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Abstract
In this paper, we will deal with a linear quadratic optimal control problem with
unknown dynamics. As a modeling assumption, we will suppose that the knowledge
that an agent has on the current system is represented by a probability distribution π

on the space of matrices. Furthermore, we will assume that such a probability measure
is opportunely updated to take into account the increased experience that the agent
obtains while exploring the environment, approximating with increasing accuracy the
underlying dynamics. Under these assumptions, we will show that the optimal con-
trol obtained by solving the “average” linear quadratic optimal control problem with
respect to a certain π converges to the optimal control driven related to the linear
quadratic optimal control problem governed by the actual, underlying dynamics. This
approach is closely related to model-based reinforcement learning algorithms where
prior and posterior probability distributions describing the knowledge on the uncertain
system are recursively updated. In the last section, we will show a numerical test that
confirms the theoretical results.
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1 Introduction

Reinforcement learning (RL) is one of the three basic machine learning paradigms,
together with supervised learning and unsupervised learning. In RL, an agent interacts
with a partially unknown environment, aiming at finding a policy, which optimizes
the measure of a certain long-term performance [25]. The connection between RL
and optimal control theory was already identified in the past [26]. Nowadays, several
research questions and tools coming from the RL literature are influencing the optimal
control field and vice versa [23].

A natural setting in RL consists in considering a Markov decision process over
state/action pairs varying on a discrete-time set. The discrete-time problem setting
provides an excellent framework to develop methods and algorithms, which, however,
often underlies a continuous-time structure. For this reason, in particular in the control
system engineering field, significant attention has been recently given to continuous-
time RL [8,14,15,17].

Both in discrete- and continuous-time problem settings, one can consider two main
RL philosophies: The first one, called model-based, usually concerns the reconstruc-
tion of a model from the data trying to mimic the unknown environment. That model
is then used to plan and to compute a suboptimal policy. The second RL philosophy,
calledmodel-free, employs a direct approximation of the value function and/or a policy
based on a dynamic-programming-like algorithm, without using a model to simulate
the unknown environment. An excellent overview of the two approaches can be found
in [25].

About ten years ago, PILCO was introduced [6,7], an innovative and disruptive
method, from which many subsequent model-based RL methods have been inspired.
Rather than exploiting the data to construct a dynamics approximating the partially
known environment, PILCO makes use of them to construct a probability distribution
(more precisely, aGaussian process) on a class of dynamical systems.At each iteration,
this distribution is updated to fit the data set. After the model update, PILCO takes
the policy improvement step which boils down to solving an averaged optimal control
problem, where the averaging distribution is the one extrapolated by the data at the
previous experiments. That approach has the advantage of considerably reducing the
model bias, one of the main shortcomings of model-based RL [1]. A general, rigorous
framework capturing PILCO as well as other Bayesian model-based RL approaches
(see, e.g., [3,4,10–12,29]) has been developed in [18,19]. In particular, it is important
to mention that the framework developed in [18] is closely related to the averaging
control framework and Riemann–Stieltjes optimal control [2,16,21,24,30].

The aim of this paper is to provide a stricter link between PILCO [7] and the
framework introduced in [18]. We will concentrate on a specific physical system,
driven by a linear quadratic regulator (LQR) optimal control problem, namely

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

minimize
{
1
2

∫ T
0

(
x(t)T Qx(t) + u(t)T Ru(t)

)
dt + 1

2 x(T )T Q f x(T )
}

over u : [0, T ] → R
m measurable such that

ẋ(t) = Âx(t) + Bu(t), t ∈ [0, T ]
x(0) = x0

(1)
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where B, Q, R, Q f are given, knownmatrices and x0 ∈ R
n is a given vector. However,

in this contextwewill assume that the physical system Â isunknown and the knowledge
we have about Â is merely represented by a probability distribution π constructed
over a set of matrices A (with Â ∈ A) by using the data available from the physical
system. This situation is in accordance with the PILCO setting, which is “not focusing
on a single dynamics model", but makes use of “a probabilistic dynamics model, a
distribution over all plausible dynamicsmodels that could have generated the observed
experience" ( [6], pg. 34). Such a modeling setting allows us to define the averaged
optimal control problem

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

minimize
{∫

A
∫ T
0

1
2

(
xA(t)T QxA(t) + u(t)T Ru(t)

)
dt

+ 1
2 xA(T )T Q f xA(T )dπ(A)

}

over u : [0, T ] → R
m measurable such that

ẋ A(t) = AxA(t) + Bu(t), A ∈ A, t ∈ [0, T ],
xA(0) = x0

. (2)

If indeed the real physical system is driven by the equation

ẋ(t) = Âx(t) + Bu(t), t ∈ [0, T ],

for a certain matrix Â, then it is reasonable to expect that an increase of the experience
will produce a more accurate distribution π over A. This fact can be translated into
the assumption that the probability distribution is “close" (in a precise sense that will
be specified in the sequel) to δ Â, when enough experience of the environment (here

represented by Â) is gained.
We would like to stress that our goal is not to propose a new algorithm to find an

optimal policy but to consider a class of existing algorithms and motivate their good
performances. In particular, the paper aims to provide an insight into the convergence
of Bayesian-like RL algorithms in which a recursive construction of probability mea-
sures is carried out. (Further considerations on the connection with RL are given in
Remarks 3.4 and 5.5.) Here, by “convergence", we mean convergence of the optimal
policy obtained by estimating the underlying dynamics using data from the real sys-
tem (the one constructed in the so-called policy improvement step) toward the optimal
policy obtained by solving problem (1). More precisely, the questions we will tackle
in this paper are:

(1) Is the value function related to the optimal control (1) close to the value function
associated with (2) when π is close to δ Â w.r.t. the Wasserstein distance (see (9)
for the formal definition)?

(2) Under the same assumptions over π , is the optimal control of (2) close to the
optimal control of (1)?

For both question (1) and question (2), we will provide positive answers. It is worth
noticing that, in control theory, it is very uncommon to have a positive answer to
question (2), even when one has a positive answer to question (1).

The paper is organized as follows. Section 2 introduces the basic notations that we
will use throughout the paper. In Sect. 3, we state the problem formulation and we
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study the basic properties of the LQ optimal control problem (2). Then, in Sect. 4, we
also derive a Pontryagin’s maximum principle for problem (2), refining some results
in [2]. In Sect. 5, we state and prove the main results of the paper, providing positive
answers to question (1) and question (2). In Sect. 6, we strengthen the results presented
in Sect. 5 in the case in which one is dealing with a discrete probability measure π .
That result is further stressed in Sect. 7, where we present and analyze a numerical
example. Finally, we present the conclusion and discuss some future directions and
open questions.

2 Preliminaries and notations

In this section, we will recall some useful notations and concepts which will be used
throughout the paper. For vectors v ∈ R

n , |v| denotes the Euclidean norm; we use
Bn(x, r) to denote the open ball in R

n centered at x ∈ R
n and of radius r > 0. We

will use L to denote the Lebesgue σ -algebra and BX to denote the collection of all
Borel sets on a given topological space X .

In the following, T will be our fixed time horizon. Given a time s ∈ [0, T ], we
denote by C([s, T ];Rn) the space of continuous functions x : [s, T ] → R

n . For func-
tions x(·) ∈ C([s, T ];Rn), ‖x(·)‖∞ or ‖x‖∞ denotes the sup norm. For continuous
functions y(·) ∈ C(Rn;R) and for a compact set K ⊂ R

n , we also define the sup
norm restricted on the compact set K as ‖y(·)‖∞,K := supx∈K |y(x)|.

Moreover, given p ∈ [1,∞), we define the spaces of a.e. defined functions

L p([s, T ];Rn) :=
{

g : [s, T ] → R
n
∣
∣
∣ g meas. and

∫ T

s
|g(t)|p dt < ∞

}

(3)

and

W 1,p([s, T ];Rn) :=
{

g ∈ L p([s, T ];Rn)| dg

dt
∈ L p([s, T ];Rn)

}

. (4)

For g ∈ L p([s, T ];Rn), the L p-norm ‖g(·)‖p or ‖g‖p is defined by

‖g‖p :=
(∫ T

s
|g(t)|p dt

) 1
p

(5)

and for g ∈ W 1,p([s, T ];Rn), we define

‖g‖W 1,p := ‖g‖p +
∥
∥
∥
∥
dg

dt

∥
∥
∥
∥
p
. (6)

Let us denote by Mm×n the space of real matrices with m rows and n columns. For
square matrices A ∈ Mn×n , we consider the 2−norm

‖A‖2 := sup
{
xT Ay : x, y ∈ R

n, |x | = |y| = 1
}

. (7)
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Given two matrices A, A′ ∈ Mn×n , d2(A, A′) := ∥
∥A − A′∥∥

2 denotes the distance
between the two matrices induced by the 2−norm.

For a generic metric space (X , d),M(X) will denote the space of measures on X ,

equipped with the weak-� topology, according to which πN ∗
⇀π if and only if

∫

X
f (A)dπN (A) →

∫

X
f (A)dπ(A), ∀ f ∈ Cb(X), (8)

where Cb(X) denote all bounded continuous functions f : X → R. When the space
X is compact, the weak-� topology is metrized by the Wasserstein distance (see, e.g.,
[27])

W1(π, π ′) := inf
γ∈Γ (π,π ′)

∫

X×X
d(x, y) dγ (x, y) , (9)

where Γ (π, π ′) is the collection of all probability measures on X × X with marginals
π and π ′ on the first and second factors, respectively.

Given a probability space (Ω,F , π) and a random variable Y onΩ ,Eπ [Y ] denotes
the expected value of Y with respect to π .

3 Problem statements and preliminary results

We begin our discussion considering two LQ optimal control problems. We will see
in the sequel how the two problems are connected:
Problem A: the LQR problem.

Let us consider the classical LQR problem with finite horizon, which we will refer
to as Problem A:

⎧
⎪⎪⎨

⎪⎪⎩

minimize Js[u]
over (x, u)(·) such that u ∈ U and
ẋ(t) = Âx(t) + Bu(t), t ∈ [s, T ],
x(s) = x0

(10)

where s ∈ [0, T ], x0 ∈ R
n , U := {u : [s, T ] → R

m Lebesgue measurable} and

Js[u] := 1

2

∫ T

s

(
x(t)T Qx(t) + u(t)T Ru(t)

)
dt + 1

2
x(T )T Q f x(T ) . (11)

The pair (x, u)(·) such that u ∈ U and x(·) is the solution of the Cauchy problem

{
ẋ(t) = Âx(t) + Bu(t) t ∈ [s, T ]
x(s) = x0 .

(12)
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is called admissible process for Problem A.
Let us define the value function V : [0, T ] × R

n → R for Problem A as

V (s, x0) := inf
u∈U

Js[u] . (13)

We shall say that (x̄, ū)(·) is an optimal process for Problem A if

Js[ū] ≤ Js[u] (14)

for any other admissible process (x, u)(·) of ProblemA. In this case, ū will be denoted
as optimal control for Problem A.
Problem B: an LQR problem with unknown dynamics. Let us now introduce an opti-
mal control that does not require the exact knowledge of the matrix Â, but merely a
probability distribution defined on a compact space of matrices A containing Â. For
each s ∈ [0, T ], x0 ∈ R

n and π ∈ M(A), consider the following optimal control
problem, which we will refer to as Problem B:

⎧
⎪⎪⎨

⎪⎪⎩

minimize Js,π [u]
over {(xA, u)(·) : A ∈ A} such that u ∈ U and
ẋ A(t) = AxA(t) + Bu(t), A ∈ A, t ∈ [s, T ],
xA(s) = x0 A ∈ A,

(15)

where U := {u : [s, T ] → R
m Lebesgue measurable} and

Js,π [u] := Eπ

[
1

2

∫ T

s

(
xA(t)T QxA(t) + u(t)T Ru(t)

)
dt + 1

2
xA(T )T Q f xA(T )

]

=
∫

A

[
1

2

∫ T

s

(
xA(t)T QxA(t)+u(t)T Ru(t)

)
dt+1

2
xA(T )T Q f xA(T )

]

dπ(A) .

(16)

Remark 3.1 Sometimeswewill denote this problem as ProblemBπ , to stress its depen-
dency on the probability distribution π .

The definition of the value function Vπ : [0, T ] × R
n → R for Problem B is

Vπ (s, x0) := inf
u∈U

Js,π [u] . (17)

The collection {(xA, u)(·) : A ∈ A} such that u ∈ U and, for each A ∈ A, xA(·) is
the solution of the Cauchy problem

{
ẋ A(t) = AxA(t) + Bu(t) t ∈ [s, T ]
xA(s) = x0

(18)
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is called admissible process for Problem B. Note that the initial condition is the same
for every A. The admissible process {(x̄ A, ū)(·) : A ∈ A} is optimal for Problem B if

Js,π [ū] ≤ Js,π [u] (19)

for any other admissible process {(xA, u)(·) : A ∈ A} of Problem B. In this case, ū
will be denoted as optimal control for Problem B.

Throughout the whole paper, the following Standing Hypothesis will be imposed
both for Problem A and for Problem B:

(SH): Q, Q f ∈ Mn×n are symmetric and semipositive definite, and R ∈ Mm×m is
symmetric and positive definite.

Remark 3.2 As we will show in Lemma 3.6, Problem B admits a unique optimal
process when the assumption (SH) holds true. Furthermore, it is interesting to observe
that Problem A can be regarded as a particular case of Problem B when one chooses
π = δ Â, namely when π is a Dirac delta concentrated at Â:

Problem Bδ Â
↪→ Problem A

Remark 3.3 In our framework, we consider a probability distribution merely on the
matrix A of the dynamics and not on the matrix B. It is not hard to check that the
arguments proposed and the results achieved in the next sections hold as well in an
extended framework where the matrix B is possibly unknown. However, we preferred
to consider a simpler case to keep the overall presentation as clear as possible. More-
over, it seems reasonable to assume that the agent does not know how the environment
works (matrix A), whereas being aware of how the control affects the system (matrix
B).

Remark 3.4 (Nonlinear systems and connectionwith RL)Wedefinedπ as a probability
distribution on a space of matricesA. In a higher perspective, we can identifyA with
a class of linear dynamical systems, namely

Ã := {(x, u) �→ Ax + Bu | A ∈ A} ,

and see π as a probability distribution on Ã as well.
More generally, one could consider a nonlinear dynamical system

{
ẋ(t) = f (x(t), u(t)) t ∈ [s, T ]
x(s) = x0,

(20)

assuming that the f is unknown and only a probability distribution π on a space X of
possible dynamics is available. In a similar way to howwe did, given a cost functional

Js[u] :=
∫ T

s
�(x(t), u(t))dt + h(x(T )) , (21)
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one could define a Problem B for the nonlinear problem (see [18,22]).
A concrete example of nonlinear ProblemB related toRL is presented in PILCO, by

Deisenroth and Rasmussen [6,7]. PILCO aims at approximating the actual dynamics
with a Gaussian process (GP); the parameters of the GP are tuned according to the data
gathered by an agent while interacting with the environment. Providing a probability
distribution of the dynamics permits to obtain an interval of confidence of the actual
dynamics at each point, rather than a pointwise estimate of the actual dynamics. We
stress that a GP is a probability distribution on the set X of bounded, continuous
functions, and thus, it constitutes a perfect candidate to play the role of π in Problem
B. In the policy improvement step, the optimal policy is then computed minimizing
the averaged cost over all possible realizations of the GP, in a similar way to how we
defined the cost functional in (16).

The framework presented in this paper incorporates the approach presented in
PILCO, as well as other probabilistic model-based RLmethods [29], when the dynam-
ics is linear and the cost is quadratic. We will make further considerations about the
link with PILCO in Remark 5.5.

3.1 Preliminary results for Problem B

Let us start showing a series of basic results on the existence and the regularity of
trajectories and optimal controls for the system we are considering.

In this section, we assume that π is a probability distribution on a compact set
of matrices A ⊂ Mn×n . Being A bounded, there exists a constant CA such that
‖A‖2 ≤ CA, ∀ A ∈ A.

For a givenmatrix A ∈ A and an admissible controlu ∈ U , the notation xA(t; u)will
denote the solution of (18) relative to A and u; sometimes, when it is not ambiguous,
we could omit the dependency on the control u and write only xA(t).

Lemma 3.5 (Boundness and continuity of trajectories) Let us consider the dynamical
system in (18). The following results hold:

(i) For each u ∈ L1([s, T ];Rm), the trajectory xA(·; u) is uniformly bounded for all
A ∈ A:

|xA(t; u)| ≤ Cu
x ∀ t ∈ [s, T ], ∀ A ∈ A ,

where Cu
x is a constant which depends on u and on x0.

(ii) For each u ∈ L1([s, T ];Rm), the map A �→ xA(·; u) is continuous;
(iii) For each A ∈ A, the map u �→ xA(·; u) is continuous for u ∈ L1([s, T ];Rm).

Proof (i) Recall that xA(t) satisfies the relation

xA(t) = x0 +
∫ t

s
AxA(τ ) + Bu(τ ) dτ, ∀ t ∈ [s, T ].
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for each A ∈ A. Then,

|xA(t)| ≤ |x0| +
∫ t

s
‖A‖2 |xA(τ )| dτ + ‖B‖2

∫ t

s
|u(τ )| dτ ∀ t ∈ [s, T ],

so by the Grönwall lemma (see, e.g., Lemma 2.4.4 on [28]) we get

|xA(t)| ≤
(

|x0| + ‖B‖2
∫ t

s
|u(τ )| dτ

)

e‖A‖2(t−s)

≤
(

|x0| + ‖B‖2
∫ t

s
|u(τ )| dτ

)

eCAT =: Cu
x

(22)

for every A ∈ A and t ∈ [s, T ]. This shows condition (i).
(ii) Fix a control u ∈ L1([s, T ];Rm) and consider the trajectories solutions of (18)

relative to two different matrices A and A′. If we define

z(t) := xA(t) − xA′(t) ,

then z solves the following differential system:

{
ż(t) = AxA(t) − A′xA′(t) t ∈ [s, T ]
z(s) = 0 .

Notice that we can rewrite the right-hand side as

AxA(t) − A′xA′(t) = Az(t) + (A − A′)xA′(t) ,

and thus, we can give the estimate

|ż(t)| ≤ CA|z(t)| + ∥∥A − A′∥∥
2 C

u
x .

Applying again the Grönwall lemma on z, we get

|z(t)| ≤ ∥∥A − A′∥∥
2 C

u
x

∫ t

s
e
∫ t
τ CAdσdτ ≤ TCu

x e
CAT

∥
∥A − A′∥∥

2 ∀ t ∈ [s, T ] ,

which implies the continuity of the map A �→ xA(·).
(iii) Fix a matrix A ∈ A and consider the trajectories relative to two different controls

u, u′ ∈ U . In a similar way as in (ii), we define

z(t) := xA(t; u) − xA(t; u′) ,

which solves the ODE system

{
ż(t) = Az(t) + B

(
u(t) − u′(t)

)
t ∈ [s, T ]

z(s) = 0 ,
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and, by Grönwall’s lemma, we get

|z(t)| ≤ ‖B‖2
∫ t

s
e
∫ t
τ CAdσ |u(τ ) − u′(τ )|dτ ≤ eCAT ‖B‖2

∥
∥u − u′∥∥

1

for all t ∈ [s, T ]. The last inequality gives the continuity with respect to u ∈
L1([s, T ];Rm).

�
The following result guarantees that the minimization problem (15) is well posed:

Lemma 3.6 (Existence, uniqueness and upper bounds of the optimal control) Let the
assumption (SH) hold true. Given a π ∈ M(A), Problem B (15) admits a unique
minimizer {(x̄ A, ū)(·) : A ∈ A}, satisfying the following upper bound:

(∫ T

s
|ū(t)|2 dt

)1/2

≤ Cu , (23)

where Cu does not depend on π and is defined as

Cu :=
√

1

r1

(
T ‖Q‖2 + ∥∥Q f

∥
∥
2

) |x0|2e2CAT ,

where r1 is the smallest eigenvalue of the matrix R.

Proof Consider a minimizing sequence uk ∈ U of the cost functional Js,π defined in
(16), satisfying Js,π [uk] → infu∈U Js,π [u], infu∈U Js,π [u] ≤ Js,π [uk], and the related
minimizing process {(xkA, uk)(·) : A ∈ A}. Set εk := Js,π [uk] − infu∈U Js,π [u] ≥ 0.
It is not restrictive to assume that εk < 1 for all k ∈ N.

Let us consider the system (18) when the control is u0 ≡ 0. The process
{(x0A, u0)(·) : A ∈ A}) is solution of

{
ẋ0A(t) = Ax0A(t) t ∈ [s, T ]
x0A(s) = x0

for every A ∈ A. Hence,

|x0A(t)| = |eAt x0| ≤ |x0|e‖A‖2T ∀ t ∈ [0, T ], ∀A ∈ A .

Clearly, the cost achieved by the control u0 can be estimated as follows:

Js,π [u0] = Eπ

[
1

2

∫ T

s
x0A(t)T Qx0A(t) dt + 1

2
x0A(T )T Q f x

0
A(T )

]

≤ Eπ

[
1

2
T ‖Q‖2 |x0|2e2‖A‖2T + 1

2

∥
∥Q f

∥
∥
2 |x0|2e2‖A‖2T

]
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≤ 1

2

(
T ‖Q‖2 + ∥∥Q f

∥
∥
2

) |x0|2e2CAT .

Furthermore, it follows from the construction of the minimizing sequence that

Js,π [uk] ≤ Js,π [u0] + εk ≤ 1

2

(
T ‖Q‖2 + ∥∥Q f

∥
∥
2

) |x0|2e2CAT + εk .

On the other hand, since the matrix R > 0, one has

Js,π [uk] = Eπ

[
1

2

∫ T

s
xkA(t)T QxkA(t) + uk(t)T Ruk(t) dt + 1

2
xkA(T )T Q f x

k
A(T )

]

≥ 1

2

∫ T

s
uk(t)T Ruk(t) dt ≥ 1

2

∫ T

s
r1|uk(t)|2 dt ,

where r1 is the smallest eigenvalue of the matrix R.
Hence, one obtains the bound on the minimizing sequence

∫ T

s
|uk(t)|2 dt ≤ 1

r1

(
T ‖Q‖2 + ∥∥Q f

∥
∥
2

) |x0|2e2CAT + 2εk
r1

, (24)

which results in a uniformly bounded norm:

∥
∥
∥uk
∥
∥
∥
2

≤
√

1

r1

(
T ‖Q‖2 + ∥∥Q f

∥
∥
2

) |x0|2e2CAT + 2

r1
=: Cu ∀k ∈ N . (25)

In view of the previous relation, it follows from standard compactness arguments that
uk⇀ū weakly in L2([s, T ];Rm). Since uk is uniformly bounded in L2, then using
in turn the relation (22), the Hölder inequality and the relation (25), one obtains that
there exists a constant Cx > 0 such that

|xkA(t)| ≤ Cuk
x ≤

(
|x0| + √

T ‖B‖2 Cu

)
eCAT =: Cx (26)

holds for every k ∈ N, A ∈ A and t ∈ [s, T ]. Furthermore, for each k ∈ N, A ∈ A
and t ∈ [s, T ], one has

∫ t

s

∣
∣
∣ẋ kA(τ )

∣
∣
∣ dτ ≤

∫ t

s
‖A‖2 |xkA(τ )|dτ +

∫ t

s
‖B‖2 |uk(τ )|dτ

≤ TCACx + √
T ‖B‖2 Cu ,

which implies that, for each A ∈ A, ẋ kA⇀ ˙̄xA weakly in L1([s, T ];Rm), xkA → x̄ A
uniformly in [s, T ] and, in view of the linearity of the control system, the process
{(x̄ A, ū)(·) : A ∈ A} is the solution of the linear system

{ ˙̄xA(t) = Ax̄A(t) + Bū(t), t ∈ [s, T ],
x̄ A(s) = x0,

123



390 Mathematics of Control, Signals, and Systems (2021) 33:379–411

for each A ∈ A. So the process {(x̄ A, ū)(·) : A ∈ A} is a minimizer for Problem B,
and in view of (24), ū satisfies the bound (23) with the stricter constant

Cu :=
√

1

r1

(
T ‖Q‖2 + ∥∥Q f

∥
∥
2

) |x0|2e2CAT .

Since the functional u �→ Js,π [u] is strictly convex, the uniqueness of theminimizer
follows from standard arguments. This completes the proof. �
Remark 3.7 In view of the previous results, if {(x̄ A, ū)(·) : A ∈ A} is an optimal pro-
cess for problem B, then the constant

Cx :=
(
|x0| + √

T ‖B‖2 Cu

)
eCAT

is such that

|x̄ A(t)| ≤ Cx , ∀A ∈ A, ∀t ∈ [s, T ]

and does not depend on π .

4 Optimality conditions

Let us consider the optimal control problem

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

minimize Js,π [u]
over u : [s, T ] → R

m measurable such that
u(t) ∈ U (t) a.e. t ∈ [s, T ],
ẋ A(t) = AxA(t) + Bu(t), A ∈ A, t ∈ [s, T ]
xA(s) = x0,

(27)

whereU : [s, T ] � R
m is aL×BRm -measurablemultifunction taking values compact

sets and Js,π is the cost functional defined in (16) for a given, fixed π ∈ M(A). For a
given reference process {(x̄ A, ū)(·) : A ∈ A}, we assume that the following condition
holds true:

(TH): There exist δ > 0 and a function c ∈ L2([s, T ];R) such that

|Ax + Bu| ≤ c(t),

for all x ∈ Bn(x̄ A(t), δ), u ∈ U (t), A ∈ A, a.e. t ∈ [s, T ].
It follows from standard ODE theory that when condition (TH) holds, for every admis-
sible process {(x̄ A, ū)(·) : A ∈ A} one has that x̄ A(·) is in W 1,1([s, T ];Rn) for all
A ∈ A.
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Definition 4.1 For a given δ > 0, a process {(x̄ A, ū)(·) : A ∈ A} is said to be aW 1,1-
local minimizer for problem (27) if

Js,π [ū] ≤ Js,π [u]

for every process {(xA, u)(·) : A ∈ A} such that

sup
A∈A

‖x̄ A(·) − xA(·)‖W 1,1 ≤ δ.

We recall the following result due to Bettiol and Khalil, which is a special case of
Theorem 3.3 in [2]:

Theorem 4.2 (Bettiol-Khalil, 2019) Let {(x̄ A, ū)(·) : A ∈ A} be a W 1,1-local mini-
mizer for the optimal control problem (27). Let the assumption (TH) be satisfied. Then,
there exists a L × BA measurable function p : [s, T ] × A → R

n, p(t, A) ≡ pA(t),
such that

(i)

pA(·) ∈ W 1,1([s, T ];Rn) ∀ A ∈ supp(π) ;

(ii)

∫

A
pA(t)Bū(t) dπ(A) − 1

2
ū(t)T Rū(t)

= max
u∈U (t)

{∫

A
pA(t)Bu dπ(A) − 1

2
uT Ru

}

a.e. t ∈ [s, T ]

(iii)

− ṗA(t) = AT pA(t) − Qx̄A(t) a.e. t ∈ [s, T ], ∀A ∈ supp(π) ;

(iv)

−pA(T ) = Q f x̄A(T ) ∀A ∈ supp(π) .

Remark 4.3 Let us notice that Theorem 3.3 in [2] is derived under the stronger assump-
tion:

(TH’): there exist δ > 0 and c > 0 such that

|Ax + Bu| ≤ c ,

for all x ∈ B(x̄ A(t), δ), u ∈ U (t), A ∈ A, a.e. t ∈ [s, T ].
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However, scrutiny to the proof given there reveals that the result still holds true under
the relaxed condition (TH). Furthermore, Theorem 3.3 in [2] is derived for a Mayer
optimal control problem, i.e., with only a final cost, but an analogous theorem forBolza
optimal control problems can be easily obtained by using a standard state augmentation
argument.

We are now ready to prove the necessary optimality conditions for Problem B:

Theorem 4.4 Assume the hypothesis (SH). Then, the following optimality condition
is satisfied by the minimizer {(x̄ A, ū)(·) : A ∈ A} for Problem B (15). There exists a
L × BA measurable function p : [s, T ] × A → R

n, p(t, A) ≡ pA(t), such that

(i)

pA(·) ∈ W 1,1([s, T ];Rn) ∀ A ∈ supp(π) ;

(ii)

ū(t) = +R−1BT
∫

A
pA(t) dπ(A) t ∈ [s, T ] ;

(iii)

− ṗA(t) = AT pA(t) − Qx̄A(t) a.e. t ∈ [s, T ], ∀A ∈ supp(π) ;

(iv)

−pA(T ) = Q f x̄A(T ) ∀A ∈ supp(π) .

Proof Let us first observe that the optimal process {(x̄ A, ū)(·) : A ∈ A} exists and is
unique, due to Lemma 3.6. Consider now the optimal control problem

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

minimize Js,π [u]
over u : [s, T ] → R

m measurable such that
u(t) ∈ Bm(ū(t), 1) a.e. t ∈ [s, T ],
ẋ A(t) = AxA(t) + Bu(t), A ∈ A, t ∈ [s, T ]
xA(s) = x0 .

(28)

Such an optimal control problem is a special case of (27) with the choice ofU (t) =
Bm(ū(t), 1). Clearly, since {(x̄ A, ū)(·) : A ∈ A} is a minimizer for Problem B, then it
is also a minimizer for problem (28). Furthermore, since any element of u ∈ U (t) can
be written as u = ū(t) + v, for some v ∈ Bm(0, 1) and in view of Remark 3.7, then
one can easily find δ > 0 and a function c ∈ L2([s, T ],R) such that the hypothesis
(TH) is satisfied. Indeed,

|Ax + Bu| = |Ax + B(ū(t) + v)| ≤ ‖A‖2 (Cx + δ) + ‖B‖2 (|ū(t)| + 1) =: c(t)
(29)
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for all x ∈ Bn(x̄ A(t), δ), ∀A ∈ A, for all u ∈ Bm(ū(t), 1), a.e. t ∈ [s, T ], where Cx is
the constant appearing in Remark 3.7. So the process {(x̄ A, ū)(·) : A ∈ A} is aW 1,1-
minimizer (seeDefinition 4.1) for the optimal control problem (28), and the hypothesis
(SH) is satisfied. Then, one can invoke Theorem 4.2, which provides conditions (i)–
(i i i)–(iv) of the statement. In order to obtain condition (i i), it is enough to observe
that

ū(t) = arg max
u∈U (t)

{∫

A
pA(t)Bu dπ(A) − 1

2
uT Ru

}

, a.e. t ∈ [s, T ]

and that ū(t) is clearly an interior point of U (t) for a.e. t ∈ [s, T ]. Hence, ū(t) has to
satisfy also condition (i i) of Theorem 4.4. This completes the proof. �

Remark 4.5 Theorem 4.4 provides the existence of a multiplier pA(·) for all A ∈
supp(π). In general, we can extend its definition to all A ∈ A, considering pA(·) as
the unique solution of

{
− ṗA(t) = AT pA(t) − Qx̄A(t) t ∈ [s, T ]

−pA(T ) = Q f x̄A(T ) ,
(30)

where {(x̄ A, ū)(·) : A ∈ A} is the unique minimizer of Problem B.

The following result guarantees that this extension defined inRemark 4.5 is continuous
with respect to A:

Lemma 4.6 (Boundness and continuity of multipliers) Let us consider the multipliers
defined in (30) for each A ∈ A. They have the following properties:

(i) There exists a positive constant C p, independent from π , which bounds uniformly
all multipliers, i.e.,

|pA(t)| ≤ C p ∀ t ∈ [s, T ], ∀ A ∈ A ,

(ii) The map A �→ pA(·) is continuous.

Proof The proof is similar to that of Lemma 3.5, with the only difference that here we
need to apply the Grönwall lemma backward instead of forward. Notice that the final
condition

−pA(T ) = Q f x̄A(T )

will not be the same for all A ∈ A, whereas the initial condition was the same in
Lemma 3.5. However, it is still continuous with respect to A by Lemma 3.5, so the
same arguments can be applied to prove (i i). �
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5 Main convergence results

In this section, we will present the main results, which are, respectively, the conver-
gence of the value function (Corollary 5.2) and the convergence of the optimal control
(Theorem 5.3). Given a sequence of probability distributions {πN } ⊂ M(A), for each
N ∈ N we consider Problem BπN , namely problem (15) relative to the distribution
πN . Recalling the definition of the value function in (17), we define

V N (s, x0) := VπN (s, x0) = inf
u∈U

Js,πN [u] . (31)

If {πN } ⊂ M(A) is such thatW1(π
N , π∞) → 0 for N → ∞, what can be said about

the convergence of the value functions V N to V∞ and of the optimal controls uN to
u∞ for N → ∞? In this section, we give an answer to those questions.

Theorem 5.1 (Lipschitz estimate for the value function w.r.t. π ) Let the assumption
(SH) be satisfied. Given π, π ′ ∈ M(A) and (s, x0) ∈ [0, T ] × K with K ⊂ R

n

compact set, let us consider the two value functions Vπ and Vπ ′ as defined in (17). Then,
the distance between V and V ′ can be bounded uniformly for (s, x0) ∈ [0, T ] × K,
that is:

‖Vπ − Vπ ′ ‖∞,[0,T ]×K ≤ CK W1(π, π ′) , (32)

where CK = CK (T ,CA, ‖Q‖2 ,
∥
∥Q f

∥
∥
2 , r1, K ) is a constant which does not depend

on the distributions π and π ′, but merely on the compact set A.

Proof We divide the proof into three steps.
STEP 1: Fix two matrices A, A′ ∈ A, any point (s, x0) ∈ [0, T ] × R

n and a control
u ∈ U . Using Grönwall’s lemma as we did for point (ii) of Lemma 3.5, we get the
following estimate:

|xA(t) − xA′(t)| ≤Cu
x (t − s) e‖A‖2(t−s)

∥
∥A − A′∥∥

2

≤Cu
x t e

‖A‖2t ∥∥A − A′∥∥
2 ∀ t ∈ [s, T ] ,

with Cu
x given by Lemma 3.5.

Let us denote by � the running cost and by h the final cost:

�(x, u) := 1

2

(
xT Qx + uT Ru

)
and h(x) := 1

2
xT Q f x ,

so we can write

Js,π [u] =
∫

A

[∫ T

s
�(xA(t), u(t)) dt + h(xA(T ))

]

dπ(A) .
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Since both � and h are locally Lipschitz continuous, one has

|�(xA′(t), u(t)
)− �

(
xA(t), u(t)

)| = 1

2
|xA′T (t)QxA′(t) − xTA (t)QxA(t)|

≤ 1

2
|xA′T Q(xA′(t) − xA(t))|

+ 1

2
|(xA′(t) − xA(t))T QxA(t)|

≤ ‖Q‖2 Cx |(xA′(t) − x(t))|
≤ Lu

� C
u
x t e

‖A‖2t ∥∥A − A′∥∥
2 ,

and, similarly,

|h(xA′(T )
)− h

(
xA(T )

)| ≤ Lu
h C

u
x T e‖A‖2T ∥∥A − A′∥∥

2 ,

where we defined the Lipschitz constants

Lu
� := ‖Q‖2 Cu

x and Lu
h := ∥∥Q f

∥
∥
2 C

u
x ;

these two constants inherit from Cu
x the dependency on x0 and u.

Finally, the cost difference between two single trajectories can be easily bounded
by

∫ T

s

∣
∣�
(
xA′(t), u(t)

)− �
(
xA(t), u(t)

)∣
∣dt + |h(xA′(T )) − h(xA(T ))|

≤ (T Lu
� + Lu

h

)
Cu
x T eCAT

∥
∥A − A′∥∥

2 .

(33)

STEP 2: Fix an initial condition x(s) = x0 ∈ R
n with s ∈ [0, T ] and a control u ∈ U .

We want to prove a bound for the distance between Js,π [u] and Js,π ′ [u].
As a property ofW1, there exists (see Theorem4.1 on [27]) a probability distribution

γ ∗ ∈ Γ (π, π ′) on A × A with marginal distributions π and π ′ such that

W1(π, π ′) =
∫

A×A
d2(A, A′) dγ ∗(A, A′) , (34)
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where d2 is the distance introduced in (7). We can thus write

∣
∣Js,π [u] − Js,π ′ [u]∣∣ =

∣
∣
∣
∣

∫

A

∫ T

s
�(xA(t), u(t)) dtdπ(A)

−
∫

A

∫ T

s
�(xA′(t), u(t))dtdπ ′(A′)

+
∫

A
h(xA(T ))dπ(A) −

∫

A
h(xA′(T ))dπ ′(A′)

∣
∣
∣
∣

=
∣
∣
∣
∣

∫

A×A

[ ∫ T

s
(�(xA(t), u(t)) − �(xA′(t), u(t))) dt

+ h(xA(T )) − h(xA′(T ))

]

dγ ∗(A, A′)
∣
∣
∣
∣ ,

where we have used that

∫

A×A
(
φ(A) + ψ(A′)

)
dγ ∗(A, A′) =

∫

A
φ(A)dπ(A) +

∫

A
ψ(A′)dπ ′(A′)

for all measurable functions φ,ψ on A, since γ ∗ admits π and π ′ as marginals.
Using the bound (33) from STEP 1 and formula (34), we get

∣
∣Js,π [u] − Js,π ′ [u]∣∣ ≤

∫

A×A
(
T Lu

� + Lu
h

)
Cu
x T eCAT

∥
∥A − A′∥∥

2 dγ ∗(A, A′)

= (T Lu
� + Lu

h

)
Cu
x T eCAT W1(π, π ′) . (35)

Note that the constant Cu
x which appears here depends merely on x0 and u.

STEP 3: We will now show that an estimate similar to (35) holds true even for the
value functions Vπ and Vπ ′ .

Fix any point (s, x0) ∈ [0, T ] × K . In view of Lemma 3.6, there exist controls
ū, ū′ ∈ U such that

Js,π [ū] = Vπ (s, x0), Js,π ′ [ū′] = Vπ ′(s, x0) .

Then, one has

Vπ ′(s, x0) − Vπ (s, x0) = inf
u∈U

Js,π ′ [u] − Js,π [ū] ≤ Js,π ′ [ū] − Js,π [ū]

and, in the same way,

Vπ (s, x0) − Vπ ′(s, x0) = inf
u∈U

Js,π [u] − Js,π ′ [ū] ≤ Js,π [ū′] − Js,π ′ [ū′] .

Hence,
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|Vπ (s, x0) − Vπ ′(s, x0)| ≤ max
{∣
∣Js,π ′ [ū] − Js,π [ū]∣∣ , ∣∣Js,π ′ [ū′] − Js,π [ū′]∣∣} .

Moreover, being both ū and ū′ optimal control for some distribution on A, we can
use the uniform constant Cx given by Remark 3.7 and define an analogous uniform
constants for the Lipschitz continuity of � and h:

L� := ‖Q‖2 Cx , Lh := ∥∥Q f
∥
∥
2 Cx .

In this way, the estimate becomes independent from ū and ū′ and thus from π and π ′:

|Vπ ′(s, x0) − Vπ (s, x0)| ≤ Cx0 W1(π, π ′) ,

where

Cx0 := (T L� + Lh
)
CxT eCAT .

Finally, noting that the estimate depends on x0 only through its norm, we get that the
bound is uniform in compact sets K ⊂ R

n , letting

CK := sup
x0∈K

Cx0 .

�
A straightforward consequence of the previous theorem is the following:

Corollary 5.2 (Convergence of the value function) If πN ∗
⇀π∞, then V N (s, x0) →

V∞(s, x0) for each (s, x0) ∈ [0, T ] × R
n. The convergence is uniform in compact

sets [0, T ] × K, where K ⊂ R
n is compact.

In what follows, we will use ūN (·) to denote the optimal control of Problem BπN .
Furthermore, x̄ NA (·) and pNA (·) denote, respectively, the optimal trajectories and the
multipliers relative to Problem BπN , that is the solutions of the differential systems
(18) and (30).

The following theorem provides a strong convergence of ūN (·) to the optimal

control ū∞(·) of the limit problem Bπ∞ , assuming that πN ∗
⇀π∞.

Theorem 5.3 (Convergence of the optimal control) Let the assumption (SH) be sat-
isfied. Consider a sequence of probability distributions {πN } ⊂ M(A), such that

πN ∗
⇀π∞ and fix s ∈ [0, T ] and x0 ∈ R

n. If ūN (·) and ū∞(·) are, respectively, the
optimal controls of Problem BπN and Bπ∞ , i.e., they satisfy (19), respectively, for πN

and π∞, then ūN (·) converges uniformly ū∞(·) for N → ∞.

Proof Without loss of generality, one can take s = 0, being all the other cases similar.
Lemma 3.6 assures that, for each πN ∈ M(A), there exists a unique optimal

process
{
(x̄ NA , ūN )(·) : A ∈ A}. Taking into account Theorem 4.4 and Remark 4.5,

that process satisfies the following necessary conditions: For each N ∈ N, there exists
a continuous function pN : [0, T ] × A → R

n , pN (t, A) ≡ pNA (t), such that
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(i)

pNA (·) ∈ W 1,1([0, T ];Rn) ∀ A ∈ A ;

(ii)

ūN (t) = +R−1BT
∫

A
pNA (t) dπN (A), ∀ t ∈ [0, T ] ;

(iii)

− ṗNA (t) = AT pNA (t) − Qx̄NA (t) a.e. t ∈ [0, T ], ∀A ∈ A ;

(iv)

−pNA (T ) = Q f x̄
N
A (T ) ∀A ∈ A .

For each A ∈ A, the family of functions

FA :=
{(

x̄ NA , pNA

)
(·)
}

N∈N

is uniformly bounded due to Lemmas 3.5 and 4.6. Moreover, one can find the bounds
on the derivatives:

∫ T

0
|ẋ NA (t)|dt =

∫ T

0

∣
∣
∣Ax̄ NA (t) + BūN (t)

∣
∣
∣ dt ≤ TCACx + √

T ‖B‖2 Cu,

| ṗNA (t)| = |AT pNA (t) − Qx̄NA (t)| ≤ CAC p + ‖Q‖2 Cx ,

(36)

for all A ∈ A, a.e. t ∈ [0, T ]. The second bound in (36) and the relation (ii) imply
that also the map

[0, T ] � t �→ ūN (t) = +R−1BT
∫

A
pNA (t) dπN (A)

is equibounded and equicontinuous in N . For each A ∈ A fixed, one can then apply
Theorem 2.5.3 on [28], implying the existence of some limit functions x∞

A , p∞
A ∈

W 1,1([0, T ];Rn) and u∞ ∈ C0([0, T ];Rm) such that

ẋ NA (t)⇀ẋ∞
A (t) and ṗNA (t)⇀ ṗ∞

A (t) weakly in L1([0, T ];Rn) as N → ∞ ,

x̄ NA (t) → x∞
A (t) and pNA (t) → p∞

A (t) uniformly on [0, T ] as N → ∞ ,

ūN (t) → u∞(t) uniformly on [0, T ] as N → ∞ ,
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and such that, for each A ∈ A, (x∞
A , p∞

A )(·) is a solution of the boundary value
problem

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ẋ∞
A (t) = Ax∞

A (t) + Bu∞(t), t ∈ [0, T ]
− ṗ∞

A (t) = AT p∞
A (t) − Qx∞

A (t), t ∈ [0, T ]
x∞
A (0) = x0

−p∞
A (T ) = Q f x

∞
A (T ) .

(37)

Furthermore, since πN ∗
⇀π∞, u∞ satisfies the relation

[0, T ] � t �→ u∞(t) = +R−1BT
∫

A
p∞
A (t) dπ∞(A). (38)

In fact, the result follows from the estimate

∣
∣
∣
∣

∫

A
pNA (t)dπN (A) −

∫

A
p∞
A (t)dπ∞(A)

∣
∣
∣
∣ ≤
∣
∣
∣
∣

∫

A
pNA (t)dπN (A) −

∫

A
pNA (t)dπ∞(A)

∣
∣
∣
∣

+
∣
∣
∣
∣

∫

A
pNA (t)dπ∞(A) −

∫

A
p∞
A (t)dπ∞(A)

∣
∣
∣
∣ (39)

for all t ∈ [0, T ], which implies that

ūN (t) = R−1BT
∫

A
pNA (t)dπN (A) → u∞(t) = R−1BT

∫

A
p∞
A (t)dπ∞(A)

uniformly on [0, T ] as N → ∞.
Notice that the convergence is guaranteed along a subsequence, but one can say that

the whole sequence converges since the limit does not depend on the subsequence. (It
solves (37).)

It remains to show that the limiting process {(x∞
A , u∞)(·) : A ∈ A} is actually

optimal for the Problem B (15) relative to π∞. To this aim, let us stress the following
properties of the cost functional J0,π in (16), using the lighter notation

J N := J0,πN and J∞ := J0,π∞ :

1) if πN ∗
⇀π∞, J N [u] → J∞[u] for each u ∈ U , since the map A �→ xA(·) is

continuous by Lemma 3.5;
2) each J N is continuous with respect to u, since for each A ∈ A, the map u �→

xA(·; u) is continuous, again from Lemma 3.5.

Since ūN is the optimal control of Problem BπN and u is an admissible control for the
same problem, then we get

J N [ūN ] ≤ J N [u], ∀N ∈ N
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so, letting N → ∞, it easily follows from the previous relation and properties 1) and
2) that

J∞[u∞] ≤ J∞[u] .

In view of the uniqueness of the optimal control ū∞ for Problem Bπ∞ , one can
conclude that u∞ ≡ ū∞. Hence, also the process

{
(x∞

A , u∞)(·) : A ∈ A} is optimal
for the given problem. This concludes the proof. �
Remark 5.4 (Special Case: π = δ Â) The particular case in which π is a Dirac delta

δ Â for a given matrix Â ∈ Mn×n deserves special attention. Indeed, when π = δ Â,
the cost functional Js,π (16) becomes the cost functional

Js[u] := 1

2

∫ T

s

(
x(t)T Qx(t) + u(t)T Ru(t)

)
dt + 1

2
x(T )T Q f x(T ) ,

and Problem B in (15) coincides with a standard Problem A (see (10))

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

minimize
{
1
2

∫ T
s

(
x(t)T Qx(t) + u(t)T Ru(t)

)
dt + 1

2 x(T )T Q f x(T )
}

over (x, u)(·) such that u : [s, T ] → R
m is measurable and

ẋ(t) = Âx(t) + Bu(t), t ∈ [s, T ]
x(s) = x0 .

(40)

Furthermore, the definition of the value function and that of the optimal control we
gave in (17) and (19) agree, in this special case, with the classic definitions in control
theory (see (13) and (14)):

V (s, x0) := inf
u∈U

Js[u] and ū := argminu∈U Js[u] .

If we apply Corollary 5.2 and Theorem 5.3 to a sequence πN converging to δ Â,
then we obtain

V N (s, x0) → V (s, x0) ∀ s ∈ [0, T ], x0 ∈ R
n

and

ūN → ū uniformly in [0, T ] ,

where V N and ūN are, respectively, the value function in (17) and the optimal control
(19) relative to πN .

Remark 5.5 (Additional remarks on the connectionwithRL)Let us comment the results
of this section bearing in mind the PILCO algorithm, presented in Remark 3.4. Recall
that PILCO uses the agent experience on the environment to tune the parameters of a
Gaussian process (GP), building up a stochasticmodel for the dynamics. TheGP is then
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updated as the agent collects more data on the environment. This procedure generates
a sequence of probability distributionsπN on the space of continuous functions, which
should get sufficiently close to the Dirac delta representing the actual dynamics.

Now, assume that we are applying PILCO to the linear system (12) in which the
agent does not know the matrix Â. Then, one can think to

{
πN
}

N∈N as a sequence of
probability distributions on the space ofmatricesMn×n , which is converging to aDirac
delta concentrated at the true matrix Â. If, at each step, the agent picks as control uN ,

namely the one minimizing the expected cost with respect to πN , and πN ∗
⇀π∞, then

one can apply Theorem 5.3 to the special case presented in Remark 5.4 and obtains
the uniform convergence ūN → ū∞, where ū∞ is the optimal control for the limit
problem.

This suggests that even if the distribution πN does not exactly reach δ Â but gets
sufficiently close to it, then the control ūN is suboptimal for the actual LQR problem.

6 A case of study: finite support measures converging to ıÂ

In this section, we will assume that A is a finite set, namely A := {A1, . . . , AM }
for some integer M ∈ N. Let us consider a sequence of probability distributions
{πN } ⊂ M(A), which can be written as

πN :=
M∑

i=1

αN
i δAi , for some αN

i ≥ 0 such that
M∑

i=1

αN
i = 1, ∀N ∈ N. (41)

For a given s ∈ [0, T ] and x0 ∈ R
n , suppose that the underlyingdynamics governing

the optimal control problem we are interested in is a standard Problem A (see (10)):

⎧
⎪⎪⎨

⎪⎪⎩

minimize Js[u]
over (x, u)(·) such that u : [s, T ] → R

m is measurable and
ẋ(t) = Âx(t) + Bu(t), t ∈ [s, T ]
x(s) = x0 ,

(42)

where Â ∈ A and the cost functional Js[u] is defined as in (11):

Js[u] := 1

2

∫ T

s

(
x(t)T Qx(t) + u(t)T Ru(t)

)
dt + 1

2
x(T )T Q f x(T ) . (43)

Without loss of generality, one can set Â ≡ A1. For each s ∈ [0, T ] and x0 ∈ R
n , the

value function V (s, x0) for this problem has been defined in (13).
Then, one can expect that, after some interactions with the system, it is possible to

construct a sequence of probability distributions {πN } ⊂ M(A) capturing the current
belief that one has about the real system (42) and such that, when N is sufficiently

large, πN gets closer and closer to δA1 and eventually πN ∗
⇀δA1 .
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For each fixed N ∈ N, one can reformulate Problem B associated with πN as a
classical LQR problem on an augmented system of dimension nM :

⎧
⎪⎪⎨

⎪⎪⎩

minimize J N
s [u]

over (X , u)(·) such that u : [s, T ] → R
m is measurable and

Ẋ(t) = ÃX(t) + B̃u(t), t ∈ [s, T ]
X(s) = X0 ,

(44)

with cost functional

J N
s [u] := 1

2

∫ T

s

(
X(t)T Q̃N X(t) + u(t)T Ru(t)

)
dt + 1

2
X(T )T Q̃N

f X(T ) . (45)

where we have used the compact notation X(t) := (xA1(t), . . . , xAM (t)
)
, X0 ∈ R

nM

and

Ã =

⎛

⎜
⎜
⎜
⎜
⎝

A1 0 · · · 0

0 A2 · · · 0
...

...
. . .

...

0 0 · · · AM

⎞

⎟
⎟
⎟
⎟
⎠

, B̃ =

⎛

⎜
⎜
⎜
⎝

B
B
...

B

⎞

⎟
⎟
⎟
⎠

,

Q̃N =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

αN
1 Q 0 · · · 0

0 αN
2 Q · · · 0

...
...

. . .
...

0 0 · · · αN
MQ

⎞

⎟
⎟
⎟
⎟
⎟
⎠

and Q̃N
f =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

αN
1 Q f 0 · · · 0

0 αN
2 Q f · · · 0

...
...

. . .
...

0 0 · · · αN
MQ f

⎞

⎟
⎟
⎟
⎟
⎟
⎠

.

In this section, we will use V N (s, X0) to denote the value function related to the LQR
problem (44), namely

V N (s, X0) = inf
u∈U

J N
s [u]. (46)

Since the optimal control problem (44) can be regarded as a classic LQR problem,
then one has the following relation between the value function and the optimal control
in feedback form (see, e.g., [13], Theorem 3.4):

there exists PN such that

V N (s, X0) = XT
0 PN (s)X0, ∇XV

N (s, X0) = 2PN (s)X0 (47)

ūN (s, X0) = −R−1 B̃T PN (s)X0, (48)

where [s, T ] � t �→ PN (t) ∈ MnM×nM solves the Riccati equation
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{
ÃT P(t) + P(t) Ã − P(t)B̃ R−1 B̃T P(t) + Q̃N = −Ṗ(t), t ∈ [s, T ]

P(T ) = Q̃ f
N

.

(49)

For x0 ∈ R
n , we will use the notation V N (s, x0) to denote the value function

V N (s, X0) evaluated at X0 = (x0, . . . , x0) ∈ R
nM .

We can summarize the results of the previous section applied to problem (44) as
follows:

Corollary 6.1 Let the assumption (SH) be satisfied. For each s ∈ [0, T ], x0 ∈ R
n

and {πN } ⊂ M(A), the optimal control problems (44) and (42) satisfy the following
conditions:

(i) problems (44) and (42) admit a unique optimal process
{
(x̄ NA , ūN )(·) : A ∈ A}

and (x̄, ū)(·), respectively;
(ii) for each K ⊂ R

n, ∃CK such that

||V N − V ||∞,K ≤ CK W1(π
N , δ Â) ; (50)

(iii) if, moreover, {πN } is such that πN ∗
⇀δ Â, then the optimal control ūN → ū uni-

formly for t ∈ [s, T ].
For each N ∈ N, the solution of (49) is related to the matrices XN ,Y N : [s, T ] →

MnM×nM , such that the pair (XN ,Y N )(·) is the solution of the backward Hamiltonian
differential equation

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

[
Ẋ(t)
Ẏ (t)

]

= HN
[
X(t)
Y (t)

]

for t ∈ [s, T ]
[
X(T )

Y (T )

]

=
[

I

Q̃ f
N

]

,

(51)

where

HN =
[

Ã −B̃ R−1 B̃T

Q̃N − ÃT

]

. (52)

The relation between the solutions of (49) and (51) was stated in precise terms by
Coppel in [5, pp. 274–275]:

Theorem 6.2 Suppose that (SH) holds true. Let X ,Y : [s, T ] → MnM×nM be the
solutions of the Hamiltonian differential problem (51). Then,

1. X(t) is non-singular for all t ∈ [s, T ];
2. the solution of (49) is

P̃(t) = Y (t)X−1(t), t ∈ [s, T ] . (53)
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We are now ready to strengthen the results of the previous by showing that, in the
case in which the sequence of measures and its limit have finite support, then also the
solution of the Riccati equation (49) has good convergence properties:

Theorem 6.3 (Convergence of the Riccati equation) Let the assumption (SH) be sat-

isfied. Suppose that the sequence {πN } ⊂ M(A) is such that πN ∗
⇀δA1 , that is, for

each i = 1, . . . , M the weights converge:

αN
1 → 1

αN
i → 0 for i = 2, . . . , M .

when N → ∞. Then, the sequence of matrices {P̃ N (t)} ⊂ MnM×nM which solve the
Riccati equation (49) for each N ∈ N converges to the matrix

P̄(t) =

⎛

⎜
⎜
⎜
⎜
⎝

P(t) 0 · · · 0

0 0 · · · 0
...

...
. . .

...

0 0 · · · 0

⎞

⎟
⎟
⎟
⎟
⎠

,

uniformly on t ∈ [s, T ], where P(t) ∈ Mn×n is the solution of the Riccati equation
related to the optimal control problem (42) with state matrix A1, namely:

{
AT
1 P(t) + P(t)A1 − P(t)BR−1BT P(t) + Q = −Ṗ(t), t ∈ [s, T ],

P(T ) = Q f ,
(54)

Proof Consider the Hamiltonian systems in (51) related to all different distributions
πN . Notice that the norm of HN in (52) can be bounded:

∥
∥
∥HN

∥
∥
∥
2

≤ 2CA + ‖Q‖2 + M ‖B‖22
∥
∥
∥R−1

∥
∥
∥
2

,

for all N ∈ N.
Using Grönwall’s lemma, one can easily show that the pair of matrices (XN ,Y N )

solution to (51) is uniformlybounded and that, using again (51), (Ẋ N , Ẏ N ) is uniformly
integrally bounded, for all N ∈ N. So it is possible to apply Theorem 2.5.3 of [28] to
show that the pair (XN ,Y N ) converges to some matrices (X∞,Y∞) solution of the
system

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

[
Ẋ(t)
Ẏ (t)

]

= H∞
[
X(t)
Y (t)

]

for t ∈ [s, T ]
[
X(T )

Y (T )

]

=
[

I
Q̃ f

∞
]

,

(55)
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where

H∞ =
[

Ã −B̃ R−1 B̃T

Q̃∞ − ÃT

]

(56)

and

Q̃∞ =

⎛

⎜
⎜
⎜
⎜
⎝

Q 0 · · · 0

0 0 · · · 0
...

...
. . .

...

0 0 · · · 0

⎞

⎟
⎟
⎟
⎟
⎠

, Q̃∞
f =

⎛

⎜
⎜
⎜
⎜
⎝

Q f 0 · · · 0

0 0 · · · 0
...

...
. . .

...

0 0 · · · 0

⎞

⎟
⎟
⎟
⎟
⎠

.

Then, in viewof Theorem6.2, thematrix X∞(t) is also nonsingular for each t ∈ [s, T ],
and the matrix P̃∞(t) := Y∞(t)X∞(t)−1 is the solution of the Riccati equation

{
ÃT P̃(t) + P̃(t) Ã − P̃(t)B̃ R−1 B̃T P̃(t) + Q̃∞ = − ˙̃P(t) t ∈ [s, T ]

P̃(T ) = Q̃∞
f .

(57)

Furthermore, since each XN (t)−1 is continuous and well defined for each N ∈ N

and that X∞(t)−1 is uniformly continuous on [s, T ], then

P̃ N (t) := Y N (t)XN (t)−1 −→ Y∞(t)X∞(t)−1 =: P̃∞(t)

uniformly on t ∈ [s, T ]. Finally, consider the matrix P̄(t) ∈ MnM×nM ,

P̄(t) =

⎛

⎜
⎜
⎜
⎜
⎝

P(t) 0 · · · 0

0 0 · · · 0
...

...
. . .

...

0 0 · · · 0

⎞

⎟
⎟
⎟
⎟
⎠

,

where P(t) ∈ Mn×n is the unique solution of the Riccati equation (54). A direct
verification shows that P̄(t) ∈ MnM×nM also satisfies the Riccati equation (57).
However, the problem (57) admits a unique solution, implying that P̃∞(t) ≡ P̄(t) for
all t ∈ [s, T ]. This concludes the proof. �

Remark 6.4 (Feedback optimal controls)We would like to stress that the convergence
of the Riccati matrix solution P̃ N to P provided by Theorem 6.3 has the following
implication: For each (s, x0) ∈ [0, T ] × R

n , we define

ūN (s, x0) := −R−1 B̃T PN (s)(x0, . . . , x0) and

ū(s, x0) := −R−1BT P(s)x0,
(58)
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and then, ūN tend to ū for N going to+∞. Namely that the optimal control of problem
(44), which satisfies the formula (48), evaluated at X0 = (x0, . . . , x0) pointwisely
converges to the optimal control of problem (42). Furthermore, for each K ⊂ R

n

compact, one has that

ūN (s, x0) → ū(s, x0) uniformly on [0, T ] × K . (59)

It is important to point out that whereas Theorem 5.3 proves the convergence for
the class of optimal open-loop controls, Theorem 6.3 deals with the convergence of
optimal controls in feedback form.

It remains an open question whether Theorem 6.3 can be proved for a generic
sequence of probability measures

{
πN
}

N∈N converging weakly-* to a generic prob-
ability measure π . Such an issue is delicate and will be studied in a forthcoming
paper.

7 A numerical example

The aim of this section is to verify that the results summarized in Corollary 6.1 hold
in a concrete example.

Themodel is the onepresented inSect. 6. The true dynamics is a controlledharmonic
oscillator described by the matrices

Â :=
(

0 1

−1 0

)

and B :=
(
0
1

)

;

the coefficients that are used to define the cost functional are

Q :=
(
1 0

0 1

)

and R := 0.1 ,

and the final time is T = 5. Let us write πN as in (41) for M = 9, and the 9 matrices
are defined in a neighborhood of matrix Â, i.e.,

A1 = Â ,

A2∗ j+i := Â + (−1)i 0.5 e j i = 0, 1, j = 1, 2, 3, 4

where {e j } j=1,...,4 are the matrices of the canonical basis of R2×2. The probabilities
αN
i are defined according to the following rule:

αN
1 = 1 − 1

2N
, αN

i = 1

8

1

2N
for i = 2, . . . , 9 .
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Table 1 Errors for value functions and optimal controls related to πN with N = 0, . . . , 9 with respect to
the true value function and the true optimal control of Problem A

N α1 ||Ṽ N − V ||∞,K Order ||ūN − ū||∞ Order

0 0 6.08e−0 - 5.25e−1 –

1 0.5 3.21e−0 0.92 3.21e−1 0.71

2 0.75 1.66e−0 0.95 1.82e−1 0.82

3 0.875 8.49e−1 0.97 9.78e−2 0.90

4 0.9375 4.29e−1 0.98 5.09e−2 0.94

5 0.9687 2.16e−1 0.99 2.59e−2 0.97

6 0.9844 1.08e−1 1.00 1.31e−2 0.99

7 0.9922 5.42e−2 1.00 6.59e−3 0.99

8 0.9961 2.71e−2 1.00 3.30e−3 1.00

9 0.9980 1.36e−3 1.00 1.65e−3 1.00

Initial point for the optimal control is x0 = (1, 0)

Note that theWasserstein distancewith respect to theEuclidean normonR2×2 between
πN and δ Â can be computed exactly:

W1(π
N , δ Â) = 1

2N+1 .

Both Problem A, that is the LQR problem with the matrix Â known, and Problem
B, that is the LQR problem with the matrix Â unknown can be solved by finding
the solution of a Riccati equation (see §IV.5 on Fleming–Rishel monograph [9]). We
solved the equation numerically for N = 0, . . . , 9. For each N , we computed the
sup norm of the difference Ṽ N − V and of the difference ūN − ū, where ūN and ū
are, respectively, the optimal controls for the two problems starting from x0 = (1, 0).
The results are summarized in Table 1. All the computations have been done using
MATLAB on a MacBook Air 13” 2017 with Intel Core i5 Processor (2x 1.8 GHz).

Notice that when we increase N by one, we halve the distance W1(π
N , δ Â) and

Table 1 tells us that also the error ||Ṽ N − V ||∞,K , with K := [−2, 2]2, is halved; this
is consistent with the estimate given by Corollary 6.1. At the same time, we remark
that the error ||ūN − ū||∞ is halved as well, even if we did not have any estimate on
the convergence rate of the optimal controls. We can say that in this example, both the
errors are going to 0 with order 1.

The optimal trajectory of Problem A starting from x0 = (1, 0) is represented in
Fig. 1. For Problem B, the optimal trajectory is actually made of 9 trajectories, the
costs of which are weighted averaged in order to compute the cost functional J̃ . Two
examples of optimal (multi-)trajectory, respectively, for π0 and π2, are represented in
Figs. 2 and 3; note that the trajectory related to the true dynamics is x1(t), which is the
darkest one. Finally, in Fig. 4 the optimal controls for Problem B with N = 0, . . . , 4
are compared with the true optimal control.
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Fig. 1 Optimal trajectory of Problem A, computed solving a 2-dimensional Riccati differential equation
associated with matrix Â. The initial point is indicated with a red dot

Fig. 2 Optimal (multi-)trajectory for Problem B with π0. To compute the optimal solution, we solved a
18-dimensional Riccati differential equation. The initial point is indicated with a red dot
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Fig. 3 Optimal (multi-)trajectory for Problem B with π2

Fig. 4 Comparison of the optimal controls of Problem B relative to different probability distributions πN ,
with N = 0, . . . , 4, and the true optimal control of Problem A (in blue). In the legend, we reported, for
each N , the probability α1 that the true matrix A1 ≡ Â has under the distribution πN . When α1 → 1, the
optimal control of Problem B converges to the true one
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8 Conclusions

In this paper, we proved some convergence properties for the optimal policies of LQ
optimal control problemswith uncertainties (our ProblemB), assuming that the current
belief on the dynamics is represented by a generic probability distribution π on the
space of matrices. Under standard hypotheses on the system dynamics and the cost
functional, we proved that the open-loop, optimal control ūπ of Problem B converges
to the open-loop, optimal control ū of the actual system as soon as the distribution π is
sufficiently close (w.r.t. the Wasserstein distance (9)) to a Dirac’s delta δ Â evaluated at

the actual system matrix Â. We also showed that when the probability distribution π

is actually a discrete measure, then also the closed-loop optimal control of Problem B
converges to the closed-loop optimal control of the actual systemwhen the distribution
π is sufficiently close to the Dirac’s delta δ Â. The latter result was also validated by a
numerical example presented in Sect. 7.

It is worth stressing that the proposed approach has strong connections with several
Bayesian-like RL algorithms (such as PILCO), providing a theoretical framework to
obtain stability and convergence guarantees for such algorithms.

As a future direction, we would like to extend this approach to a nonlinear, control
affine optimal control problem with convex functional, getting closer to the problem
formulation studied in [7]. A first attempt in this direction has been recently proposed
in [22]. Furthermore, we are interested in constructing new efficient RL algorithms
using well-established tools from control theory. In this context, we have already
developed a new method for solving LQR problems with unknown dynamics [20].
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