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Abstract
In the last decade, the interactions among histone modifications and DNAmethylation
and their effect on the DNA structure, i.e., chromatin state, have been identified as key
mediators for the maintenance of cell identity, defined as epigenetic cell memory. In
this paper, we determine how the positive feedback loops generated by the auto- and
cross-catalysis among repressive modifications affect the temporal duration of the cell
identity. To this end,we conduct a stochastic analysis of a recently published chromatin
modification circuit considering two limiting behaviors: fast erasure rate of repressive
histone modifications or fast erasure rate of DNA methylation. In order to perform
this mathematical analysis, we first show that the deterministic model of the system is
a singular singularly perturbed (SSP) system and use a model reduction approach for
SSP systems to obtain a reduced one-dimensionalmodel.We thus analytically evaluate
the reduced system’s stationary probability distribution and the mean switching time
between active and repressed chromatin states. We then add a computational study of
the original reaction model to validate and extend the analytical findings. Our results
show that the absence of DNAmethylation reduces the bias of the system’s stationary
probability distribution toward the repressed chromatin state and the temporal duration
of this state’s memory. In the absence of repressive histone modifications, we also
observe that the time needed to reactivate a repressed gene with an activating input is
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less stochastic, suggesting that repressive histonemodifications specifically contribute
to the highly variable latency of state reactivation.

Keywords Singular singularly perturbed system · Model reduction · Epigenetic cell
memory · Chromatin modifications · Synthetic biology

1 Introduction

Multicellular organisms are composed of cells with different phenotypes, even if all
cells share the same genetic sequence, and this phenotypic distinction is maintained
despite the unavoidable presence of noise. This property is known as epigenetic cell
memory (ECM). For instance, ECMallows human differentiated cells to have different
identities, even if they share the same genetic sequence, and tomaintain these identities
across cell division. In the past years, several studies have shown how the structure
of the DNA, defined as chromatin state and determined by histone modifications and
DNA methylation, affects gene expression and then has a critical role in ECM [1, 2].

This is the reasonwhy several models describing the chromatin dynamics have been
developed and analyzed. While some of them include either histone modifications or
DNA methylation but not both [3, 4], and others are suitable only for computational
analysis [5–7], a chemical reactionmodel including bothDNAmethylation and histone
modifications has only recently appeared [8]. The circuit comprises positive feedback
loops generated by the cooperation and competition among chromatin modifications.

In this paper, we focus on determining the specific contributions of histone modifi-
cations and DNA methylation to the features of the stationary probability distribution
and temporal duration of cell memory. To this end, we perform a mathematical analy-
sis of this model using the theory of singular singularly perturbed systems [9]. More
precisely, we exploit this theory to reduce the chromatin modification model to a one-
dimensional system, which we use to create a one-dimensional Markov chain suitable
for analytical study. Then, we consider two limiting cases. In the first case, we con-
sider the limit in which the erasure rate of DNAmethylation becomesmuch larger than
the erasure rate of the other chromatin modifications, obtaining a reduced system in
which DNA methylation is absent. In the second case, we consider the limit in which
the erasure rate of the repressive histone modifications becomes much larger than the
erasure rate of the other chromatin modifications, thereby obtaining a reduced system
with no repressive histone modifications. In all cases considered, the expression for
the stationary distribution is obtained by exploiting detailed balance [10], while first
step analysis [11] is applied to analytically evaluate the temporal duration of memory.
Finally, we validate and extend the analytical results with computational simulations
of the original reaction model using Gillespie’s stochastic simulation algorithm (SSA)
[12].
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2 Models

The chromatin modification circuit model analyzed in this work is developed in [8]. It
includes H3K9 methylation (H3K9me3) and DNA methylation (CpGme), associated
with repressed chromatin state [13], H3K4 methylation/acetylation (H3K4me3/ac),
associated with active chromatin state ([1], Chapter 3 and [14]), and their known
interactions.

The basic unit of the model is D, that is, the nucleosome with DNAwrapped around
it. Then, we have DA, that is, nucleosome with H3K4me3/ac, DR

2 , that is, nucleosome

with H3K9me3, DR
1 , that is, nucleosome with CpGme, and DR

12, that is, nucleosome
with both H3K9me3 and CpGme. In terms of key molecular interactions considered
in the model, all the modifications can be de novo established (reactions 0©, 1©, and
8©). Then, the read-write mechanism, in which histone modifications recruit marks

Fig. 1 Reactions and diagram of the chromatin modification circuit. a List of the reactions associated with
the full chromatin modification circuit. The numbers associated with the reactions are described in the main
text. The boxes enclose reactions associated with activating histone marks (blue), repressive histone marks
(pink), and DNA methylation (brown). Dark shades are associated with the establishment and light shades
are associated with erasure. b Full chromatin modification circuit diagram. c Simplified circuit diagram in
which DNA methylation is absent. d Simplified circuit diagram in which repressive histone modification is
absent. In b–d, each arrow corresponds to reactions in a associated with the same number. More precisely,
solid arrows represent the establishment and erasure reactions of chromatin modifications, while dashed
arrows represent the increase of the establishment and erasure reaction rate due to the presence of another
species (Color figure online)
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of the same kind to nearby nucleosomes, generates auto-catalytic loops (reactions
2©, 3©). Similarly, the cooperation between DNA methylation and repressive histone
modification, through which each mark enhances the creation of the other, generates
cross-catalytic loops (reactions 12©, 13©). Finally, basal erasure and recruited erasure,
wherein activating marks recruit repressive mark’s eraser enzymes and vice versa, are
represented by reactions 4©, 5©, 9© and 6©, 7©, 10©, 11©, respectively. In this reaction
model, it is introduced the assumption that the rate of the establishment, auto- and
cross-catalysis, and erasure of H3K9me3 (DNA methylation) does not change if the
other repressive chromatin modification is present on the same nucleosome. All the
reactions are listed in Fig. 1a, and the diagrams of the chromatin modification models
are represented in Fig. 1b–d. More precisely, Fig. 1b shows the full chromatin modi-
fication circuit, Fig. 1c shows the simplified chromatin modification circuit including
only activating and repressive modifications, and Fig. 1d shows the simplified chro-
matinmodification circuit that only includes activating histonemodifications andDNA
methylation.

Now, let us introduce the ordinary differential equation (ODE) model associated
with the full chromatinmodification circuit.More precisely, by letting nDA , nDR

1
, nDR

2
,

nDR
12

and nD represent the number of DA,DR
1 ,DR

2 ,DR
12,D, we introduce the ODE

model in terms of the fractions D̄A = nDA/Dtot, D̄R
1 = nDR

1
/Dtot, D̄R

2 = nDR
2
/Dtot,

D̄R
12 = nDR

12
/Dtot and D̄ = nD/Dtot , with Dtot the total number of modifiable units,

that is the total number of nucleosomes within the gene of interest. This can be done
by assuming Dtot sufficiently large, such that nDA , nDR

1
, nDR

2
, nDR

12
and nD can be

considered real-valued. Now, let us introduce Dtot = Dtot/�, with � the reaction
volume, and let us define the normalized inputs as ū R

1 = uR
10 + uR

1 , ū
R
2 = uR

20 + uR
2

and ū A = uA
0 + uA, with

uR
i0 = kiW0

kAM Dtot
, uR

i = kiW
kAM Dtot

, for i = 1, 2, and uA
0 = kAW0

kAM Dtot
, uA = kAW

kAMDtot
.

(1)

We consider ū R
1 , ū R

2 and ū A as inputs of our dynamical system because they can be
modulated by transcription factors external to the chromatin modification circuit [8].
Now, let us define the parameters α = kM/kAM , ᾱ = k̄M/kAM and α′ = k

′
M/kAM : the

first one represents the dimensionless rate constant of the auto-catalytic loops, while
the last two represent the dimensionless rate constants of the cross-catalytic loops. In
our analysis, without loss of generality, we introduce the simplifying assumption that
these three parameters have the same order. Finally, let us also define

ε = δ + k̄ AE
k AM Dtot

, ε′ = kAE
kAM

, μ = kRE
kAE

, μ′ = k
′∗
T

k AE
, (2)

with b = O(1) such that (δ + k̄ RE )/(δ + k̄ AE ) = bμ and β = O(1) such that
(δ

′ + k
′
T )/(δ + k̄ AE ) = βμ′. More precisely, μ represents the ratio between the era-

sure rates of repressive histone modifications and activating histone modifications and
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Table 1 Definitions and interpretations of ε, ε′, μ, and μ′

Param. Definition Interpretation

ε (δ + k̄ AE )/(kAM Dtot ) Parameter that scales the ratio between the rate of the
basal erasure and the one of the

Auto-/cross-catalytic loop of each mark

ε′ kAE /kAM Parameter that scales the ratio between the rate of the
recruited erasure and the one of the

Auto-/cross-catalytic loop of each mark

μ kRE /kAE Ratio between the erasure rates of repressive and
activating histone modifications

μ′ k
′∗
T /kAE Ratio between the erasure rates of DNA methylation

and activating histone modifications

μ′ represents the ratio between the erasure rates of DNA methylation and activating
histone modifications. Furthermore, based on the previous definitions, we have that
(δ + k̄ RE )/(kAM Dtot ) = bεμ and (δ′ + k′

T )/(kAM Dtot ) = βεμ′. This implies that the
dimensionless parameter ε scales the ratio between the rate of the basal erasure and the
one of the auto-/cross-catalytic loop of each mark. Finally, given that kRE/kAM = με′
and k′∗

T /kAM = μ′ε′, the dimensionless parameter ε′ scales the ratio between the rate
of the recruited erasure and the one of the auto-/cross-catalytic loop of each mark. We
collect the definitions and interpretations of these parameters in Table 1. Now defin-
ing the normalized time τ = tk AM Dtot , the ODEs associated with the full chromatin
modification circuit are

dD̄R
1

dτ
= (ū R

1 + α′(D̄R
2 + D̄R

12))D̄ + μ(bε + ε′ D̄A)D̄R
12

− (uR
20 + α(D̄R

2 + D̄R
12) + ᾱ(D̄R

1 + D̄R
12) + μ′(βε + ε′ D̄A))D̄R

1

dD̄R
2

dτ
= (ū R

2 + α(D̄R
2 + D̄R

12) + ᾱ(D̄R
1 + D̄R

12))D̄ + μ′(βε + ε′ D̄A)D̄R
12

− (uR
10 + α′(D̄R

2 + D̄R
12) + μ(bε + ε′ D̄A))D̄R

2

dD̄R
12

dτ
= (uR

10 + α′(D̄R
2 + D̄R

12))D̄
R
2 + (uR

20 + α(D̄R
2 + D̄R

12) + ᾱ(D̄R
1 + D̄R

12))D̄
R
1

− (μ′(βε + ε′ D̄A) + μ(bε + ε′ D̄A))D̄R
12

dD̄

dτ
= μ′(βε + ε′ D̄A)D̄R

1 + μ(bε + ε′ D̄A)D̄R
2

+ (ε + ε′(D̄R
1 + D̄R

12) + ε′(D̄R
2 + D̄R

12))D̄
A

− (ū R
2 + α(D̄R

2 + D̄R
12)

+ ᾱ(D̄R
1 + D̄R

12) + ū R
1 + α′(D̄R

2 + D̄R
12) + ū A + D̄A)D̄

dD̄A

dτ
= (ū A + D̄A)D̄ − (ε + ε′(D̄R

2 + D̄R
12) + ε′(D̄R

1 + D̄R
12))D̄

A, (3)
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with D̄ + D̄A + D̄R
1 + D̄R

2 + D̄R
12 = 1 as constraint.

We next write the system in singular perturbation form by assuming that the rates
associatedwith the auto- and cross-catalysis aremuch faster than the rate of the erasure
processes. This assumption is in agreement with empirical findings suggesting that
the natural erasure of chromatin marks is a slow process [15]. We thus let ε = cε′,
with c = O(1). Then, introducing the new time variable τ̄ = τε′ in the ODEs (3), the
system of equations can be rewritten as follows:

ε′ dD̄A

dτ̄
= (ū A + D̄A)D̄ − ε′(c + (D̄R

1 + D̄R
12) + (D̄R

2 + D̄R
12))D̄

A

ε′ dD̄R
12

dτ̄
= (uR

10 + α′(D̄R
2 + D̄R

12))D̄
R
2 + (uR

20 + α(D̄R
2 + D̄R

12) + ᾱ(D̄R
1 + D̄R

12))D̄
R
1

− ε′(μ(bc + D̄A) + μ′(βc + D̄A))D̄R
12

ε′ dD̄R
1

dτ̄
= (ū R

1 + α′(D̄R
2 + D̄R

12))D̄ + ε′μ(bc + D̄A)D̄R
12

− (uR
20 + α(D̄R

2 + D̄R
12) + ᾱ(D̄R

1 + D̄R
12))D̄

R
1 − (ε′μ′(βc + D̄A))D̄R

1

ε′ dD̄R
2

dτ̄
= (ū R

2 + α(D̄R
2 + D̄R

12) + ᾱ(D̄R
1 + D̄R

12))D̄ + ε′μ′(βc + D̄A)D̄R
12

− (uR
10 + α′(D̄R

2 + D̄R
12) + ε′μ(bc + D̄A))D̄R

2

ε′ dD̄
dτ̄

= ε′(μ′(βc + D̄A)D̄R
1 + μ(bc + D̄A)D̄R

2 )

+ ε′(c + (D̄R
1 + D̄R

12) + (D̄R
2 + D̄R

12))D̄
A − (ū A + D̄A)D̄

− (ū R
2 + α(D̄R

2 + D̄R
12) + ᾱ(D̄R

1 + D̄R
12) + ū R

1 + α′(D̄R
2 + D̄R

12))D̄. (4)

Here, ε′ is the small parameter that we exploit in the model reductions performed in
Sect. 4. Furthermore, when we investigate the limiting behavior of the system for large
μ′, we define the parameter U ′ := ε′μ′ and assume that it is ε′-independent, so that
the product ε′μ′ does not vanish as ε′ approaches zero. Similarly, in order to study
the behavior of the system for large μ, we will define U := ε′μ and assume that it is
ε′-independent, so that ε′μ does not vanish as ε′ approaches zero. Each case will lead
to a different reduced model, as shown in Sect. 4.

3 Singular singularly perturbed system andmodel reduction
approach

In this section, we introduce the definition of singular singularly perturbed system
and the model reduction approach developed in [9], which we will apply to the full
chromatin modification circuit model (3). Let us first give the definition of integral
manifold S provided in [16, 17]:

Definition 3.1 (Integral manifold) Given a general dynamical system dx
dt = f (x, y, t)

with x ∈ R
n , t ∈ R, let us define a smooth surface S inRn ×R as an integral manifold
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of the system if any trajectory (x(t), t) of the system, that has at least one point in
common with S, lies entirely in S.

Definition 3.2 (Singular singularly perturbed system) Assuming x ∈ R
m and y2 ∈

R
n , let us introduce the system

ε′ ẋ = f1(x, y2, t, ε
′) ε′ ẏ2 = f2(x, y2, t, ε

′), (5)

with functions f1 and f2 sufficiently smooth, and let us define the matrix

A(x, y2, t, ε
′) =

⎛
⎝

∂ f1
∂x

∂ f1
∂ y2

∂ f2
∂x

∂ f2
∂ y2

⎞
⎠ =

(
f1x f1y2

f2x f2y2

)
. (6)

If A(x, y2, t, 0) is singular on some subspace of Rm × R
n × R, then we define the

system in (5) as a singular singularly perturbed system [9].

Now, let us consider the following conditions [9]:

• C1: f2(x, y2, t, 0) = 0 has a smooth isolated root y2 = φ(x, t) with t ∈ R and
x ∈ R

m ;
• C2: the matrix A, defined in (6), with y2 = φ(x, t) and ε′ = 0 has a kernel
of dimension m and m corresponding linearly independent eigenvectors, and the
matrix

B(x, φ(x, t), t, 0) = ∂ f2(x, φ(x, t), t, 0)

∂ y2
(7)

has n eigenvalues λi (x, t) : Re(λi ) ≤ −2θ , with θ > 0;
• C3: defining the domain X as X = {(x, y2, t, ε′)|x ∈ R

m, ||y2 − φ(x, t)|| ≤
ρ, t ∈ R, 0 ≤ ε′ ≤ ε′

0}, the functions f1, f2 and the matrix A are continuously
differentiable (k + 2) times in X , with k ≥ 0 for some positive ε′

0 and ρ.

Now, let us introduce the new variables y2 = y1 + φ(x, t) in system (5), that can then
be rewritten as follows:

ε′ ẋ = C(x, t)y1 + F1(x, y1, t) + ε′X(x, y1, t, ε
′)

ε′ ẏ1 = B(x, t)y1 + F2(x, y1, t) + ε′Y (x, y1, t, ε
′),

(8)

with

C(x, t) = f1y2(x, φ(x, t), t, 0),

B(x, t) = f2y2(x, φ(x, t), t, 0),

F1(x, y1, t) = f1(x, y1 + φ(x, t), t, 0) − C(x, t)y1,

F2(x, y2, t) = f2(x, y1 + φ(x, t), t, 0) − B(x, t)y1,

ε′X(x, y1, t, ε
′) = f1(x, y1 + φ(x, t), t, ε′) − f1(x, y1 + φ(x, t), t, 0),

ε′Y (x, y1, t, ε
′) = f2(x, y1 + φ(x, t), t, ε′) − f2(x, y1 + φ(x, t), t, 0), (9)
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in which F1 and F2 are such that ||F1(x, y1, t)|| = O(||y1||2), ||F2(x, y1, t)|| =
O(||y1||2), and ε

′−1F1(x, ε′y, t) and ε
′−1F2(x, ε′y, t), with y = y1/ε, are continuous

inX , withX defined inC3 [9]. Let us then consider the following theorem and remark:

Theorem 3.1 (Theorem 7.1 from [9]) If conditions C1–C3 are verified, then there
exists an ε′

1, 0 < ε′
1 < ε′

0, such that, for any ε′ ∈ (0, ε′
1), system (8) has a unique

integral manifold, y1 = ε′h(x, t, ε′), that is exponentially attractive. Themotion along
this integral manifold is described by the following equation:

˙̄x = X1(x̄, t, ε
′), (10)

in which X1(x̄, t, ε′) = C(x̄, t)h(x̄, t, ε′) + X(x̄, ε′h, t, ε′) + ε
′−1F1(x̄, ε′h, t), with

the function h(x, t, ε′) continuously differentiable k−times with respect to x and t.

Remark 3.1 Given the fact that the integral manifold is exponentially attractive for a
sufficiently small ε′, then, for any solution (x(t), y1(t)) of (8) with initial conditions
(x(t0), y1(t0) = (x0, y01 ) such that |y01 − ε′h(x0, t0, ε′)| is sufficiently small, we have
a solution of the reduced system (10) such that

x(t) = x̄(t) + ζ1(t), y1(t) = ε′h(x̄(t), t, ε′) + ζ2(t),

with ζi (t) = O(e−(θ/ε′)(t−t0)), i = 1, 2, and t ≥ t0 ([9, 18, 19]Chapter 6). This implies
that the behavior of the original system’s trajectories near the integral manifold can
be determined by studying the reduced system’s trajectories (10).

Furthermore, as described in [9, 17], we can obtain h(x, t, ε′) by introducing the
change of variable y = y1/ε′ in (8) and rewriting it in standard singular perturbation
form:

ẋ = X̃(x, y, t, ε′) ε′ ẏ = Ỹ (x, y, t, ε′), (11)

with x ∈ R
m, y ∈ R

n, t ∈ R, X̃(x, y, t, ε′) = C(x, t)y + ε
′−1F1(x, ε′y, t) +

X(x, ε′y, t, ε′), Ỹ (x, y, t, ε′) = B(x, t)y+ε
′−1F2(x, ε′y, t)+Y (x, ε′y, t, ε′). Given

that Fi , with i = 1, 2, are such that ||Fi (x, y1, t)|| = O(||y1||2) in X , then
ε

′−1Fi (x, ε′y, t) are well defined as ε′ approaches zero [9]. Then, defining the smooth
isolated root of Ỹ (x, y, t, 0) = 0 as y = h0(x, t), it is possible to show that since con-
ditionsC1–C3 are verified, the eigenvalues λi of the matrix (∂Ỹ/∂ y)(x, h0(x, t), t, 0)
satisfy the inequality Re(λi ) ≤ −2θ , with θ > 0. Then, the integral manifold
y = y1/ε′ = h(x, t, ε′) can be calculated as an asymptotic expansion in integer
powers of ε′, h(x, t, ε′) = h0(x, t) + ε′h1(x, t) + · · · + ε

′khk(x, t) + · · · , whose
coefficients are smooth function with bounded norm [17] and they can be found by
substituting the expansion in the second equation of (11), obtaining [9]:

ε′ ∂h
∂t

+ ε′ ∂h
∂x

X̃(x, h, t, ε′) = Ỹ (x, h, t, ε′). (12)
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4 Results

In this section, we obtain reduced versions of the full chromatin modification system
(4) in the limit where ε′ approaches zero. We first show that, considering ε′ as small
parameter, the ODE model (4) is a singular singularly perturbed system, and then we
apply the approach introduced in Sect. 3 to obtain a reduced model. This allows us
to obtain a one-dimensional reduced model with one-dimensional associated Markov
chain, whose stochastic properties can be analytically determined, allowing a mecha-
nistic understanding of how the parameters defined in Table 1 affect system behavior.
Then, in order to validate the trends analytically determined, that rely on a determin-
istic quasi-steady state approximation [20], we conduct a computational study of the
original reaction system and show that the analytically derived trends are mirrored by
the original system.

In order to single out the contributions of repressive histone modification and DNA
methylation to the system stochastic properties, we conduct the model reduction for
two limiting cases. In particular, in order to single out the contribution of repressive
histone modifications, we first introduce the ε′-independent parameter U ′ := ε′μ′,
so that ε′μ′ does not vanish as ε′ approaches zero in the model reduction, and then
we consider the limiting behavior as U ′ → ∞. Similarly, in order to single out the
contribution of DNA methylation, we repeat the model reduction introducing the ε′-
independent parameter U := ε′μ, so that ε′μ does not vanish as ε′ approaches zero,
and then we consider the limiting behavior as U → ∞.

4.1 Behavior of the full chromatin modification circuit with "′ as small parameter

Let us summarize the results of the model reduction in the following proposition:

Proposition 4.1 Let ε = cε′, with c = O(1), and let us consider the following system:

dD̄A

dτ
=

(
(μ(bε + ε′ D̄A)μ′(βε + ε′ D̄A))K̄ (ū A + D̄A)

ū A + D̄A + ū R
2 + ū R

1 + (α + ᾱ + α′)D̄R
12

)
D̄R
12

−
(

(ε + 2ε′ D̄R
12)(ū

R
2 + ū R

1 + (α + ᾱ + α′)D̄R
12)

ū A + D̄A + ū R
2 + ū R

1 + (α + ᾱ + α′)D̄R
12

)
D̄A

dD̄R
12

dτ
=

(
(ε + 2ε′ D̄R

12)(ū
R
2 + ū R

1 + (α + ᾱ + α′)D̄R
12)

ū A + D̄A + ū R
2 + ū R

1 + (α + ᾱ + α′)D̄R
12

)
D̄A (13)

−
(

(μ(bε + ε′ D̄A)μ′(βε + ε′ D̄A))K̄ (ū A + D̄A)

ū A + D̄A + ū R
2 + ū R

1 + (α + ᾱ + α′)D̄R
12

)
D̄R
12,

with D̄A + D̄R
12 = 1. Furthermore, let (D̄(τ ), D̄R

1 (τ ), D̄R
2 (τ )) = M(D̄A(τ ), D̄R

12(τ ))

represent the system’s unique integralmanifold. Then, for any solution (D̄A(τ ), D̄R
12(τ ),

D̄(τ ), D̄R
1 (τ ), D̄R

2 (τ ))of (4)with initial conditions such that |(D̄(0), D̄R
1 (0), D̄R

2 (0))−
M(D̄A(0), D̄R

12(0))| is sufficiently small, we have that, for ε′ sufficiently small, the
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solution of (13), (D̄A∗(τ ), D̄R∗
12 (τ )), is such that

(D̄A(τ ), D̄R
12(τ )) = (D̄A∗(τ ), D̄R∗

12 (τ )) + ζ1(τ ),

(D̄(τ ), D̄R
1 (τ ), D̄R

2 (τ )) = M(D̄A∗(τ ), D̄R∗
12 (τ )) + ζ2(τ ),

(14)

in which ζi (τ ) = O(e−(θ/ε′)τ ), with i = 1, 2, θ > 0, and τ ≥ 0.

Proof Let us consider the ODEmodel (4), and let us define x , y2, f1 and f2 as follows:

x =
(
D̄A

D̄R
12

)
, y2 =

⎛
⎜⎝
D̄R
1

D̄R
2
D̄

⎞
⎟⎠ , f1 =

(
f11
f12

)
, f2 =

⎛
⎝

f21
f22
f23

⎞
⎠ ,

f11 = (ū A + D̄A)D̄ − ε′(c + (D̄R
1 + D̄R

12) + (D̄R
2 + D̄R

12))D̄
A,

f12 = (uR
10 + α′(D̄R

2 + D̄R
12))D̄

R
2 + (uR

20 + α(D̄R
2 + D̄R

12) + ᾱ(D̄R
1 + D̄R

12))D̄
R
1

− ε′(μ(bc + D̄A) + μ′(βc + D̄A))D̄R
12,

f21 = (ū R
1 + α′(D̄R

2 + D̄R
12))D̄ + ε′μ(bc + D̄A)D̄R

12

− (uR
20 + α(D̄R

2 + D̄R
12) + ᾱ(D̄R

1 + D̄R
12) + ε′μ′(βc + D̄A))D̄R

1 ,

f22 = (ū R
2 + α(D̄R

2 + D̄R
12) + ᾱ(D̄R

1 + D̄R
12))D̄ + ε′μ′(βc + D̄A)D̄R

12

− ((uR
10 + α′(D̄R

2 + D̄R
12)) + ε′μ(bc + D̄A))D̄R

2 ,

f23 = ε′(μ′(βc + D̄A)D̄R
1 + μ(bc + D̄A)D̄R

2

+ (c + (D̄R
1 + D̄R

12) + (D̄R
2 + D̄R

12))D̄
A) − (ū R

2 + α(D̄R
2 + D̄R

12) + ᾱ(D̄R
1

+ D̄R
12) + ū R

1 + α′(D̄R
2 + D̄R

12) + ū A + D̄A)D̄.

Now, it is possible to show that φ, defined in C1, is equal to φ(x) = (0, 0, 0), and
that matrix A, defined in (6), with D̄ = D̄R

1 = D̄R
2 = 0 and ε′ = 0 can be written as

follows:

A(x, y2 = φ(x), t, 0) =
(
02,2 Ā2,3

03,2 Ā3,3

)
(15)

with

Ā2,3 =
(

0 0 (ū A+D̄A)

(uR20+(α+ᾱ)D̄R
12) (uR10+α′ D̄R

12) 0

)
,

Ā3,3 =
(

Â2,2 Â2,1

01,2 Â1,1

)
, Â2,1 =

(
(ū R1 +α′ D̄R

12)

(ū R2 +(α+ᾱ)D̄R
12)

)
,

Â2,2 =
(

−(uR20+(α+ᾱ)D̄R
12) 0

0 −(uR10+α′ D̄R
12)

)
,

Â1,1 = ( −(ū A+D̄A)−(ū R1 +ū R2 +(α+ᾱ+α′)D̄R
12) ) .
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The matrix A in (15) is singular, and this implies that system (4) is singular singularly
perturbed (Def. 3.2). More precisely, A has a twofold zero eigenvalue, with two asso-
ciated linearly independent eigenvectors, and matrix B = Ā3,3, with the definition of
B given in (7). When no external inputs are applied (uA = uR

1 = uR
2 = 0 and then

ū A = uA
0 , ū

R
1 = uR

10, and ū R
2 = uR

20), matrix B has three eigenvalues with negative
real part if uR

10, u
R
20, u

A
0 ≥ l with l > 0. This implies that we can apply Theorem 3.1

to reduce our system. To this end, let us first introduce the new variables D̃ = D̄/ε′,
D̃R
1 = D̄R

1 /ε′ and D̃R
2 = D̄R

2 /ε′ in (4):

ε′ dD̃R
1

dτ̄
= (ū R

1 + α′(ε′
D̃R
2 + D̄R

12))D̃ + μ(bc + D̄A)D̄R
12

− (uR
20 + α(ε

′
D̃R
2 + D̄R

12) + ᾱ(ε
′
D̃R
1 + D̄R

12) + ε′μ′(βc + D̄A))D̃R
1

ε′ dD̃R
2

dτ̄
= (ū R

2 + α(ε
′
D̃R
2 + D̄R

12) + ᾱ(ε
′
D̃R
1 + D̄R

12))D̃ + μ′(βc + D̄A)D̄R
12

− ((uR
10 + α′(ε′

D̃R
2 + D̄R

12)) + ε′μ(bc + D̄A))D̃R
2

ε′ dD̃
dτ̄

= μ′(βc + D̄A)ε
′
D̃R
1 + μ(bc + D̄A)ε

′
D̃R
2

+ (c + (ε
′
D̃R
1 + D̄R

12) + (ε
′
D̃R
2 + D̄R

12))D̄
A

− (ū R
2 + α(ε

′
D̃R
2 + D̄R

12) + ᾱ(ε
′
D̃R
1 + D̄R

12))D̃

− (ū R
1 + α′(ε′

D̃R
2 + D̄R

12) + ū A + D̄A)D̃

dD̄R
12

dτ̄
= (uR

10 + α′(ε′
D̃R
2 + D̄R

12))D̃
R
2

+ (uR
20 + α(ε

′
D̃R
2 + D̄R

12) + ᾱ(ε
′
D̃R
1 + D̄R

12))D̃
R
1

− (μ(bc + D̄A) + μ′(βc + D̄A))D̄R
12

dD̄A

dτ̄
= (ū A + D̄A)D̃ − (c + (ε

′
D̃R
1 + D̄R

12) + (ε
′
D̃R
2 + D̄R

12))D̄
A. (16)

Now, to determine the integral manifold M(D̄A, D̄R
12) = (D̄, D̄R

1 , D̄R
2 ), let us find the

expression for the asymptotic expansion of D̃, D̃R
1 and D̃R

2 :

D̃ = h0(D̄
A, D̄R

12, ε
′) = h00(D̄

A, D̄R
12) + ε′h01(D̄A, D̄R

12) + O(ε
′2
),

D̃R
1 = h1(D̄

A, D̄R
12, ε

′) = h10(D̄
A, D̄R

12) + ε′h11(D̄A, D̄R
12) + O(ε

′2
),

D̃R
2 = h2(D̄

A, D̄R
12, ε

′) = h20(D̄
A, D̄R

12) + ε′h21(D̄A, D̄R
12) + O(ε

′2
). (17)

To this end, let us substitute (17) in the first three equations of (16) to obtain

ε′ dh1
dτ̄

= ε′
(

∂h1
∂ D̄A

dD̄A

dτ̄
+ ∂h1

∂ D̄R
12

dD̄R
12

dτ̄

)

= (ū R
1 + α′(ε′

h2 + D̄R
12))h0 + μ(bc + D̄A)D̄R

12
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− (uR
20 + α(ε

′
h2 + D̄R

12) + ᾱ(ε
′
h1 + D̄R

12) + ε′μ′(βc + D̄A))h1

ε′ dh2
dτ̄

= ε′
(

∂h2
∂ D̄A

dD̄A

dτ̄
+ ∂h2

∂ D̄R
12

dD̄R
12

dτ̄

)

= (ū R
2 + α(ε

′
h2 + D̄R

12) + ᾱ(ε
′
h1 + D̄R

12))h0 + μ′(βc + D̄A)D̄R
12

− (uR
10 + α′(ε′

h2 + D̄R
12) + ε′μ(bc + D̄A))h2

ε′ dh0
dτ̄

= ε′
(

∂h0
∂ D̄A

dD̄A

dτ̄
+ ∂h0

∂ D̄R
12

dD̄R
12

dτ̄

)

= μ′(βc + D̄A)ε
′
h1

+ μ(bc + D̄A)ε
′
h2 + (c + (ε

′
h1 + D̄R

12) + (ε
′
h2 + D̄R

12))D̄
A

− (ū R
2 + α(ε

′
h2 + D̄R

12) + ᾱ(ε
′
h1 + D̄R

12) + ū R
1

+ α′(ε′
h2 + D̄R

12) + ū A + D̄A)h0. (18)

Now, we can obtain hi0 and hi1, with i = 0, 1, 2, by equating the terms of the
right and left hand side of the equations above multiplied by the same power of
ε′. More precisely, given that ∂hi0

∂ D̄R
12

and ∂hi0
∂ D̄A are bounded ∀i = 0, 1, 2, and then

ε′ ∂hi0
∂ D̄R

12
, ε′ ∂hi0

∂ D̄A � 1 for sufficiently small values of ε′, we can write hi0 and hi1, with

i = 0, 1, 2, as follows:

h00 = (c + 2D̄R
12)D̄

A

ūR
2 + α D̄R

12 + ᾱ D̄R
12 + ū R

1 + α′ D̄R
12 + ū A + D̄A

,

h10 = (ū R
1 + α′ D̄R

12)h00 + μ
(
bc + D̄A

)
D̄R
12

uR
20 + (α + ᾱ)D̄R

12

,

h20 =
(ū R

2 + α D̄R
12 + ᾱ D̄R

12)h00 + μ′
(
βc + D̄A

)
D̄R
12

uR
10 + α′ D̄R

12

, (19)

h01 = (μ(cb + D̄A)h20 + μ′(βc + D̄A)h10)

ū R
2 + α D̄R

12 + ᾱ D̄R
12 + ū R

1 + α′ D̄R
12 + ū A + D̄A

,

h11 = (ū R
1 + α′ D̄R

12)h01 − (αh20 + ᾱh10 + μ′(βc + D̄A))h10
uR
20 + (α + ᾱ)D̄R

12

,

h21 = (ū R
2 + (α + ᾱ)D̄R

12)h01 − (α′h220 + μ(bc + D̄A))h20
uR
10 + α′ D̄R

12

.

Then, by introducing in the last two equations of (16) the asymptotic expansion of
D̃, D̃R

1 and D̃R
2 (17) with the expressions for hi0 and hi1 provided in (19), we obtain

the reduced system in (13), in which we have re-introduced the original time vari-
able τ = τ̄ /ε′. The sum of the equations in (13) is equal to zero, implying that
D̄A + D̄R

12 = constant. Since D̄A + D̄R
12 + D̄ + D̄R

1 + D̄R
2 = 1 and, for suffi-

ciently small ε′, D̄ = ε′ D̃ ≈ 0, D̄R
1 = ε′ D̃R

1 ≈ 0, and D̄R
2 = ε′ D̃R

2 ≈ 0, then
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D̄A + D̄R
12 can be approximately set equal to 1 for sufficiently small ε′. Furthermore,

given that the integral manifold obtained, M(D̄A, D̄R
12) = (D̄, D̄R

1 , D̄R
2 ), is exponen-

tially attractive for a sufficiently small ε′ (see Theorem 3.1), then, for any solution
(D̄A(τ ), D̄R

12(τ ), D̄(τ ), D̄R
1 (τ ), D̄R

2 (τ )) of the original system (4) with initial condi-
tions such that |(D̄(0), D̄R

1 (0), D̄R
2 (0)) − M(D̄A(0), D̄R

12(0))| is sufficiently small,
we have a solution of the reduced system (13), (D̄A∗(τ ), D̄R∗

12 (τ )), that satisfies (14)
(see Remark 3.1). �

Now, if we multiply both sides of the ODEs in (13) by Dtot(kAE Dtot ) and introduce
k̄ AW = kAW0 + kAW , k̄1W = k1W0 + k1W , and k̄2W = k2W0 + k2W , we can rewrite system (13)
as follows:

ḊA =
(

(δ + k̄ RE + kRE D
A)(δ

′ + k
′
T + k

′∗
T DA)K̄dim(k̄ AW + kAM DA)

k̄ AW + kAM DA + k̄2W + k̄1W + (kM + k̄M + k
′
M )DR

12

)
DR
12

−
(

(δ + k̄ AE + 2kAE D
R
12)(k̄

2
W + k̄1W + (kM + k̄M + k

′
M )DR

12)

k̄ AW + kAM DA + k̄2W + k̄1W + (kM + k̄M + k
′
M )DR

12

)
DA

ḊR
12 =

(
(δ + k̄ AE + 2kAE D

R
12)(k̄

2
W + k̄1W + (kM + k̄M + k

′
M )DR

12)

k̄ AW + kAM DA + k̄2W + k̄1W + (kM + k̄M + k
′
M )DR

12

)
DA

−
(

(δ + k̄ RE + kRE D
A)(δ

′ + k
′
T + k

′∗
T DA)K̄dim(k̄ AW + kAM DA)

k̄ AW + kAM DA + k̄2W + k̄1W + (kM + k̄M + k
′
M )DR

12

)
DR
12,

(20)

with K̄dim = 1
k1W0+k

′
M DR

12

+ 1
k2W0+(kM+k̄M )DR

12
. This reduced system can be represented

by the following chemical reactions:

DA kAR→ DR
12, DR

12
kAR→ DA (21)

with reaction rate coefficients kAR and kRA given by

kAR = (δ + k̄ AE + 2kAE D
R
12)(k̄

2
W + k̄1W + (kM + k̄M + k

′
M )DR

12)

k̄ AW + kAM DA + k̄2W + k̄1W + (kM + k̄M + k
′
M )DR

12

,

kRA = (δ + k̄ RE + kRE D
A)(δ

′ + k
′
T + k

′∗
T DA)K̄dim(k̄ AW + kAM DA)

k̄ AW + kAM DA + k̄2W + k̄1W + (kM + k̄M + k
′
M )DR

12

. (22)

4.1.1 Mathematical analysis of the stochastic properties

Since the reduced chemical reaction system (21) is characterized by the conservation
law DR

12 + DA ≈ Dtot , its stochastic behavior can be approximately represented by
a one-dimensional Markov chain with state x = nDR

12
∈ [0,Dtot]. For any state x , the

rate associated with the transition to the next higher state (x → x+1), λx , and the rate
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associated with the transition to the next lower state (x → x − 1), γx , can be written
as follows:

λx =
⎛
⎜⎝

(ε + 2ε′ x
Dtot

)(k̄2W + k̄1W + (kM+k̄M+k
′
M )

�
x)

ū A + (Dtot−x)
Dtot

+ ū R
2 + ū R

1 + (α + ᾱ + α′) x
Dtot

⎞
⎟⎠ (Dtot − x),

γx =
⎛
⎝μ(bε + ε′ (Dtot−x)

Dtot
)μ′(βε + ε′ (Dtot−x)

Dtot
)K̄x (k̄ AW + kAM

�
(Dtot − x))

ū A + (Dtot−x)
Dtot

+ ū R
2 + ū R

1 + (α + ᾱ + α′) x
Dtot

⎞
⎠ x . (23)

Here, we mathematically compute the stationary probability distribution and the time
to memory loss of active and repressed chromatin states for this one-dimensional
Markov chain.

Proposition 4.2 Let λx and γx represent the rate associated with the transition x →
x + 1and the rate associated with the transition x → x − 1, respectively. Then, the
stationary distribution associated with the one-dimensional Markov chain with rates
λx and γx can be written as

π(x) =
x∏

i=1

λi−1

γi
π(0) =

∏x
i=1

λi−1
γi(

1 + ∑Dtot
j=1

(∏ j
i=1

λi−1
γi

)) (24)

in which
∑Dtot

x=0 π(x) = 1.

Proof By using detailed balance, we can write λx−1π(x − 1) = γxπ(x), for any x ∈
[1,Dtot]. Then, these equalities can be combined towriteπ(x) = ∏x

i=1(λi−1/γi )π(0).
Finally, exploiting

∑Dtot
x=0 π(x) = 1, we obtain the formula in (24). �

Proposition 4.3 When ε � 1, the stationary distribution π(x) associated with the
one-dimensional Markov chain with rates λx and γx as defined in (23) can be written
as

πε�1(x) ≈

⎧⎪⎨
⎪⎩

1
1+P if x = 0

0 if x �= 0,Dtot
P

1+P if x = Dtot

(25)

with P given by

P = (ū A + ū R
1 + uR

2 + (α + ᾱ + α′))
(ū A + ū R

1 + uR
2 + 1)

· ū R
1 + uR

2

μμ′bβεK̄Dtot ū
A

·
Dtot−1∏
i=1

(
2(ū R

1 + uR
2 + (α + ᾱ + α′) i

Dtot
)

μμ′ε′ (Dtot−i)
Dtot

K̄i (ū A + (Dtot−i)
Dtot

)

)
,

and K̄Dtot = 1
uR10+α′ + 1

uR20+(α+ᾱ)
.
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Proof Assuming that ε′ �= 0 and ε � 1, for any j ∈ [1,Dtot − 1] we have that∏ j
i=1

λi−1
γi

� ∏Dtot
i=1

λi−1
γi

, with λx and γx provided in (23). This implies that when

ε � 1, the sum
∑Dtot

j=0 π( j) = 1 can be approximated as

1 =
Dtot∑
j=0

π( j) =
⎡
⎣

Dtot∑
j=1

⎛
⎝

j∏
i=1

λi−1

γi

⎞
⎠

⎤
⎦π(0) + π(0)

≈
Dtot∏
i=1

λi−1

γi
π(0) + π(0) = π(Dtot) + π(0)

from which, introducing the notation P = ∏Dtot
i=1(λi−1)/(γi ) and writing explicitly λx

and γx , the stationary distribution formula (24) can be rewritten as done in (25). �

By studying the expression for πε�1(x) in (25), it is possible to notice that if
ε � 1, the only states in which π(x) does not vanish are the fully active state x = 0
and the fully repressed state x = Dtot. More precisely, the stationary distribution for
ε � 1 is bimodal, with two modes in correspondence to x = 0 and x = Dtot, and the
probability of having the system in one of the intermediate states is approximately zero.
Furthermore, when ε decreases, P increases and accordingly πε�1(Dtot) increases to
the detriment of πε�1(0). This result is in agreement with the structural asymmetry
toward a repressed chromatin state characterizing the chromatin modification circuit
because of the cooperation between H3K9me3 and DNA methylation (Fig. 1b). This
result (Proposition 4.3) implies that ε plays crucial role in the duration of memory
of the active and repressed states and that, when it is small, the duration of memory
increases.

In order to make mathematically precise this qualitative statement, we determine
an expression for the temporal duration of the memory of the fully repressed and fully
active chromatin states and study how ε affects it. First, let us provide the definition of
time to memory loss and then let us introduce the expression for the time to memory
loss of the active and repressed states:

Definition 4.1 (Time tomemory loss) Let t ji represent the hitting time of x = j starting

from x = i , that is, t ji := inf{t ≥ 0 : x(t) = j with x(0) = i} with i, j ∈ [0,Dtot],
where x(t) is the Markov chain described above. The time to memory loss of the fully
repressed chromatin state is defined as τ 0Dtot

= E(t0Dtot
). Similarly, the time to memory

loss of the active state is defined as τ
Dtot
0 = E(tDtot

0 ).

Proposition 4.4 The time to memory loss of the repressed chromatin state is given by

τ 0Dtot
= sDtot−1

γDtot

(
1 +

Dtot−1∑
x=1

1

sx

)
+ 1

γ1
+

Dtot−1∑
x=2

⎡
⎣ sx−1

γx

⎛
⎝1 +

x−1∑
j=1

1

s j

⎞
⎠

⎤
⎦ , (26)
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in which sx = λ1λ2...λx
γ1γ2...γx

and λx and γx are defined in (23). The time to memory loss of
the active chromatin state is given by

τ
Dtot
0 = s̃Dtot−1

λ0

(
1 +

Dtot−1∑
x=1

1

s̃x

)
+ 1

λDtot−1
+

Dtot−1∑
x=2

⎡
⎣ s̃x−1

λDtot−x

⎛
⎝1 +

x−1∑
j=1

1

s̃ j

⎞
⎠

⎤
⎦ ,

(27)

in which s̃x = γDtot−1γDtot−2...γDtot−x
λDtot−1λDtot−2...λDtot−x

.

Proof By using first step analysis [11], we can write the following equations:

⎧⎪⎨
⎪⎩

τ 0i = 0 if i = 0

(λi + γi )τ
0
i − λiτ

0
i+1 − γiτ

0
i−1 = 1 if i ∈ [1,Dtot − 1]

γiτ
0
i − γiτ

0
i−1 = 1 if i = Dtot

(28)

Then, by solving system (28), we obtain the formula for τ 0Dtot
as in (26). A similar

approach can be used to obtain the formula for τ
Dtot
0 as in (27). �

Proposition 4.5 Assuming ε′ �= 0 and normalizing τ 0Dtot
and τ

Dtot
0 with respect to

kAMDtot
�

(τ̄ 0Dtot
= τ 0Dtot

kAMDtot
�

and τ̄
Dtot
0 = τ

Dtot
0

kAMDtot
�

), the times to memory loss (26) and
(27) in the regime ε � 1 can be approximated with the following expressions:

τ̄ 0Dtot
≈ GR

μμ′ε2

(
1 +

Dtot−1∑
x=1

Gx
R

gx1 (μμ′)

)
, (29)

τ̄
Dtot
0 ≈ GA

ε

(
1 +

Dtot−1∑
x=1

gx2 (μμ′)
Gx

A

)
, (30)

in which gx1 (μμ′) and gx2 (μμ′) are increasing functions of μμ′ with gx1 (0) = 0 and
gx2 (0) = 0, respectively, and Gx

R, GR, GA and Gx
A are functions that do not depend

on ε, μ′ and μ.

Proof By multiplying by
kAMDtot

�
the expressions for times to memory loss given in

Prop. 4.4, with λx and γx defined in (23), we obtain the normalized expressions for
times to memory loss. Then, by approximating them with their dominant term (the
term O(1/ε2)) for τ̄ 0Dtot

and the term O(1/ε) for τ̄
Dtot
0 , respectively), we obtain the

expressions (29) and (30). �
By studying the expressions for τ̄ 0Dtot

and τ̄
Dtot
0 in (29) and (30), respectively, it

is possible to notice that decreasing ε increases both τ̄ 0Dtot
and τ̄

Dtot
0 , implying that

lower ε extends the duration of memory of both the active and repressed chromatin
states. However, given the cooperation of the repressive marks and the consequent
structural asymmetry of the chromatin modification circuit, τ̄ 0Dtot

= O(1/ε2), while
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τ̄
Dtot
0 = O(1/ε). This implies that decreasing ε extends more the repressed state
memory than the active state memory.

Now, let us also determine the effect of the asymmetry between the erasure
rates of repressive and activating chromatin modifications, encapsulated by the non-
dimensional parameters μ and μ′. From the expression for the stationary distribution
in (25) it is possible to notice that, by reducing μ′ or μ (i.e., reducing the erasure rates
of the repressive marks compared to the erasure rate of the active marks), πε�1(Dtot)

increases to the detriment of πε�1(0), i.e., the stationary distribution shifts toward
the repressed state. In agreement with these results, when μ′ or μ decreases, τ̄ 0Dtot

increases, while τ̄
Dtot
0 decreases, that is, the temporal duration of the memory of the

repressed state increases, while the duration of memory of the active state decreases.

4.1.2 Computational analysis

In this section, we validate the trends determined by the analytical study in the previous
section, which exploits a deterministic quasi-steady state approximation [20], and we
demonstrate the validity of these results for a broader parameter regime than ε′ � 1
and ε = cε′, with c = O(1). To this end, we employ the stochastic simulation
algorithm (SSA) [12] to study via simulation the original chemical reaction system
represented in Fig. 1b, whose reactions are listed in Fig. 1a.

The trend with which ε and μ′ affect the stationary distribution of the original
system π(x) is in agreement with the results obtained from the analytical study in
Sect. 4.1.1. The parameter ε′ does not significantly vary the way in which ε, μ′, μ

affect the stationary distribution. However, decreasing ε′ compared to ε leads to less
concentrated peaks in the bimodal stationary distribution and, by further decreasing
ε′, the distribution can become unimodal (Fig.2b). Now, let us consider a parameter
regime in which the system displays a bimodal distribution and let us study how
the switching time of the system temporal trajectories depends on ε (Fig. 2c, d).
In particular, in agreement with our analytical findings, it is possible to notice that
lowering ε increases both the time that the system spends at the active state before
switching to the repressed state and the time that the system spends at the repressed
state before switching to the active state, but the latter one is a stronger effect.

We next determine via simulation how the parameter μ′ affects the reactivation
time; that is, the time needed to re-activate an initially repressed chromatin state
after a sufficiently large activating input stimulus uA has been applied (Fig. 2e). It is
possible to notice that the time trajectories show a switch-like behavior and that the
time needed to see the trajectory switching to the active state after an activating input
is applied becomes more variable for small μ′. This implies that for low values of μ′
the reactivation of the gene becomes a very stochastic process.

4.2 Limiting behavior for large�′

In this section, we determine the stochastic behavior of the chromatin modification
circuit when μ′ is large (i.e., when the erasure of DNA methylation is much faster
than the erasure of histone modifications). Comparing the results here with those of
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Fig. 2 Computational analysis of the full chromatinmodification circuit, shown in Fig. 1b, using SSA. a The
stationary probability distribution, π , for the chromatin modification circuit represented in Fig. 1b, whose
reactions are listed in Fig. 1a. The parameter values considered to generate the plots are inTable S1 of S1File.
In particular, in the left-side plots ε = 0.28, 0.14, μ′ = 0.675, 0.35 and ε′ = 1 and in the right-side plots
ε = 0.28, 0.14,μ′ = 0.625, 0.35 and ε′ = 0.4. In all plots nDA and nDR = nDR

1
+nDR

2
+nDR

12
represent

the number of nucleosomes with activating and repressive modifications. b The stationary distribution for
the chromatin modification circuit for different values of ε′. The parameter values considered are listed in
Table S1 of S1 File. In particular, ε = 0.28 and ε′ = 1, 0.01. c Time trajectories of nDA and nDR starting
from the fully active state nDA = 50, nDR = 0 (left) and repressed state nDA = 0, nDR = nDR

12
= 50

(right) for ε′ = 1 and different values of ε. d Time trajectories of nDA and nDR , as described in c, but with
ε′ = 0.4. e Time trajectories of the system starting from nDR = nDR

12
= 50, nDA = 0 and with an input

uA that, at steady state, leads to a unimodal distribution near the active state nDA ≈ 50. Each trajectory is
represented with a different color. In particular, we set ε = 0.28, ε′ = 1, μ = 1 and μ′ = 0.675, 0.35. In

c–e, the time is normalized (τ = t
k AM
� Dtot, with � the reaction volume) and the parameter values are listed

in Table S1 of S1 File

the previous section allows us to determine how the absence of DNA methylation
affects the system’s stochastic features. Since we are interested in the behavior of
the system for large μ′, we conduct again the model reduction by assuming that the
product ε′μ′ does not vanish as ε′ approaches zero. This leads to a different reduced
model compared to the one obtained in Sect. 4.1. To this end, we define the parameter
U ′ := ε′μ′ and assume that it is ε′-independent. Then, we introduce U ′ in the ODE
model (4), perform the model reduction with ε′ as a small parameter and consider the
limiting caseU

′ → ∞. Then,we conduct an analytical study of the stochastic behavior
of the reduced system, and validate and extend the results obtained via simulation.
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4.2.1 Model reduction

Proposition 4.6 Let ε = cε′, with c = O(1), and let U ′ := ε′μ′ be ε′-independent.
Then, let us consider the following system:

dD̄A

dτ
=

(
μ(bε + ε′ D̄A)(uA + D̄A)

ū A + D̄A + ū R
2 + α D̄R

2

)
D̄R
2 −

(
(ε + ε′ D̄R

2 )(ū R
2 + α D̄R

2 )

ū A + D̄A + ū R
2 + α D̄R

2

)
D̄A

dD̄R
2

dτ
=

(
(ε + ε′ D̄R

2 )(ū R
2 + α D̄R

2 )

ū A + D̄A + uR
2 + α D̄R

2

)
D̄A −

(
μ(bε + ε′ D̄A)(uA + D̄A)

ū A + D̄A + ū R
2 + α D̄R

2

)
D̄R
2 ,

(31)

with D̄A + D̄R
2 = 1. Furthermore, let (D̄(τ ), D̄R

1 (τ ), D̄R
12(τ )) = M(D̄A(τ ), D̄R

2 (τ ))

represent the system’s unique integralmanifold. Then, for any solution (D̄A(τ ), D̄R
12(τ ),

D̄(τ ), D̄R
1 (τ ), D̄R

2 (τ ))of (4)with initial conditions such that |(D̄(0), D̄R
1 (0), D̄R

12(0))−
M(D̄A(0), D̄R

2 (0))| is sufficiently small, we have that, for ε′ sufficiently small, the
solution of (31), (D̄A∗(τ ), D̄R∗

2 (τ )), is such that

(D̄A(τ ), D̄R
2 (τ )) = (D̄A∗(τ ), D̄R∗

2 (τ )) + ζ1(τ ),

(D̄(τ ), D̄R
1 (τ ), D̄R

12(τ )) = M(D̄A∗(τ ), D̄R∗
2 (τ )) + ζ2(τ ),

(32)

in which ζi (τ ) = O(e−(θ/ε′)τ ), with i = 1, 2, θ > 0, and τ ≥ 0.

Proof Let us introduce U ′ = ε′μ′ in system (4), obtaining

ε′ dD̄A

dτ̄
= (ū A + D̄A)D̄ − ε′(c + (D̄R

1 + D̄R
12) + (D̄R

2 + D̄R
12))D̄

A

ε′ dD̄R
12

dτ̄
= (uR

10 + α′(D̄R
2 + D̄R

12))D̄
R
2 + (uR

20 + α(D̄R
2 + D̄R

12) + ᾱ(D̄R
1 + D̄R

12))D̄
R
1

− (ε′μ(bc + D̄A) +U ′(βc + D̄A))D̄R
12

ε′ dD̄R
1

dτ̄
= (ū R

1 + α′(D̄R
2 + D̄R

12))D̄ + ε′μ(bc + D̄A)D̄R
12

− (uR
20 + α(D̄R

2 + D̄R
12) + ᾱ(D̄R

1 + D̄R
12) +U ′(βc + D̄A))D̄R

1

ε′ dD̄R
2

dτ̄
= (ū R

2 + α(D̄R
2 + D̄R

12) + ᾱ(D̄R
1 + D̄R

12))D̄ +U ′(βc + D̄A)D̄R
12

− (uR
10 + α′(D̄R

2 + D̄R
12) + ε′μ(bc + D̄A))D̄R

2

ε′ dD̄
dτ̄

= (U ′(βc + D̄A)D̄R
1 + ε′μ(bc + D̄A)D̄R

2 )

+ ε′(c + (D̄R
1 + D̄R

12) + (D̄R
2 + D̄R

12))D̄
A

− (ū R
2 + α(D̄R

2 + D̄R
12) + ᾱ(D̄R

1 + D̄R
12) + ū R

1

+ α′(D̄R
2 + D̄R

12) + ū A + D̄A)D̄. (33)
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Now, let us define x , y2, f1 and f2 as

x =
(
D̄A

D̄R
2

)
, y2 =

⎛
⎜⎝
D̄R
12

D̄R
1

D̄

⎞
⎟⎠ , f1 =

(
f11

f12

)
, f2 =

⎛
⎜⎝

f21

f22

f23

⎞
⎟⎠ ,

f11 = (ū A + D̄A)D̄ − ε′(c + (D̄R
1 + D̄R

12) + (D̄R
2 + D̄R

12))D̄
A,

f12 = (ū R
2 + α(D̄R

2 + D̄R
12) + ᾱ(D̄R

1 + D̄R
12))D̄ +U ′(βc + D̄A)D̄R

12

− (uR
10 + α′(D̄R

2 + D̄R
12) + ε′μ(bc + D̄A))D̄R

2

f21 = (uR
10 + α′(D̄R

2 + D̄R
12))D̄

R
2 + (uR

20 + α(D̄R
2 + D̄R

12) + ᾱ(D̄R
1 + D̄R

12))D̄
R
1

− (ε′μ(bc + D̄A) +U ′(βc + D̄A))D̄R
12,

f22 = (ū R
1 + α′(D̄R

2 + D̄R
12))D̄ + ε′μ(bc + D̄A)D̄R

12

− (uR
20 + α(D̄R

2 + D̄R
12) + ᾱ(D̄R

1 + D̄R
12) +U ′(βc + D̄A))D̄R

1 ,

f23 = (U ′(βc + D̄A)D̄R
1 + ε′μ(bc + D̄A)D̄R

2 )

+ ε′(c + (D̄R
1 + D̄R

12) + (D̄R
2 + D̄R

12)D̄
A

− (ū R
2 + α(D̄R

2 + D̄R
12) + ᾱ(D̄R

1

+ D̄R
12) + ū R

1 + α′(D̄R
2 + D̄R

12) + ū A + D̄A)D̄.

Now, it is possible to calculate that φ(x) = (0, 0, φ12), with φ(x) defined in C1 and

with φ12 = (uR10+α′ D̄R
2 )D̄R

2
U ′(βc+D̄A)−α′ D̄R

2
. Function φ12 is inversely proportional to U ′. Further-

more, the matrix A, defined in (6), with D̄ = D̄R
1 = 0, D̄R

12 = φ12 and ε′ = 0 can be
written as

A(x, y2 = φ(x), t, 0) =
(
Ā2,2 Ā2,3

Ā3,2 Ā3,3

)
(34)

with

Ā2,2 =
(

0 0
U ′φ12 −α′ D̄R

2 −(uR10+α′(D̄R
2 +φ12))

)
,

Ā2,3 =
(

0 0 (ū A+D̄A)

U ′(βc+D̄A)−α′ D̄R
2 0 ū2+α(D̄R

2 +φ12)+ᾱφ12

)
,

Ā3,2 =
(

−U ′φ12 α′ D̄R
2 +(uR10+α′(D̄R

2 +φ12))

0 0
0 0

)
,

Ā3,3 =
(

Â1,1 Â1,2

02,1 Â2,2

)
, ( Â1,1 Â1,2) = ( −U ′(βc+D̄A)+α′ D̄R

2 uR20+α(D̄R
2 +φ12)+ᾱφ12 0 ) ,

Â2,2 =
(

Ã1,2

B̃1,2

)
, Ã1,2 = ( −(uR20+α(D̄R

2 +φ12)+ᾱφ12+U ′(βc+D̄A)) −(uR10+α′(D̄R
2 +φ12)) ) ,

B̃1,2 = (U ′(βc+D̄A) −(ū2+α(D̄R
2 +φ12)+ᾱφ12+ū1+α′(D̄R

2 +φ12)+ū A+D̄A) ) .
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The matrix (34) is singular, and this implies that the system (33) is singular singularly
perturbed (Def. 3.2). Specifically, matrix A has a twofold zero eigenvalue, and two
linearly independent eigenvectors associated with them, and matrix B = Ā3,3, with
B defined as in (7). When there are no external inputs (uA = uR

1 = uR
2 = 0 and then

ū A = uA
0 , ū

R
1 = uR

10, and ū R
2 = uR

20), matrix B has three eigenvalues with negative
real part if uR

10, u
R
20, u

A
0 ≥ l with l > 0. This implies that we can apply Theorem 3.1

to reduce our system. To do that, let us first introduce the variable D̂R
12 = D̄R

12 − φ12,
and then the variables D̃ = D̄/ε′, D̃R

1 = D̄R
1 /ε′ and D̃R

12 = D̂R
12/ε

′ in (33):

ε′ dD̃R
1

dτ̄
= (ū R

1 + α′(D̄R
2 + ε′ D̃R

12 + φ12))D̃ + μ(bc + D̄A)(ε′ D̃R
12 + φ12)

− (uR
20 + α(D̄R

2 + ε′ D̃R
12

+ φ12) + ᾱ(ε
′
D̃R
1 + ε′ D̃R

12 + φ12) +U
′
(βc + D̄A))D̃R

1

ε′ dD̃
dτ̄

= U ′(βc + D̄A)D̃R
1 + μ(bc + D̄A)D̄R

2

+ (c + (ε
′
D̃R
1 + ε′ D̃R

12 + φ12 + D̄R
2 + ε′ D̃R

12 + φ12))D̄
A (35)

− (ū R
2 + α(D̄R

2 + ε′ D̃R
12 + φ12) + ᾱ(ε

′
D̃R
1 + ε′ D̃R

12 + φ12))D̃

− (ū R
1 + α′(D̄R

2 + ε′ D̃R
12 + φ12) + ū A + D̄A)D̃

ε′ dD̃R
12

dτ̄
= −dφ12

dτ̄
+ (uR

20 + α(D̄R
2 + ε′ D̃R

12 + φ12) + ᾱ(ε
′
D̃R
1 + ε′ D̃R

12 + φ12))D̃
R
1

+ α′ D̄R
2 D̃R

12 − μ(bc + D̄A)(ε′ D̃R
12 + φ12) −U ′(βc + D̄A)D̃R

12

dD̄R
2

dτ̄
= (ū R

2 + α(D̄R
2 + ε′ D̃R

12 + φ12) + ᾱ(ε
′
D̃R
1 + ε′ D̃R

12 + φ12))D̃

+U ′(βc + D̄A)D̃R
12 − (α′ D̃R

12 + μ(bc + D̄A))D̄R
2

dD̄A

dτ̄
= (ū A + D̄A)D̃ − (c + (ε

′
D̃R
1 + ε′ D̃R

12 + φ12) + (D̄R
2 + ε′ D̃R

12 + φ12))D̄
A.

with

dφ12

dτ̄
= ∂φ12

∂ D̄A

dD̄A

dτ̄
+ ∂φ12

∂ D̄R
2

dD̄R
2

dτ̄
= − U ′(uR

10 + α′ D̄R
2 )D̄R

2

(U ′(βc + D̄A) − α′ D̄R
2 )2

dD̄A

dτ̄

+ (uR
10 + 2α′ D̄R

2 )(U ′(βc + D̄A) − α′ D̄R
2 ) + (uR

10 + α′ D̄R
2 )α′ D̄R

2

(U ′(βc + D̄A) − α′ D̄R
2 )2

dD̄R
2

dτ̄
.

Now, similarly to what we did in Sect. 4.1, in order to determine the integral
manifold M(D̄A, D̄R

2 ) = (D̄, D̄R
1 , D̄R

12), we evaluate the asymptotic expansion of D̃,
D̃R
1 and D̃R

12, that can be written as follows:

D̃ = h0(D̄
A, D̄R

2 , ε′) = h00(D̄
A, D̄R

2 ) + ε′h01(D̄A, D̄R
2 ) + O(ε

′2
), (36)

D̃R
1 = h1(D̄

A, D̄R
2 , ε′) = h10(D̄

A, D̄R
2 ) + ε′h11(D̄A, D̄R

2 ) + O(ε
′2
),
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D̃R
12 = h2(D̄

A, D̄R
2 , ε′) = h20(D̄

A, D̄R
2 ) + ε′h21(D̄A, D̄R

2 ) + O(ε
′2
).

To this end, we plug (36) into the first three equations of (35), obtaining

ε′ dh0
dτ̄

= ε′
(

∂h0
∂ D̄A

dD̄A

dτ̄
+ ∂h0

∂ D̄R
2

dD̄R
2

dτ̄

)

= U ′(βc + D̄A)h1 + μ(bc + D̄A)D̄R
2

+ (c + (ε
′
h1 + ε′h2 + φ12 + D̄R

2 + ε′h2 + φ12))D̄
A

− (ū R
2 + α(D̄R

2 + ε′h2 + φ12) + ᾱ(ε
′
h1 + ε′h2 + φ12))h0

− (ū R
1 + α′(D̄R

2 + ε′h2 + φ12) + ū A + D̄A)h0

ε′ dh1
dτ̄

= ε′( ∂h1
∂ D̄A

dD̄A

dτ̄
+ ∂h1

∂ D̄R
2

dD̄R
2

dτ̄
)

= (ū R
1 + α′(D̄R

2 + ε
′
h2 + φ12))h0 + μ(bc + D̄A)(ε

′
h2 + φ12)

− (uR
20 + α(D̄R

2 + ε
′
h2 + φ12) + ᾱ(ε

′
h1 + ε

′
h2 + φ12) +U ′(βc + D̄A))h1

ε′ dh2
dτ̄

= ε′
(

∂h2
∂ D̄A

dD̄A

dτ̄
+ ∂h2

∂ D̄R
2

dD̄R
2

dτ̄

)

= −dφ12

dτ̄
+ (uR

20 + α(D̄R
2 + ε′h2 + φ12) + ᾱ(ε

′
h1 + ε′h2 + φ12))h1

+ α′ D̄R
2 h2 − μ(bc + D̄A)(ε′h2 + φ12) −U ′(βc + D̄A)h2.

Now, we can obtain hi0 and hi1, with i = 0, 1, 2, by equating the terms of the right and
left hand side of the equations above multiplied by the same power of ε′. Specifically,
since ∂hi0

∂ D̄R
2

and ∂hi0
∂ D̄A are bounded for any i = 0, 1, 2 (i.e., ε′ ∂hi0

∂ D̄R
2
, ε′ ∂hi0

∂ D̄A � 1 for

sufficiently small ε′) and since for U ′ � 1 we have that φ12 � 1 and dφ12/d τ̄ ≈
(uR

10 + 2α′ D̄R
2 )h2, we can rewrite the expressions for hi0 and hi1, i = 0, 1, 2, as

follows:

h00 = μ(bc + D̄A)D̄R
2 + (c + D̄R

2 )D̄A

ūR
2 + α D̄R

2 + ū A + D̄A
,

h10 = (ū R
1 + α′(D̄R

2 + φ12))h00
U ′(βc + D̄A)

, h20 = (uR
20 + α D̄R

2 )h10
U ′(βc + D̄A) + (uR

10 + 2α′ D̄R
2 )

,

h01 = U ′(βc + D̄A)h11 + (h10 + 2h20)D̄A − ((α + ᾱ + α′)h20 + ᾱh10)h00
ū R
2 + α D̄R

2 + ū R
1 + α′ D̄R

2 + ū A + D̄A
,

(37)

h11 = (ū R
1 + α′ D̄R

2 )h01 + α′h20h00 + μ(bc + D̄A)h20 − (ᾱh10 + (α + ᾱ)h20)h10
U ′(βc + D̄A)

,

h21 = (ᾱh10 + (α + ᾱ)h20)h10 + (uR
20 + α D̄R

2 )h11 − μ(bc + D̄A)h20
U ′(βc + D̄A) + (uR

10 + 2α′ D̄R
2 )

.
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Then, by considering the limiting conditionU ′ → ∞, the expressions for hi0 and hi1
can be approximated as

h00 = μ(bc + D̄A)D̄R
2 + (c + D̄R

2 )D̄A

ūR
2 + α D̄R

2 + ū A + D̄A
, h10 = h20 = h01 = h11 = h21 = 0.

(38)

Now, by plugging the asymptotic expansion of D̃, D̃R
1 and D̃R

12 (36) with the expres-
sions for hi0 and hi1, i = 0, 1, 2, given in (38), into the last two ODEs of (35), we
obtain the reduced system in (31), in which we have re-introduced the original time
variable τ = τ̄ /ε′. It is possible to notice that the sum of the two ODEs in (31)
is equal to zero, implying that D̄A + D̄R

2 = constant. Since the conservation law
D̄A + D̄R

12 + D̄ + D̄R
1 + D̄R

2 = 1 holds and, for sufficiently small ε′ and sufficiently
large U ′, D̄ = ε′ D̃ ≈ 0, D̄R

1 = ε′ D̃R
1 ≈ 0, and D̄R

12 = ε′ D̃R
12 ≈ 0, then D̄A + D̄R

2
can be approximately set equal to 1 for sufficiently small values of ε′ and sufficiently
large U

′
.

Furthermore, given that the integral manifold obtained, M(D̄A, D̄R
2 ) = (D̄, D̄R

1 ,

D̄R
12), is exponentially attractive for a sufficiently small ε′ (see Theorem 3.1), then,

for any solution (D̄A(τ ), D̄R
2 (τ ), D̄(τ ), D̄R

1 (τ ), D̄R
12(τ )) of the original system (4)

with initial conditions such that |(D̄(0), D̄R
1 (0), D̄R

12(0))−M(D̄A(0), D̄R
2 (0))| is suf-

ficiently small, we have a solution of the reduced system (31), (D̄A∗(τ ), D̄R∗
2 (τ )), that

satisfies (32) (see Remark 3.1). �

Now, multiplying both sides of the ODEs in (31) by Dtot(kAE Dtot) and defining
k̄ AW = kAW0 + kAW , and k̄2W = k2W0 + k2W , system (31) can be rewritten as follows:

ḊA =
(

(k̄ AW + kAM DA)(δ + k̄ RE + kRE D
A)

(k̄ AW + kAM DA) + (k̄2W + kRM DR
2 )

)
DR
2

−
(

(k̄2W + kRM DR
2 )(δ + k̄ AE + kAE D

R
2 )

(k̄ AW + kAM DA) + (k̄2W + kRM DR
2 )

)
DA (39)

ḊR
2 =

(
(k̄2W + kRM DR

2 )(δ + k̄ AE + kAE D
R
2 )

(k̄ AW + kAM DA) + (k̄2W + kRM DR
2 )

)
DA

−
(

(k̄ AW + kAM DA)(δ + k̄ RE + kRE D
A)

(k̄ AW + kAM DA) + (k̄2W + kRM DR
2 )

)
DR
2 .

This reduced system can be represented with the following chemical reactions:

DA kAR→ DR
2 , DR

2
kAR→ DA (40)
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with reaction rate coefficients kAR and kRA given by

kAR =
(

(k̄2W + kRM DR
2 )(δ + k̄ AE + kAE D

R
2 )

k̄ AW + kAM DA + k̄2W + kRM DR
2

)
,

kRA =
(

(k̄ AW + kAM DA)(δ + k̄ RE + kRE D
A)

k̄ AW + kAM DA + k̄2W + kRM DR
2

)
.

It is important to point out that this reduced system includes histone modifications
only, whose cooperative and competitive interactions are shown in the diagram in
Fig. 1c.

4.2.2 Mathematical analysis of the stochastic properties

The stochastic behavior of the reduced chemical reaction system (40) can be rep-
resented by a one-dimensional Markov chain with state x = nDR

2
∈ [0, Dtot].

Furthermore, for any state x , the rate associated with the transition to the next higher
state (x → x + 1), λx , and the rate associated with the transition to the next lower
state (x → x − 1), γx , for this Markov chain can be written as follows:

λx =
⎛
⎝ (k̄2W + kRM

�
x)(ε + ε′ x

Dtot
)

(ū A + (Dtot−x)
Dtot

) + (ū R
2 + α x

Dtot
)

⎞
⎠ (Dtot − x),

γx =
⎛
⎝ (k̄ AW + kAM

�
(Dtot − x))μ(bε + ε′ (Dtot−x)

Dtot
)

(ū A + (Dtot−x)
Dtot

) + (ū R
2 + α x

Dtot
)

⎞
⎠ x .

(41)

Let us first evaluate the stationary probability distribution π(x). In particular, since
this Markov chain is irreducible and reversible, we can exploit the expression for the
stationary distribution π(x) provided in Proposition 4.2 (Eq. 24), with transition rates
λx and γx as defined in (41). Now, let us evaluate π(x) for ε � 1:

Proposition 4.7 When ε � 1, the stationary distributionπ(x) associatedwith the one-
dimensionalMarkov chain with rates λx and γx as defined in (41) can be approximated
by

πε�1(x) ≈

⎧⎪⎨
⎪⎩

1
1+P if x = 0

0 if x �= 0,Dtot
P

1+P if x = Dtot

(42)

with

P = (ū A + ū R
2 + α)(ū R

2 )

(ū A + ū R
2 + 1)(ū A)b

·
Dtot−1∏
i=1

(
ū R
2 + α i

Dtot

ū A + Dtot−i
Dtot

)
·
(
1

μ

)Dtot

,
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with ū A = uA0 + uA, ūR
2 = uR

20 + uR
2 .

Proof Given that for the λx and γx defined in (41) the product
∏x

i=1(λx−1)/(γx ) =
O(ε) for any x ≥ 1 except for x = Dtot, then the stationary probability distribution
π(x), provided in Proposition (4.2) when ε � 1 can be rewritten as done in (42). �

It is possible to notice that when ε � 1, the distribution has two modes in corre-
spondence to the fully active state x = 0 and fully repressed state x = Dtot, and the
probability of having the system in the intermediate states is approximately equal to
zero. In contrast to what was observed for (25), by decreasing ε, P does not change;
that is, the distribution does not shift toward either x = 0 or x = Dtot. Qualitatively,
when μ′ is large, DNA methylation is erased quickly enough that its cooperation with
the repressive histone modifications becomes less effective. This also implies that
when μ′ is sufficiently large, the chromatin modification circuit (Fig. 1b) can be well
approximated by a circuit that takes into account histone modifications only (Fig. 1c).

Then, expression (42) also implies that when ε � 1, a system starting at x = Dtot
or at x = 0 will tend to remain at that state, qualitatively implying that ε controls
the temporal extent of memory even when μ′ is large. To make this statement math-
ematically precise, we evaluate how ε affects the time to memory loss of the fully
repressed chromatin state x = Dtot, τ 0Dtot

= E(t0Dtot
), and the time to memory loss of

the fully active chromatin state x = 0, τDtot
0 = E(tDtot

0 ). To this end, we can use the
formulas provided in Proposition 4.4 (Eqs. 26, 27) and plug into them the transition
rates defined in (41). Now, let us focus on the regime ε � 1:

Proposition 4.8 Assuming ε′ �= 0 and normalizing the time to memory loss with

respect to
kAMDtot

�
(τ̄ = τ

kAMDtot
�

), the normalized time to memory loss of the repressed
and active state in the regime ε � 1 can be, respectively, approximated as follows:

τ̄ 0Dtot
≈ HR

με

(
1 +

Dtot−1∑
x=1

Hx
R

hx1(μ)

)
, τ̄

Dtot
0 ≈ HA

ε

(
1 +

Dtot−1∑
x=1

hx2(μ)

Hx
A

)
, (43)

inwhich hx1(μ)and hx2(μ)are increasing functions ofμwith hx1(0) = 0 and hx2(0) = 0,
respectively, and HR, Hx

R, HA and Hx
A functions independent of ε and μ.

Proof By multiplying by
kAMDtot

�
the expressions for times to memory loss given in

Prop. 4.4, with λx and γx defined in (41), we obtain the normalized expressions for
times to memory loss. Then, by approximating them with their dominant term, that is
the term of order 1/ε for both τ̄ 0Dtot

and τ̄
Dtot
0 , we obtain the expressions (43). �

Both τ̄ 0Dtot
and τ̄

Dtot
0 are inversely proportional to ε. Therefore, also in this case

lower ε is critical to extend the temporal duration of the memory of both the active and
repressed chromatin states. However, in contrast to what was observed in the previous
case, both τ̄ 0Dtot

and τ̄
Dtot
0 are O(1/ε). This implies that a reduction of ε has a similar

effect on the memory of the repressed and active chromatin state and this is because
large μ′ leads to a fast erasure of DNA methylation, compared to the erasure of the
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other chromatin modifications, and then its cross-catalysis with the repressive histone
modifications becomes less effective.

Now, let us also determine how the difference between the erasure rates of repressive
and activating histone modifications, encapsulated by the non-dimensional parameter
μ, affect the duration of memory. From the expression for π(x) in (42), it is possible
to notice that lower μ leads to higher πε�1(Dtot) and lower πε�1(0). This implies
that the height of the peak in correspondence to the repressed state increases to the
detriment of the height of the peak in correspondence to the active state. In accordance
with this result, if we decrease μ, then τ̄ 0Dtot

increases, while τ̄
Dtot
0 decreases.

4.2.3 Computational analysis

Also in this case, the analytical results were obtained using a deterministic quasi-
steady-state approximation [20]. Then, in order to validate the trends obtained in
Sect. 4.3.2 for the full reaction system and to extend the validity of these results to
a broader parameter regime than ε′ sufficiently small and ε = cε′, with c = O(1),
we conduct a computational study. In particular, we use the stochastic simulation
algorithm (SSA) [12] to study via simulation the behavior of the original chemical
reaction system (Fig. 1a, b) for large μ′.

The effect of ε and μ on the stationary distribution π(x) (Fig. 3a) is in agreement
with the results obtained by studying the analytical expression forπ(x), (24). The trend
with ε′ is analogous to what we obtained for the previous case study (Fig. 3b). Now,
let us study the effect of ε on the switching time of the system temporal trajectories
(Fig. 3c, d). In agreement with our analytical findings, if ε is reduced, then the time
that the system spends at the active state before switching to the repressed state (and
vice versa) increases.

Finally,wedeterminevia simulation the effect ofμon the reactivation time (Fig. 3e).
As obtained for the previous case in which we did not consider large μ′ (Fig. 2e),
the time trajectories show a switch-like behavior. Furthermore, the time at which a
trajectory switches to the active state after an activating input is applied ismore variable
for lower μ.

Overall, comparing these results to the ones obtained in Sect. 4.1, it is possible to
conclude that DNA methylation and its cooperation with repressive histone modifica-
tions extend the duration of memory of the repressed chromatin state.

4.3 Limiting behavior for large�

In this section, we analyze the stochastic behavior of the chromatin modification cir-
cuit for the other parameter regime of interest, that is, when μ is large (i.e., the erasure
of repressive histone modification is much faster than the erasure of the other modifi-
cations). This study allows us to understand how the absence of H3K9me3 affects the
stationary probability distribution and time to memory loss of chromatin states. Since
we are interested in the limiting behavior for large μ, we conduct again the model
reduction, but now by assuming that the product ε′μ does not vanish as ε′ approaches
zero. This leads to a different reduced model compared to the previous ones. To this
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Fig. 3 Computational analysis of the chromatin modification circuit, shown in Fig. 1b, for large μ′, using
SSA. a The stationary probability distribution, π , for the chromatin modification circuit represented in
Fig. 1b, whose reactions are listed in Fig. 1a. The parameter values used to generate the plots are in Table
S2 of S1 File. In particular, in the left-side plots ε = 0.32, 0.16,μ = 1, 0.85 and ε′ = 1 and in the right-side
plots ε = 0.32, 0.16,μ = 1, 0.85 and ε′ = 0.4. In all plots nDA and nDR = nDR

1
+nDR

2
+nDR

12
represent

the number of nucleosomes with activating and repressive modifications. b The stationary distribution for
the chromatin modification circuit for different values of ε′. The parameter values considered are listed in
Table S2 of S1 File. In particular, ε = 0.32 and ε′ = 1, 0.01. c Time trajectories of nDA and nDR starting
from the fully active state nDA = 50, nDR = 0 (left) and repressed state nDA = 0, nDR = nDR

12
= 50

(right) for ε′ = 1 and different values of ε. d Time trajectories of nDA and nDR , as described in c, but with
ε′ = 0.4. e Time trajectories of the system starting from nDR = nDR

12
= 50, nDA = 0 and with an input

uA that, at steady state, leads to a unimodal distribution near the active state nDA ≈ 50. Each trajectory
is represented with a different color. In particular, we set ε = 0.16, ε′ = 1, and μ = 0.8, 0.38. In c–e, the

time is normalized (τ = t
k AM
� Dtot, with � the reaction volume) and the parameter values are listed in Table

S2 of S1 File

end, we define the ε′-independent parameter U := ε′μ. Then, we introduce U in the
original ODE model (4), perform the model reduction with ε′ as a small parameter
and consider the limiting caseU → ∞. We then conduct an analytical study to deter-
mine the stochastic behavior of the reduced system, and then a computational study
to validate and extend the analytical findings.

4.3.1 Model reduction

The result of the model reduction can be summarized by the following proposition:
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Proposition 4.9 Let ε = cε′, with c = O(1), and let U := ε′μ be ε′-independent.
Then, let us consider the following system:

dD̄A

dτ
=

(
μ′(βε + ε′ D̄A)(uA + D̄A)

ū A + D̄A + ū R
1

)
D̄R
1 −

(
ū R
1 (ε + ε′ D̄R

1 )

ū A + D̄A + ū R
1

)
D̄A

dD̄R
1

dτ
=

(
ū R
1 (ε + ε′ D̄R

1 )

ū A + D̄A + ū R
1

)
D̄A −

(
μ′(βε + ε′ D̄A)(uA + D̄A)

ū A + D̄A + ū R
1

)
D̄R
1 , (44)

with D̄A + D̄R
1 = 1. Furthermore, let (D̄(τ ), D̄R

2 (τ ), D̄R
12(τ )) = M(D̄A(τ ), D̄R

1 (τ ))

represent the system’s unique integralmanifold. Then, for any solution (D̄A(τ ), D̄R
12(τ ),

D̄(τ ), D̄R
1 (τ ), D̄R

2 (τ ))of (4)with initial conditions such that |(D̄(0), D̄R
2 (0), D̄R

12(0))−
M(D̄A(0), D̄R

1 (0))| is sufficiently small, we have that, for ε′ sufficiently small, the
solution of (44), (D̄A∗(τ ), D̄R∗

1 (τ )), is such that

(D̄A(τ ), D̄R
1 (τ )) = (D̄A∗(τ ), D̄R∗

1 (τ )) + ζ1(τ ),

(D̄(τ ), D̄R
2 (τ ), D̄R

12(τ )) = M(D̄A∗(τ ), D̄R∗
1 (τ )) + ζ2(τ ),

(45)

in which ζi (τ ) = O(e−(θ/ε′)τ ), with i = 1, 2, θ > 0, and τ ≥ 0.

Proof The steps of the proof are similar to the ones in the proof of Proposition 4.6.
In this case, we define x and y as (D̄A D̄R

1 )T and (D̄R
12 D̄R

2 D̄)T, respectively.
Then, we verify that the system is singular singularly perturbed, so that we can apply
Theorem 3.1 to reduce it, and then we consider the limiting condition U → ∞.
Given that the integral manifold obtained, M(D̄A, D̄R

1 ) = (D̄, D̄R
2 , D̄R

12), is exponen-
tially attractive for a sufficiently small ε′ (see Theorem 3.1), then, for any solution
(D̄A(τ ), D̄R

1 (τ ), D̄(τ ), D̄R
2 (τ ), D̄R

12(τ )) of the original system (4) with initial condi-
tions such that |(D̄(0), D̄R

2 (0), D̄R
12(0)) − M(D̄A(0), D̄R

1 (0))| is sufficiently small,
we have a solution of the reduced system (44), (D̄A∗(τ ), D̄R∗

1 (τ )), that satisfies (45)
(see Remark 3.1). See Section S.1 of S1 File for detailed derivation. �

If we multiply both sides of the ODEs in (44) by Dtot(kAE Dtot) and define k̄ AW =
kAW0 + kAW , and k̄1W = k1W0 + k1W , system (44) can be rewritten as follows:

ḊA =
(

(k̄ AW + kAM DA)(δ
′ + k

′
T + k

′∗
T DA)

k̄ AW + kAM DA + k̄1W

)
DR
1 −

(
k̄1W (δ + k̄ AE + kAE D

R
1 )

k̄ AW + kAM DA + k̄1W

)
DA

ḊR
1 =

(
k̄1W (δ + k̄ AE + kAE D

R
1 )

k̄ AW + kAM DA + k̄1W

)
DA −

(
(k̄ AW + kAM DA)(δ

′ + k
′
T + k

′∗
T DA)

k̄ AW + kAM DA + k̄1W

)
DR
1 ,

with k̄ AW and k̄1W defined as done for the ODEs (20). This reduced system can be
represented with the following chemical reactions:

DA kAR→ DR
1 , DR

1
kAR→ DA (46)
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with reaction rate coefficients defined as

kAR =
(
k̄1W (δ + k̄ AE + kAE D

R
1 )

k̄ AW + kAM DA + k̄1W

)
, kRA =

(
(k̄ AW + kAM DA)(δ

′ + k
′
T + k

′∗
T DA)

k̄ AW + kAM DA + k̄1W

)
.

As opposed to what we obtained in the reduction done in Sect. 4.2.1, this system does
not include repressive histonemodifications, but only DNAmethylation and activating
histone modifications, whose interactions are shown in the diagram in Fig. 1d.

4.3.2 Mathematical analysis of the stochastic properties

The state of the one-dimensional Markov chain associated with the reduced system
(46), x , represents the number of DR

1 , that is, x = nDR
1

∈ [0,Dtot]. Furthermore, the
rates associated with the transitions to the next higher and lower states, λx and γx ,
respectively, can be written as

λx =
(

k̄1W (ε + ε′ x
Dtot

)

ū A + (Dtot−x)
Dtot

+ ū R
1

)
(Dtot − x),

γx =
⎛
⎝ (k̄ AW + kAM

�
(Dtot − x))μ′(βε + ε′ (Dtot−x)

Dtot
)

ū A + (Dtot−x)
Dtot

+ ū R
1

⎞
⎠ x . (47)

Now, in order to study how large μ affects the memory of the chromatin states, we
first derive the expression for the stationary probability distribution π(x) and then the
ones for the time to memory loss of the active and repressed states. Then, in the next
section, we validate the theoretical predictions against stochastic simulations of the
full set of chemical reactions (Fig. 1a).

Concerning the stationarydistribution, also in this casewecan exploit the expression
for π(x) introduced in Proposition 4.2 (Eq. 24), plugging into the transition rates λx

and γx as defined in (47). Now, let us consider the regime ε � 1:

Proposition 4.10 When ε � 1, the stationary distribution π(x) associated with the
one-dimensional Markov chain with rates λx and γx as defined in (47) can be approx-
imated by

πε�1(x) ≈

⎧⎪⎨
⎪⎩

1
1+P if x = 0

0 if x �= 0,Dtot
P

1+P if x = Dtot

(48)

with

P = (ū A + ū R
1 )(ū R

1 )

(ū A + ū R
1 + 1)(ū A)β

·
Dtot−1∏
i=1

(
ū R
1

ū A + Dtot−i
Dtot

)
·
(

1

μ′

)Dtot

,
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with ū A = uA0 + uA, ūR
1 = uR

10 + uR
1 .

Proof Given that for the λx and γx defined in (47) the product
∏x

i=1(λx−1)/(γx ) =
O(ε) for any x ≥ 1 except for x = Dtot, then, for the Markov chain considered
here, the stationary probability distribution π(x), provided in Proposition (4.2), can
be rewritten as done in (48) when ε � 1. �

From (48) it is possible to notice that, when ε � 1 the distribution is bimodal and a
further reduction of ε does not shift the distribution toward the repressed state. This is
because considering largeμ implies that repressive histone modifications (H3K9me3)
are erased fast enough that their cooperation with DNAmethylation becomes negligi-
ble. This confirms that when μ is sufficiently large, the chromatin modification circuit
(Fig. 1b) can be well approximated by a circuit that takes into account only DNA
methylation and activating histone modifications (Fig. 1d). Furthermore, comparing
πε�1(x) for the large μ case, (48), with the one obtained for the large μ′ case, (42),
the main difference to notice is that in the large μ′ case the expression for P , (43), has
the α term, while in the largeμ case the expression for P , (49), does not have it. This is
because of the presence of the auto-catalytic loop for repressive histone modifications,
but not for DNA methylation (Fig. 1c, d). As a consequence, when no external inputs
are applied (uA = uR

1 = 0 and then ū A = uA
0 , ū

R
1 = uR

10, with uA
0 = uR

10 = u0),
then the lower u0, the lower P and then the more π(0) increases to the detriment of
π(Dtot), that is, the distribution shifts toward the active state x = 0.

On the contrary, in the largeμ′ case, even if the effect of cross-catalysis is negligible
as in the largeμ case, since we still have the auto-catalytic loop for DR

2 with associated
rate constant α (see expression for πε�1(x), (42), and P , (43)), then low u0 does not
have a critical effect on varying the relative height between the peaks (the values of
π(0) and π(Dtot)).

Now, let us evaluate how ε affects τ 0
tot

= E(t0Dtot
) and τ

Dtot
0 = E(tDtot

0 ), that is, the
time tomemory loss of the fully repressed and fully active chromatin state, respectively.
To do that, we can exploit the formulas provided in Proposition 4.4 (Eqs. (26) and (27))
and plug into them the transition rates defined in (47). Now, focusing on the regime
ε � 1, these expressions can be approximated as shown in the following proposition:

Proposition 4.11 Assuming ε′ �= 0 and normalizing the time to memory loss with

respect to
kAMDtot

�
(τ̄ = τ

kAMDtot
�

), the normalized time to memory loss of the repressed
and active state in the regime ε � 1 can be, respectively, approximated as follows:

τ̄ 0Dtot
≈ L̃ R

μ′ε

(
1 +

Dtot−1∑
x=1

L̃ x
R

l̃ x1 (μ′)

)
, τ̄

Dtot
0 ≈ L̃ A

ε

(
1 +

Dtot−1∑
x=1

l̃ x2 (μ′)
L̃ x
A

)
, (49)

in which lx1 (μ′) and lx2 (μ′) are increasing functions ofμ′ with lx1 (0) = 0 and lx2 (0) = 0,
respectively, and LR, Lx

R, L A and Lx
A functions independent of ε and μ′.

Proof By multiplying by
kAMDtot

�
the expressions for times to memory loss given in

Prop. 4.4, with λx and γx defined in (47), we obtain the normalized expressions for
times to memory loss. Then, by approximating them with their dominant term, that is
the term of order 1/ε for both τ̄ 0Dtot

and τ̄
Dtot
0 , we obtain the expressions (49). �
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Fig. 4 Computational analysis of the chromatin modification circuit, shown in Fig. 1b, for large μ, using
SSA. a The stationary probability distribution, π , for the chromatin modification circuit represented in
Fig. 1b, whose reactions are listed in Fig. 1a. The parameter values used to generate the plots are in Table
S3ofS1File. In particular, in the left-side plots ε = 0.16, 0.08,μ′ = 1, 0.185 and ε′ = 1 and in the right-side
plots ε = 0.1, 0.06, μ′ = 1, 0.15 and ε′ = 0.4. In all plots nDA and nDR = nDR

1
+nDR

2
+nDR

12
represent

the number of nucleosomes with activating and repressive modifications. b The stationary distribution for
the chromatin modification circuit for different values of ε′. The parameter values considered are listed in
Table S3 of S1 File. In particular, ε = 0.16 and ε′ = 1, 0.01. c Time trajectories of nDA and nDR starting
from the fully active state nDA = 50, nDR = 0 (left) and repressed state nDA = 0, nDR = nDR

12
= 50

(right) for ε′ = 1 and different values of ε. d Time trajectories of nDA and nDR , as described in c, but with
ε′ = 0.4. e Time trajectories of the system starting from nDR = nDR

12
= 50, nDA = 0 and with an input

uA that, at steady state, leads to a unimodal distribution near the active state nDA ≈ 50. Each trajectory is
represented with a different color. In particular, we set ε = 0.16, ε′ = 1, and μ′ = 0.8, 0.38, 0.08. In c–e,

the time is normalized (τ = t
k AM
� Dtot, with � the reaction volume) and the parameter values are listed in

Table S3 of S1 File

As for the large μ′ case, both τ̄ 0Dtot
and τ̄

Dtot
0 are O(1/ε). This implies that lower

ε extends in a similar way the memory of both the active and repressed chromatin
states, in contrast to what was observed for the original study case in Sect. 4.1, in
which τ̄ 0Dtot

= O(1/ε2) and τ̄
Dtot
0 = O(1/ε). Concerning the effect of μ′ (the non-

dimensional parameter encapsulating the asymmetry between the erasure rates ofDNA
methylation and activating histone modifications) on the memory of the chromatin
states, it is possible to notice that its trend on the stationary distribution and time to
memory loss is the same as the one that μ has in the μ′ case study (Sect. 4.2.2).
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4.3.3 Computational analysis

We use the stochastic simulation algorithm (SSA) [12] to study via simulation the
original chemical reaction system (Fig. 1a, b) for large μ. We can first notice that the
trend with which ε and μ′ affect the stationary distribution π(x) is in agreement with
the analytical findings (Fig. 4a). That is, smaller ε leads to more concentrated peaks,
and reducingμ′ increases the height of the peak for the repressed state to the detriment
of the height of the active state peak. It is important to point out that in this case, when
μ′ = 1 (DNAmethylation and activating histone modifications have the same erasure
rate), the distribution is shifted toward the active state (Fig. 4a). This bias is given by the
presence of the auto-catalytic loop characterizing the histone modification dynamics,
but not the DNA methylation dynamics (Fig. 1c, d). Furthermore, the effect of ε′ is
similar to what was observed for the previous case studies (Fig. 4b). We then consider
a parameter regime in which the system displays a bimodal distribution and study
the effect of ε on the switching time of the temporal trajectories (Fig. 4c, d). It is
possible to notice that smaller values of ε increase the time that the system spends at
the active state before switching to the repressed state, and vice versa. These results
are in agreement with the ones obtained by studying the analytical expression for the
time to memory loss of the repressed and active state (49).

Finally, concerning the reactivation time of this system (Fig. 4e), it is possible to
notice that the absence of repressive histone modifications, compared to the case in
which we do not have DNA methylation (large μ′ case), leads to shorter reactivation
time, unless μ′ is sufficiently small. However, even for lower μ′ and then slower
reactivation, the time needed to switch to the active state is less variable compared
to the previous case studies, suggesting that large μ, i.e., the absence of repressive
histone modifications, could reduce the stochasticity of gene reactivation.

Overall, similarly to what was obtained in the previous section, this analysis shows
that when repressive histone modifications are erased quickly enough that their coop-
eration with DNA methylation becomes less effective, the duration of the repressed
chromatin state memory decreases. However, in contrast to what we obtained for
the previous limiting case study, the reactivation process of the system characterized
by large μ is less stochastic compared to the reactivation process of the full system
(Fig. 2e). This result highlights that repressive histone modifications contribute to the
highly stochastic latency of state reactivation.

5 Discussion and conclusion

In this work, we considered a chromatin modification circuit including both histone
modifications and DNA methylation [8] (Fig. 1b) to single out the specific contri-
butions of DNA methylation and histone modifications to the duration of the active
and repressed chromatin states memory. For this purpose, we first proved that system
(3), with ε′ as a small parameter, is singular singularly perturbed and then exploited
a proper reduction approach proposed in [9] to obtain a one-dimensional model suit-
able for analytical study. We performed this model reduction for the full chromatin
modification system (Sect. 4.1) and for two limiting cases: DNA methylation almost
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completely absent (Sect. 4.2) and repressive histone modifications almost completely
absent (Sect. 4.3).

Our analysis showed that the coexistence and interaction betweenDNAmethylation
and repressive histone modifications biases the system stationary distribution toward
the repressed stated and, accordingly, strengthens memory of the repressed chromatin
state (Fig. 2).Whenμ′ is large enough to have a negligible amount ofDNAmethylation
in the system and then the interplay between repressive chromatin marks does not
have a relevant effect on the system dynamics (Fig. 1c), the bias in the stationary
distribution and the asymmetry between the active and repressed state memory are
reduced (Fig. 3a, c, d). However, the latency of state reactivation remains highly
stochastic, especially for low μ (Fig. 3e). Different results can be obtained when μ is
large (repressive histone modifications almost completely absent). The reason is that
not only the cooperative interactions among repressivemodifications can be neglected,
but here the remaining repressive mark (DNA methylation) does not have the positive
feedback loop associated with the auto-catalytic process (Fig. 1d). This implies that
the state reactivation latency becomes less stochastic (Fig. 4e).

These results suggest then the removal of repressive histone modifications and of
the positive feedback loops associated with the auto- and cross-catalysis could reduce
the stochasticity associated with the reactivation of a silenced gene, shown in earlier
experimental studies [21]. As future work, we are planning to develop theoretical tools
to derive analytical expressions for stationary distribution and times to memory loss
for our original reaction system and then to obtain a quantitative characterization of
the original system. Furthermore, we will also conduct experimental investigations in
order to validate the theoretical results obtained in this paper.
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