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Abstract
Hao et al. (Int J Robust Nonlinear Control 28(5):1778–1788, 1976) established nec-
essary and sufficient conditions for the controllability of homogeneous networked
systems where the individual nodes are linear time-invariant (LTI) systems and the
network topology matrix is diagonalizable. In this paper, we consider a class of het-
erogeneous networked systems having triangularizable network topology. Here, we
establish a result which gives necessary and sufficient conditions for controllability
of a class of heterogeneous systems, which generalizes the result of Hao et al. (Int J
Robust Nonlinear Control 28(5):1778–1788, 1976). Also, we provide some necessary
conditions for the controllability of general heterogeneous networked systems having
some restrictions on the network topology matrix. Theoretical results are illustrated
with numerical examples.

Keywords Controllability · Heterogeneous dynamics · LTI systems · Networked
control systems · Network topology

1 Introduction

Controllability is one of the fundamental properties of dynamical control systems
introduced by Kalman [20]. Various notions of controllability, like state controllabil-
ity, structural controllability, etc., are introduced in the literature, and controllability
conditions are obtained bymany authors both for linear and nonlinear systems [10, 14,
19, 21]. The state controllability deals with the ability of the system to steer the system
from an arbitrary initial state to a desired final state using suitable control functions,
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whereas the structural controllability introduced by Lin [22] attempts to set some val-
ues to the nonzero parameters in the system matrices such that the resulting system
is state controllable in the sense of Kalman. The notion of controllability, whether it
is state or structural, has been extensively studied for various types of systems and
conditions for controllability have been obtained over the past few decades [17, 24,
26]. Most of these results are for single higher-dimensional control systems. However,
in the real-world situation, occurrence of networked control systems is comparatively
much larger than that of single stand-alone control systems. In general, modeling com-
plex systems requires a collection of individual systems connected together with an
interconnection topology. Controllability of large-scale complex networked systems
gives rise to fascinating challenges for various studies. Such studies include different
aspects of the systems such as structural complexity, node dynamics, interaction among
various nodes, etc. The research on the controllability of networked systems is gaining
much attention as it has applications in various fields of science and technology [3, 7,
27].

Many approaches were invoked to study the controllability of a dynamical system
over the years. The study of network controllability employs tools like graph theoretic
properties of network topology, rank conditions and spectral properties of the system
matrices, etc. [1, 12, 18, 23, 29, 30, 39, 41, 42]. The problem of controllability of inter-
connected systems dates back to the work of Gilbert [9], followed by the works of
Callier and Nahum [5] and Fuhrmann [8]. Representation of complex interconnection
structures needed the idea of weighted directed graphs to represent the network topol-
ogy. By dividing the nodes into leaders and followers, some conditions on network
topology were derived by Tanner [31], which ensured the controllability of a group
of nodes with a single leader. Hara et al. [13] studied networks in which each node
is a copy of the same single-input-single-output (SISO) system and obtained neces-
sary and sufficient conditions for the controllability and observability. Later, Wang et
al. [32] addressed the controllability problem of networked multi-input-multi-output
(MIMO) systems. They established necessary and sufficient conditions for control-
lability of homogeneous networked systems that involve solution of certain matrix
equations. Based on the above work, Wang et al. [33] further derived a necessary and
sufficient condition for the state controllability of a homogeneous networked system
where communications are performed through one-dimensional connections. They
also discussed the controllability of a homogeneous networked system over some par-
ticular network topologies such as trees, cycles. Hao et al. [11] derived necessary and
sufficient conditions for the controllability of a MIMO homogeneous LTI networked
system where the network topology matrix is diagonalizable. Compared to Wang et
al. [32], Hao’s result is easy to verify as it does not involve solving matrix equations.

All the works discussed above considered networked systems having the same
dynamics in each node. However, in real-life applications, all nodes need not possess
the same dynamics. Zhou [42] studied a networked system where every subsystem
is permitted to have different dynamics. A necessary and sufficient condition for
the controllability of a heterogeneous networked system was derived from Popov–
Belevitch–Hautus (PBH) rank condition by Wang et al. [34]. They also attempted to
extend the results obtained by Wang et al. [32] for homogeneous systems to heteroge-
neous systems. Later, Xiang et al. [36] extended this work and derived a necessary and
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sufficient condition for the controllability of a particular type of heterogeneous system
in terms of some rank conditions. The obtained results are for a system in which the
state matrices of the individual nodes are of a special form. Along with the necessary
and sufficient conditions for controllability, several other necessary conditions for con-
trollability were also derived based on the properties of the individual nodes. Inspired
by this work, some necessary conditions for controllability of heterogeneous systems
were derived in Ajayakumar and George [2]. The notion of structural controllability
of large-scale networked systems is also studied by many authors [4, 6, 25, 37, 39].
A brief survey of recent advances in the study of controllability of networked linear
dynamical systems can be seen in Xiang et al. [35].

Most of the available controllability results for the networked systems are for homo-
geneous LTI systems. This paper provides necessary and sufficient conditions for the
controllability of a heterogeneous systemmodel and discusses the connection between
networked topology and the controllability of the whole networked system. Our result
generalizes the work of Hao et al. [11], which was for the controllability of homoge-
neous LTI networked systems, enabling us to extend the scope of study into a larger
class of systems. Compared to the result of Xiang et al. [36], the condition in this paper
is easier to verify as it does not require solving matrix equations. The paper is orga-
nized as follows. Some preliminaries are given in Sect. 2. The controllability problem
is formulated in Sect. 3. In Sect. 4, we prove necessary and sufficient condition for
the controllability of the heterogeneous networked system formulated in Sect. 3, and
some controllability results of the networked system over some specific topologies are
also established. The derived results are substantiated with examples. Conclusion and
future scope of the work are given in Sect. 5.

2 Preliminaries

In this paper, we make use of the following notations. Let Rm×n denotes the set of
m×n real matrices and by I we denote the identity matrix. Let {e1, e2, . . . , en} be the
canonical basis for Rn . Let diag{a1, a2, . . . , an} denotes diagonal matrix of order n
with diagonal entries a1, a2, . . . , an and uppertriang{a1, a2, . . . , an} denotes an upper
triangular matrix of the form

⎡
⎢⎢⎢⎢⎢⎣

a1 ∗ ∗ . . . ∗
0 a2 ∗ . . . ∗
0 0 a3 . . . ∗
...

...
...

. . .
...

0 0 0 . . . an

⎤
⎥⎥⎥⎥⎥⎦
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By blockuppertriang{A1, A2, . . . An}, we denote a block upper triangular matrix of
the form

⎡
⎢⎢⎢⎢⎢⎣

A1 ∗ ∗ . . . ∗
0 A2 ∗ . . . ∗
0 0 A3 . . . ∗
...

...
...

. . .
...

0 0 0 . . . An

⎤
⎥⎥⎥⎥⎥⎦

where A1, A2, . . . , An are matrices. Let σ(A) denotes the eigen spectrum of a matrix
A.

The following lemmas will be used in the subsequent sections of this paper.

Lemma 1 [15] Let A and B be similar matrices, that is, there exists a nonsingular
matrix P such that PBP−1 = A. If ν is a left eigenvector of A with respect to the
eigenvalue λ, then νP is an eigenvector of B with respect to the eigenvalue λ.

Lemma 2 [16] Let A ⊗ B denotes the Kronecker product of two matrices A and B.
We use the following properties of Kronecker product in this paper.

(i) (A ⊗ B)(C ⊗ D) = (AC ⊗ BD)

(ii) (A ⊗ B)−1 = A−1 ⊗ B−1 if A and B are invertible.
(iii) (A + B) ⊗ C = A ⊗ C + B ⊗ C
(iv) A ⊗ (B + C) = A ⊗ B + A ⊗ C
(v) A ⊗ B = 0 if and only if A = 0 or B = 0

Lemma 3 [30] A linear time-invariant control system characterized by the pair of
matrices (A, B) is controllable if and only if left eigenvectors of A are not orthogonal
to columns of B, i.e., νA = λν implies that νB �= 0.

3 Model formulation

Consider a heterogeneous networked linear time-invariant systemwith N nodes,where
the i th node is described by the following differential equation:

ẋi (t) = Ai xi (t) +
N∑
j=1

ci j Hx j (t) + di Bui (t), i = 1, 2, . . . , N (1)

where xi (t) ∈ R
n is the state vector; ui (t) ∈ R

m is the external control vector;
Ai ∈ R

n×n is the state matrix of node vi ; B ∈ R
n×m is the control matrix, with di = 1

if node vi is under control, otherwise di = 0. ci j ∈ R represents the coupling strength
between the nodes vi and v j with ci j �= 0 if there is a communication from node v j

to node vi , otherwise ci j = 0, i, j = 1, 2, . . . , N and H ∈ R
n×n is the inner coupling

matrix describing the interconnections among the states x j , j = 1, 2, . . . , N of the
nodes.
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Let
C = [

ci j
] ∈ R

N×N and D = diag{d1, d2, . . . , dN } (2)

denote the network topology and external input channels of networked system (1),

respectively. Denote the whole state of the networked system by X = [
xT1 , . . . , xTN

]T
and the total external control input vector by U = [

uT1 , . . . , uTN
]T
.

Now, using the Kronecker product notation, networked system (1) can be reduced
into the following compact form:

Ẋ(t) = FX(t) + GU (t) (3)

where
F = A + C ⊗ H , G = D ⊗ B (4)

and A = blockdiag{A1, A2, . . . , AN }.
If the state node matrices A1, A2, . . . , AN are identical, that is, Ai = Ã, then

system (1) becomes a homogeneous networked system. Hao et al. [11] have proved the
following necessary and sufficient condition for controllability of such homogeneous
networked systems.

Theorem 1 [11] Consider a homogeneous networked system with a diagonalizable
network topology matrix C. Let σ(C) = {λ1, λ2, . . . , λN }. Then networked system
(1) is controllable if and only if the following conditions are satisfied.

(i) (C, D) is controllable;
(ii) ( Ã + λi H , B) is controllable, for i = 1, 2, . . . , N; and
(iii) If matrices Ã + λi1H , . . . , Ã + λi p H

(
λik ∈ σ(C), f or k = 1, . . . , p, p > 1

)
have a common eigenvalue ρ, then (ti1D) ⊗ (ξ1i1B), . . . ,

(ti1D) ⊗ (ξ
γi1
i1

B), . . . , (ti p D) ⊗ (ξ1i p B), . . . , (ti p D) ⊗ (ξ
γi p
i p

B) are linearly inde-
pendent, where tik is the left eigenvector of C corresponding to the eigenvalue
λik ; γik ≥ 1 is the geometric multiplicity of ρ for A + λik H ; ξ lik

(l = 1, . . . , γik )
are the left eigenvectors of A + λik H corresponding to ρ, k = 1, . . . , p.

In this paper, we will relax the diagonalizability condition of the network topology
matrix C for the homogeneous system and also we derive necessary and sufficient
condition for heterogeneous system under more relaxed condition on the network
topology.

4 Main results

4.1 Controllability in a general network topology

In this section, we investigate the controllability of (3) under certain network
topologies. Suppose that the network topology matrix C is triangularizable. That
is, there exists a nonsingular matrix T such that TCT−1 = J , where J =
uppertriang{λ1, λ2, . . . , λN } is the Jordan Canonical Form of C . Let σ(Ai +λi H) =
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{μ1
i , . . . , μ

qi
i } denotes the set of eigenvalues of Ai + λi H , i = 1, 2, . . . , N and

ξ ki j , k = 1, . . . , γi j be the left eigenvectors of Ai + λi H corresponding to μ
j
i , j =

1, . . . , qi , i = 1, . . . , N , where γi j ≥ 1 is the geometric multiplicity of the eigenvalue

μ
j
i .
We investigate the controllability of original system (1) in terms of the eigenvalues

and left eigenvectors of the matrix F in compact form (3).When the network topology
matrix C is triangularizable with triangularizing matrix T and if T ⊗ I commutes
with A, we characterize the eigenvalues and left eigenvectors of F in terms of the
eigenvalues and left eigenvectors of Ai + λi H , i = 1, 2, . . . , N as shown in the
following theorem.

Theorem 2 Let T be the triangularizing matrix for the network topology matrix C and
suppose T ⊗ I commutes with A. Let (μ j

i , ξ
k
i j ) denotes the left eigenpair of Ai +λi H .

Then the following statements hold true.

(i) The eigenspectrum of F is the union of eigenspectrum of Ai + λi H , where
i = 1, 2, . . . , N. That is,

σ(F) = ∪N
i=1σ(Ai + λi H) =

{
μ1
1, . . . , μ

q1
1 , . . . , μ1

N , . . . , μ
qN
N

}

(ii) If J is a diagonal matrix, then ei T ⊗ ξ ki j , k = 1, . . . , γi j are the left eigenvectors

of F corresponding to the eigenvalue μ
j
i , j = 1, . . . , qi , i = 1, . . . , N.

(iii) If J contains a Jordan block of order l ≥ 2 for some eigenvalue λi0 of C with
ξ ki j H = 0 for all i = i0, i0+1, . . . , i0+l−1, j = 1, 2, . . . , qi , k = 1, 2, . . . , γi j ,

then ei T ⊗ ξ ki j , k = 1, . . . , γi j are the left eigenvectors of F corresponding to

the eigenvalue μ
j
i , i = 1, 2, . . . , N , j = 1, 2, . . . , qi .

Proof (i) By hypothesis, T is a nonsingular matrix such that TCT−1 = J , where
J = uppertriang{λ1, λ2, . . . , λN } is the Jordan Canonical Form of C . Let

F̃ = (T ⊗ I )F(T−1 ⊗ I ) = (T ⊗ I )(A + C ⊗ H)(T−1 ⊗ I )

As T ⊗ I commutes with A, we have

F̃ = A(T ⊗ I )(T−1 ⊗ I ) + (T ⊗ I )(C ⊗ H)(T−1 ⊗ I )

= A + (TCT−1 ⊗ H)

= A + J ⊗ H

= A + uppertriang{λ1, λ2, . . . , λN } ⊗ H

= blockuppertriang{A1 + λ1H , . . . , AN + λN H}

Since F̃ and F have same eigenvalues, we get

σ(F) = {μ1
1, . . . , μ

q1
1 , . . . , μ1

N , . . . , μ
qN
N }
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(ii) Let ξ ki j , k = 1, . . . , γi j be the left eigenvectors of Ai + λi H corresponding to

μ
j
i , j = 1, . . . , qi , i = 1, . . . , N . If J is a diagonal matrix, F̃ is a block diagonal

matrix and hence ei⊗ξ ki j , k = 1, . . . , γi j are left eigenvectors of F̃ corresponding

to μ
j
i , j = 1, . . . , qi , i = 1, . . . , N .

(iii) Suppose that J contains a Jordanblockof order 2, corresponding to the eigenvalue
λi0 of C . Then the matrix F̃ contains the block matrix of the form

A =
[
Ai0 + λi0H H

0 Ai0+1 + λi0+1H

]
(5)

It follows easily that, ei0+1 ⊗ ξ ki0+1 j , k = 1, 2, . . . , γi0+1 j are eigenvectors of F̃

corresponding to the eigenvalues μ
j
i0+1, j = 1, 2, . . . , qi0+1. If ξ ki0 j0H = 0 for

all k = 1, 2, . . . , γi0 j0 , then ei0 ⊗ ξ ki0 j0 , k = 1, 2, . . . , γi0 j0 are left eigenvectors

of F̃ corresponding to the eigenvalue μ
j0
i0
. Now suppose that J contains a Jordan

block of order l ≥ 2 for some eigenvalue λi0 of C , then again we can consider
(l − 1) block matrices of form (5) and by using the fact that ξ ki j H = 0 for all
i = i0, i0 + 1, . . . , i0 + l − 1, j = 1, 2, . . . , qi , k = 1, 2, . . . , γi j we get ei ⊗
ξ ki j , k = 1, 2, . . . , γi j are left eigenvectors of F̃ corresponding to the eigenvalue

μ
j
i , i = 1, 2, . . . , N , j = 1, 2, . . . , qi . We will prove that these are the only

eigenvectors of F̃ . Suppose that F̃ does not have any Jordan blocks and let
ξ = [

ξ1 ξ2 . . . ξN
] ∈ R

Nn be a left eigenvector of F̃ corresponding to the
eigenvalue μ, where ξ1, ξ2, . . . , ξN ∈ R

n . Then ξ T F̃ = μξ T implies that

⎡
⎢⎢⎢⎣

ξ1 (A1 + λ1H)

ξ2 (A2 + λ2H)
...

ξN (AN + λN H)

⎤
⎥⎥⎥⎦

T

= μ

⎡
⎢⎢⎢⎣

ξ1
ξ2
...

ξN

⎤
⎥⎥⎥⎦

T

This in turn implies that μ is an eigenvalue of Ai + λi H for all i with ξi as an
eigenvector. Suppose that F̃ has a block of type (5). Then ξ T F̃ = μξ T implies
that

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

ξ1 (A1 + λ1H)
...

ξi (Ai + λi H)

ξi H + ξi+1H (A2 + λ2H)
...

ξ1 (AN + λN H)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

= μ

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

ξ1
...

ξi
ξi+1

...

ξN

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

As ξi (Ai + λi H) = μξi , ξi is a left eigenvector of Ai + λi H . Then by our
hypothesis, ξi H = 0. Hence μ is an eigenvalue of Ai + λi H for all i with ξ as
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an eigenvector. Thus, if Ai + λi H , i = 1, 2, . . . , N does not have a common
eigenvalue, then the left eigenvectors of F̃ are of the form ei ⊗ ξ , where ξ is a
left eigenvector of Ai + λi H for some i . If they have a common eigenvalue, the
eigenvectors are either of the form ei⊗ξ , where ξ is a left eigenvector of Ai+λi H
for some i or of the form

∑r
α=1 eiα ⊗ ξiα , where Ai + λi H , i ∈ {i1, i2, . . . , ir }

have a common eigenvalue μ with eigenvector ξiα for each i1, i2, . . . , ir .

Thus in both cases, by Lemma 2(i) and Lemma 1,
(
ei ⊗ ξ ki j

)
(T ⊗ I ) = ei T ⊗

ξ ki j (k = 1, . . . , γi j ) are the left eigenvectors of F corresponding to μ
j
i , j =

1, . . . , qi , i = 1, . . . , N . �	
Using the above result, we will prove the following necessary and sufficient con-

ditions for controllability of heterogeneous networked system (3).

Theorem 3 Let T be a nonsingular matrix triangularizing matrix C such that T ⊗ I
commutes with A. If J contains a Jordan block of order l ≥ 2 corresponding to the
eigenvalueλi0 ofC, then assume that ξ ki j H = 0 for all i = i0, i0+1, . . . , i0+l−1, j =
1, 2, . . . , qi , k = 1, 2, . . . , γi j , where ξ ki j , i = 1, 2, . . . , N , j = 1, 2, . . . , qi , k =
1, 2, . . . , γi j are the left eigenvectors of Ai + λi H corresponding to the eigenvalues

μ
j
i , i = 1, 2, . . . , N , j = 1, 2, . . . , qi . Then networked system (3) is controllable if

and only if

(i) ei T D �= 0 for all i = 1, . . . , N
(ii) (Ai + λi H , B) is controllable, for i = 1, 2, . . . , N; and
(iii) If matrices Ai1 + λi1H , Ai2 + λi2H , . . . , Aip + λi p H(λik ∈ σ(C), k =

1, . . . , p, where p > 1) have a common eigenvalue σ , then (ei1T D) ⊗
(ξ1i1B), . . . , (ei1T D) ⊗ (ξ

γi1
i1

B), . . . , (ei p T D) ⊗ (ξ1i p B), . . . , (ei p T D) ⊗ (ξ
γi p
i p

B)

are linearly independent vectors, where γik ≥ 1 is the geometric multiplicity of
σ for Aik + λik H and ξ lik

(l = 1, . . . , γik ) are the left eigenvectors of Aik + λik H
corresponding to σ, k = 1, . . . , p.

Proof (Necessary part) From Theorem 2 it follows that ei T ⊗ξ ki j (k = 1, . . . , γi j ) are

left eigenvectors of F corresponding toμ
j
i , j = 1, . . . , qi , i = 1, . . . , N . If networked

system (3) is controllable, then

(ei T ⊗ ξ li j )(D ⊗ B) �= 0, for l = 1, . . . , γi j , j = 1, . . . , qi , i = 1, . . . , N

which implies that

ei T D �= 0, i = 1, . . . , N ,

and

ξ li j B �= 0, for l = 1, . . . , γi j , j = 1, . . . , qi , i = 1, . . . , N

Since ξ li j is an arbitrary left eigenvector of Ai + λi H , the controllability of (Ai +
λi H , B), for i = 1, . . . , N follows.
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Assume that the matrices Ai1 + λi1H , . . . , Aip + λi p H(λik ∈ σ(C), k =
1, . . . , p, where p > 1) have a common eigenvalue σ . Then all the left eigenvectors
of F corresponding to σ can be expressed in the form of

∑p
k=1

∑γik
l=1 αkl(eik T ⊗ ξ lik

),
where αkl ∈ R(k = 1, . . . , p, l = 1, . . . , γik ) are scalars, not all are zero and

ξ1ik
, . . . , ξ

γik
ik

, are the eigenvectors of Aik + λik H corresponding to the eigenvalue
σ , where k = 1, . . . , p. If the networked system is controllable, then

⎡
⎣

p∑
k=1

γik∑
l=1

αkl(eik T ⊗ ξ lik )

⎤
⎦ (D ⊗ B) �= 0

Consequently, we have

p∑
k=1

γik∑
l=1

αkl(eik T D) ⊗ (ξ lik B) �= 0

for any scalars αkl ∈ R(k = 1, . . . , p, l = 1, . . . , γik), not all of them
are zero. Therefore, (ei1T D) ⊗ (ξ1i1B), . . . , (ei1T D) ⊗ (ξ

γi1
i1 B), . . . , (eipT D) ⊗

(ξ1i p B), . . . , (eipT D) ⊗ (ξ
γi p
i p B) are linearly independent vectors in R

Nn .
(Sufficiency part) Suppose that the networked system is uncontrollable, then we

will prove that at least one condition in Theorem 1 does not hold. If the networked
system is not controllable, then there exists a left eigenpair of F , denoted as (μ̃, ṽ),
such that ṽG = 0.

If μ̃ ∈ σ(Ai0 + λi0H) and μ̃ /∈ σ(A1 + λ1H) ∪ . . . ∪ σ(Ai0−1 + λi0−1H) ∪
σ(Ai0+1 + λi0+1H) ∪ . . . ∪ σ(AiN + λiN H). Again ṽ can be written as a linear

combination, ṽ = ∑γi0 j0
l=1 αl

0(ei0T ⊗ ξ li0 j0
), where ξ1i0 j0

, . . . , ξ
γi0 j0
i0 j0

of left eigenvectors

of Ai0 + λi0H corresponding to μ̃, where
[
α1
0, . . . , α

γi0 j0
0

]
is some nonzero vector.

Now ṽG = 0 implies

γi0 j0∑
l=1

αl
0(ei0T ⊗ ξ li0 j0

)(D ⊗ B) =
γi0 j0∑
l=1

αl
0(ei0T D) ⊗ (ξ li0 j0

B)

= (ei0T D) ⊗
⎛
⎝

γi0 j0∑
l=1

αl
0ξ

l
i0 j0

B

⎞
⎠ = 0

This implies that ei0T D = 0 or
∑γi0 j0

l=1 αl
0ξ

l
i0 j0

B = 0. If
∑γi0 j0

l=1 αl
0ξ

l
i0 j0

B = 0, then
(
Ai0 + λi0H , B

)
is uncontrollable as

∑γi0 j0
l=1 αl

0ξ
l
i0 j0

is a left eigenvector of Ai0 +λi0H .

Thus, if the networked system is uncontrollable, then either there exists λi0 ∈ σ(C)

such that
(
Ai0 + λi0H , B

)
is uncontrollable or ei0T D = 0 for some i0.

Let μ̃ be the common eigenvalue of thematrices Ai1 +λi1H , . . . , Aip +λi p H(λik ∈
σ(C), for k = 1, . . . , p, p > 1) and the corresponding eigenvectors of Aik + λik
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are ξ1ik
, . . . , ξ

γik
ik

, where k = 1, . . . , p. Since ṽ can be expressed in the form∑p
k=1

∑γik
l=1 αkl

0

(
eik T ⊗ ξ lik

)
, where αkl

0 (l = 1, . . . , γik , k = 1, . . . , p) are some
scalars, which are not all zero. Then ṽG = 0 implies that there exists a nonzero

vector
[
α11
0 , . . . , α

1γi1
0 , . . . , α

p1
0 , . . . , α

pγi p
0

]
such that

⎡
⎣

p∑
k=1

γik∑
l=1

αkl
0

(
eik T ⊗ ξ lik

)⎤
⎦ (D ⊗ B) =

p∑
k=1

γik∑
l=1

αkl
0

[
(eik T D) ⊗ (ξ lik B)

]
= 0

This implies that (ei1T D) ⊗ (ξ1i1B), . . . , (ei1T D) ⊗ (ξ
γi1
i1

B), . . .

, (ei p T D) ⊗ (ξ1i p B), . . . , (ei p T D) ⊗ (ξ
γi p
i p

B) are linearly dependent.
Therefore, if the networked system is uncontrollable, then at least one condition in

Theorem 3 does not hold, true. �	

The following examples demonstrate the application of the result for testing con-
trollability of heterogeneous networked systems.

Example 1 Consider a heterogeneous networked system as shown in Fig. 1 com-
posed of 3 nodes in which two nodes are identical. The state matrices of each node
(A1, A2, A3), control matrix B, inner coupling matrix H and the network topology
matrix C are given by

A1 = A3 =
⎡
⎣

1 −1 1
−1 1 0
1 1 1

⎤
⎦ , A2 =

⎡
⎣

1 0 0
−1 1 0
0 0 1

⎤
⎦ , B =

⎡
⎣
1
2
1

⎤
⎦ , H =

⎡
⎣
0 1 0
1 0 1
0 0 0

⎤
⎦ ,

C =
⎡
⎣
0 0 1
0 1 1
0 0 1

⎤
⎦ (6)

Fig. 1 Controllable
heterogeneous networked
system with triangularizable
network topology C and node
dynamics as given in (6)
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As all the nodes have control input, the external control input matrix, D =⎡
⎣
1 0 0
0 1 0
0 0 1

⎤
⎦.

For the network topology matrix C , there exists a nonsingular matrix T =⎡
⎣
1 0 −1
0 1 0
0 0 1

⎤
⎦ such that TCT−1 = J , where J =

⎡
⎣
0 0 0
0 1 1
0 0 1

⎤
⎦. Clearly, T⊗I commuteswith

A. J contains a Jordan block of order 2 and the eigenvalues of C are λ1 = 0, λ2 = 1
and λ3 = 1. Observe that ξ12 = [

0 0 1
]
is the only left eigenvector corresponding to

the eigenvalue 1 of matrix A2+H and it satisfies ξ12 H = 0. Then, we can easily verify
the following:

(i) As T D = T =
⎡
⎣
1 0 −1
0 1 0
0 0 1

⎤
⎦, ei T D �= 0 for all i = 1, 2, 3.

(ii) (A1, B), (A2 + H , B) and (A3 + H , B) are controllable.
(iii) σ = 1 is a common eigenvalue of the matrices A2+H and A3+H have with left

eigenvectors ξ12 = [
0 0 1

]
and ξ13 = [

1 −1 0
]
, respectively. Also, the vectors

e2T D ⊗ ξ12 B = [
0 1 0

]
and e3T D ⊗ ξ13 B = [

0 0 −1
]
are linearly independent

vectors.

As all the conditions (i)–(iii) of Theorem 3 are verified, the heterogeneous networked
system is controllable.

Example 2 Consider a heterogeneous networked system shown in Fig. 2, which is
composed of 3 nodes in which two nodes are identical. Let

A1 =
⎡
⎣
0 0 0
0 1 −2
0 0 −1

⎤
⎦ , A2 = A3 =

⎡
⎣
0 1 1
2 1 −1
0 2 −1

⎤
⎦ , B =

⎡
⎣
1
1
0

⎤
⎦ , H =

⎡
⎣
1 1 0
0 1 1
0 1 1

⎤
⎦ ,

C =
⎡
⎣
1 1 1
0 0 1
0 1 0

⎤
⎦ andD =

⎡
⎣
1 0 0
0 1 0
0 0 0

⎤
⎦ (7)

.

Fig. 2 Controllable
heterogeneous networked
system with triangularizable
network topology C and node
dynamics as in (7)
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We observe that, for the network topology matrix C , there exists a triangularizing

nonsingular matrix T =
⎡
⎣
1 0 0
0 1 1
0 1

2 − 1
2

⎤
⎦ such that TCT−1 = J , where J =

⎡
⎣
1 1 0
0 1 0
0 0 −1

⎤
⎦.

J contains a Jordan block of order 2 and T ⊗ I commutes with A. The eigenvalues
of C are, λ1 = 1, λ2 = 1 and λ3 = −1. Observe that ξ111 = [

0 1 −1
]
is the only

left eigenvector corresponding to the matrix A1 + H and ξ111H = 0. Further, we can
verify that

(i) ei T D �= 0 for all i = 1, 2, 3.
(ii) (A1 + H , B), (A2 + H , B) and (A3 − H , B) are controllable.
(iii) As the matrices A1 + H ,A2 + H and A3 − H do not have a common eigenvalue,

the condition (iii) in Theorem 3 is satisfied.

Thus all the conditions (i)–(iii) of Theorem 3 are verified. Hence, the heterogeneous
system is controllable.

Now, we give an example of a controllable networked system having heterogeneous
dynamics with diagonalizable network topology matrix.

Example 3 Consider a heterogeneous network system composed of 3 nodes in which

two nodes are identical, where A1 =
⎡
⎣
0 1 0
0 0 1
0 0 1

⎤
⎦ , A2 = A3 =

⎡
⎣
0 1 0
0 0 1
0 0 0

⎤
⎦ , B =

⎡
⎣
1
0
1

⎤
⎦ , H =

⎡
⎣
1 0 0
0 1 0
0 0 1

⎤
⎦ ,C =

⎡
⎣
1 0 0
0 1 0
0 1 0

⎤
⎦ and D =

⎡
⎣
1 0 0
0 1 0
0 0 0

⎤
⎦. There exists a nonsin-

gular matrix T =
⎡
⎣
1 0 0
0 −1 1
0

√
2 0

⎤
⎦ such that TCT−1 =

⎡
⎣
1 0 0
0 0 0
0 0 1

⎤
⎦ = J . J has no Jordan

block of order ≥ 2 and T ⊗ I commutes with A. λ1 = 1, λ2 = 0 and λ3 = 1 are the
eigenvalues of C . Also,

(i) ei T D �= 0 for all i = 1, 2, 3.
(ii) (A1 + H , B), (A2, B) and (A3 + H , B) are controllable.
(iii) The matrices A1 + H and A3 + H have a common eigenvalue 1 with left eigen-

vectors ξ11 = [
0 1 −1

]
and ξ13 = [

0 0 1
]
, respectively. Further, e1T D ⊗ ξ11 B =[−1 0 0

]
and e3T D ⊗ ξ13 B = [

0
√
2 0

]
are linearly independent vectors.

Thus, all the conditions (i)–(iii) of Theorem3 are verified.Hence, the heterogeneous
network system is controllable.

This approach enables as to find the nodes to which a control can be applied to
make an uncontrollable system to a controllable system.

Remark 1 If ei T D = 0 for some i = 1, 2, . . . , N , then the given system is not
controllable. For, we have, ei T ⊗ ξ ki j (k = 1, . . . , γi j ) are left eigenvectors of F

corresponding to μ
j
i , j = 1, . . . , qi , i = 1, . . . , N . If ei T D = 0 for some i , say i0,

then (ei0T ⊗ ξ ki0 j
)(D ⊗ B) = (ei0T D ⊗ ξ ki0 j

B) = 0 for all j = 1, 2, . . . , qi0 , k =
1, 2, . . . , γi0 j . Then by Lemma 3, the given system is not controllable.
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Now we may be able to modify the external input matrix D, so that ei T D �= 0, i =
1, . . . , N as shown in the following example.

Example 4 Consider a homogeneous network system composed of 3 nodes, where

A1 = A2 = A3 =
⎡
⎣
0 1 0
0 0 1
0 0 0

⎤
⎦ , B =

⎡
⎣
1
1
1

⎤
⎦ , H =

⎡
⎣
1 0 0
0 1 0
0 0 1

⎤
⎦ ,C =

⎡
⎣
0 0 1
1 0 0
1 0 0

⎤
⎦ ,

D =
⎡
⎣
0 0 0
0 1 0
0 0 0

⎤
⎦ (8)

There exists a nonsingular matrix T =
⎡
⎢⎣

0 1 −1√
3
2 0

√
3
2

−
√
3
2 0

√
3
2

⎤
⎥⎦ such that TCT−1 =

⎡
⎣
0 0 0
0 1 0
0 0 −1

⎤
⎦ = J . From Corollary 1, it is easy to verify that the networked system

is not controllable as e2T D = 0. Here T D =
⎡
⎣
0 1 0
0 0 0
0 0 0

⎤
⎦. Observe that either δ1 or δ3

must be 1 so that ei T D �= 0 for all i = 1, 2, 3. Modify D as D̃ =
⎡
⎣
0 0 0
0 1 0
0 0 1

⎤
⎦. In other

words, either node v1 or node v3 is supplied with a control input. Then ei T D̃ �= 0 for
all i = 1, 2, 3.

For the modified network system, we can verify the conditions (ii) and (iii) of
Theorem 3. The eigenvalues of C are λ1 = 0, λ2 = 1 and λ3 = −1. Clearly,
(A, B), (A + H , B), (A − H , B) are controllable and these matrices does not have a

Fig. 3 Heterogeneous networked
system which is not controllable
with a triangularizable network
topology C and node dynamics
given in (8)

Fig. 4 The networked system
becomes controllable with node
dynamics as in (8), if the
external control input matrix is
D̃
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common eigenvalue. Thus, all the conditions of Theorem 3 are satisfied and hence the
heterogeneous system is controllable.

The condition that thematrix T⊗ I commuteswith A in Theorem3 is satisfiedwhen
the networked system is homogeneous as we can see in the following proposition.

Proposition 1 If networked system (1) is a homogeneous system, that is, Ai = Ã for
i = 1, 2, . . . , N, then T ⊗ I commutes with A.

Proof If the given system is a homogeneous system, then it can be represented in the
compact form

Ẋ(t) = FX(t) + GU (t)

where F = A + C ⊗ H and G = D ⊗ B. From Eq. (4),

A = blockdiag{A1, A2, . . . , AN } = blockdiag{ Ã, Ã, . . . , Ã} = I ⊗ Ã

Clearly,

(T ⊗ I )A = (T ⊗ I )(I ⊗ Ã) = T ⊗ Ã = (I ⊗ Ã)(T ⊗ I ) = A(T ⊗ I )

Thus, T ⊗ I commutes with A. �	
Consequently, for a homogeneous networked system, we have the following result.

Theorem 4 Suppose that networked system (1) is a homogeneous system, that is, Ai =
Ã for all i = 1, . . . , N with

(a) a triangularizable network topology. That is, TCT−1 = J = uppertriang{λ1, λ2,
. . . , λN }, where J is the Jordan Canonical Form of C; and

(b) if J contains a Jordan block of order l ≥ 2 corresponding to the eigenvalue λi0
of C and ξ ki j H = 0 for all i = i0, i0 + 1, . . . , i0 + l − 1, j = 1, 2, . . . , qi , k =
1, 2, . . . , γi j , where ξ ki j , i = 1, 2, . . . , k = 1, 2, . . . , γi j are the left eigenvectors

of Ai + λi H corresponding to the eigenvalues μ
j
i and γi j ≥ 1 represents the

geometric multiplicity of μ j
i .

Then networked system (3) is controllable if and only if the following conditions
are satisfied.

(i) ei T D �= 0 for all i = 1, . . . , N , where {ei } is the canonical basis for RN .
(ii) ( Ã + λi H , B) is controllable, for i = 1, 2, . . . , N; and
(iii) If matrices Ã + λi1H , . . . , Ã + λi p H(λik ∈ σ(C), f or k = 1, . . . , p, p >

1) have a common eigenvalue σ , then (ei1T D) ⊗ (ξ1i1B), . . . , (ei1T D) ⊗
(ξ

γi1
i1

B), . . . , (ei p T D) ⊗ (ξ1i p B), . . . , (ei p T D) ⊗ (ξ
γi p
i p

B) are linearly indepen-

dent vectors where γik ≥ 1 is the geometric multiplicity of σ for Ã + λik H
and ξ lik

(l = 1, . . . , γik ) are the left eigenvectors of Ã + λik H corresponding to
σ, k = 1, . . . , p.
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In the following example, we verify the conditions of (i)–(iii) Theorem 4 to obtain
the controllability of a homogeneous networked system.

Example 5 Consider a networked system with two identical nodes, A1 = A2 =[
1 1
0 1

]
, B =

[
0
1

]
, H =

[
1 0
0 0

]
,C =

[
0 1
1 0

]
and D =

[
1 0
0 0

]
. Then, there exists a

nonsingular matrix T =
[−1 1
1 1

]
such that TCT−1 =

[−1 0
0 1

]
. Here, λ1 = −1 and

λ2 = 1 are the eigenvalues of C . Observe that

(i) ei T D �= 0 for all i = 1, 2.
(ii) (A1 − H , B), (A2 + H , B) are controllable. As the matrices A1 − H and A2 + H

do not have a common eigenvalue, condition (iii) does not apply.

Thus, all the conditions of Theorem4 are verified. Hence, the system is controllable.

Remark 2 Verification of following conditions restricts the application of Theorem 3
to a general heterogeneous networked system.

(i) T ⊗ I commutes with A.
(ii) If the network topology is triangularizable, the condition that ξ ki j H = 0 for all

i = i0, i0 + 1, . . . , i0 + l − 1, j = 1, 2, . . . , qi , k = 1, 2, . . . , γi j if J contains a
Jordan block of order l ≥ 2 corresponding to the eigenvalue λi0 of C .

However, condition (i) is trivially satisfied in the case for a homogeneous networked
system and condition (ii) does not apply when the network topology is diagonalizable.
The network topology being triangularizable is an advantage over the existing results
as the available results are only for systems with a diagonalizable network topology.
If a triangularizable network topology is applied to a homogeneous system, Hao et
al.’s [11] result does not ensure controllability of the system as the network topology
matrix is not diagonalizable. But, we have seen in Example 3 that our result can be
applied to a homogeneous networked system with nondiagonalizable network topol-
ogy. Also, as seen in Examples 1 and 2, our result can be applied to heterogeneous
networked systemswith triangularizable network topologymatrix. Another advantage
is that, as shown in Example 4, we can identify nodes of an uncontrollable system
in which one can apply control to a node to make the modified networked system
controllable.

Hao et al. [11] have proved Theorem 1 as a necessary and sufficient condition
for the controllability of a homogeneous networked system with a diagonalizable
network topology matrix. With the help of the following proposition, we now show
that Theorem 3 is a generalization of Theorem 1 of Hao et al. [11].

Proposition 2 Suppose that the network topology matrix C is diagonalizable. That is,
there exists a matrix T such that TCT−1 = J , where J = diag{λ1, λ2, . . . , λN }.
Then (C, D) is controllable if and only if ei T D �= 0, i = 1, 2, . . . , N.

Proof Given that there exists a matrix T such that TCT−1 = J , where J =
diag{λ1, λ2, . . . , λN }. Now,

TCT−1 = J ⇒ TC = JT

123



322 Mathematics of Control, Signals, and Systems (2023) 35:307–326

⇒ ei TC = ei J T ∀ i = 1, 2, . . . , N

⇒ (ei T )C = λi (ei T ) ∀ i = 1, 2, . . . , N

That is, ei T is a left eigenvector of C corresponding to the eigenvalue λi , i =
1, 2, . . . , N . Then by Lemma 3, (C, D) is controllable if and only if ei T D �= 0, i =
1, 2, . . . , N . �	

Thus by Proposition 2, we can now deduce the necessary and sufficient condition
for the controllability of a homogeneous networked system with a diagonalizable
network topology matrix C , established by Hao et al. [11] as a corollary of Theorem 4
as follows.

Corollary 1 Consider a homogeneous networked system, that is, Ai = Ã for all
i = 1, . . . , N with a diagonalizable network topology matrix C. Let σ(C) =
{λ1, λ2, . . . , λN }. Then networked system (1) is controllable if and only if the fol-
lowing conditions are satisfied:

(i) (C, D) is controllable;
(ii) ( Ã + λi H , B) is controllable, for i = 1, 2, . . . , N; and
(iii) If matrices Ã + λi1H , . . . , Ã + λi p H

(
λik ∈ σ(C), f or k = 1, . . . , p, p > 1

)

have a common eigenvalue ρ, then (ti1D) ⊗ (ξ1i1B), . . . , (ti1D) ⊗ (ξ
γi1
i1

B), . . . ,

(ti p D) ⊗ (ξ1i p B), . . . , (ti p D) ⊗ (ξ
γi p
i p

B) are linearly independent, where tik is the
left eigenvector of C corresponding to the eigenvalue λik ; γik ≥ 1 is the geometric
multiplicity of ρ for A + λik H ; ξ lik

(l = 1, . . . , γik ) are the left eigenvectors of
A + λik H corresponding to ρ, k = 1, . . . , p.

In view of Proposition 2, the condition (i) of Theorem 4 and condition (i) of Corol-
lary 1 are equivalent. The condition (ii) in Theorem 4 and Corollary 1 coincides. As
per the result of Hao et al. [11], if (λi , ti ) and (μ, ξ) are the left eigenpairs of C and
A+λi H , respectively, then (μ, ξ(ti ⊗ In)) is a left eigenpair of F = IN ⊗ Ã+C⊗H .
This in turn implies that the condition (iii) in Theorem 4 is equivalent to condition 3
in Corollary 1.

Remark 3 The existence of thematrix T satisfying all the required conditions is crucial
in applying the theorem. If the given system is such that Ai �= A j for all i �= j , then
for A = blockdiag{A1, A2, . . . , AN } to commute with (T ⊗ I ), T must be a diagonal
matrix. If Ai = A j for some i �= j , then Ti j and Tji are the only possible nonzero
elements along with the diagonal entries.

4.2 Necessary conditions for controllability in special network topologies

Now we obtain some controllability results over some specific network topologies. In
case there exists a node v j with no incoming edge, we obtain a necessary condition
for controllability of heterogeneous networked system (3) as shown below.

Theorem 5 Suppose that there exists a node v j with no edge from any other nodes.
Then, if (A j , B) is not controllable, then networked system (3) is not controllable.
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Proof If there exists a node v j with no edge fromanyother nodes, the network topology
matrix C is of the form

C =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c11 c12 . . . c1N
c21 c22 . . . c2N
...

...
...

...

c( j−1)1 c( j−1)2 . . . c( j−1)N
0 0 . . . 0

c( j+1)1 c( j+1)2 . . . c( j+1)N
...

...
...

...

cN1 cN2 . . . cNN

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Suppose that (A j , B) is not controllable. Then by Lemma 3, there exists a nonzero
eigenvector ξ of A j such that ξ B = 0. The state matrix of the networked system F is
given by

F =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

A1 + c11H c12H . . . . . . . . . c1N H
c21 A2 + c22H . . . . . . . . . c2N H
...

...
...

...
...

...

0 0 . . . A j . . . 0
...

...
...

...
...

...

cN1H cN2H . . . . . . . . . AN + cNN H

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

and hence e j ⊗ ξ is a left eigenvector of F . Since ξ B = 0, (e j ⊗ ξ)(D ⊗ B) =
e j D ⊗ ξ B = 0. Then the networked system is not controllable. �	

We have seen that the controllability of an individual node is necessary when there
are no incoming edges to that node. But this is not the case when there are no outgoing
edges from a node. Example 6 shows that controllability of an individual node is not
necessary for network controllability, even if there are no outgoing edges from that
node.

Remark 4 If there exists some node v j with no edge to other nodes, the controllability
of (A j , B) is not necessary for the controllability of the networked system.

Example 6 Consider a system with two nodes which are nonidentical,

A1 =
[
1 2
1 3

]
, A2 =

[
1 1
0 0

]
, B =

[
1
0

]
, H =

[
0 1
1 0

]
,C =

[
0 0
1 0

]
, D =

[
1 0
0 1

]

(9)
From Fig 5, it is easy to observe that there is no edge from node 2. Also, (A2, B)

is not controllable. But the networked system is controllable.

Fig. 5 The networked system is
controllable with parameters
given in (9). Observe that there
is no edge from node v2 to node
v1 123
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The following theorem addresses a situation where the controllability of an individ-
ual node with no outgoing edges. Here controllability of the individual node becomes
a necessary condition for network controllability.

Theorem 6 Suppose that there exists a node v j with no edge to any other nodes. If
ξH = 0 for all left eigenvectors ξ of A j , then the controllability of (A j , B) is necessary
for the controllability of the networked system.

Proof If there exists some node v j with no edge to any other nodes, then the network
topology matrix C takes the form,

C =

⎡
⎢⎢⎢⎣

c11 c12 . . . c1( j−1) 0 c1( j+1) . . . c1N
c21 c22 . . . c2( j−1) 0 c2( j+1) . . . c2N
...

... . . .
...

...
... . . .

...

cN1 cN2 . . . cN ( j−1) 0 cN ( j+1) . . . cNN

⎤
⎥⎥⎥⎦

The state matrix of the networked system F is given by,

F =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

A1 + c11H c12H . . . 0 . . . c1N H
c21H A2 + c22H . . . 0 . . . c2N H

...
...

. . .
... . . .

...

c j1H c j2H . . . A j . . . c j N H
...

... . . .
...

. . .
...

cN1H cN2H . . . 0 . . . AN + cNN H

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

Suppose that (A j , B) is not controllable. Then there exists a left eigenvector ξ of A j

such that ξ B = 0. Since ξH = 0 for all left eigenvectors of A j , e j ⊗ ξ is a left
eigenvector of F with (e j ⊗ ξ)(D ⊗ B) = e j D ⊗ ξ B = 0 and hence the networked
system is not controllable. �	

5 Conclusion and future scope of work

In this paper, a necessary and sufficient condition has been derived for controllability
of a class of heterogeneous networked systems under both a directed and weighted
topology. Examples are provided to illustrate the theoretical results. Furthermore, our
result generalizes the work of Hao et al. [11] on controllability of homogeneous LTI
networked systems, allowing us to broaden the scope of study to a larger class of
systems. In addition, controllability results have been derived for a networked system
over some particular network topologies. Our result is more informative regarding
the role of subsystem dynamics, network topology, etc., in the controllability of a
networked system than the existing results and is easy to validate. In the present study,
the control matrix is uniform in all subsystems. However, in the future, we intend to
study the controllability of networked systems with heterogeneous control matrices.
Another line of research could be an investigation of the controllability of networked
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systems with delays and impulses. However, research in this direction is performed
for homogeneous networked systems with one-dimensional communication having
delays in control. But for heterogeneous networked systems, such an investigation is
yet to be performed.
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38. Yazıcıoğlu AY, Abbas W, Egerstedt M (2016) Graph distances and controllability of networks. IEEE

Trans Autom Control 61(12):4125–4130
39. Zamani M, Lin H (2009) Structural controllability of multi-agent systems. In: 2009 American control

conference, pp 5743–5748
40. Zhang Y, Zhou T (2017) Controllability analysis for a networked dynamic system with autonomous

subsystems. IEEE Trans Autom Control 69(7):3408–3415
41. Zhao B, Chen MZQ, Guan Y, Wang L (2019) Controllability of heterogeneous multiagent systems. Int

J Robust Nonlinear Control. https://doi.org/10.1002/rnc.4772
42. Zhou T (2015) On the controllability and observability of networked dynamic systems. Automatica

52:63–75

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

123

https://doi.org/10.1002/rnc.4772

	Controllability of networked systems with heterogeneous dynamics
	Abstract
	1 Introduction
	2 Preliminaries
	3 Model formulation
	4 Main results
	4.1 Controllability in a general network topology
	4.2 Necessary conditions for controllability in special network topologies

	5 Conclusion and future scope of work
	Acknowledgements
	References




