
t→∞

1

t

∫ t

0
ϕ(τ) dτ < ∞.

Then there exist C > 1 and K > 0 such that for any t0 ≥ 0, any x0, x1 ∈ �(t0),
and any feasible F∞-trajectory x : [t0,+∞[→ R

n, with x(t0) = x0, we can find a
feasible F∞-trajectory x̃ : [t0,+∞[→ R

n, with x̃(t0) = x1, such that

|x̃(t) − x(t)| ≤ CeKt |x1 − x0| ∀ t ≥ t0.

Proof Let δ = 1 and β > 0 be as in Theorem 4.1. Consider K1 > 0, K2 > 0, and
k̃ > 0 such that

2β + 1 < eK1 and
∫ t+1

0
ϕ(s) ds ≤ K2t + k̃ ∀ t ≥ 0. (4.20)

Fix t0 ≥ 0, x0, x1 ∈ �(t0), with x1 �= x0, and a feasible F∞-trajectory x : [t0,+∞[→
R
n with x(t0) = x0. By Filippov’s theorem, there exists an F-trajectory y0 : [t0, t0 +

1] → R
n such that y0(t0) = x1 and

‖y0 − x‖∞,[t0,t0+1] ≤ e
∫ t0+1
t0

ϕ(s) ds |x1 − x0|.

Denote by x0 : [t0, t0+1] → R
n the feasible F-trajectory, with x0(t0) = x1, satisfying

the conclusions of Theorem 4.1 with x̂(·) = y0(·). Thus

‖x0 − y0‖∞,[t0,t0+1] ≤ β( max
t∈[t0,t0+1] d�(t)(y0(t)) + |x1 − x0|)

≤ β(‖y0 − x‖∞,[t0,t0+1] + |x1 − x0|)
≤ 2βe

∫ t0+1
t0

ϕ(s) ds |x1 − x0|

and therefore

‖x0 − x‖∞,[t0,t0+1] ≤ ‖x0 − y0‖∞,[t0,t0+1] + ‖y0 − x‖∞,[t0,t0+1]

≤ (2β + 1)e
∫ t0+1
t0

ϕ(s) ds |x1 − x0|.
(4.21)
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Now, applying again Filippov’s theorem on [t0+1, t0+2], there exists an F-trajectory
y1 : [t0 + 1, t0 + 2] → R

n , with y1(t0 + 1) = x0(t0 + 1), such that, thanks to (4.21),

‖y1 − x‖∞,[t0+1,t0+2] ≤ (2β + 1)e
∫ t0+2
t0

ϕ(s) ds |x1 − x0|. (4.22)

Denoting by x1 : [t0 + 1, t0 + 2] → R
n the feasible F-trajectory, with x1(t0 + 1) =

x0(t0 + 1), satisfying the conclusions of Theorem 4.1, for x̂(·) = y1(·), we deduce
from (4.22), that

‖x1 − y1‖∞,[t0+1,t0+2] ≤ β(2β + 1)e
∫ t0+2
t0

ϕ(s) ds |x1 − x0|. (4.23)

Hence, taking note of (4.22) and (4.23),

‖x1 − x‖∞,[t0+1,t0+2] ≤ (2β + 1)2e
∫ t0+2
t0

ϕ(s) ds |x1 − x0|.

Continuing this construction, we obtain a sequence of feasible F-trajectories xi :
[t0 + i, t0 + i + 1] → R

n such that x j (t0 + j) = x j−1(t0 + j) for all j ≥ 1, and

‖xi − x‖∞,[t0+i,t0+i+1] ≤ (2β + 1)i+1e
∫ t0+i+1
t0

ϕ(s) ds |x1 − x0| ∀ i ∈ N. (4.24)

Define the feasible F∞-trajectory x̃ : [t0,+∞[→ R
n by x̃(t) := xi (t) if t ∈ [t0 +

i, t0 + i + 1] and observe that x̃(t0) = x1. Let t ≥ t0. Then there exists i ∈ N such
that t ∈ [t0 + i, t0 + i + 1]. So, from (4.24) and (4.20), it follows that

|x̃(t) − x(t)| ≤ (2β + 1)i+1e
∫ t0+i+1
t0

ϕ(s) ds |x1 − x0|
≤ ek̃(2β + 1)e(K1+K2)(t0+i)|x1 − x0|
≤ CeKt |x1 − x0|,

where K = K1 + K2 and C = ek̃(2β + 1). ��

5 Lipschitz continuity

Nowwegive an applicationof the results of previous sections to theLipschitz regularity
of the value function for a class of infinite horizon optimal control problems subject
to state constraints.

Let us consider3 the problem (P) stated in Sect. 2.

3 We recall that for a function q ∈ L1loc([t0, +∞[;R) the integral

∫ ∞
t0

q(t) dt := lim
T→∞

∫ T

t0
q(t) dt,

provided this limit exists.
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Assumptions 5.1 We take the following assumptions on f and L:

(1) For all x ∈ R
n the mappings f(·, x, ·), L(·, x, ·) are Lebesgue-Borel measurable.

(2) There exists α > 0 such that f and L are bounded functions on

{(t, x, u) : t ≥ 0, x ∈ (∂�(t) + αB), u ∈ U (t)}.

(3) For all (t, x) ∈ R
+ × R

n the set

{(f(t, x, u),L(t, x, u)) : u ∈ U (t)}

is closed.
(4) There exist c ∈ L1

loc(R
+;R+) and k ∈ Lloc such that for any t ∈ R

+, x, y ∈ R
n ,

and u ∈ U (t),

|f(t, x, u) − f(t, y, u)| + |L(t, x, u) − L(t, y, u)| ≤ k(t)|x − y|,

|f(t, x, u)| + |L(t, x, u)| ≤ c(t)(1 + |x |).

(5) there exist η̃ > 0 and γ ∈ Lloc such that

t � {(f(t, x, u),L(t, x, u)) : u ∈ U (t)}

is γ -left absolutely continuous, uniformly wrt ∂� + η̃B.
(6) lim supt→∞ 1

t

∫ t
0 (c(s) + k(s)) ds < ∞.

We consider, for any λ > 0, the relaxed infinite horizon state constrained problem

minimize
∫ ∞

t
e−λsL�(s, x, w) ds, (P�)

subject to x ′ = f�(s, x, w) a.e. s

x(t) = x̄

w(s) ∈ W (s) a.e. s

h1(s, x(s)) ≤ 0 ∀s ≥ t

...

hm(s, x(s)) ≤ 0 ∀s ≥ t .

where
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• W : R+ � R
(n+1)m × R

n+1 is the measurable set-valued map defined by:

W (s) := (×n
i=0U (s)) × {(α0, ..., αn) ∈ R

n+1 :
n∑

i=0

αi = 1, αi ≥ 0 ∀ i}

for all s ≥ 0.
• f� : R+×R

n×R
(n+1)m×R

n+1 → R
n andL� : R+×R

n×R
(n+1)m×R

n+1 → R

are defined by:

f�(s, x, w) :=
n∑

i=0

αi f(s, x, ui )

L�(s, x, w) :=
n∑

i=0

αiL(s, x, ui )

for all s ≥ 0, x ∈ R
n , and w = (u0, ..., un, α0, ..., αn) ∈ R

(n+1)m × R
n+1.

Remark 5.1 1. For control systems, the condition (3.2) take the following form: for
some ε > 0, η > 0 and every t ∈ R

+, x ∈ (∂�(t) + ηB) ∩ �(t) there exist
{αi }ni=0 ⊂ [0, 1], with ∑n

i=0 αi = 1, and {ui }ni=0 ⊂ U (t) satisfying

{y + [0, ε](
n∑

i=0

αi f(t, x, ui ) + εB) : y ∈ (x + εB) ∩ �(t)} ⊂ �(t).

2. If there exist η̃ > 0, γ, γ̃ ∈ Lloc, and k ≥ 0 such that (f,L) is γ -left absolutely
continuous, uniformly wrt (∂�+ η̃B)×R

m ,U (·) is γ̃ -left absolutely continuous,
and f(t, x, ·) is k-Lipschitz continuous for all t ∈ R

+, x ∈ (∂�(t) + η̃B), then
Assumption 5.1-5 holds true.

Definition 5.1 We denote by

V : Q� → R ∪ {±∞} and V � : Q� → R ∪ {±∞}

the value functions of the infinite horizon control problems (P) and (P�), respectively,
where

Q� := {(t, x) ∈ R
+ × R

n : t ∈ R
+, x ∈ �(t)}.

Next, we state the main result of this section

Theorem 5.1 Consider Assumptions 5.1. Suppose that (3.1) and (4.2) hold true. Then
there exist b > 1 and K > 0 such that for all λ > K we have

(i) V �(t, ·) is b · e−(λ−K )t -Lipschitz continuous on �(t), for any t ≥ 0.
(ii) limt→∞ V �(t, x(t)) = 0 for any feasible trajectory x(·).
(iii) V � = V on Q�.
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Proof We notice that, by Proposition 4.1, the problem (P�) admits feasible trajectory-
control pairs for any initial condition; using the sub-linear growth of f and theGronwall

lemma, we have 1+ |x(t)| ≤ (1+ |x0|)e
∫ t
t0
c(s) ds for all t ≥ t0 and for any trajectory-

control pair (x(·), u(·)) at t0 ∈ R
+, x0 ∈ �(t0).

In what follows, we define for all (t, x, z) ∈ R
+ × R

n × R the time-measurable
set-valued maps

G(t, x, z) = {(f(t, x, u), e−λtL(t, x, u)) : u ∈ U (t)}
G�(t, x, z) = {(f�(t, x, u),L�(t, x, w)) : w ∈ W (t)}.

Next, we show (i). Let a1 > 0, a2 > 0 be such that

∫ t

0
c(s) ds ≤ a1t + a2 ∀t ≥ 0. (5.1)

For all T > t0, we have

∫ T
t0
e−λt |L�(t, x(t), w(t))| dt ≤ (n + 1)

∫ T
t0
e−λt c(t)(1 + |x0|)e

∫ t
t0
c(s) ds

dt

≤ (n + 1)(1 + |x0|)ea2
∫ T
t0
e−(λ−a1)t c(t) dt .

(5.2)

Then, by (5.1) and denoting ψ(t) = ∫ t
t0
c(s) ds, for any λ > a1

∫ T
t0

e−λt |L�(t, x(t), w(t))| dt
≤ (n + 1)(1 + |x0|)ea2

([
e−(λ−a1)tψ(t)

]T
t0

+ (λ − a1)
∫ T
t0

e−(λ−a1)tψ(t) dt

)

≤ (n + 1)(1 + |x0|)ea2
(
e−(λ−a1)T (a1T + a2) +

(
a1t0 + a1

λ−a1
+ a2

)
e−(λ−a1)t0

)
.

(5.3)

Passing to the limit when T → ∞, we deduce that for every feasible trajectory-control
pair (x(·), w(·)) at (t0, x0)

∫ ∞

t0
e−λt |L�(t, x(t), w(t))| dt < +∞ ∀λ > a1.

From now on, assume that λ > a1. Fix t ≥ 0 and x1, x0 ∈ �(t) with x1 �= x0. Then,
for any δ > 0 there exists a feasible trajectory-control pair (xδ(·), wδ(·)) at (t, x0)
such that

V �(t, x0) + e−δt |x1 − x0| >

∫ ∞

t
e−λsL�(s, xδ(s), wδ(s)) ds.
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Hence

V �(t, x1) − V �(t, x0) ≤ e−δt |x1 − x0|+
limτ→∞

∣∣∫ τ

t e−λsL�(s, x(s), w(s)) ds − ∫ τ

t e−λsL�(s, xδ(s), wδ(s)) ds
∣∣ (5.4)

for any feasible trajectory-control pair (x(·), w(·)) satisfying x(t) = x1. Consider the
following state constrained differential inclusion in R

n+1

(x, z)′(s) ∈ G�(s, x(s), z(s)) a.e. s ∈ [t,+∞[
x(s) ∈ �(s) ∀ s ∈ [t,+∞[.

Putting zδ(s) = ∫ s
t L�(ξ, xδ(ξ), wδ(ξ)) dξ , by Theorem 4.2 applied on �(t) ×R and

the measurable selection theorem, there existC > 1 and K > 0 such that for all δ > 0
we can find a G�∞-trajectory (x̃δ(·), z̃δ(·)) on [t,+∞[, and a measurable selection
w̃δ(s) ∈ W (s) a.e. s ≥ t , satisfying

(x̃δ, z̃δ)
′(s) = (f�(s, x̃δ(s), w̃δ(s)),L�(s, x̃δ(s), w̃δ(s))) a.e. s ≥ t,

(x̃δ(t), z̃δ(t)) = (x1, 0)

x̃δ(s) ∈ �(s) ∀s ∈ [t,+∞[

and for any s ≥ t

|x̃δ(s) − xδ(s)| + |z̃δ(s) − zδ(s)| ≤ CeKs |x1 − x0|. (5.5)

Now, relabelling by K the constant K ∨ a1, by (5.5) and integrating by parts, for all
λ > K , all τ ≥ t , and all δ > 0
∣∣∣∣
∫ τ

t
e−λsL�(s, x̃δ(s), w̃δ(s)) ds −

∫ τ

t
e−λsL�(s, xδ(s), wδ(s)) ds

∣∣∣∣
≤

∣∣∣∣
[
e−λs

(∫ s

t
L�(ξ, x̃δ(ξ), w̃δ(ξ)) dξ −

∫ s

t
L�(ξ, xδ(ξ), wδ(ξ)) dξ

)]τ

t

∣∣∣∣
+ λ

∣∣∣∣
∫ τ

t
e−λs

(∫ s

t
L�(ξ, x̃δ(ξ), w̃δ(ξ)) dξ −

∫ s

t
L�(ξ, xδ(ξ), wδ(ξ)) dξ

)
ds

∣∣∣∣
≤ e−λτ |z̃δ(τ ) − zδ(τ )| + λ

∫ τ

t
e−λs |z̃δ(s) − zδ(s)|ds

≤ Ce−λτ eK τ |x1 − x0| + λC
∫ τ

t
e−(λ−K )s |x1 − x0| ds

=
(
Ce−(λ−K )τ + λC

[
−e−(λ−K )s

λ − K

]τ

t

)
|x1 − x0|

=
(

− CK

λ − K
e−(λ−K )τ + λC

λ − K
e−(λ−K )t

)
|x1 − x0|

≤ λC

λ − K
e−(λ−K )t |x1 − x0|.

(5.6)
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Taking note of (5.4), (5.6), and putting δ = λ − K , for all λ > K we get

V �(t, x1) − V �(t, x0) ≤
(

λC

λ − K
+ 1

)
e−(λ−K )t |x1 − x0|.

By the symmetry of the previous inequality with respect to x1 and x0, and since λ, C ,
and K do not depend on t , x1, and x0, the statement (i) follows.

Now, let (t0, x0) ∈ Q� and consider a feasible trajectory X(·) at (t0, x0). Let
t > t0 and (x(·), w(·)) be a feasible trajectory-control pair at (t, X(t)) such that
V �(t, X(t)) >

∫ ∞
t e−λsL�(s, x(s), w(s)) ds − 1

t . Then

|V �(t, X(t))| ≤
∫ ∞

t
e−λs |L�(s, x(s), w(s))| ds + 1

t
.

From (5.1) and (5.2), we have for all T > t

∫ T

t
e−λs |L�(s, x(s), w(s))| ds ≤

∫ T

t
e−λs(1 + |X(t)|)e

∫ s
t c(ω) dωc(s) ds.

≤ (1 + |x0|)
∫ T

t
e−λse

∫ t
t0
c(ω) dω

e
∫ s
t c(ω) dωc(s) ds

≤ (1 + |x0|)
∫ T

t
e−λse

∫ s
0 c(ω) dωc(s) ds

≤ (1 + |x0|)ea2
∫ T

t
e−(λ−a1)sc(s) ds.

Then, arguing as in (5.3) with t0 replaced by t and taking the limit when T → ∞, we
deduce that

|V �(t, X(t))| ≤ (1 + |x0|)ea2
(
a1t + a1

λ − a1
+ a2

)
e−(λ−a1)t + 1

t
.

Since K ≥ a1, (i i) follows passing to the limit when t → +∞.
Next, we show (i i i). Notice that V �(t, x) ≤ V (t, x) for any (t, x) ∈ Q�, and

V �(t, ·) is Lipschitz continuous on �(t) for all t ≥ 0 whenever λ > 0 is sufficiently
large. Fix t0 ∈ R

+, x0 ∈ �(t0), and ε > 0. We claim that: for all j ∈ N
+ there exists

a finite set of trajectory-control pairs {(xk(·), uk(·))}k=1,..., j satisfying the following:
x ′
k(s) = f(s, x ′

k(s), u
′
k(s)) a.e. s ∈ [t0, t0 + k] and xk(s) ∈ �(s) for all s ∈ [t0, t0 + k]

and for all k = 1, ..., j ; if j ≥ 2, xk |[t0,t0+k−1](·) = xk−1(·) for all k = 2, ..., j ; and
for all k = 1, ..., j

V �(t0, x0) ≥ V �(t0 + k, xk(t0 + k)) +
∫ t0+k

t0
e−λtL(t, xk(t), uk(t)) dt − ε

k∑
i=1

1

2i
.

(5.7)
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We prove the claim by the induction argument with respect to j ∈ N
+. By the dynamic

programming principle, there exists a trajectory-control pair (x̃(·), w̃(·)) on [t0, t0+1],
feasible for the problem (P�) at (t0, x0), such that

V �(t0, x0) + ε

4
> V �(t0 + 1, x̃(t0 + 1)) +

∫ t0+1

t0
e−λtL�(t, x̃(t), w̃(t)) dt . (5.8)

By the relaxation theorem for finite horizon problems (cfr. [34]), for any h > 0 there
exists a measurable control ûh(t) ∈ U (t) a.e. t ∈ [t0, t0 + 1] such that the solution
of the equation (x̂ h)′(t) = f(t, x̂ h(t), ûh(t)) a.e. t ∈ [t0, t0 + 1], with x̂ h(t0) = x0,
satisfies

‖x̂ h − x̃‖∞,[t0,t0+1] < h

and

∣∣∣∣
∫ t0+1

t0
e−λtL�(t, x̃(t), w̃(t)) dt −

∫ t0+1

t0
e−λtL(t, x̂ h(t), ûh(t)) dt

∣∣∣∣ < h.

Now, consider the following state constrained differential inclusion in Rn+1

(x, z)′(s) ∈ G(s, x(s), z(s)) a.e. s ∈ [t0, t0 + 1]
x(s) ∈ �(s) ∀ s ∈ [t0, t0 + 1].

Letting X̂ h(·) = (x̂ h(·), ẑh(·)), with ẑh(t) = ∫ t
t0
e−λsL(s, x̂ h(s), ûh(s)) ds, by The-

orem 4.1 and the measurable selection theorem, there exist β > 0 (not depending
on (t0, x0)) such that for any h > 0 we can find a feasible G-trajectory Xh(·) =
(xh(·), zh(·)) on [t0, t0 + 1], with Xh(t0) = (x0, 0), and a measurable control
uh(s) ∈ U (s) a.e. s ∈ [t0, t0 + 1], such that

(xh, zh)′(s) = (f(s, xh(s), uh(s)), e−λsL(s, xh(s), uh(s)))

a.e. s ∈ [t0, t0 + 1]

and

‖Xh − X̂ h‖∞,[t0,t0+1] ≤ β( sup
s∈[t0,t0+1]

d�(s)×R(X̂ h(s)) + h).

Since sups∈[t0,t0+1] d�(s)×R(X̂ h(s)) ≤ ‖x̃ − x̂ h‖∞,[t0,t0+1], we have

∣∣∣∣
∫ t0+1

t0
e−λtL(t, xh(t), uh(t)) dt −

∫ t0+1

t0
e−λtL�(t, x̃(t), w̃(t)) dt

∣∣∣∣
≤

∣∣∣∣
∫ t0+1

t0
e−λtL�(t, x̃(t), w̃(t)) dt −

∫ t0+1

t0
e−λtL(t, x̂ h(t), ûh(t)) dt

∣∣∣∣
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+
∣∣∣∣
∫ t0+1

t0
e−λtL(t, xh(t), uh(t)) dt −

∫ t0+1

t0
e−λtL(t, x̂ h(t), ûh(t)) dt

∣∣∣∣
< h(2β + 1)

and

‖xh − x̃‖∞,[t0,t0+1] ≤ ‖x̃ − x̂ h‖∞,[t0,t0+1] + ‖xh − x̂ h‖∞,[t0,t0+1]
< h(2β + 1).

Hence, choosing 0 < h < ε/4(2β + 1) sufficiently small, we can find a trajectory-
control pair (xh(·), uh(·)) on [t0, t0 + 1], with uh(s) ∈ U (s) and (xh)′(s) =
f(s, xh(s), uh(s)) a.e. s ∈ [t0, t0 + 1], xh(t0) = x0, and xh(s) ∈ �(s) for
s ∈ [t0, t0 + 1], such that, by (5.8) and continuity of V �(t0 + 1, ·)

V �(t0, x0) > V �(t0 + 1, xh(t0 + 1)) +
∫ t0+1

t0
e−λtL(t, xh(t), uh(t)) dt − ε

2
.

Letting (x1(·), u1(·)) := (xh(·), uh(·)), the conclusion follows for j = 1. Now, sup-
pose we have shown that there exist {(xk(·), uk(·))}k=1,..., j satisfying the claim. Let us
to prove it for j + 1. By the dynamic programming principle there exists a trajectory-
control pair (x̃(·), w̃(·)) on [t0 + j, t0 + j + 1], feasible for the problem (P�) at
(t0 + j, x j (t0 + j)), such that

V �(t0 + j, x j (t0 + j)) + ε
2 j+2 > V �(t0 + j + 1, x̃(t0 + j + 1))

+ ∫ t0+ j+1
t0+ j e−λtL�(t, x̃(t), w̃(t)) dt .

(5.9)

As before, for every h > 0 there exist a feasible G-trajectory Xh(·) = (xh(·), zh(·))
on [t0 + j, t0 + j + 1], with Xh(t0) = (x j (t0 + j), 0), and a measurable control
uh(s) ∈ U (s) a.e. s ∈ [t0 + j, t0 + j + 1], such that

(xh, zh)′(s) = (f(s, xh(s), uh(s)), e−λsL(s, xh(s), uh(s)))

a.e. s ∈ [t0 + j, t0 + j + 1]

satisfying

∣∣∣∣
∫ t0+ j+1

t0+ j
e−λtL(t, xh(t), uh(t)) dt −

∫ t0+ j+1

t0+ j
e−λtL�(t, x̃(t), w̃(t)) dt

∣∣∣∣
< h(2β + 1)

and

‖xh − x̃‖∞,[t0+ j,t0+ j+1] < h(2β + 1).
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Putting

(x j+1(·), u j+1(·)) :=
{

(x j (·), u j (·)) on [t0, t0 + j]
(xh(·), uh(·)) on [t0 + j, t0 + j + 1] (5.10)

and choosing 0 < h < ε/2 j+2(2β + 1) sufficiently small, it follows from (5.9) that

V �(t0 + j, x j (t0 + j)) ≥ V �(t0 + j + 1, x j+1(t0 + j + 1))
+ ∫ t0+ j+1

t0+ j e−λtL(t, x j+1(t), u j+1(t)) dt − 2ε
2 j+2 .

(5.11)

So, taking note of (5.10) and (5.11), we obtain

V �(t0, x0)

≥ V �(t0 + j, x j (t0 + j)) +
∫ t0+ j

t0
e−λtL(t, x j (t), u j (t)) dt − ε

j∑
i=1

1

2i

≥ V �(t0 + j + 1, x j+1(t0 + j + 1)) − ε

j∑
i=1

1

2i
− ε

2 j+1

+
∫ t0+ j+1

t0+ j
e−λtL(t, x j+1(t), u j+1(t)) dt

+
∫ t0+ j

t0
e−λtL(t, x j (t), u j (t)) dt

= V �(t0 + j + 1, x j+1(t0 + j + 1))

+
∫ t0+ j+1

t0
e−λtL(t, x j+1(t), u j+1(t)) dt − ε

j+1∑
i=1

1

2i
.

Hence {(xk(·), uk(·))}k=1,..., j+1 also satisfy our claim.Now, let us define the trajectory-
control pair (x(·), u(·)) by (x(t), u(t)) := (xk(t), uk(t)) if t ∈ [t0 + k − 1, t0 + k].
Then (x(·), u(·)) is a feasible trajectory-control pair for the problem (P) at (t0, x0).
Since, by (i i), V �(t, x(t)) → 0 when t → +∞, from (5.7) we have

V �(t0, x0) ≥
∫ ∞

t0
e−λtL(t, x(t), u(t)) dt − ε.

Hence, we deduce that (t0, x0) lays in the domain of the value function V and so
V �(t0, x0) ≥ V (t0, x0) − ε. From the arbitrariness of ε, the conclusion follows. ��
Corollary 5.1 Consider any N > 0 with

N ≥ sup{|f(t, x, u)| + |L(t, x, u)| : t ≥ 0, x ∈ R
n, u ∈ U (t)} < ∞.
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Then, for any λ > 0 sufficiently large, for any t ≥ 0 and any x ∈ �(t), the func-
tion V (·, x) is Lipschitz continuous on [t,+∞[ with constant

(
L(t) + 2e−λt

)
N and

L(t) := be−(λ−K )t .

Proof From Theorem 5.1, when λ > 0 is large enough, V (t, ·) is L(t)-Lipschitz
continuous on �(t). Fix t ≥ 0 and x ∈ �(t). Let s, s̃ ∈ [t,+∞[.

Suppose that s ≥ s̃. Then, by the dynamic programming principle, there exists a
feasible trajectory-control pair (x̄(·), ū(·)) at (s̃, x) such that

V (s, x) − V (s̃, x) ≤ |V (s, x) − V (s, x̄(s))| +
∫ s

s̃
e−λξ |L(ξ, x̄(ξ), ū(ξ))| dξ

+ N |s − s̃|e−λt

≤ L(s)N |s − s̃| + N |s − s̃|e−λs̃ + N |s − s̃|e−λt

≤ (
L(t) + 2e−λt) N |s − s̃|.

(5.12)

Arguing in a similar way, we get (5.12) when s < s̃. Hence, by the symmetry with
respect to s and s̃ in (5.12), the conclusion follows. ��
Remark 5.2 The relaxation result in Theorem 5.1 assumes crucial significance when
convex data assumptions are absent. By transitioning to the relaxed problem,we ensure
that both convergence and Lipschitz regularity remain guaranteed. This approach nat-
urally aligns with the need of machine learning algorithms, in which the desirable
property of Lipschitz regularity of the value function improve significantly conver-
gence rates (cfr. [7, 8]). As mentioned earlier in the Introduction, it is well known
that incorporating state constraints in the learning process can introduce instability or
lead to error divergence in function approximation techniques. Hence, to bolster the
overall robustness and reliability of themethods, inward point conditions such as those
in (3.1) play a critical role. We refer the reader to [16, 28, 29, 35] for a more com-
prehensive understanding of the roles of inward pointing conditions and Lipschitz
continuity of value functions in convergence guarantees for reinforcement learning
with uncertainties and path planning algorithms for autonomous vehicles.

Conclusions

This paper presents a method for recovering the feasibility and Lipschitz regularity
of the value function for control problems with time-dependent state constraints and
infinite horizon discount factor. These results are essential for addressing optimal
synthesis and weak solutions to the Hamilton–Jacobi–Bellman equation. We establish
sufficient conditions on the constraint set to ensure feasibility and obtain estimates
on the neighboring set of feasible trajectories, based on recent viability results. An
important contribution of this paper is the demonstration of the equivalence between
the master and relaxed infinite horizon problems. Additionally, we prove that the value
function approaches zero at infinity for all feasible sets and large discount factors.
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