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Abstract
The exact controllability of the semilinear wave equation ytt − yxx + f (y) = 0,
x ∈ (0, 1) assuming that f is locally Lipschitz continuous and satisfies the growth
condition lim sup|r |→∞ | f (r)|/(|r | lnp |r |) ≤ β for some β small enough and p = 2
has been obtained by Zuazua (Ann Inst H Poincaré Anal Non Linéaire 10(1):109–129,
1993). The proof based on a non-constructive fixed point arguments makes use of pre-
cise estimates of the observability constant for a linearized wave equation. Under the
above asymptotic assumption with p = 3/2, by introducing a different fixed point
application, we present a simpler proof of the exact boundary controllability which
is not based on the cost of observability of the wave equation with respect to poten-
tials. Then, assuming that f is locally Lipschitz continuous and satisfies the growth
condition lim sup|r |→∞ | f ′(r)|/ ln3/2 |r | ≤ β for some β small enough, we show
that the above fixed point application is contracting yielding a constructive method
to approximate the controls for the semilinear equation. Numerical experiments illus-
trate the results. The results can be extended to the multi-dimensional case and for
nonlinearities involving the gradient of the solution.
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1 Introduction andmain results

Let � := (0, 1) and let T > 0. We set QT := �× (0, T ). We consider the semilinear
1D wave equation

⎧
⎪⎨

⎪⎩

ytt − yxx + f (y) = 0 in QT ,

y(0, ·) = 0, y(1, ·) = v in (0, T ),

(y(·, 0), yt (·, 0)) = (u0, u1) in �,

(1)

where (u0, u1) ∈ V := H1
0 (�) × L2(�) is a given initial state, v ∈ H1

0 (0, T )

is a control function and f ∈ C0(R) is a nonlinear function such that | f (r)| ≤
C(1 + |r |) ln2(2 + |r |) for every r ∈ R and some C > 0. Then, (1) admits a unique
weak solution in C0([0, T ]; H1(�)) × C1([0, T ]; L2(�)) (see [9]).

The system (1) is said to be exactly controllable at time T > 0 if for any initial state
(u0, u1) ∈ V and target data (z0, z1) ∈ V , there exists a control function v ∈ H1

0 (0, T )

such that the associated solution to (1) satisfies (y(·, T ), yt (·, T )) = (z0, z1). The
controllability time T > 0 needs to be large enough in view of the finite speed of
propagation of the solutions
Literature- The exact controllability for the linear wave equations is by now well-
understood, see for instance the pioneerworks byRussell [34], Lions [23, 24], Lagnese
and Lions [25]; we also refer [5].

The first work concerning the controllability of finite dimensional nonlinear wave
equations has been done by Markus [30] by the way of an implicit function theorem.
Later on, this approach has been adapted for the local exact controllability of nonlinear
wave equations by Chewning [10], Fattorini [19]. Global exact controllability for the
semilinear wave equations in any space dimension has first been obtained by Zuazua
[37–39] assuming that the nonlinear functions are globally Lipschitz and asymp-
totically linear, i.e., assuming that lim sup|r |→∞ | f (r)|/|r | < ∞. For the boundary
controllability case, this asymptotic assumption has been removed in [40] in the frame-
work of the HUM method introduced by Lions coupled with a fixed point argument.

Theorem 1 [40, Theorem 2.1] Assume that T > 2. Then, for every globally Lipschitz
continuous function f such that f ′ ∈ L∞(R) and γ ∈ (0, 1), γ �= 1

2 , the system (1)
is exactly controllable in Hγ

0 (0, 1) × Hγ−1(0, 1) with a control v ∈ Hγ
0 (0, T ).

Later on, this result (actually proved in amultidimensional situation) was recovered
by I. Lasiecka and R. Triggiani, [28], using a global inversion theorem. The authors
improved some regularity of their boundary control still assuming globally Lipschitz
nonlinearity.

Then, in the framework of the distributed controllability with a control support
ω ⊂ (0, 1), the assumption f ′ ∈ L∞(R) has been relaxed by Zuazua.

Theorem 2 [41, Theorem 1] Let ω = (l1, l2) with 0 < l1 < l2 < 1. Assume that
T > 2max{l1, 1 − l2}, that f is locally Lipschitz continuous and satisfies

(H1) lim sup|r |→∞
| f (r)|

|r | ln2+ |r | ≤ β
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for some β small enough depending only onω and T . Then, for any (u0, u1), (z0, z1) ∈
V , the system

⎧
⎪⎨

⎪⎩

ytt − yxx + f (y) = v 1ω in QT ,

y(0, ·) = y(1, ·) = 0 in (0, T ),

(y(0, ·), yt (0, ·)) = (u0, u1) in �,

(2)

is exactly controllable with control in L2(ω× (0, T )): there exists v ∈ L2(ω× (0, T ))

such that (y(·, T ), yt (·, T )) = (z0, z1).

Here and in the sequel, we note

ln+ |r | =
{
0 if |r | ≤ 1

ln |r | else.

Moreover, it is proved in [41, Theorem 2] that, if f behaves like −s lnp(|s|) with
p > 2 as |s| → +∞, then the system is not exactly controllable in any time T > 0,
due to an uncontrollable blow-up phenomenon. Theorem 1 has been slightly improved
in [12], weakening the condition (H1) into

lim sup
|r |→+∞

∣
∣
∣
∣

∫ r

0
f (r ′) dr ′

∣
∣
∣
∣

(

|r |
+∞∏

k=1

ln[k](ek + r2)

)−2

< +∞

where ln[k] denotes the kth iterate of ln and ek > 0 is such that ln[k](ek) = 1. This
growth condition is optimal since the solution of (2) may blow up whenever f grows
faster at infinity and has the bad sign. The multi-dimensional case in which � is a
bounded domain of Rd , d > 1, with a C1,1 boundary has been addressed in [29];
assuming that the support ω of the control function is a neighborhood of ∂� and
that T > diam(�\ω), the exact controllability of (2) is proved under the growth
condition lim sup|r |→+∞

| f (r)|
|r | ln1/2+ |r | < β for someβ small enough. For control domains

ω satisfying the classical multiplier assumption (see [24]), exact controllability has
been proved in [36] assuming that f is globally Lipschitz continuous.We alsomention
[14] where a positive boundary controllability result is proved for steady-state initial
and final data and for T large enough by a quasi-static deformation approach. We also
mention thework byDehman et al. [16]which is concernedwith the controllability and
stabilizability of some subcritical semilinear wave equations in �′ ⊂ R

3. Assuming
that the nonlinearity f ∈ C3(R) satisfies

f (0) = 0, r f (r) ≥ 0, | f ( j)(r)| ≤ C(1 + |r |)p− j , j = 1, 2, 3; 1 ≤ p < 5

the exact internal controllability of the semilinear wave equations at time T :=
T (u0, u1) > 0 that depends on the size of the initial data (u0, u1) ∈ H1

0 (�′)×L2(�′).
See also [15] achieving the same result in a uniform time under smallness assumption
on the initial data. The sign condition has been weakened in [21] to an asymptotic sign
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assumption leading to a semi-global internal controllability result in the sense that the
target data are prescribed in a precise subset of H1

0 (�′) × L2(�′) .
The above results devoted to internal controllability, notably Theorem 2, can be

employed together with the domain extension method to get indirectly boundary con-
trollability results for system (1) of interest in the present work.

The proof of Theorem 2 is based on a Leray Schauder fixed point argument applies
to the operator � : L∞(QT ) → L∞(QT ), where y := �(z) is a controlled solution
with the control function v of the linear boundary value problem

⎧
⎪⎨

⎪⎩

ytt − yxx + f̂ (z) y = − f (0) + v1ω in QT ,

y(0, ·) = y(1, ·) = 0 in (0, T ),

(y(·, 0), yt (·, 0)) = (u0, u1) in �,

f̂ (r) :=
⎧
⎨

⎩

f (r) − f (0)

r
if r �= 0

f ′(0) if r = 0

(3)

satisfying (y(·, T ), yt (·, T )) = (z0, z1). The stability of the operator � in L∞(QT )

is based on a precise estimate of the cost of the control v in terms of the potential f̂
and data (u0, u1), (z0, z1).

Objective - The general goal addressed in this work is the approximation of the
controllability problem associated with (1), that is to construct an explicit sequence
(yk, vk)k∈N converging strongly toward a control-state pair solution (y, v) for (1).
Although almost sharp with respect to the nonlinearity, Theorem 2 is not constructive
as it does not provide any convergent sequences (yk)k∈N to a fixed point of �, i.e.,
to a controlled solution y of (2). This is due to the fact that the operator � is not
contracting in general.

Assuming slightly stronger assumptions on f , a constructive convergent sequence
has been proposed by the third author and E. Trélat in [32] using a least-squares
approach coupled with a Newton type linearization.

Theorem 3 [32, Theorem 2.3] Let ω = (l1, l2) with 0 < l1 < l2 < 1. Assume that
T > 2max{l1, 1 − l2} and that f ∈ C1(R) satisfies

(H1)
′ ∃α > 0, s.t. | f ′(r)| ≤ α + β ln2+ |r |, ∀r ∈ R

for some β > 0 small enough depending only on ω and T and

(Hp) ∃p ∈ (0, 1] such that sup
a,b∈R
a �=b

| f ′(a) − f ′(b)|
|a − b|p < +∞.

Then, for any (u0, u1), (z0, z1) ∈ V , one can construct a sequence (yk, vk)k∈N con-
verging strongly to a controlled pair for (2) satisfying (y(·, T ), yt (·, T )) = (z0, z1).
Moreover, after a finite number of iterations, the convergence is of order at least 1+ p.

The hypothesis on f is stronger here than in Theorem 1: it should be noted, however,
that the function f (r) = a + br + βr ln(1 + |r |)2, a, b ∈ R which is somehow
the limit case in (H1) satisfies (H1)

′ and (H1). On the other hand, Theorem 3 is
constructive, contrary to Theorem 1. The construction makes appear the operator
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�1 : L∞(QT ) → L∞(QT ) where y := �1(z) is a controlled solution with the
control function v of the linear boundary value problem

⎧
⎪⎨

⎪⎩

ytt − yxx + f ′(z)y = v1ω + f ′(z)z − f (z) in QT ,

y(0, ·) = y(1, ·) = 0 in (0, T ),

(y(·, 0), yt (·, 0)) = (u0, u1) in �.

(4)

Theorem 3 is extended to a multidimensional case, i.e., � ⊂ R
d with d ≤ 3 in [4]

under the same condition on f except that the exponent 2 in (H1)
′ is replaced by an

exponent 1/2.

Main result of the present work - In this paper, we prove the following result, directly
in the framework of the boundary controllability.

Theorem 4 Assume T > 2. Let s > 0 large enough.

• There exists β	 > 0 such that if f ∈ C0(R) satisfies

(H2) ∃α1, α2 > 0, s.t. | f (r)| ≤ α1 + |r |
(
α2 + β	 ln3/2+ |r |

)
, ∀r ∈ R

then system (1) is exactly controllable at time T for initial data in V with controls in
H1
0 (0, T ).

• There exists β	 > 0 such that if f is locally Lipschitz and satisfies

(H′
2) ∃α > 0, s.t. | f ′(r)| ≤ α + β	 ln3/2+ |r |, ∀r ∈ R

then, for any initial state (u0, u1) and final state (z0, z1) in V , one can con-
struct a sequence (yk, vk)k∈N∗ that converges strongly to a controlled pair (y, v)

in
(
C0([0, T ]; H1(�)) ∩ C1([0, T ]; L2(�))

) × H1
0 (0, T ) for the system (1). More-

over, the convergence of (yk, vk) holds at least with a linear rate for the norm
‖ρ(s) · ‖L2(QT ) + ‖ρ1(s) · ‖L2(0,T ) where ρ, ρ1 are defined in (8) and s is chosen
sufficiently large depending on ‖(u0, u1)‖V and ‖(z0, z1)‖V .
To our knowledge, this result is the first proposing a constructive approximation of
boundary controls for the semilinear wave equation without the assumption that f is
globally Lipschitz. Under smallness assumptions on the data, we mention the recent
works [7] and [33]. As in Theorem 2, the parameter β	 have to be small enough
depending only � and T through the constant appearing in a Carleman estimates
(we refer to Remark 5). Moreover, the lower bound of the Carleman parameter s
depends logarithmically on the size ‖(u0, u1)‖V and ‖(z0, z1)‖V of the data (we refer
to Remark 6).

Concerning the first part of the theorem, if we compare with Theorem 2 (leading
indirectly to boundary controllability result by the extension method), the assumption
on the asymptotic behavior of f is slightly stronger with an exponent 3

2 instead of 2.
This is due to the fact the method in [41] based on explicit computation (using the
d’Alembert formula) is genuinely one dimensional, while the present work is based
on Carleman estimates valid in any space dimension. On the other hand, this first
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part relaxed the regularity assumption to f ∈ C0(R) instead of f locally Lipschitz
continuous. Moreover, this first part of Theorem 4 differs from Theorem 2 on the
functional spaces as it is based on a different fixed point application leading to a simpler
proof. In particular, it is not based on the analysis of the cost of observability of the
wave equation with potential. Concerning the second part of the theorem, it relaxes the
Hölder assumption (Hp) on f ′ appearing in Theorem 3 but still leads to a constructive
method. As we shall see, this is related to an appropriate choice of the parameter
s related to the norm of the initial condition. Again, to our knowledge, this is the
first result leading to a convergent approximation of boundary controls for superlinear
nonlinearities without smallness assumption notably on the initial condition and target
(contrary to the recent works [7] and [33]).

Theorem 4 is obtained by adapting the recent work [17] devoted to a semilinear
heat equation. We introduce the following linearized controllability problem: for ŷ in
a suitable class CR(s) depending on a free parameter s ≥ 1, find the control v such
that the solution y of

⎧
⎪⎨

⎪⎩

ytt − yxx = − f (ŷ) in QT ,

y(0, ·) = 0, y(1, ·) = v in (0, T ),

(y(·, 0), yt (·, 0)) = (u0, u1) in �,

(5)

satisfies (y(·, T ), yt (·, T )) = (z0, z1) in�, and (y, v) corresponds to theminimizer
of a functional Js depending on s and involving Carleman weight functions (see
Remark 3).

This will define an operator �s : ŷ �→ y from some suitable class CR(s) into
itself, on which we can use fixed point theorems for s sufficiently large depending on
‖(u0, u1)‖V , namely Schauder fixed point theorem for the first item of Theorem 4, and
Banach-Picard fixed point theorem for the second item, allowing to exhibit a simple
sequence of convergent approximations of the control and controlled trajectory. The
analysis of the fixed point operator is based on Carleman estimates as they allow to get
precise estimates on the control and controlled trajectories in terms of the parameter s.
Choosing the Carleman parameter large allows to limit the influence of lowers order
terms and get suitable contracting properties. Such tricks have already been used in
the context of inverse problems reformulated through a least-squares functional in [1]
and [22].

With respect to the heat equation considered in [17, 27], the Carleman weights are
not singular with respect to the time variable, avoiding technicalities. On the other
hand, the regularity issue is more delicate for the hyperbolic case which does not
enjoys regularizing property. This is a fortiori true for boundary control : precisely, in
order to get L∞ estimate for the controlled trajectories solution of (1), the boundary
control v needs to be more regular than L2(0, T ). Hopefully, it turns out that the
optimal state-control pair for the functional Js (see Remark 3) involving L2 norms
enjoys suitable regularity property as soon as the initial and final data belongs to V
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and satisfy compatibility condition at x = 0 and x = 1. This point is crucial in our
analysis.

Outline- The paper is organized as follows. In Sect. 2, we derive a controllability result
for the linear wave equation with precise estimates in term of the right hand side, the
initial data and the Carleman parameter s large enough. In particular, we prove that
the optimal control for the L2(0, T ) norm belongs actually to H1(0, T ): this result
stated in Theorem 7 is proven in Appendix A. Then, in Sect. 3, we prove, for any
time T > 2 the uniform null controllability of (1) assuming that f is continuous and
satisfies the condition (H2). Then, in Sect. 3.5, assuming that f ′ is continuous and
satisfies the condition (H1)

′, we show that the operator �s is contracting, yielding the
convergence of the Picard iterates yk+1 = �s(yk). Section 5 illustrates the result with
some numerical experiments, while Sect. 6 concludes with some remarks.
Notations- In this article, C denote generic constants depending on � and T , which
may change from line to line, but are independent of the Carleman parameter s.

2 Controllability results for the linear wave equation

This section is devoted to a controllability result for a linear wave equation with a right
hand side B ∈ L2(QT ) and initial data (u0, u1) ∈ V . Precisely, for any (z0, z1) ∈ V
and T > 0 large enough, we are interested by the existence of a control function
v ∈ H1

0 (0, T ) such that the solution y of

⎧
⎪⎨

⎪⎩

ytt − yxx = B in QT ,

y(0, ·) = 0, y(1, ·) = v in (0, T ),

(y(·, 0), yt (·, 0)) = (u0, u1) in �,

(6)

satisfies (y(·, T ), yt (·, T )) = (z0, z1). Though this linear control is by now standard,
we aim to get precise weighted estimate of a state-control pair in a given functional
space in the data, which will be crucial to handle the nonlinear system (1). We employ
Carleman estimates as fundamental tool (see [6]).

2.1 A global Carleman estimate

For any β ∈ (0, 1) and x0 < 0, we define the auxiliary function

ψ(x, t) = |x − x0|2 − β

(

t − T

2

)2

+ M0 in QT , (7)

where M0 > 0 is chosen in such a way that ψ is strictly positive. Then, for any λ > 0,
we define φ(x, t) = eλψ(x,t). For all s ≥ s0, let us now define the following weight
functions

ρ(s; x, t) := e−sφ(x,t), ρ1(s; t) = ρ(s; 1, t), ∀(x, t) ∈ QT . (8)
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Remark that

e−cs ≤ ρ(s; x, t) ≤ e−s, e−cs ≤ ρ1(s; t) ≤ e−s in QT

with c := ‖φ‖L∞(QT ), that ρ−1, ρ ∈ C∞(QT ) and that ρ1, ρ
−1
1 ∈ C∞([0, T ]). In

short, we shall write ρ(s) and ρ1(s) to denote the above weight functions.
Then, for any δ > 0 such that T − 2δ > 2 sup� |x − x0|, we introduce a cut-off

function η ∈ C∞
c (R) satisfying the following properties:

⎧
⎪⎨

⎪⎩

0 ≤ η(t) ≤ 1 in (δ, T − δ),

η(t) = 1 in [2δ, T − 2δ],
η(t) = 0 in (−∞, δ] ∪ [T − δ,+∞).

(9)

Let

P :=
{
w ∈ C0([0, T ]; H1

0 (�)) ∩ C1([0, T ]; L2(�)),wt t − wxx ∈ L2(QT )
}
.

Recall that wx (1, ·) ∈ L2(0, T ) for every w ∈ P (see [23, Theorem 4.1]).
The controllability property for the linear system (6) is based on the following

Carleman estimate with boundary observation at x = 1.

Theorem 5 Assume T > 2. There exists s0 > 0, λ > 0 and C > 0, such that for any
s ≥ s0, we have the following Carleman inequality

s
∫

QT

ρ−2(s)(|wt |2 + |wx |2) + s3
∫

QT

ρ−2(s)|w|2

+s
∫

�

ρ−2(s; ·, 0)(|wt (·, 0)|2 + |wx (·, 0)|2) + s3
∫

�

ρ−2(s; ·, 0)|w(·, 0)|2

+s
∫

�

ρ−2(s; ·, T )(|wt (·, T )|2 + |wx (·, T )|2) dx + s3
∫

�

ρ−2(s; ·, T )|w(·, T )|2

≤ C
∫

QT

ρ−2(s)|wt t − wxx |2 + Cs
∫ T

0
η2(t)ρ−2

1 (s)|wx (1, ·)|2 (10)

for every w ∈ P.

Proof We refer to [8, Lemma 2.3] using [1, Remark 2.9 and Theorem 2.5]. Remark
that the occurrence of the terms at t = T on the left hand side are due to the fact that
ρ(·, t) = ρ(·, T − t) and the reversibility of the wave operator. ��

2.2 Application to controllability

In a standard way, Theorem 5 allows to deduce some controllability results for the
system (6). For any s ≥ s0, we define the bilinear form

(w, z)P,s :=
∫

QT

ρ−2(s)LwLz + s
∫ T

0
η2(t)ρ−2

1 (s)wx (1, t)zx (1, t), (11)
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for any w, z ∈ P . Here and in what follows, we use the notation Lw := wt t − wxx .
It is easily seen that (11) defines a scalar product in P and if Ps denotes P endowed
with this scalar product, then Ps is an Hilbert space.

We can state the main result of this section, devoted without loss of generality to
the null controllability case, for which (z0, z1) = (0, 0) in �.

Theorem 6 Assume that T > 2 and let η ∈ C∞(R) be a cut-off function satisfying (9).
For s ≥ s0, B ∈ L2(QT ) and (u0, u1) ∈ V , there exists unique ws ∈ Ps, depending
only on B, u0, u1 such that

(ws, z)P,s =
∫

�

u1 z(·, 0) dx −
∫

�

u0 zt (·, 0) dx +
∫

QT

Bz, ∀z ∈ Ps . (12)

Then, vs(t) = sη2(t)ρ−2
1 (s)(ws)x (1, t) is a control function for (6) where ys =

ρ−2(s)Lws is the associated controlled trajectory, that is ys(x, T ) = (ys)t (x, T ) = 0
for all x ∈ � and the operator defined by

�0
s : (B, u0, u1) �→ ys (13)

is linear, continuous from L2(QT ) × H1
0 (�) × L2(�) to L2(QT ).

Moreover, we have the following estimates for ys and vs for some constant C > 0
independent of s:

‖ρ(s)ys‖L2(QT ) + s−1/2
∥
∥
∥
∥

ρ1(s)

η
vs

∥
∥
∥
∥
L2(δ,T−δ)

≤ C

(

s−3/2‖ρ(s)B‖L2(QT ) + s−1/2e−s‖u0‖L2(�) + s−3/2e−s‖u1‖L2(�)

)

.

(14)

Before going to the proof, we make the following remarks.

Remark 1 It is well-known that the boundary controllability of (6) with L2(0, T )

controls holds truewith initial data (u0, u1) only in L2(�)×H−1(�).We start directly
with (u0, u1) ∈ V since the application of some fixed point theorem to deal with the
semilinear case shall require regularity on the state-control pair (see Sect. 2.3).

Remark 2 In the framework of exact controllability with no vanishing target (z0, z1) ∈
V , the right hand side of estimate (14) contains the extra quantities

s−1/2e−s‖z0‖L2(�) + s−3/2e−s‖z1‖L2(�).

Thepoint here to be noted is that the coefficients (powers of s or exponentials associated
with s) in front of the norms of u0, u1 and z0, z1 are the same, and this would hold for
any subsequent estimates.

This is why, there is no loss of generality to choose (z0, z1) = (0, 0) which will
make the computations shorter and simpler.
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Proof We first ensure the solvability of the variational Eq. (12). Since (·, ·)P,s is a
scalar product on Ps , we only need to check that the right hand side of (12) is a linear
continuous form on Ps .

• For all z ∈ Ps : since ρ(s)B ∈ L2(QT ), we have

∣
∣
∣
∣

∫

QT

Bz

∣
∣
∣
∣ ≤

(∫

QT

|ρ(s)B|2
)1/2 (∫

QT

|ρ−1(s)z|2
)1/2

.

Now, since z enjoys the Carleman inequality (10), one has ‖ρ−1(s)z‖L2(QT ) ≤
Cs−3/2‖z‖Ps (recall the definition of the inner product (11) on Ps). Thus, we have

∣
∣
∣
∣

∫

QT

Bz

∣
∣
∣
∣ ≤ Cs−3/2‖ρ(s)B‖L2(QT )‖z‖Ps .

• Next, we observe that

∣
∣
∣
∣

∫

�

u0zt (·, 0) dx
∣
∣
∣
∣ ≤ ‖ρ(s; ·, 0)u0‖L2(�)‖ρ−1(s; ·, 0)zt (·, 0)‖L2(�)

≤ Cs−1/2e−s‖u0‖L2(�)‖z‖Ps ,

using the Carleman inequality (10) and that |ρ(s; x, 0)| = |e−sφ(x,0)| ≤ e−s (since
φ ≥ 1).

• Similarly, we get

∣
∣
∣
∣

∫

�

u1z(·, 0) dx
∣
∣
∣
∣ ≤ ‖ρ(s; ·, 0)u1‖L2(�)‖ρ−1(s; ·, 0)z(·, 0)‖L2(�)

≤ Cs−3/2e−s‖u1‖L2(�)‖z‖Ps .

Combining the above three items, the right hand side of (12) corresponds to a linear
functional on Ps . The Riesz representation theorem implies the existence of a unique
ws ∈ Ps satisfying the formulation (12) which additionally satisfies

‖ws‖Ps ≤ C
(
s−3/2‖ρ(s)B‖L2(QT ) + s−1/2e−s‖u0‖L2(�) + s−3/2e−s‖u1‖L2(�)

)
,

(15)

where the constant C > 0 is independent of s ≥ s0.
Then, set ys = ρ−2(s)Lws and vs = sη2ρ−2(s)(ws)x (1, ·). From the equality

(12), the pair (ys, vs) satisfies

∫

QT

ys Lz dxdt +
∫ T

0
vs zx (1, ·)dt =

∫

�

u1 z(·, 0) dx −
∫

�

u0 zt (·, 0) dx

+
∫

QT

Bz, ∀z ∈ Ps,
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meaning that ys ∈ L2(QT ) is a solution to the linear system (6) associated with the
function vs ∈ L2(0, T ) in the sense of transposition. By uniqueness, ys indeed solves
(6) in a weak sense. Eventually, using the estimate (15) for ws , we get that ρ(s)ys =
ρ−1(s)Lws ∈ L2(QT ) and s−1/2ρ1(s)vs = s1/2η2ρ−1

1 (s)(ws)x (1, ·) ∈ L2(0, T ) and
deduce the weighted estimate (14). ��

Remark 3 The functions ys and vs introduced by Theorem 6 can be characterized as
the unique minimizer of the following functional

Js(y, v) := s
∫

QT

ρ2(s)y2 +
∫ T−δ

δ

η−2ρ2
1 (s)v

2 (16)

over the set
{
(y, v) : y∈ L2(QT ), η−1v∈ L2(δ, T − δ) solution of (6) with y(·, T ) =

yt (·, T ) = 0 in �
}
. We refer to [8, Section 2] for the details.

Remark 4 The controlled state ys = ρ−2Lws satisfies

⎧
⎪⎨

⎪⎩

Lys = B in QT ,

ys(0, ·) = 0, ys(1, ·) = sη2ρ−2
1 (s)(ws)x (1, ·) in (0, T ),

(ys(·, 0), (ys)t (·, 0)) = (u0, u1), in �,

(17)

implying (by standard regularity results for the wave equation) that ys ∈ C0([0, T ];
L2(�)) ∩ C1([0, T ]; H−1(�)). On the other hand, the function ws uniquely satisfies
the equation

{
Lws = ρ2ys in QT ,

ws(0, ·) = ws(1, ·) = 0 in (0, T ),
(18)

implying that (ws(·, 0), ∂tws(·, 0)) ∈ V (see estimate (10)) and ws ∈ C0([0, T ];
H1
0 (�)) ∩ C1([0, T ]; L2(�)).

2.3 Estimate for the state-control pair in C0([0, T];H1(Ä)) × H1(0, T)

In this section, we prove that the state-control pair (ys, vs) given by Theorem 6 enjoys
additional regularity property, under the assumption (u0, u1) ∈ V and the introduction
of the cut-off function η with respect to the time variable. In particular, we obtain that
vs ∈ H1

0 (0, T ) and ys ∈ L∞(QT ). This gain is crucial for the analysis of the semilinear
case.

Theorem 7 Let any (u0, u1) ∈ V and B ∈ L2(QT ) be given. Then, the solution
(ys, vs) of (6) defined in Theorem 6 satisfies vs ∈ H1(0, T ), ys ∈ C0([0, T ]; H1(�))∩
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C1([0, T ]; L2(�)) and the following estimate :

‖ρ(s)(ys)t‖L2(QT ) + s−1/2‖ρ1(s)(vs)t‖L2(0,T )

≤ C
(
s−1/2‖ρ(s)B‖L2(QT ) + s−1/2e−s‖u1‖L2(�)

+s1/2e−s‖u0‖L2(�) + s−1/2e−s‖(u0)x‖L2(�)

)
.

(19)

We refer to [18, Theorem 5.4] where a similar gain of regularity is proved in the
simpler case of control of minimal L2(0, T )-norm, i.e., Js in (16) is replaced by
J (y, v) = ‖v‖2

L2(0,T )
. We also refer to [15] for internal control by introducing a cut-

off function in space. The proof of Theorem 7 is long and requires several steps. It is
done in Appendix A.

Let us prescribe the following regularity estimate for the controlled trajectory ys .

Lemma 1 Let us recall the controlled trajectory ys and the control vs for the linear
system (6), defined by Theorem 6. Then, ys satisfies the following bound

‖ys‖C0([0,T ];H1(�)) + ‖(ys)t‖C0([0,T ];L2(�))

≤ C
(
‖B‖L2(QT ) + ecs‖ρ(s)B‖L2(QT ) + e(c−1)s‖(u0)x‖L2(�)

+se(c−1)s‖u0‖L2(�) + s1/2e(c−1)s‖u1‖L2(�)

)
, (20)

where C > 0 is a constant that does not depend on s ≥ s0, and c = ‖φ‖L∞(QT ).

Proof It is well-known that for given data (u0, u1) ∈ V and B ∈ L2(QT ), we have

‖ys‖C0([0,T ];H1(�)) + ‖(ys)t‖C0([0,T ];L2(�))

≤ C
(‖B‖L2(QT ) + ‖(vs)t‖L2(0,T ) + ‖(u0)x‖L2(�) + ‖u1‖L2(�)

)
. (21)

Then, using the estimate (19) from Theorem 7, we obtain (20). ��

3 Controllability result for the semilinear problemwith f ∈ C0(R): a
Schauder fixed point argument

For any s ≥ s0 and R > 0, we introduce the class CR(s), defined as the closed convex
subset of L∞(QT )

CR(s) :=
{
ŷ ∈ L∞(QT ) : ‖ŷ‖L∞(QT ) ≤ R, ‖ρ(s)ŷ‖L2(QT ) ≤ R1/2

}
(22)

and assume that that the nonlinear function f ∈ C0(R) in (1) satisfies the growth
assumption (H2) for some β	 positive precisely chosen later.
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Then, for T > 2, s ≥ s0 (to be fixed later) and for all ŷ ∈ CR(s), we first solve the
linearized boundary control problem, given by

⎧
⎪⎨

⎪⎩

ytt − yxx = − f (ŷ) in QT ,

y(0, ·) = 0, y(1, ·) = v in (0, T ),

(y(·, 0), yt (·, 0)) = (u0, u1) in �

(23)

with v such that (y(·, T ), yt (·, T )) = (0, 0) in �. The existence of a controlled trajec-
tory y ∈ L∞(QT ) is guaranteed byTheorem7with the source term− f (ŷ) ∈ L2(QT ).
Now, our aim is to prove that there exists a fixed point of the following operator

�s : L∞(QT ) �→ L∞(QT ), �s(ŷ) = y. (24)

Note that, �s(ŷ) = �0
s (− f (ŷ), u0, u1), as per the definition (13).

Claim: We are going to show that

1. for β	 > 0 small enough, there exist R > 0 large enough and s ≥ s0 such that
CR(s) is stable under the map �s ; see Sect. 3.2;

2. �s(CR(s)) is relatively compact subset of CR(s) for the norm ‖ · ‖L∞(QT ); see
Sect. 3.3;

3. �s is a continuous map in CR(s) for the topology induced by the norm ‖·‖L∞(QT );
see Sect. 3.4.

Accordingly, by the Schauder fixed point theorem, there will exist a fixed point of �s ,
denote by y, which will be the controlled trajectory for our semilinear problem (1).

3.1 Estimate of ‖3s(̂y)‖L∞(QT)

We begin with the following lemma.

Lemma 2 Assume T > 2 and that there exists β	 ≥ 0 such that f ∈ C0(R) satisfies
(H2). For any s ≥ s0 and ŷ ∈ L∞(QT ), the quantity f (ŷ) satisfies the following
estimates:

‖ f (ŷ)‖L2(QT ) ≤ α1T +
(
α2 + β	 ln3/2+ ‖ŷ‖L∞(QT )

)
ecs‖ρ(s)ŷ‖L2(QT ),

‖ρ(s) f (ŷ)‖L2(QT ) ≤ α1T e
−s +

(
α2 + β	 ln3/2+ ‖ŷ‖L∞(QT )

)
‖ρ(s)ŷ‖L2(QT ),

with c = ‖φ‖L∞(QT ).

Proof The proof of above lemma follows from the growth assumption (H2) on f .
Observe that

(∫

QT

| f (ŷ)|2
)1/2

≤ α1T + ‖ρ−1(s)‖∞
(∫

QT

|ρ(s)ŷ|2
(
α2 + β	 ln3/2+ |̂y|

)2
)1/2

≤ α1T + (
α2 + β	 ln3/2+ ‖ŷ‖L∞(QT )

)
ecs‖ρ(s)ŷ‖L2(QT ),
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where we have used that ‖ρ−1(s)‖L∞(QT ) = ‖esφ‖L∞(QT ) ≤ ecs . The other estimate
is obtained in a similar way. ��
Proposition 1 Under the assumptions of Lemma2, for s ≥ s0 and for all ŷ ∈ L∞(QT ),
the solution y = �s(ŷ) to the linearized system (23) satisfies the following estimates:

‖ρ(s)y‖L2(QT ) + s−1/2‖ρ1(s)v‖L2(0,T )

≤ Cs−3/2
(
α2 + β	 ln3/2+ ‖ŷ‖L∞(QT )

)
‖ρ(s)ŷ‖L2(QT )

+Cs−3/2α1T e
−s + Cs−1/2e−s‖u0‖L2(�) + Cs−3/2e−s‖u1‖L2(�), (25)

‖ρ(s)yt‖L2(QT ) + s−1/2‖ρ1(s)vt‖L2(0,T )

≤ Cs−1/2
(
α2 + β	 ln3/2+ ‖ŷ‖L∞(QT )

)
‖ρ(s)ŷ‖L2(QT )

+Cs−1/2α1T e
−s + Cs−1/2e−s‖(u0)x‖L2(�) + Cs1/2e−s‖u0‖L2(�)

+Ce−s‖u1‖L2(�). (26)

Moreover, y ∈ C0([0, T ]; H1(�)) ∩ C1([0, T ]; L2(�)) and

‖y‖L∞(QT ) ≤ Cα1T + Cα1T e
(c−1)s

+C
(
α2 + β	 ln3/2+ ‖ŷ‖L∞(QT )

)
ecs‖ρ(s)ŷ‖L2(QT ) + Ce(c−1)s‖(u0)x‖L2(�)

+Cse(c−1)s‖u0‖L2(�) + Cs1/2e(c−1)s‖u1‖L2(�). (27)

Proof Put B = − f (ŷ) in the linear model (6). Then, the proof is followed as a
consequence of Theorems 6, 7, Lemma 1 and Theorem 2. ��

3.2 Stability of the class CR(s) for suitable choices of parameters

We express the result in terms of the following lemma. We hereby recall the set CR(s)
defined in (22).

Lemma 3 Under the assumptions of Lemma 2, if β	 in (H2) is small enough, there
exists an s and R > 0 large enough, such that we have

�s
(
CR(s)

) ⊂ CR(s)

where CR(s) is the class given in (22).

Proof We start with any ŷ ∈ CR(s) for s ≥ s0 ≥ 1 and we look for the bounds of the
solution y = �s(ŷ) (to (23)) with respect to the associated norms. Since ŷ ∈ CR(s),
one has ‖ρ(s)ŷ‖L2(QT ) ≤ R1/2 and ‖ŷ‖L∞(QT ) ≤ R. Therefore, the estimate (25)
yields

‖ρ(s)y‖L2(QT ) ≤ Cs−3/2
(
α2 + β	 ln3/2+ R

)
R1/2 + Cs−3/2α1T e

−s
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+Cs−1/2e−s‖u0‖L2(�) + Cs−3/2e−s‖u1‖L2(�). (28)

Similarly, estimate (27) implies

‖y‖L∞(QT ) ≤ Cα1T + Cα1T e
(c−1)s + C

(
α2 + β	 ln3/2+ R

)
ecs R1/2

+Ce(c−1)s‖(u0)x‖L2(�) + Cse(c−1)s‖u0‖L2(�) + Cs1/2e(c−1)s‖u1‖L2(�). (29)

We now fix the parameter s in terms of R as follows :

s = 1

32c
ln+ R, with c = ‖φ‖L∞(QT ) > 1, (30)

where R > 0 is chosen large enough to ensure s ≥ s0 ≥ 1. With this choice of s, the
solution y = �s(ŷ) satisfies, in view of (28) and the fact that ŷ belongs to CR(s),

‖ρ(s)y‖L2(QT ) ≤ C(32c)3/2

ln3/2+ R

(
α2 + β	 ln3/2+ R

)
R1/2 + Cα1T (32c)3/2

R1/32c ln3/2+ R

+ C
√
32c

R1/32c ln1/2+ R
‖u0‖L2(�) + C(32c)3/2

R1/32c ln3/2+ R
‖u1‖L2(�). (31)

Thus, if β	 > 0 is small enough such that

C(32c)3/2β	 < 1/4, (32)

it can be guaranteed for large enough R > 0 that

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C(32c)3/2

ln3/2+ R

(
α2 + β	 ln3/2+ R

)
R1/2 + Cα1T (32c)3/2

R1/32c ln3/2+ R
≤ 1

3
R1/2,

C
√
32c

R1/32c ln1/2+ R
‖u0‖L2(�) ≤ 1

3
R1/2,

C(32c)3/2

R1/32c ln3/2+ R
‖u1‖L2(�) ≤ 1

3
R1/2

(33)

involving, in view of 31 that ‖ρ(s)y‖L2(QT ) ≤ R1/2.
Similarly, in view of (29) and the fact that ŷ belongs to CR(s),we infer that

‖y‖L∞(QT ) ≤ Cα1T + Cα1T R

(
1
32− 1

32c

)

+ C
(
α2 + β	 ln3/2+ R

)
R1/32R1/2

+ C

32c
(ln+ R)R

(
1
32− 1

32c

)

‖u0‖L2(�) + CR

(
1
32− 1

32c

)

‖(u0)x‖L2(�)

+ C√
32c

(ln1/2+ R)R

(
1
32− 1

32c

)

‖u1‖L2(�). (34)
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Taking β	 > 0 as before and R large enough, we infer that (recall that c =
‖φ‖L∞(QT ) > 1 so that 0 < 1

32 − 1
32c < 1)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C
(
α2 + β	 ln3/2+ R

)
R1/32R1/2 ≤ R/5,

C

32c
(ln+ R)R

(
1
32− 1

32c

)

‖u0‖L2(�) ≤ R/5,

CR

(
1
32− 1

32c

)

‖(u0)x‖L2(�) ≤ R/5,

C√
32c

(ln1/2+ R)R

(
1
32− 1

32c

)

‖u1‖L2(�) ≤ R/5,

Cα1T + Cα1T R

(
1
32− 1

32c

)

≤ R/5

(35)

implying from (34) that ‖y‖L∞(QT ) ≤ R. It follows that y = �s(ŷ) ∈ CR(s). This
concludes the proof. ��
Remark 5 The smallness condition on β	 is explicit:

β	 <
1

4C(32c)3/2
, (36)

where C is the constant appearing in Proposition 1.

Remark 6 Provided we impose the relation (30), the above proof shows that CR(s) is
stable for�s for any R ≥ R0 (equivalently s ≥ s0) for a suitably large R0 (equivalently
s0). With the above choices, in view of (33)–(35), the lower bound R0 depends on
‖(u0, u1)‖V as a power of ‖(u0, u1)‖V , so that the lower bound s0 can be chosen as
depending logarithmically on ‖(u0, u1)‖V . Note also that there is no upper bound for
R so that the parameter s (appearing notably in the definition of the weights) can be
taken arbitrarily large.

3.3 Relative compactness of the set3s(CR(s))

Proposition 2 Under the assumptions of Lemma 3, �s(CR(s)) is a relatively compact
subset of CR(s) for the L∞(QT ) norm.

Proof Let (yn)n∈N be a bounded sequence in �s(CR(s)). We prove that there exists
a subsequence (ynk )k∈N of (yn)n∈N that converges strongly to some y ∈ CR(s) with
respect to the L∞(QT ) norm.

Thanks to Lemma 3, (yn)n∈N is a bounded sequence in CR(s) and so, there exists
a subsequence ynk ∈ CR(s) and y ∈ CR(s) such that

ynk⇀
	y weakly	 in L∞(QT ), as k → +∞. (37)

Now, since (ynk )k∈N ⊂ �s(CR(s)), there is a sequence (ŷnk )k∈N ⊂ CR(s) such that
ynk = �s(ŷnk ), ∀k ∈ N. More precisely, there exists a sequence (vnk )k∈N ∈ H1

0 (0, T )
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such that, for all k ∈ N, ynk satisfies

⎧
⎪⎨

⎪⎩

(ynk )t t − (ynk )xx = − f (ŷnk ) in QT ,

ynk (0, t) = 0, ynk (1, t) = vnk (t) in (0, T ),

(ynk (·, 0), (ynk )t (·, 0)) = (u0, u1) in �.

Moreover, for some C1 > 0, we have

‖ynk‖C0([0,T ];H1
0 (�)) ≤ C1R, ‖(ynk )t‖C0([0,T ];L2(�)) ≤ C1R,

thanks to their estimates in (20) for B = − f (ŷnk ) and the analysis in Lemma 3. Since
the embedding {y ∈ L∞(0, T ; H1

0 (�)) | yt ∈ L∞(0, T ; L2(�))
}

↪→ C0(QT ) is
compact (see [35, Corollary 8 p. 90 and Lemma 12 p. 91]), this ensures the strong
convergence of (ynk )k∈N in C0(QT ) as k → +∞. ��

3.4 Continuity of themap3s in CR(s)

We prove the following result.

Proposition 3 Under the assumptions and result of Lemma 3, the map �s : CR(s) →
CR(s) is continuous with respect to the L∞(QT ) norm.

Proof Let (ŷn)n∈N be a sequence in CR(s) such that ŷn → ŷ as n → +∞ w.r.t. the
L∞(QT ) norm for some ŷ ∈ CR(s).

Let yn = �s(ŷn) and prove that yn → y := �s(ŷ) as n → +∞ w.r.t. the same
norm. Since f ∈ C0(R), f is uniformly continuous in [−R, R] implying that

f (ŷn) → f (ŷ) in L∞(QT ), as n → +∞ (38)

and thus f (ŷn) → f (ŷ) in L2(QT ) as n → +∞.
Now (as mentioned in Theorem 6),�s(ŷn) = �0

s (− f (ŷn), u0, u1) is linear contin-
uous map from L2(QT )×H1

0 (�)×L2(�) to L2(QT ). Thus, combining the estimates
(14) and (20) with B = f (ŷn) − f (ŷ), we get that

‖yn − y‖L∞(QT ) ≤ C1‖ρ(s)( f (ŷn) − f (ŷ))‖L2(QT ) ≤ C1e
−s‖ f (ŷn) − f (ŷ)‖L2(QT )

where the constant C1 depends only on R and y = �s(ŷ). Consequently, yn → y as
n → +∞ in L∞(QT ). ��

3.5 Proof of the first item of Theorem 4

Taking β	 small enough (see (32)) so that Lemma 3 applies, with s and R given
by (30), we can apply Schauder fixed point theorem to �s on CR(s): there exists
ys ∈ CR(s) ⊂ L∞(QT ) such that ys = �s(ys). By construction of �s , there exists a
function v ∈ H1

0 (0, T ) such that ys is the solution of the null controllability problem
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(23)with ŷ = ys : it follows that this element ys is a controlled solution of the semilinear
wave Eq. (1).

4 Construction of control by Banach fixed point approach with
f ∈ C1(R): proof of the second item of Theorem 4

In this section, we assume that f is locally Lipschitz continuous and that f ′ satisfies
(H′

2) with β	 small as before. Remark that condition (H′
2) implies the condition (H2)

used in the previous section.
We endow the convex set CR(s)with the distance d defined by d(y, z) = ‖ρ(s)(y−

z)‖L2(QT ).We easily check that (CR(s), d) is a complete space. In the next proposition,
we prove that the operator �s : CR(s) → CR(s) is a contracting mapping leading to
constructive method to find its fixed point.

Proposition 4 Assume that f satisfies (H′
2) with β	 satisfying (36), R and s as chosen

in Lemma 3. Then, for any ŷ1, ŷ2 ∈ CR(s),

d(�s(ŷ2),�s(ŷ1)) ≤ 1

2
d(ŷ2, ŷ1). (39)

In particular, �s is a contraction mapping from CR(s) into itself.

Proof Let ŷ1, ŷ2 ∈ CR(s). From (14), we get that

‖ρ(s)(�s(ŷ2) − �s(ŷ1))‖L2(QT ) ≤ Cs−3/2‖ρ(s)( f (ŷ2) − f (ŷ1))‖L2(QT ).

Then, we can use (H′
2) to deduce

‖ρ(s)(�s(ŷ2) − �s(ŷ1))‖L2(QT )

≤ C(32c)3/2
(

α

ln3/2+ R
+ β	

)

‖ρ(s)(ŷ2 − ŷ1)‖L2(QT ), (40)

since s is given by (30). Since C(32c)3/2β	 ≤ 1/4, the result follows as soon as R is
large enough. ��
As as corollary of the previous result and the classical Banach-Picard’s fixed point
theorem, the contraction property of the operator �s for β	 small enough given in
(32) and s and R given by (30) allows to define a convergent sequence (yk, vk)k∈N to
a controlled pair for (1) and prove the following precise version of the second item of
Theorem 4.

Theorem 8 Let (u0, u1) ∈ V . Assume that f is locally Lipschitz continuous and
satisfies (H′

2) with β	 satisfying (36), s and R as chosen in Lemma 3. Then, for any
y0 ∈ CR(s), the sequence (yk)k∈N	 ⊂ CR(s) given by

yk+1 = �s(yk), k ≥ 0,
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(where �s is defined by (24)) together with the associated sequence of controls
(vk)k∈N	 ⊂ H1

0 (0, T ) strongly converges in L2(QT ) × L2(0, T ) to a controlled solu-
tion for (1). Moreover, the convergence is at least linear with respect to the distance
d.

Proof The convergence of the sequence (yk)k∈N toward y = �s(y) ∈ CR(s) with
linear rate follows from the contraction property of �s :

‖ρ(s)(y − yk)‖L2(QT ) = ‖ρ(s)(�s(y) − �s(yk−1))‖L2(QT )

≤ 1

2k
‖ρ(s)(y − y0)‖L2(QT ) ≤ 1

2k

(
R1/2 + e−s‖y0‖L2(QT )

)
.

Let now v ∈ H1
0 (0, T ) be associated with y so that y − yk satisfies, for every k ∈ N

	

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(y − yk)t t − (y − yk)xx = −(
f (y) − f (yk−1)

)
in QT ,

(y − yk)(0, ·) = 0, (y − yk)(1, ·) = (v − vk) in (0, T ),

((y − yk)(·, 0), (y − yk)t (·, 0)) = (0, 0) in �,

((y − yk)(·, T ), (y − yk)t (·, T )) = (0, 0) in �.

Estimate (14) then implies (recall s = 1
32c ln+ R)

‖ρ1(s)(v − vk)‖L2(0,T ) ≤ Cs−1‖ρ(s)
(
f (y) − f (yk−1)

)‖L2(QT )

≤ C
32c

ln+ R

(
α + β	 ln3/2+ R

)‖ρ(s)(y − yk−1)‖L2(QT )

and therefore the convergence is at a linear rate of the sequence (vk)k∈N	 toward an
exact control for (1). ��
Remark 7 It can be observed from (40) that the constant appearing in front of
‖ρ(s)(ŷ2 − ŷ1)‖L2(QT ) is getting smaller as R (consequently s) getting larger. In
particular, if f satisfies

lim|r |→+∞
| f ′(r)|
ln3/2+ |r |

= 0, (41)

then, for any given ε > 0 (however, small), the map �s is ε-contractive for large
enough s ≥ s0. In other words, the speed of convergence of the sequence (yk)k≥1
introduced by Theorem 8 increases with s.

5 Numerical illustrations

We present some numerical illustrations of the convergence result given by Theorem 8
and emphasize the influence of the parameter s. More precisely, for s large enough,
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we compute the sequence (yk, vk)k∈N solution to

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

yk,t t − yk,xx = − f (yk−1) in QT ,

yk(0, ·) = 0, yk(1, ·) = vk in (0, T ),

(yk(·, 0), (yk)t (·, 0)) = (u0, u1) in �,

(yk(·, T ), (yk)t (·, T )) = (0, 0) in �,

(42)

obtained through the variational formulation (12)with the source term B = − f (yk−1).
We first sketch the algorithm and then discuss some numerical experiments obtained
with the software FreeFem++ (see [20]).

5.1 Construction of the sequence (yk, vk)k≥1

Starting with some suitable initial guess y0 ∈ CR(s), we can obtain the solution yk to
(42) with a control vk based on Theorem 6. Assume that the value of the Carleman
parameter s satisfies Lemma 3. Then, for each k ≥ 1, we define the unique solution
wk ∈ Ps (see Theorem 6) of

(wk, z)P,s =
∫

�

u1z(·, 0) dx −
∫

�

u0zt (·, 0) dx −
∫

QT

f (yk−1)z dxdt ∀z ∈ Ps,

(43)

then we set yk = ρ−2(s)Lwk in QT and vk = sη2ρ−2
1 (s)(wk)x (1, ·) in (0, T ).

The numerical approximation of the variational formulation (43) has been addressed
in [8, 13] andmore recently in [2]. A conformal finite dimensional approximations, say
Ps,h of Ps , leads to a strong convergent approximationwk,h ofwk for the Ps normas the
discretization parameter h goes to 0. Then, fromwk,h , we can define the approximated
controlled solution yk,h := ρ−2(s)Lwk,h and vk,h := sη2ρ−2

1 (s)(wk,h)x (1, ·). In
our semilinear setting, we shall employ an equivalent but different formulation, more
appropriate for numerical purposes. First, in order to avoid the possible numerical blow
up—for s large—of the terms ρ−2(s) and ρ−2

1 (s) appearing in the formulation and
of order O(e2s), we introduce a change of variable. Second, in order to avoid second
differentiation in order to compute yk from the definition yk = ρ−2(s)(wk,t t −wk,xx ),
we incorporate directly the controlled state solution in the formulation. We refer to
[31, Section 3.2] where this normalization procedure has been employed in the context
of the heat equation. Precisely, we introduce the variables

mk = ρ−1
1 (s)wk, pk = ρ−1(s)Lwk in QT (44)

so that pk = ρ−1(s)L(ρ1(s)mk) and yk = ρ−1(s)pk and then replace the for-
mulation (43) by the equivalent and well-posed following mixed formulation: find
(mk, pk, λk) ∈ ρ−1(s)Ps × L2(QT ) × L2(QT ) solution of
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫

QT

pk p dxdt + s
∫ T

0
η2(t)(mk)x (1, t)mx (1, t)dt

+
∫

QT

λk

(
p − ρ−1(s)L(ρ1(s)m)

)
dxdt

=
∫ 1

0
u1ρ1(s, 0)m(·, 0) dx −

∫ 1

0
u0(x) [ρ1(0; s)mt (0, x)

+(∂tρ1)(0; s)m(0, x)] dx −
∫

QT

f (ρ−1(s)pk−1)ρ1(s)m dxdt,

∫

QT

λ
(
pk − ρ−1(s)L(ρ1(s)mk)

)
dxdt = 0,

(45)

for all (m, p, λ) ∈ ρ−1(s)Ps × L2(QT ) × L2(QT ). The variable λk stands as a
Lagrange multiplier for the constraint pk − ρ−1(s)L	(ρ1(s)mk) = 0 in QT . We
check the following inequality

ρ−1(s)L	(ρ1(s)mk)

= ρ−1(s)ρ1(s)Lmk + ρ−1(s)∂t tρ1(s)mk + 2ρ−1(s)∂tρ1(s)(mk)t

= A1Lmk + A2mk + A3(mk)t ,

with

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂tρ1(s; t) = sλβ(2t − T )φ(1, t)ρ1(s; t),
∂t tρ1(s; t) = 2sλβφ(1, t)ρ1(s; t) − sλ2β2(2t − T )2φ(1, t)ρ1(s; t)

+s2λ2β2(2t − T )2φ2(1, t)ρ1(s; t),
A1 = ρ−1(s)ρ1(s), A2 = ρ−1(s)∂t tρ1(s), A3 = 2ρ−1(s)∂tρ1(s)

and we observe that the functions Ai do not contain exponential with positive argu-
ments. For instance, we get

ρ−1(s)ρ1(s) = e−s(φ(1,t)−φ(x,t)),

and recall that φ(1, t)−φ(x, t) ≥ 0 in QT . Eventually, from the solution (mk, pk, λk),
the controlled pair (yk, vk) can be retrieved using the formula

yk = ρ−1(s)pk, vk = sη2ρ−1
1 (s)(mk)x (1, ·). (46)

The sequence (yk, vk)k≥1 is initialized with (y0, v0) = (0, 0) so that the iteration
(y1, v1) is the solution to the linear system (42)with the right hand side B = − f (y0) =
− f (0). We perform the iterations until the following criterion (based on Proposition
4) is fulfilled

‖ρ(s)yk+1 − ρ(s)yk‖L2(QT )

‖ρ(s)yk‖L2(QT )

≤ 10−6. (47)
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We denote by k	 the smallest integer k such that (47) holds. Remark, since the weight
ρ(s) are uniformly positive and bounded in QT , the convergence of the sequence
{ρ(s)yk}k∈N stated in Proposition 4) also implies the convergence of the sequence
{yk}k∈N.

Eventually, concerning the approximation of the formulation (45), we use a confor-
mal space-time finite element method (as addressed in [13]). We introduce a regular
triangulation Th of QT such that QT = ⋃

K∈Th K . We assume that {Th}h>0 is a regu-
lar family, where the index h is such that h = max

K∈Th
diam (K ). We then approximate

of the variables pk and λk in the space Ph := {ph ∈ C0(QT ) : ph |K ∈ P1(K ), ∀K ∈
Th} ⊂ L2(QT ), where P1(K ) denotes the space of affine functions both in x and t .

On the other hand, the variable mk is approximated with the space Vh := {vh ∈
C1(QT ) : vh |K ∈ P(K ), ∀K ∈ Th} ⊂ ρ−1

1 (s)Ps , where P(K ) denotes the composite
Hsieh–Clough–Tocher C1 element defined for triangles. We refer to [11, p. 356] and
[3] where the implementation has been discussed. We refer to [2] for the numerical
analysis of the formulation (45).

5.2 Experiments

In what follows, we take T = 2.5 and (u0(x), u1(x)) = cu0(sin(πx), 0) with x ∈
� = (0, 1) parametrized by the real cu0 . Then, we define the various weight functions
appearing in the Carleman inequality (10) in Sect. 2.1 as follows: we take

ψ(x, t) = (x + 0.02)2 − 0.9 (t − T /2)2 + 2, φ(x, t) = e
1
2ψ(x,t) in QT ,

so that ψ ≥ 0.5 in QT . The weights ρ and ρ1 are then defined by (8). The cut-off
function η is chosen as follows:

η(t) = e
− 1

(t+10−6)(T−t+10−6) , ∀t ∈ (0, T ).

Eventually, we employ a regular space-time mesh composed of 25600 triangles and
13041 vertices corresponding to the discretization parameter h ≈ 1.25 × 10−2.

5.2.1 Nonlinear functions with growth r ln3/2(2 + |r|)

In the mixed formulation (45), let us first consider the semilinear function

f (r) = c f r(α2 + β	 ln3/2(2 + |r |)), ∀r ∈ R (48)

with α2 = β	 = 1 and some c f ∈ R
∗, so that f (0) = 0. We check that f satisfies

(H2) and (H′
2). In this case, the source term in (45) can be rigorously written as

ρ1(s) f (ρ
−1(s)pk−1) = c f ρ1(s)ρ

−1(s)pk−1

(
α2 + β	 ln3/2(2 + |yk−1|)

)
.
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Table 1 cu0 = 20 ; c f = 5; f (r) = c f r(1 + ln3/2(2 + |r |)); Norms of (yk	 , vk	 ) w.r.t. s

s ‖yk	 ‖L2(QT ) ‖ρ(s)yk	 ‖L2(QT ) ‖vk	 ‖L2(0,T ) ‖ρ1(s)vk	‖L2(0,T ) ‖vk	 ‖H1
0 (0,T ) ‖vk	 ‖L∞(0,T ) k	

2 59.75 1.99 × 10−1 215.16 2.801 × 10−2 798.40 313.01 20

3 58.54 3.92 × 10−2 210.26 3.725 × 10−4 781.82 306.16 16

4 50.89 8.25 × 10−3 179.03 1.06 × 10−5 675.97 262.19 13

5 43.34 1.79 × 10−3 148.81 5.624 × 10−7 575.22 219.94 12

6 37.92 3.99 × 10−4 130.51 3.096 × 10−8 523.09 196.31 11

7 37.66 9.01 × 10−5 144.45 1.709 × 10−9 610.47 224.47 10

8 49.55 2.06 × 10−5 207.90 9.607 × 10−11 874.74 318.43 9

I. Experiments for fixed (c f , cu0) w.r.t. the parameter s. Let us make the following
experiments given by Table 1, 2, for some fixed parameters c f (associated with the
nonlinear function) and cu0 (associatedwith the initial data). For some large parameters
c f = 5 and cu0 = 20, it has been checked that the value s = 1 is not large enough
to imply the Banach contraction property (ensuring the convergence of the algorithm
w.r.t. the criterion (47)). Then, by choosing s ≥ 2,we recover the required convergence
criterion (47). We provide the results in Table 1.

Figure 1-left depicts the evolution of the relative error
‖ρ(s)yk+1−ρ(s)yk‖L2(QT )

‖ρ(s)yk‖L2(QT )
w.r.t.

to the iteration number k for s ∈ {1, 2, 3, 4, 5}. In agreement with Remark 7, we
observe that the decay of the error is amplified with larger values of s. We observe that
the weighted norm ‖ρ(s)yk	‖L2(QT ) and ‖ρ1(s)yk	‖L2(0,T ) decrease with respect to s
in agreement with the fact that the weight ρ(s) and ρ1(s) decreases with s (they behave
like e−s). We observe on the contrary that the norms ‖yk	‖L2(QT ) and ‖vk	‖L2(0,T )

of the control-state pair are not monotonous with respect to s; this is due to the fact
that the weights sρ2(s) and ρ2

1 (s) appearing in the cost Js (see (16)) are of the same
order for the values of s considered. Remark that the influence of the parameter is
much stronger in the parabolic situations as it makes appear unbounded weights; we
refer to [17, Section 5] for numerical experiments emphasizing this phenomenon. The
stopping criterion (47) used here involves the weight ρ(s) as Proposition 4 guarantees
as soon as s is large enough the convergence of {‖ρ(s)yk‖L2(QT )}k∈N. This implies
notably the convergence of the sequence {‖yk‖L2(QT )}k∈N.

If we do not incorporate the weight ρ(s) in the criterion, we still observe the
convergence of the corresponding sequence {yk}k∈N for the L2(QT )-norm with again
an amplification of the rate as s increases (see Fig. 1-right): a precise dependence of
the rate with respect to s is, however, unknown in that case.

Table 2 reports experiments in the unfavorable situation for which c f < 0. We
checked that for c f = −5 (cu0 = 20 as previous), the convergence is observed from
s = 3. It is noticeable that the L2 norms of the solutions and the associated controls
are relatively larger compare to the case of positive c f given by Table 1. The number
of iterations k	 to reach convergence is also larger : for instance, with s = 3, we get
‖yk	‖L2(QT ) ≈ 59.75 and k	 = 20 for c f = 5, while we get ‖yk	‖L2(QT ) ≈ 3846.94
and k	 = 32 for c f = −5.
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Fig. 1
‖ρ(s)yk+1−ρ(s)yk‖L2(QT )

‖ρ(s)yk‖L2(QT )
(left) and

‖yk+1−yk‖L2(QT )

‖yk‖L2(QT )
(right) w.r.t. iterations k for (c f , cu0 ) =

(5, 20)

Table 2 cu0 = 20 ; c f = −5; f (r) = c f r(1 + ln3/2(2 + |r |)); Norms of (yk	 , vk	 ) w.r.t. s

s ‖yk	 ‖L2(QT ) ‖ρ(s)yk	 ‖L2(QT ) ‖vk	 ‖L2(0,T ) ‖ρ1(s)vk	‖L2(0,T ) ‖vk	 ‖H1
0 (0,T ) ‖vk	 ‖L∞(0,T ) k	

3 3846.94 6.768 × 10−1 3905.78 1.298 × 10−1 57298.8 4576.07 32

4 2621.55 3.154 × 10−2 2888.41 4.064 × 10−3 35910.6 2919.18 23

5 2120.91 2.711 × 10−3 2393.94 1.851 × 10−4 29619.4 2373.23 20

6 1842.65 4.677 × 10−4 2088.93 9.851 × 10−6 26358.5 2093.53 17

7 1666.94 9.993 × 10−5 1910.54 5.657 × 10−7 24108.5 1902.18 15

8 1539.51 2.231 × 10−5 1680.7 3.396 × 10−8 22176.5 1815.9 14

II. Experiments for fixed (s, cu0)w.r.t. c f . Hereafter, for fixed a Carleman parameter
and initial data, we consider several values of c f to study the number of iterations for
which the pair the solution yk	 satisfies the criterion (47); Table 3 reports some values
corresponding to s = 3 and cu0 = 20; As expected, larger negative values of c f lead
to larger norms of the state-control pair; we also observe that the required number
of iterations k	 increases with |c f |, including in the a priori more favorable case for
which c f > 0. For larger values of c f , for instance c f = 8, the algorithm fails to
converge, somehow in agreement with the smallness assumption on β	 in our Theorem
4. For c f = 8, the convergence is recovered by taking a larger value of s, for instance
s = 4.

III. Experiments for fixed (s, c f ) w.r.t. the parameter cu0 .
We now fix the parameters s and c f and then vary the size of the initial data u0

in terms of the parameter cu0 . We give some results in Tables 4 and 5 for (s, c f ) =
(3,−2) and (s, c f ) = (3, 2), respectively. One can observe that for large cu0 also, the
algorithm converges. The quantity C(y, v) defined by (following the estimates in (6)
or Proposition 1)

C(y, v) = ‖ρ(s)y‖L2(QT ) + s−1/2‖ρ1(s)v‖L2(0,T )

s−3/2‖ρ(s) f (y)‖L2(QT ) + s−1/2e−s‖u0‖L2(�)

(49)
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Table 3 cu0 = 20 ; s = 3; f (r) = c f r(1 + ln3/2(2 + |r |)); Norms of (yk	 , vk	 ) w.r.t. c f

c f ‖yk	‖L2(QT ) ‖ρ(s)yk	‖L2(QT ) ‖vk	‖L2(0,T ) ‖ρ1(s)vk	‖L2(0,T ) ‖vk	‖L∞(0,T ) k	

−5 3846.94 6.768 × 10−1 3905.78 1.29 × 10−1 4576.07 32

−4 600.95 1.243 × 10−1 558.07 2.07 × 10−2 662.12 21

−3 107.61 5.635 × 10−2 81.84 4.41 × 10−3 132.96 14

−2 21.07 4.807 × 10−2 19.08 6.15 × 10−4 20.45 10

−1 9.87 4.528 × 10−2 7.14 1.24 × 10−4 8.43 7

0 11.80 4.352 × 10−2 11.33 1.94 × 10−4 13.79 1

1 15.49 4.223 × 10−2 24.21 1.45 × 10−4 30.46 7

2 16.79 4.123 × 10−2 32.56 2.00 × 10−4 43.48 9

3 16.52 4.042 × 10−2 31.94 2.88 × 10−4 38.57 10

4 28.20 3.977 × 10−2 80.49 3.11 × 10−4 115.36 13

5 58.54 3.922 × 10−2 210.26 3.725 × 10−4 306.16 16

6 94.03 3.875 × 10−2 376.43 6.47 × 10−4 564.80 19

7 113.32 3.835 × 10−2 482.02 1.03 × 10−3 753.92 25

Table 4 (s, c f ) = (3, −2); f (r) = c f r(1 + ln3/2(2 + |r |)); Norms of (yk	 , vk	 ) w.r.t. cu0

cu0 ‖yk	 ‖L2(QT ) ‖ρ(s)yk	 ‖L2(QT ) ‖vk	 ‖L2(0,T ) ‖ρ1(s)vk	‖L2(0,T ) ‖vk∗ ‖L∞(0,T ) C(yk∗ , vk∗ ) k	

10 6.30 2.32 × 10−2 2.66 5.57 × 10−5 3.05 9.55 × 10−2 8

50 1.68 × 102 1.31 × 10−1 1.73 × 102 6.73 × 10−3 1.99 × 102 9.19 × 10−2 12

100 7.80 × 102 3.14 × 10−1 6.07 × 102 3.15 × 10−2 9.57 × 102 9.01 × 10−2 14

200 3.58 × 103 9.19 × 10−1 4.08 × 103 1.35 × 10−1 4.25 × 103 8.47 × 10−2 16

500 2.64 × 104 5.15 2.61 × 104 8.97 × 10−1 2.91 × 104 7.33 × 10−2 19

1000 1.13 × 105 2.09 × 102 9.26 × 104 3.76 1.23 × 105 6.39 × 10−2 21

2000 4.77 × 105 8.66 × 102 4.94 × 105 1.58 × 101 5.13 × 105 5.54 × 10−2 23

5000 3.18 × 106 5.63 × 102 3.49 × 106 1.06 × 102 3.60 × 106 4.62 × 10−2 28

10000 1.31 × 107 2.30 × 103 1.19 × 107 4.50 × 102 1.71 × 107 4.08 × 10−2 31

15000 2.97 × 107 5.25 × 103 2.53 × 107 1.04 × 103 4.12 × 107 3.81 × 10−2 33

20000 5.30 × 107 9.42 × 103 4.61 × 107 1.91 × 103 7.55 × 107 3.64 × 10−2 35

is uniform with respect to the quantity cu0 in agreement with our theoretical results.

IV. Evolution of the controlled solutions. In this paragraph, we present some figures
of the controlled solutions and the associated controls for our semilinear system. We
fix c f = −3 and cu0 = 10. Figure 2 depicts the controlled solutions yk∗ for s = 1,
5 and 9, respectively. The corresponding optimal control is given in Fig. 3-Left for
s ∈ {1, 3, 5, 9}. The evolution of the L2(�) normw.r.t. t ∈ (0, T ) is depicted in Fig. 3-
Right. Figures 4 and 5 are concerned with the case c f = 3, leading to control-state
pairs with lower norms. Observe also that the optimal controls are pointwise less
sensitive with respect to s when c f is positive.
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Table 5 (s, c f ) = (3, 2); f (r) = c f r(1 + ln3/2(2 + |r |)); Norms of (yk	 , vk	 ) w.r.t. cu0

cu0 ‖yk	 ‖L2(QT ) ‖ρ(s)yk	 ‖L2(QT ) ‖vk	 ‖L2(0,T ) ‖ρ1(s)vk	‖L2(0,T ) ‖vk∗ ‖L∞(0,T ) C(yk∗ , vk∗ ) k	

10 8.302 2.084 × 10−2 15.062 7.91 × 10−5 19.481 8.75 × 10−2 8

50 40.582 1.015 × 10−1 77.126 6.83 × 10−4 1.01 × 102 7.66 × 10−2 10

100 99.183 2.005 × 10−1 2.23 × 102 1.51 × 10−3 3.02 × 102 7.18 × 10−2 11

200 331.403 3.963 × 10−1 9.74 × 102 3.04 × 10−3 1.36 × 103 6.72 × 10−2 13

500 1476.63 9.765 × 10−1 5.04 × 103 9.20 × 10−3 7.09 × 103 6.16 × 10−2 14

1000 3667.51 1.933 1.32 × 104 2.73 × 10−2 1.89 × 104 5.79 × 10−2 16

2000 7261.36 3.830 2.67 × 104 7.79 × 10−2 3.99 × 105 5.45 × 10−2 17

5000 17146.3 9.467 6.25 × 104 2.72 × 10−1 8.01 × 105 5.05 × 10−2 19

10000 76904.8 18.79 3.14 × 105 7.30 × 10−1 4.81 × 105 4.78 × 10−2 21

15000 182361 28.073 7.75 × 105 1.37 1.1725 × 106 4.65 × 10−2 22

20000 317709 37.334 1.37 × 106 2.19 2.07 × 106 4.56 × 10−2 23
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Fig. 2 Controlled solution yk∗ for c f = −3, cu0 = 10 and f (r) = c f r(1 + ln3/2(2 + |r |)); s ∈ {1, 5, 9}

5.3 Nonlinear functions with growth r| cos(r2)| ln3/2(2 + |r|)

In order to enhance the importance of the assumption (H′
2) on the first derivative of

f , let us consider the following nonlinear function

f (r) = c f r | cos(r2)|
(
α2 + β	 ln3/2(2 + |r |)), ∀r ∈ R (50)

with some c f ∈ R
∗ and α2 = β	 = 1. It satisfies the assumption (H2) but not (H′

2).
We check that for small values of c f , the algorithm converges for s = 1. For instance,
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Fig. 3 c f = −3, cu0 = 10 and f (r) = c f r(1+ ln3/2(2+|r |)); Left: Control vk∗ w.r.t. s; Right: Evolution
of ‖yk∗ (·, t)‖L2(�) w.r.t. time t
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Fig. 4 Controlled solution yk∗ for c f = 3, cu0 = 10 and f (r) = c f r(1 + ln3/2(2 + |r |)); s ∈ {1, 5, 9}

in Table 6 we give some experiments for c f = −1, cu0 = 20 and s ∈ {1, 2, 3, 4, 5}.
On the other hand, with c f = −2, the method fails to converge for s ∈ {1, 2, 3, 4, 5},
meaning that the contraction property is lost. The convergence is recovered for s
larger or equal than 6, see Table 7. Moreover, the number of iterations k	 to fulfill
the convergence criterion (47) increases significantly from c f = −1 to c f = −2,
suggesting that the amplitude of the derivative of the nonlinearity is crucial in the
contracting property of the operator �s .
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Fig. 5 c f = 3, cu0 = 10 and f (r) = c f r(1 + ln3/2(2 + |r |)); Left: Control vk∗ w.r.t. t ; Right: Evolution
of ‖yk∗ (·, t)‖L2(�) w.r.t. t

Table 6 cu0 = 20 ; c f = −1; f (r) = c f r | cos(r2)|(1 + ln3/2(2 + |r |)); Norms of (yk	 , vk	 ) w.r.t. s

s ‖yk	 ‖L2(QT ) ‖ρ(s)yk	 ‖L2(QT ) ‖vk	 ‖L2(0,T ) ‖ρ1(s)vk	‖L2(0,T ) ‖vk	 ‖H1
0 (0,T ) ‖vk	 ‖L∞(0,T ) k	

1 10.41 1.31 7.89 1.63 × 10−1 33.08 7.97 24

2 10.21 2.29 × 10−1 7.92 4.54 × 10−3 33.39 8.19 20

3 9.98 4.45 × 10−2 8.01 1.75 × 10−4 34.30 8.62 18

4 9.79 9.12 × 10−3 8.08 8.96 × 10−6 35.61 8.97 14

5 9.65 1.94 × 10−3 8.19 4.97 × 10−7 37.01 9.32 14

Table 7 cu0 = 20 ; c f = −2; Norms of (yk	 , vk	 ) w.r.t. s; when f = c f r | cos(r2)|(1 + ln3/2(2 + |r |))
s ‖yk	 ‖L2(QT ) ‖ρ(s)yk	 ‖L2(QT ) ‖vk	 ‖L2(0,T ) ‖ρ1(s)vk	‖L2(0,T ) ‖vk	 ‖H1

0 (0,T ) ‖vk	 ‖L∞(0,T ) k	

6 10.65 4.27 × 10−4 6.45 1.01 × 10−8 24.19 7.47 87

7 10.49 9.51 × 10−5 6.46 6.43 × 10−10 25.25 7.64 118

8 10.51 2.15 × 10−5 6.46 4.57 × 10−11 26.73 7.46 90

9 10.64 4.94 × 10−6 6.54 3.66 × 10−12 29.27 7.77 45

5.4 Nonlinear functions with growth r lnp(2 + |r|) for p ≥ 2

In this section, we first consider the following form of the nonlinear function:

f (r) = c f r(α2 + β	 ln2(2 + |r |)) ∀r ∈ R (51)

which satisfies (H1) but not (H2) nor (H′
2). For (c f , cu0) = (4, 10), we have checked

that the algorithm does not converge for the Carleman parameters s = 1 and s = 2.
For the experiments, we need at least s > 2 to fulfill the convergence criterion (47).
We present some results in Table 8.

But, as soon as we increase the L2-norm of the initial data u0, the result is getting
worse, even if we keep the value of c f = 4. For instance, considering cu0 = 20 is
giving the convergence for s > 4, see Table 9. In other words, the algorithm does not
really fit w.r.t. large values of norms for the initial data.
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Table 8 cu0 = 10 ; c f = 4; f (r) = c f r(1 + ln2(2 + |r |)); Norms of (yk	 , vk	 ) w.r.t. s

s ‖yk	 ‖L2(QT ) ‖ρ(s)yk	 ‖L2(QT ) ‖vk	 ‖L2(0,T ) ‖ρ1(s)vk	‖L2(0,T ) ‖vk	 ‖H1
0 (0,T ) ‖vk	 ‖L∞(0,T ) k	

3 18.16 1.98 × 10−2 61.87 1.68 × 10−4 247.79 93.91 17

4 14.99 4.16 × 10−3 47.83 5.92 × 10−6 196.93 72.47 14

5 12.56 9.05 × 10−4 37.03 2.86 × 10−7 158.61 55.24 13

6 11.79 2.01 × 10−4 38.38 1.47 × 10−8 176.91 59.85 11

7 12.74 4.53 × 10−5 46.64 7.77 × 10−10 221.24 75.80 10

Table 9 cu0 = 20 ; c f = 4; f (r) = c f r(1 + ln2(2 + |r |)); Norms of (yk	 , vk	 ) w.r.t. s

s ‖yk	 ‖L2(QT ) ‖ρ(s)yk	 ‖L2(QT ) ‖vk	 ‖L2(0,T ) ‖ρ1(s)vk	 ‖L2(0,T ) ‖vk	 ‖H1
0 (0,T ) ‖vk	 ‖L∞(0,T ) k	

5 131.60 1.77 × 10−3 616.05 4.78 × 10−7 2668.36 1004.82 36

6 119.54 3.95 × 10−4 559.19 2.59 × 10−8 2470.46 933.93 25

Table 10 cu0 = 10 ; s = 3; f (r) = c f r(1 + ln2(2 + |r |)); Norms of (yk	 , vk	 ) w.r.t. c f

c f ‖yk	‖L2(QT ) ‖ρ(s)yk	‖L2(QT ) ‖vk	‖L2(0,T ) ‖ρ1(s)vk	‖L2(0,T ) ‖vk	‖L∞(0,T ) k	

−3 433.899 8.057 × 10−2 473.795 1.517 × 10−2 503.043 36

−2 16.512 2.446 × 10−2 19.926 6.372 × 10−4 20.044 12

−1 5.0298 2.271 × 10−2 3.587 5.838 × 10−5 4.268 7

0 5.902 2.176 × 10−2 5.6657 9.726 × 10−5 6.895 1

1 7.819 2.108 × 10−2 12.589 7.245 × 10−5 15.975 7

2 8.536 2.056 × 10−2 17.4798 1.067 × 10−4 23.876 9

3 8.425 2.014 × 10−2 17.138 1.519 × 10−4 20.768 11

4 18.16 1.981 × 10−2 61.872 1.687 × 10−4 93.918 17

We also perform some experiments for s = 3, cu0 = 10 to see how the algorithm
behaves with respect to different values of c f . In Table 10, we see that the algorithm
converges for the values of c f ∈ [−3, 4]. On the other hand, for the same quantities
(s, cu0) = (3, 10), we have the divergence of ourmethodwhen the nonlinear parameter
c f ≤ −4 or c f ≥ 5.

Next, we make some experiments for the nonlinearities f that behave like r lnp |r |
at infinity when p > 2 and therefore does not satisfy (H1). Below, we consider the
nonlinear function

f p(r) = c f r
(
1 + lnp(2 + |r |)), for p > 2, ∀r ∈ R. (52)

We refer to Table 11 for some results associated with c f = −2, cu0 = 10 and s = 3
for p ∈ {2, 2.3}. As expected, the value k	 increases with the value of p. Moreover,
for p ≥ 2.4, the algorithm does not converge anymore; more precisely, the norms
of the state-control pair (yk, vk)k∈N blow up with respect to k, in agreement with the
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Table 11 c f = −2, s = 3, cu0 = 10; Norms of (yk	 , vk	 ) w.r.t. f p given by (52)

‖yk	‖L2(QT ) ‖ρ(s)yk	‖L2(QT ) ‖vk	‖L2(0,T ) ‖ρ1(s)vk	‖L2(0,T ) ‖vk	‖L∞(0,T ) k	

p = 2 16.512 2.446 × 10−2 19.926 6.372 × 10−4 20.044 12

p = 2.05 20.581 2.472 × 10−2 23.047 8.334 × 10−4 25.093 12

p = 2.1 26.176 2.508 × 10−2 24.076 1.099 × 10−3 32.173 13

p = 2.15 34.134 2.564 × 10−2 26.570 1.468 × 10−3 44.653 15

p = 2.2 47.681 2.662 × 10−2 49.532 2.011 × 10−3 63.213 17

p = 2.25 76.081 2.883 × 10−2 84.956 2.938 × 10−3 95.777 20

p = 2.3 136.668 3.542 × 10−2 121.539 5.045 × 10−3 156.929 26

result in Theorem 2 that the operator �s does not enjoy a stability result for cu0 and
c f large enough soon as p is larger than 2.

6 Concluding remarks

By introducing a functional in the Carleman setting different than in the seminal
paper of Zuazua [41], we have derived, under similar assumptions, a somehow sim-
pler proof of the boundary controllability of a semilinear wave equation of the form
ytt − yxx + f (y) = 0. Moreover, assuming an additional growth assumption on f ′,
we have constructed a sequence of state-control pairs, solution of a linear boundary
controllability problem, converging pointwise and with a linear rate to a solution of the
semilinear equation. As in the recent work [17] devoted to the distributed controlla-
bility for a semilinear heat equation, the analysis emphasizes the role of the Carleman
weights parameterized by the real s. Numerical experiments illustrate that the speed
of convergence of the sequence is amplified as the Carleman parameter s is larger.

Our analysis is based on a simple fixed point strategy which consists to see the
nonlinear term as a source term. It would be interesting to analyze whether or not
the fixed point operator introduced by Zuazua in 1993, involving a potential, is, after
reformulation in a functional Carleman setting, contracting for s large enough.

The fixed point argument employed here requires uniform bounds of the controlled
trajectories for a linear wave equation: this is achieved by assuming the initial data
in H1

0 (�) × L2(�) and by imposing that the control satisfies at the initial and final
time some compatibility conditions with the solution: this leads to boundary controls
in H1

0 (0, T ) and then, in our one-dimensional situation, to trajectories in L∞(QT ).
Assuming more regularity on the initial conditions, we may extend our results for
multi-dimensional situations and for nonlinearities depending on the gradient of the
solution. This will be addressed in future works.

Acknowledgements The authors thank the funding by the French government research program
“Investissements d’Avenir” through the IDEX-ISITE initiative 16-IDEX-0001 (CAP 20-25).
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Appendix: Proof of Theorem 7

In what follows, in order to simplify the notations, we shall just write ρ = ρ(t) and
ρ1 = ρ1(t) instead of ρ = ρ(s; x, t) and ρ1 = ρ1(s; t).

Preliminary to the proof and following [18], for all f ∈ C0(R; E) (where E is a
Banach space) and any τ > 0, we define δτ f := f

(
t + τ

2

) − f
(
t − τ

2

)
and

Tτ f := 1

τ
δτ

(
δτ f

τ

)

= f (t + τ) − 2 f (t) + f (t − τ)

τ 2
.

Let now ws ∈ Ps and the solution ys ∈ L2(QT ) be given by 6. Then, z defined by
z = Tτws belongs to Ps , wherews as well as ys can be extended uniquely on (−∞, 0)
and (T ,+∞). Indeed, in the interval (−∞, 0) the solution ys satisfies the following
set of equations

⎧
⎪⎨

⎪⎩

Lys = 0 in � × (−∞, 0),

ys(0, t) = ys(1, t) = 0 for t ∈ (−∞, 0),

(ys(·, 0), ∂t ys(·, 0)) = (u0, u1) in �,

(53)

where the source term B ∈ L2(QT ) is assumed to be extendable by 0 outside (0, T ).
Recall that the boundary condition ys(1, t) = 0 holds outside (0, T ) since η = 0
(appearing in the formula of vs) vanishes outside (δ, T − δ).

Similarly, in (T ,+∞) we can define the solution ys uniquely, and ys(t) = 0
for all t ≥ T . It follows that the solution ys satisfies ys ∈ C0(R; L2(�)) ∩
C1(R; H−1(�)) and ys ∈ C0((−∞, δ]; H1(�)) ∩ C1((−∞, δ]; L2(�)) and ys ∈
C0([T − δ,+∞); H1(�)) ∩ C1([T − δ,+∞); L2(�)) (see [26]). We extend as well
the weights ρ and ρ1 in�×R so that it preserves smoothness and positivity properties.

This ensures the extension of the solution ws which satisfies the following set of
equations in R

{
Lws = ρ2ys in � × R,

ws(0, t) = ws(1, t) = 0, in R.
(54)

Moreover, it can be seen that Lws = 0 in [T ,+∞), since ys is a controlled solution
to (53).

We now proceed to the proof of Theorem 7, done in three steps.
Step 1 : We suppose first that u0 ∈ H1

0 (�) ∩ H2(�), u1 ∈ H1
0 (�) and B ∈

D(0, T ; L2(�)) and prove that vs ∈ H1(0, T ) and (ys)t ∈ L2(QT ).
We start by considering the variational formulation (12) by choosing z = Tτws as

test function. Since ws ∈ C0(R; H1
0 (�)) ∩ C1(R; L2(�)) solves (54), it is clear that

Tτws ∈ C0([0, T ]; H1
0 (�)) ∩ C1([0, T ]; L2(�)), (Tτws)x ∈ L2(0, T ). With this z,
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the formulation reads

∫

QT

ρ−2Lws LTτws dxdt + s
∫ T

0
η2(t)ρ−2

1 (ws)x (1, t)Tτ (ws)x (1, t)dt

=
∫

�

u1(x)Tτws(x, 0) dx −
∫

�

u0(x)Tτ (ws)t (x, 0) dx +
∫

QT

BTτws dxdt . (55)

Sub-step 1. Let us start with the first integral in the left hand side of (55). We have

∫

QT

ρ−2(t)Lws(t)LTτws(t) dxdt

= 1

τ

∫

QT

ρ−2(t)Lws(t)
Lws(t + τ) − Lws(t)

τ
dxdt

− 1

τ

∫

QT

ρ−2(t)Lws(t)
Lws(t) − Lws(t − τ)

τ
dxdt

= 1

τ

∫

QT

ρ−2(t)Lws(t)
Lws(t + τ) − Lws(t)

τ
dxdt

− 1

τ

∫ T−τ

−τ

∫

�

ρ−2(t + τ)Lws(t + τ)
Lws(t + τ) − Lws(t)

τ
dxdt

=
∫

QT

(
ρ−2(t)Lws(t) − ρ−2(t + τ)Lws(t + τ)

τ

) (
Lws(t + τ) − Lws(t)

τ

)

dxdt

− 1

τ

∫ 0

−τ

∫

�

ρ−2(t + τ)Lws(t + τ)

(
Lws(t + τ) − Lws(t)

τ

)

dxdt

− 1

τ

∫ T−τ

T

∫

�

ρ−2(t + τ)Lws(t + τ)

(
Lws(t + τ) − Lws(t)

τ

)

dxdt .

(56)
Now, observe that

∫

QT

(
ρ−2(t)Lws(t) − ρ−2(t + τ)Lws(t + τ)

τ

) (
Lws(t + τ) − Lws(t)

τ

)

dxdt

=
∫

QT

ρ2(t)

(
ρ−2(t)Lws(t) − ρ−2(t + τ)Lws(t + τ)

τ

)

ρ−2(t)

×
(
Lws(t + τ) − Lws(t)

τ

)

dxdt

= −
∫

QT

ρ2(t)

∣
∣
∣
∣
ρ−2(t)Lws(t) − ρ−2(t + τ)Lws(t + τ)

τ

∣
∣
∣
∣

2

dxdt

+
∫

QT

ρ2(t)

(
ρ−2(t)Lws(t) − ρ−2(t + τ)Lws(t + τ)

τ

)

×
(

ρ−2(t) − ρ−2(t + τ)

τ

)

Lws(t + τ) dxdt .

(57)
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The equality (56) then reads

∫

QT

ρ−2Lws(t)LTτws(t) dxdt

= −
∫

QT

ρ2(t)

∣
∣
∣
∣
ρ−2(t)Lws(t) − ρ−2(t + τ)Lws(t + τ)

τ

∣
∣
∣
∣

2

dxdt

+
∫

QT

ρ2(t)

(
ρ−2(t)Lws(t) − ρ−2(t + τ)Lws(t + τ)

τ

)

×
(

ρ−2(t) − ρ−2(t + τ)

τ

)

Lws(t + τ) dxdt

− 1

τ

∫ 0

−τ

∫

�

ρ−2(t + τ)Lws(t + τ)

(
Lws(t + τ) − Lws(t)

τ

)

dxdt

−1

τ

∫ T−τ

T

∫

�

ρ−2(t + τ)Lws(t + τ)

(
Lws(t + τ) − Lws(t)

τ

)

dxdt .

(58)

Next, we shall look into the second term in the left hand side of (55). First, recall
the smooth function η given by (9) satisfies η = 0 in (−∞, δ] ∪ [T − δ,+∞) (with
δ > 0 given in (9)). Then, in a similar way that have lead to (56), we have assuming
|τ | ≤ δ :

∫ T

0
η2(t)ρ−2

1 (t)(ws)x (1, t)Tτ (ws)x (1, t)dt

=
∫ T

0

(
η2(t)ρ−2

1 (t)(ws)x (1, t) − η2(t + τ)ρ−2
1 (t + τ)(ws)x (1, t + τ)

τ

)

×
(

(ws)x (1, t + τ) − (ws)x (1, t)

τ

)

dt . (59)

Then, using the identity

ad − bc = (a − c)(b + d) − (a + c)(b − d)

2
, ∀(a, b, c, d) ∈ R

4 (60)

with a = η2(t)ρ−2
1 (t), b = (ws)x (1, t + τ), c = η2(t + τ)ρ−2

1 (t + τ) and d =
(ws)x (1, t), we obtain from (59)

∫ T

0
η2(t)ρ−2

1 (t)(ws)x (1, t)Tτ (ws)x (1, t)dt

=
∫ T

0

(
η2(t)ρ−2

1 (t) − η2(t + τ)ρ−2
1 (t + τ)

)
((ws)x (1, t) + (ws)x (1, t + τ))

2τ

×
(

(ws)x (1, t + τ) − (ws)x (1, t)

τ

)

dt
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−
∫ T

0

(
η2(t)ρ−2

1 (t) + η2(t + τ)ρ−2
1 (t + τ)

)

2

∣
∣
∣
∣
(ws)x (1, t + τ) − (ws)x (1, t)

τ

∣
∣
∣
∣

2

dt .

(61)

Now, using (58) and (61) in the formulation (55), we have

∫

QT

ρ2(t)

∣
∣
∣
∣
ρ−2(t)Lws(t) − ρ−2(t + τ)Lws(t + τ)

τ

∣
∣
∣
∣

2

dxdt

+ s
∫ T

0

(
η2(t)ρ−2

1 (t) + η2(t + τ)ρ−2
1 (t + τ)

)

2

∣
∣
∣
∣
(ws)x (1, t + τ) − (ws)x (1, t)

τ

∣
∣
∣
∣

2

dt

=
∫

QT

ρ2(t)

(
ρ−2(t)Lws(t) − ρ−2(t + τ)Lws(t + τ)

τ

)

×
(

ρ−2(t) − ρ−2(t + τ)

τ

)

Lws(t + τ) dxdt

− 1

τ

∫ 0

−τ

∫

�

ρ−2(t + τ)Lws(t + τ)

(
Lws(t + τ) − Lws(t)

τ

)

dxdt

−1

τ

∫ T−τ

T

∫

�

ρ−2(t + τ)Lws(t + τ)

(
Lws(t + τ) − Lws(t)

τ

)

dxdt

+ s
∫ T

0

(
η2(t)ρ−2

1 (t) − η2(t + τ)ρ−2
1 (t + τ)

)
((ws)x (1, t) + (ws)x (1, t + τ))

2τ

×
(

(ws)x (1, t + τ) − (ws)x (1, t)

τ

)

dt

−
∫

QT

BTτws dxdt −
∫

�

u1Tτws(·, 0) dx +
∫

�

u0Tτ (ws)t (·, 0) dx
:=I1 + I2 + I3 + I4 + I5 + I6 + I7. (62)

Sub-step 2. In this step, we obtain precise estimates for the terms I1 and I4 and
then an estimate of the left hand side of (62).

(i) Estimate of I1. Young’s inequality leads to

|I1| ≤1

2

∫

QT

ρ2(t)

∣
∣
∣
∣
ρ−2(t)Lws(t) − ρ−2(t + τ)Lws(t + τ)

τ

∣
∣
∣
∣

2

dxdt

+ 1

2

∫

QT

ρ2(t)

∣
∣
∣
∣

(
ρ−2(t) − ρ−2(t + τ)

τ

)

Lws(t + τ)

∣
∣
∣
∣

2

dxdt . (63)
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(ii) Estimate of I4. We have

|I4| = s

∣
∣
∣
∣
∣
∣

∫ T

0

(
η(t)ρ−1

1 (t) − η(t + τ)ρ−1
1 (t + τ)

)
((ws)x (1, t) + (ws)x (1, t + τ))

2τ

×
(
η(t)ρ−1

1 (t) + η(t + τ)ρ−1
1 (t + τ)

)
((ws)x (1, t + τ) − (ws)x (1, t))

τ
dt

∣
∣
∣
∣
∣
∣

≤ 2s
∫ T

0

∣
∣
∣
∣
∣
∣

(
η(t)ρ−1

1 (t) − η(t + τ)ρ−1
1 (t + τ)

)
((ws)x (1, t) + (ws)x (1, t + τ))

2τ

∣
∣
∣
∣
∣
∣

2

dt

+ s

8

∫ T

0

∣
∣
∣η(t)ρ−1

1 (t) + η(t + τ)ρ−1
1 (t + τ)

∣
∣
∣
2
∣
∣
∣
∣
(ws)x (1, t + τ) − (ws)x (1, t)

τ

∣
∣
∣
∣

2

dt

≤ 2s
∫ T

0

∣
∣
∣
∣
∣
∣

(
η(t)ρ−1

1 (t) − η(t + τ)ρ−1
1 (t + τ)

)
((ws)x (1, t) + (ws)x (1, t + τ))

2τ

∣
∣
∣
∣
∣
∣

2

dt

+ s

2

∫ T

0

(
η2(t)ρ−2

1 (t) + η2(t + τ)ρ−2
1 (t + τ)

)

2

∣
∣
∣
∣
(ws)x (1, t + τ) − (ws)x (1, t)

τ

∣
∣
∣
∣

2

dt .

(64)

(iii) A first estimate of the left hand side of (62). The previous estimates and (62)
give

1

2

∫

QT

ρ2(t)

∣
∣
∣
∣
ρ−2(t)Lws(t) − ρ−2(t + τ)Lws(t + τ)

τ

∣
∣
∣
∣

2

dxdt

+ s

2

∫ T

0

(
η2(t)ρ−2

1 (t) + η2(t + τ)ρ−2
1 (t + τ)

)

2

∣
∣
∣
∣
(ws)x (1, t) − (ws)x (1, t + τ)

τ

∣
∣
∣
∣

2

dt

≤ 1

2

∫

QT

ρ2(t)

∣
∣
∣
∣

(
ρ−2(t) − ρ−2(t + τ)

τ

)

Lws(t + τ)

∣
∣
∣
∣

2

dxdt

+
∣
∣
∣
∣
1

τ

∫ 0

−τ

∫

�

ρ−2(t + τ)Lws(t + τ)

(
Lws(t + τ) − Lws(t)

τ

)

dxdt

∣
∣
∣
∣

+
∣
∣
∣
∣
1

τ

∫ T−τ

T

∫

�

ρ−2(t + τ)Lws(t + τ)

(
Lws(t + τ) − Lws(t)

τ

)

dxdt

∣
∣
∣
∣

+2s
∫ T

0

∣
∣
∣
∣
∣
∣

(
η(t)ρ−1

1 (t) − η(t + τ)ρ−1
1 (t + τ)

)
((ws)x (1, t) + (ws)x (1, t + τ))

2τ

∣
∣
∣
∣
∣
∣

2

dt

+
∣
∣
∣
∣

∫

QT

BTτws dxdt

∣
∣
∣
∣ +

∣
∣
∣
∣

∫

�

u0Tτ (ws)t (·, 0) dx
∣
∣
∣
∣ +

∣
∣
∣
∣

∫

�

u1Tτws(·, 0) dx
∣
∣
∣
∣

:= J1 + J2 + J3 + J4 + J5 + J6 + J7. (65)
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Sub-step 3 : We prove that the left hand side of (65) is bounded uniformly with
respect to |τ | ∈ [0, δ].

(i) J1 is bounded. Since ρ−2 ∈ C∞(R × �), (ρ−1)t = −2sλβ(t − T
2 )φρ−1 and

Lws ∈ C0(R; L2(�)):

∫

QT

ρ2(t)

∣
∣
∣
∣

(
ρ−2(t) − ρ−2(t + τ)

τ

)

Lws(t + τ)

∣
∣
∣
∣

2

dxdt

→ 4s2λ2β2
∫

QT

(

t − T

2

)2

φ2(t)ρ2(t)y2s dxdt

as τ → 0 and thus J1 is bounded.

(ii) J2 is bounded. Since ρ−2Lws = ys ∈ C0(R; L2(�)), ρ−2 ∈ C∞(R × �) and
Lws = ρ2ys ∈ C1((−∞, δ]; L2(�)) we have, as τ → 0

∣
∣
∣
∣
1

τ

∫ 0

−τ

∫

�

ρ−2(t + τ)Lws(t + τ)

(
Lws(t + τ) − Lws(t)

τ

)

dxdt

∣
∣
∣
∣

→
∣
∣
∣
∣

∫

�

ys(0)(ρ
2ys)t (0)

∣
∣
∣
∣

and thus J2 is bounded.

(iii) J3 is bounded. Since ρ−2Lws = ys ∈ C0(R; L2(�)), ρ−2 ∈ C∞(R× �) and
Lws = ρ2ys ∈ C1([T − δ,+∞); L2(�)) we have, as τ → 0

∣
∣
∣
∣
1

τ

∫ T−τ

T

∫

�

ρ−2(t + τ)Lws(t + τ)

(
Lws(t + τ) − Lws(t)

τ

)

dxdt

∣
∣
∣
∣

→
∣
∣
∣
∣

∫

�

ys(T )(ρ2ys)t (T )

∣
∣
∣
∣ = 0

and thus J3 is bounded.

(iv) J4 is bounded. Since (ws)x (1, ·) ∈ L2(0, T ) and ηρ−1
1 ∈ C1(R) we have

2s
∫ T

0

∣
∣
∣
∣
∣
∣

(
η(t)ρ−1

1 (t) − η(t + τ)ρ−1
1 (t + τ)

)
((ws)x (1, t) + (ws)x (1, t + τ))

2τ

∣
∣
∣
∣
∣
∣

2

dt

→ 2s
∫ T

0

∣
∣
∣(ηρ

−1
1 )t (t)(ws)x (1, t)

∣
∣
∣
2
dt

as τ → 0 and thus J4 is bounded.
(v) J5 is bounded. For τ small enough, since B ∈ D(R; L2(�)) and ws ∈

C0(R; L2(�)), we have

∣
∣
∣
∣

∫

QT

BTτws dxdt

∣
∣
∣
∣ =

∣
∣
∣
∣

∫ T+τ

−τ

∫

�

Tτ Bws dxdt

∣
∣
∣
∣ →

∣
∣
∣
∣

∫

QT

Bttws dxdt

∣
∣
∣
∣ (66)

123



Mathematics of Control, Signals, and Systems (2023) 35:77–123 113

as τ → 0 and thus J5 is bounded.

(vi) J6 is bounded. We have Lws = ρ2ys ∈ C0(R; L2(�)) and ws ∈
C0(R; H1

0 (�)), thus (ws)t t = Lws + (ws)xx ∈ C(R; H−1(�)). We then have, for
all t ∈ R:

(ws)t (t) − (ws)t (0) =
∫ t

0
Lws(ξ) dξ +

∫ t

0
(ws)xx (ξ) dξ.

This yields

Tτ (ws)t (0) = (ws)t (τ ) − 2(ws)t (0) + (ws)t (−τ)

τ 2

= 1

τ 2

( ∫ τ

0
Lws(ξ) dξ +

∫ −τ

0
Lws(ξ) dξ

+
∫ τ

0
(ws)xx (ξ) dξ +

∫ −τ

0
(ws)xx (ξ) dξ

)

= 2

τ

∫ τ

0

ξ

τ

(
Lws(ξ) − Lws(−ξ)

2ξ

)

dξ

+ 2

τ

∫ τ

0

ξ

τ

(
(ws)xx (ξ) − (ws)xx (−ξ)

2ξ

)

dξ.

Now, since Lws = ρ2ys ∈ C1((−∞, δ]; L2(�)), we write that

∫

�

u0
2

τ

∫ τ

0

ξ

τ

(
Lws(ξ) − Lws(−ξ)

2ξ

)

dξ dx

→
∫

�

u0(ρ
2ys)t (0) dx = −2sλβT

∫

�

φ(0)ρ2(0)u20 dx +
∫

�

ρ2(0)u0u1 dx as τ → 0.

(67)

On the other hand, since u0 ∈ H2(�) ∩ H1
0 (�) and ws ∈ C0(R; H1

0 (�)):

2

τ

∫ τ

0

〈
ξ

τ

(
(ws)xx (ξ) − (ws)xx (−ξ)

2ξ

)

, u0

〉

H−1,H1
0

dξ

= 2

τ

∫ τ

0

ξ

τ

∫

�

(u0)xx
(ws)(ξ) − (ws)(−ξ)

2ξ
dx dξ

→
∫

�

(u0)xx (ws)t (0) dx as τ → 0 (68)

since moreover ws ∈ C1(R; L2(�)). Thus

∫

�

u0Tτ (ws)t (·, 0) dx → −2sλβT
∫

�

φ(0)ρ2(0)u20 +
∫

�

ρ2(0)u0u1
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+
∫

�

(u0)xx (ws)t (0) dx (69)

as τ → 0 and thus J6 is bounded.
(vii) J7 is bounded. We have Lws = ρ2ys ∈ C0(R; L2(�)) and ws ∈

C1(R; H1
0 (�)), thus (ws)t t = ρ2ys + (ws)xx ∈ C0(R; H−1(�)). Therefore

Tτw(0) = w(τ) − 2w(0) + w(−τ)

τ 2
→ (ws)t t (0) = (ws)xx (0)+ρ2(0)u0 in H−1(�)

as τ → 0 and thus

∫

�

u1Tτw(·, 0) dx →〈(ws)t t (0), u1〉H−1(�)×H1
0 (�)

= 〈(ws)xx (0), u1〉H−1(�)×H1
0 (�) +

∫

�

ρ2(0)u1u0 dx (70)

= −
∫

�

(ws)x (·, 0)(u1)x dx +
∫

�

ρ2(0)u1u0 dx .

as τ → 0.
J7 = ∣

∣
∫

�
u1Tτw(·, 0) dx∣∣ is therefore bounded.

(viii) Then we can conclude, from (65), that the terms

∫

QT

ρ2(t)

∣
∣
∣
∣
ρ−2(t)Lws(t) − ρ−2(t + τ)Lws(t + τ)

τ

∣
∣
∣
∣

2

dxdt

and

∫ T

0

(
η2(t)ρ−2

1 (t) + η2(t + τ)ρ−2
1 (t + τ)

)

2

∣
∣
∣
∣
(ws)x (1, t) − (ws)x (1, t + τ)

τ

∣
∣
∣
∣

2

dt

are bounded. Remark that this implies that the two terms
∫

QT
ρ−2(t)|L( δτ ws

τ
)|2 dxdt

and
∫ T
0 η2(t)ρ−2

1 (t)|( δτ ws
τ

)x (1, t)|2dt are bounded; indeed,

∫ T

0
η2(t)ρ−2

1 (t)|(δτws

τ
)x (1, t)|2dt

≤ 2
∫ T

0

(
η2(t)ρ−2

1 (t) + η2(t + τ)ρ−2
1 (t + τ)

)

2

∣
∣
∣
∣
(ws)x (1, t) − (ws)x (1, t + τ)

τ

∣
∣
∣
∣

2

dt .
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We also have
∫

QT

ρ−2(t)|L(
δτws

τ
)|2 dxdt

≤ 2
∫

QT

ρ2(t)

∣
∣
∣
∣
ρ−2(t)Lws(t) − ρ−2(t + τ)Lws(t + τ)

τ

∣
∣
∣
∣

2

dxdt

+ 2
∫

QT

ρ2(t)

∣
∣
∣
∣
ρ−2(t) − ρ−2(t + τ)

τ
Lws(t + τ)

∣
∣
∣
∣

2

dxdt

and each term of the right hand side is bounded.

Sub-step 4. In this step,we prove that vs ∈ H1(0, T ) and ys ∈ C0([0, T ]; H1(�))∩
C1([0, T ]; L2(�)).

Since δτ ws
τ

∈ C0([0, T ]; H1
0 (�)) ∩ C1([0, T ]; L2(�)) and satisfies ( δτ ws

τ
)x (1, ·) ∈

L2(0, T ) then the Carleman estimates (10) gives

s
∫

QT

ρ−2(t)

(

|(δτws

τ
)t |2 + |(δτws

τ
)x |2

)

dxdt

+s3
∫

QT

ρ−2(t)|δτws

τ
|2 dxdt

+s
∫

�

ρ−2(0)

(

|(δτws

τ
)t (x, 0)|2 + |(δτws

τ
)x (x, 0)|2

)

dx

+s3
∫

�

ρ−2(0)|δτws

τ
(x, 0)|2 dx

≤ C
∫

QT

ρ−2(t)|L(
δτws

τ
)|2 dxdt + Cs

∫ T

0
η2(t)ρ−2

1 (t)|(δτws

τ
)x (1, t)|2dt .

Therefore, since the right hand side is bounded, ( δτ ws
τ

)t and ( δτ ws
τ

)x are bounded
in L2(QT ) and thus (ws)t t ∈ L2(QT ) and (ws)t ∈ L2(0, T ; H1

0 (�)). Moreover,
δτ ws

τ
(·, 0) is bounded in H1

0 (�) thus (ws)t (·, 0) ∈ H1
0 (�). We also have L( δτ ws

τ
)

bounded in L2(QT ) so L(ws)t ∈ L2(QT ). Thus (ws)t satisfies

⎧
⎪⎨

⎪⎩

L(ws)t ∈ L2(QT ),

(ws)t (0, t) = (ws)t (1, t) = 0, t ∈ (0, T )

((ws)t (0), (ws)t t (0)) ∈ H1
0 (�) × L2(�)

(71)

and thus (ws)t ∈ C0([0, T ]; H1
0 (�))∩C1([0, T ]; L2(�)) and (ws)t x (1, ·) ∈ L2(0, T ).

Therefore from the definition of vs , vs ∈ H1(0, T ) while from the equation satisfied
by (ys, vs) (see (17)), ys ∈ C0([0, T ]; H1(�)) ∩ C1([0, T ]; L2(�)).

Remark 1 e then have ws ∈ C1([0, T ]; H1
0 (�)) ∩ C2([0, T ]; L2(�)) and from the

equation satisfied by ws , since Lws ∈ C1([0, T ]; L2(�)) we deduce that (ws)xx =
(ws)t t − Lws ∈ C0([0, T ]; L2(�)) and thus that (ws)xx (·, 0) ∈ L2(�).
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Step 2 : In this step, we give estimates on (vs)t and (ys)t .
First of all, since (ws)t ∈ C0([0; T ]; H1

0 (�)) ∩ C1([0, T ]; L2(�)), L(ws)t ∈
L2(QT ) and (ws)t x (1, ·) ∈ L2(0, T ), we can write the Carleman estimate (10) for
(ws)t leading to

s
∫

QT

ρ−2(t)(|(ws)t t |2 + |(ws)t x |2) dxdt + s3
∫

QT

ρ−2(t)|(ws)t |2 dxdt

+s
∫

�

ρ−2(0)(|(ws)t t (x, 0)|2 + (ws)t x (x, 0)|2) dx + s3
∫

�

ρ−2(0)|(ws)t (x, 0)|2 dx

≤ C
∫

QT

ρ−2(t)|(Lws)t |2 dxdt + Cs
∫ T

0
η2(t)ρ−2

1 (t)|(ws)t x (1, t)|2dt . (72)

Sub-step 1 : In this step, we pass to the limit when τ → 0 in equation (62). We have,
since ys = ρ−2Lws ∈ C1(R; L2(�)) :

∫

QT

ρ2(t)

∣
∣
∣
∣
ρ−2(t)Lws(t) − ρ−2(t + τ)Lws(t + τ)

τ

∣
∣
∣
∣

2

dxdt →
∫

QT

ρ2(t) |(ys)t |2 dxdt

as τ → 0 and since (ws)t x (1, ·) ∈ L2(−δ, T + δ) and ηρ−1
1 ∈ C(R) :

∫ T

0

(
η2(t)ρ−2

1 (t) + η2(t + τ)ρ−2
1 (t + τ)

)

2

∣
∣
∣
∣
(ws)x (1, t + τ) − (ws)x (1, t)

τ

∣
∣
∣
∣

2

dt

→
∫ T

0
η2(t)ρ−2

1 (t) |(ws)t x (1, t)|2 dt

as τ → 0. Since ys = ρ−2Lws ∈ C1(R; L2(�)), Lws ∈ C1(R; L2(�)) and (ρ−1)t =
−2sλβ(t − T

2 )φρ−1 in QT , we infer that

∫

QT

ρ2(t)

(
ρ−2(t)Lws(t) − ρ−2(t + τ)Lws(t + τ)

τ

)

×
(

ρ−2(t) − ρ−2(t + τ)

τ

)

Lws(t + τ) dxdt

→ −2sλβ
∫

QT

(t − T

2
)φ(t)ρ2(t)(ys)t ys dxdt,

1

τ

∫ 0

−τ

∫

�

ρ−2(t + τ)Lws(t + τ)

(
Lws(t + τ) − Lws(t)

τ

)

dxdt

→
∫

�

ys(0)(ρ
2ys)t (0) dx
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and

1

τ

∫ T−τ

T

∫

�

ρ−2(t + τ)Lws(t + τ)

(
Lws(t + τ) − Lws(t)

τ

)

dxdt → 0

as τ → 0.
Similarly, since ws ∈ C2(R; L2(�)) and (ws)t x (1, ·) ∈ L2(−δ, T + δ),

∫ T

0

(
η2(t)ρ−2

1 (t) − η2(t + τ)ρ−2
1 (t + τ)

)
((ws)x (1, t) + (ws)x (1, t + τ))

2τ

×
(

(ws)x (1, t + τ) − (ws)x (1, t)

τ

)

dt

→
∫ T

0
(η2ρ−2

1 )t (ws)x (1, t)(ws)t x (1, t)dt

and

∫

QT

BTτws dxdt →
∫

QT

B(ws)t t dxdt

as τ → 0. Since (ws)t t (·, 0) ∈ L2(�), the convergence (70) reads

∫

�

u1Tτws(·, 0) dx →
∫

�

(ws)t t (·, 0)u1 dx .

Similarly, since (ws)t (·, 0) ∈ H1
0 (�), (69) reads

∫

�

u0Tτ (ws)t (·, 0) dx → −2sλβT
∫

�

φ(0)ρ2(0)u20 dx +
∫

�

ρ2(0)u0u1 dx

−
∫

�

(u0)x (ws)t x (·, 0) dx .

We conclude that the limit with respect to τ → 0 in (62) leads to the following
equality

∫

QT

ρ2(t) |(ys)t |2 dxdt + s
∫ T

0
η2(t)ρ−2

1 (t) |(ws)t x (1, t)|2 dt

= −2sλβ
∫

QT

(t − T

2
)φ(t)ρ2(t)(ys)t ys dxdt −

∫

�

ys(0)(ρ
2ys)t (0)

+s
∫ T

0
(η2ρ−2

1 )t (t)(ws)x (1, t)(ws)t x (1, t)dt

−
∫

QT

B(ws)t t dxdt −
∫

�

(ws)t t (·, 0)u1 dx
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−2sλβT
∫

�

φ(0)ρ2(0)u20 dx +
∫

�

ρ2(0)u1u0 dx

−
∫

�

(u0)x (ws)t x (·, 0) dx
:= K1 + K2 + K3 + K4 + K5 + K6 + K7 + K8. (73)

Sub-step 2 : In this step, we estimate each term Ki , i = 1, · · · , 8.
(i) We get that, there exists C > 0 only depending on T such that

|K1| ≤ 1

8

∫

QT

ρ2(t)|(ys)t |2 dxdt + Cs2
∫

QT

ρ2(t)|ys |2 dxdt .

(ii) Similarly, recalling that ys(·, 0) = u0 and (ys)t (·, 0) = u1, there exists C > 0
such that

|K2| ≤ Cs‖ρ(0)u0‖2L2(�)
+ ‖ρ(0)u0‖L2(�)‖ρ(0)u1‖L2(�).

(iii) Using that (ρ−1
1 )t = −2sλβ(t − T

2 )φρ−1
1 , we obtain

|K3| =
∣
∣
∣
∣s

∫ T

0
(η2ρ−2

1 )t (ws)x (1, t)(ws)t x (1, t)dt

∣
∣
∣
∣

≤ 2

(

s
∫ T

0
|(ηρ−1

1 )t |2|(ws)x (1, t)|2dt
)1/2 (

s
∫ T

0
η2(t)ρ−2

1 (t)|(ws)t x (1, t)|2dt
)1/2

≤ C

(

s3
∫ T

0
η2(t)ρ−2

1 (t)|(ws)x (1, t)|2dt + s
∫ T

0
ρ−2
1 (t)|(ws)x (1, t)|2dt

)1/2

×
(

s
∫ T

0
η2(t)ρ−2

1 (t)|(ws)t x (1, t)|2dt
)1/2

≤ C

(

s
∫ T−δ

δ

ρ2
1 (t)

η2(t)
v2s dt + s

∫ T

0
ρ−2
1 (t)|(ws)x (1, t)|2dt

)

+ s

8

∫ T

0
η2(t)ρ−2

1 |(ws)t x (1, t)|2dt .

We now estimate the term
∫ T
0 ρ−2

1 |(ws)x (1, t)|2dt appearing in the previous
inequality: proceeding as in [23, Lemma 3.7] with q(x, t) = xρ−2(x, t) such that
q(0, t) = 0 and q(1, t) = ρ−2

1 (t), we get the equality

1

2

∫ T

0
ρ−2
1 (t)|(ws)x (1, t)|2

= 2
∫

QT

xρ−1ρ−1
t wxwt + 1

2

∫

QT

(ρ−2 − 2xρ−1ρ−1
x )(w2

x + w2
t )

+
∫

�

[xρ−2wtwx ]T0 .
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Writing that |ρ−1ρ−1
x | ≤ Csρ−2 and |ρ−1ρ−1

t | ≤ Csρ−2, we obtain (since s ≥ 1)

1

2

∫ T

0
ρ−2
1 (t)|(ws)x (1, t)|2

≤ Cs
∫

QT

ρ−2(w2
x + w2

t ) + Cs
∫

�

(

ρ−2(0)(w2
t + w2

x )(0)

+ρ−2(T )(w2
t + w2

x )(T )

)

leading, using the Carleman estimate (10), to

s
∫ T

0
ρ−2
1 |(ws)x (1, t)|2dt ≤ Cs

(

‖ρys‖2L2(QT )
+ s−1‖ρ1

η
vs‖2L2(δ,T−δ)

)

. (74)

Thus,

|K3| ≤ Cs

(

‖ρys‖2L2(QT )
+ ‖ρ1

η
vs‖2L2(δ,T−δ)

)

+ s

8

∫ T

0
η2(t)ρ−2

1 (ws)t x (1, t)dt .

(iv) Using the Carleman estimate (72) we have

|K4| =
∣
∣
∣
∣

∫

QT

B(ws)t t dxdt

∣
∣
∣
∣ ≤

(

s−1
∫

QT

ρ2B2
)1/2 (

s
∫

QT

ρ−2|(ws)t t |2
)1/2

≤ C

(

s−1
∫

QT

ρ2B2
)1/2 (∫

QT

ρ−2|(ρ2ys)t |2 dxdt + s
∫ T

0
η2(t)ρ−2

1 |(ws)t x (1, t)|2dt
)1/2

≤ C

(

s−1
∫

QT

ρ2B2
)1/2 (

s2
∫

QT

ρ2|ys |2 dxdt +
∫

QT

ρ2|(ys)t |2 dxdt

+s
∫ T

0
η2(t)ρ−2

1 |(ws)t x (1, t)|2dt
)1/2

≤ C

(

s−1
∫

QT

ρ2B2 + s2
∫

QT

ρ2|ys |2 dxdt
)

+ 1

8

∫

QT

ρ2|(ys)t |2 dxdt

+ s

8

∫ T

0
η2(t)ρ−2

1 |(ws)t x (1, t)|2dt .

(v) Similarly, using again the Carleman estimate (72) we have

|K5| =
∣
∣
∣
∣

∫

�

(ws)t t (·, 0)u1 dx
∣
∣
∣
∣ ≤ ‖ρ(0)u1‖L2(�)‖ρ−1(0)(ws)t t (·, 0)‖L2(�)

≤ Cs−1/2‖ρ(0)u1‖L2(�)

(∫

QT

ρ−2(t)|(ρ2ys)t |2 dxdt

+s
∫ T

0
η2(t)ρ−2

1 |(ws)t x (1, t)|2dt
)1/2
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≤ Cs−1/2‖ρ(0)u1‖L2(�)

(

s2
∫

QT

ρ2|ys |2 dxdt +
∫

QT

ρ2|(ys)t |2 dxdt

+s
∫ T

0
η2(t)ρ−2

1 |(ws)t x (1, t)|2dt
)1/2

≤ C

(

s−1‖ρ(0)u1‖2L2(�)
+ s2

∫

QT

ρ2|ys |2 dxdt
)

+ 1

8

∫

QT

ρ2|(ys)t |2 dxdt

+ s

8

∫ T

0
η2(t)ρ−2

1 |(ws)t x (1, t)|2dt .

(vi) Simpler, we get
|K6| ≤ Cs‖ρ(0)u0‖2L2(�)

(vii) and
|K7| ≤ ‖ρ(0)u0‖L2(�)‖ρ(0)u1‖L2(�).

(viii) Eventually, (72) leads to

|K8| =
∣
∣
∣
∣

∫

�

(u0)x (ws)t x (·, 0)
∣
∣
∣
∣ ≤ ‖ρ(0)(u0)x‖L2(�)‖ρ−1(0)(ws)t x (·, 0)‖L2(�)

≤ Cs−1/2‖ρ(0)(u0)x‖L2(�)

(∫

QT

ρ−2(t)|(ρ2ys)t |2 dxdt

+Cs
∫ T

0
η2(t)ρ−2

1 (t)|(ws)t x (1, t)|2dt
)1/2

≤ Cs−1/2‖ρ(0)(u0)x‖L2(�)

(

s2
∫

QT

ρ2(t)|ys |2 dxdt +
∫

QT

ρ2(t)|(ys)t |2 dxdt

+ s
∫ T

0
η2(t)ρ−2

1 (t)|(ws)t x (1, t)|2dt
)1/2

≤ C

(

s−1‖ρ(0)(u0)x‖2L2(�)
+ s2

∫

QT

ρ2(t)|ys |2 dxdt
)

+ 1

8

∫

QT

ρ2(t)|(ys)t |2 dxdt

+ s

8

∫ T

0
η2(t)ρ−2

1 (t)|(ws)t x (1, t)|2dt .

Sub-step 3 : In this step, we give estimates on (vs)t and (ys)t . Collecting the previous
estimates, we get from (73)
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∫

QT

ρ2(t) |(ys)t |2 dxdt + s
∫ T

0
η2(t)ρ−2

1 (t) |(ws)t x (1, t)|2 dt

≤ C

(

s2‖ρys‖2L2(QT )
+ s‖ρ1

η
v‖2L2(δ,T−δ)

+ s−1
∫

QT

ρ2B2

+s‖ρ(0)u0‖2L2(�)
+ s−1‖ρ(0)(u0)x‖2L2(�)

+ s−1‖ρ(0)u1‖2L2(�)

)
.

(75)

We have

s−1
∫ T

0
ρ2
1 (t) |(vs)t |2 dt

≤ C

(

s
∫ T

0
η2(t)ρ−2

1 (t) |(ws)t x (1, t)|2 + s
∫ T−δ

δ

ρ2
1 (t)

η2(t)
v2s (t)dt

+s
∫ T

0
ρ−2
1 (t) |(ws)x (1, t)|2

)

(76)

thus using the estimates (74) and (14), (75) implies for s ≥ s0 ≥ 1 that

∫

QT

ρ2(t) |(ys)t |2 dxdt + s−1
∫ T

0
ρ2
1 (t) |(vs)t |2 dt

≤ C
(
s−1‖ρB‖2L2(QT )

+ se−2s‖u0‖2L2(�)
+ s−1e−2s‖(u0)x‖2L2(�)

+s−1e−2s‖u1‖2L2(�)

)

(77)

which gives the announced estimate (19) in the case of regular data.

Step 3 : Case where B ∈ L2(QT ) and (u0, u1) ∈ H1
0 (�)× L2(�). We proceed by

density: there exist (un0)n∈N ∈ H2(�) ∩ H1
0 (�), (un1)n∈N ∈ H1

0 (�) and (Bn)n∈N ∈
D(0, T ; L2(�)) such that un0 → u0 in H1

0 (�), un1 → u1 in L2(�) and Bn → B in
L2(QT ) as n → ∞.

Let (yns , vns ) be the solution of (6) given in Theorem 6 associated to (un0, u
n
1, B

n).
Then, by linearity, we have for all (n,m) ∈ N

2, from (14)

‖ρ(yns − yms )‖L2(QT ) + s−1/2‖ρ1(vns − vms )‖L2(0,T )

≤ ‖ρ(yns − yms )‖L2(QT ) + s−1/2
∥
∥
∥
∥
ρ1

η
(vns − vms )

∥
∥
∥
∥
L2(δ,T−δ)

≤ C
(
s−3/2‖ρ(Bn − Bm)‖L2(QT ) + s−1/2e−s‖un0 − um0 ‖L2(�)

+s−3/2e−s‖un1 − um1 ‖L2(�)

)
,

while from (19)

‖ρ(yns − yms )t‖L2(QT ) + s−1/2‖ρ1(vns − vms )t‖L2(0,T )
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≤
(
s−1/2‖ρ(Bn − Bm)‖L2(QT ) + s1/2e−s‖un0 − um0 ‖L2(�)

+s−1/2e−s‖(un0 − um0 )x‖L2(�) + s−1/2e−s‖un1 − um1 ‖L2(�)

)

and from (21).

‖(yns − yms )t‖L∞(0,T ;L2(�)) + ‖(yns − yms )x‖L∞(0,T ;L2(�))

≤ C
(‖Bn − Bm‖L2(QT ) + ‖un0 − um0 ‖L2(�)

+‖(un1 − um1 )x‖L2(�) + ‖vns − vms ‖H1(0,T )

)
.

Therefore vns → vs in H1(0, T ) and yns → ys ∈ C0([0, T ]; H1(�)) ∩
C1([0, T ]; L2(�)) and, passing to the limit in the equation (6) satisfied by (yn, vn),
we obtain that (ys, vs) solves (6). Moreover, passing to the limit in the estimate (19)
satisfied by (yns , vns ), we deduce that (ys, vs) also satisfies (19). Using (10), we easily
check that (ys, vs) satisfies vs = sη2ρ−2

1 (ws)x (1, ·) and ys = ρ−2Lws wherews ∈ Ps
is the unique solution of (12). The proof of Theorem 7 is complete.
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