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Abstract
Classical discrete-time adaptive controllers provide asymptotic stabilization and track-
ing; neither exponential stabilization nor a bounded noise gain is typically proven. In
our recent work, it is shown, in both the pole placement stability setting and the first-
order one-step-ahead tracking setting, that if the original, ideal, projection algorithm
is used (subject to the common assumption that the plant parameters lie in a convex,
compact set and that the parameter estimates are restricted to that set) as part of the
adaptive controller, then a linear-like convolution bound on the closed-loop behaviour
can be proven; this immediately confers exponential stability and a bounded noise
gain, and it can be leveraged to provide tolerance to unmodelled dynamics and plant
parameter variation. In this paper, we solve the much harder problem of adaptive
tracking; under classical assumptions on the set of unmodelled parameters, including
the requirement that the plant be minimum phase, we are able to prove not only the
linear-like properties discussed above, but also very desirable bounds on the tracking
performance. We achieve this by using a modified version of the ideal projection algo-
rithm, termed as vigilant estimator: it is equally alert when the plant state is large
or small and is turned off when it is clear that the disturbance is overwhelming the
estimation process.

Keywords Adaptive control · Projection algorithm · Exponential stability ·
Bounded gain · Convolution bound

This research was supported by a grant from the Natural Sciences Research Council of Canada.

B Daniel E. Miller
miller@uwaterloo.ca

1 Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, ON N2L
3G1, Canada

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00498-020-00255-x&domain=pdf
http://orcid.org/0000-0002-0223-9483


242 Mathematics of Control, Signals, and Systems (2020) 32:241–291

1 Introduction

Adaptive control is an approach used to deal with systems with uncertain and/or time-
varying parameters. In the classical approach to adaptive control, one combines a
linear time-invariant (LTI) compensator together with a tuning mechanism to adjust
the compensator parameters tomatch the plant.While adaptive control has been studied
as far back as the 1950s, the first general proofs that parameter adaptive controllers
work came around 1980, e.g. see [3,5,27,32,33]. However, the original controllers
are typically not robust to unmodelled dynamics, do not tolerate time-variations well,
have poor transient behaviour and do not handle noise (or disturbances) well, e.g.
see [34]. During the following 2 decades, a good deal of research was carried out
to alleviate these shortcomings. A number of small controller design changes were
proposed, such as the use of signal normalization, deadzones and σ -modification, e.g.
see [9,11,14,15,37]; arguably the simplest is that of using projection onto a convex set
of admissible parameters, e.g. see [13,31,41–44].However, in general these redesigned
controllers provide asymptotic stability and not exponential stability, with no bounded
gain on the noise; that being said, some of them, especially those which use projection,
provide a bounded-noise bounded-state property, as well as tolerance of some degree
of unmodelled dynamics and/or time-variations.

The goal of this paper is to design adaptive controllers for which the closed-loop
system exhibits highly desirable LTI-like system properties, such as exponential sta-
bility, a bounded gain on the noise and ideally a convolution bound on the input-output
behaviour;1 in addition, wewish to obtain “good tracking” of a reference signal. As far
as the authors are aware, in the classical approach to adaptive control a bounded gain
on the noise is proven only in [44]; however, neither a “crisp” exponential bound on
the effect of the initial condition nor a convolution bound on the closed-loop behaviour
is proven. While it is possible to prove a form of exponential stability if the reference
input is sufficiently persistently exciting, e.g. see [2], this places a stringent require-
ment on an exogenous input, which we would like to avoid.

There are several non-classical approaches to adaptive control which provide some
of the LTI-like system properties. First of all, in [4,23] a logic-based switching
approach was used to sequence through a predefined list of candidate controllers;
while exponential stability is proven, the transient behaviour can be quite poor and
a bounded gain on the noise is not proven. In a related approach, a high-gain con-
troller is used to provide excellent transient and steady-state tracking for minimum
phase systems [22]; in this case as well, a bounded gain on the noise is not proven. A
more sophisticated logic-based approach, labelled supervisory control, was proposed
by Morse—see [7,8,28,29,39]; here a supervisor switches in an efficient way between
candidate controllers, and in certain circumstances a bounded gain on the noise can be
proven—see [30,40], and the ConcludingRemarks section of [29]. A related approach,
called localization-based switching adaptive control, uses a falsification approach to
prove exponential stability as well as a degree of tolerance of disturbances, e.g. see

1 It is proven in [36] that for a large class of plant/controller combinations, a convolution bound on the
input-output behaviour can be leveraged to prove tolerance to slow variations in the plant parameters as
well as to a small amount of unmodelled dynamics.
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[45], though a bounded gain on the noise is not proven. In none of the above cases is
a convolution bound on the closed-loop behaviour proven.

Another non-classical approach to adaptive control, proposed by the first author, is
based on periodic probing, estimation and control: rather than estimate the plant or con-
troller parameters, the goal is to estimate what the control signal would be if the plant
parameters and plant state were known and the ‘ideal controller’ were applied. Under
suitable assumptions on the plant uncertainty, exponential stability and a bounded
gain on the noise are achieved, and a degree of unmodelled dynamics and slow
time-variations are allowed; for non-minimum phase systems, near optimal transient
performance is also provided—see [17,18,38], while for minimum-phase systems,
near exact tracking is provided, even in the presence of rapid time-variations—see
[16,24]. While a convolution bound is not proven, the biggest drawback is that while
a bounded gain on the noise is always achieved, it tends to increase dramatically the
closer that one gets to optimality. Furthermore, because of the nature of the approach,
it only works in the continuous-time domain.

This brings us to the proposed approach of the paper, wherein we show how to
achieve our objectives in the discrete-time setting under some classical assumptions
on the set of plant parameters. We adopt a common approach to classical adaptive
control—the use of a projection algorithm-based estimator together with a tuneable
compensator whose parameters are chosen via the certainty equivalence principle.
However, while in the literature it is very common to use a modified version of the
ideal projection algorithm in order to avoid division by zero,2 here, we adopt another
approach to alleviate this numerical concern. We label the resulting estimator a “vig-
ilant estimator”: in the absence of noise it is equally alert to small signals as large
signals (unlike the modified version), and in the noisy case we turn off the estimator
update if it is clear that the noise is overwhelming the data. Indeed, in earlier work by
the authors on the first-order setting [19] and in the pole placement setting of [20,25],
versions of this estimator are used as a building block of adaptive controllers which
provide exponential stability, a bounded gain on the noise, and linear-like convolution
bounds on the closed-loop behaviour; as far as the authors are aware, such LTI-like
bounds have never before been proven in the adaptive setting. The objective of the
present paper is to use the general approach of [19,20,25] to analyse the much harder
adaptive tracking control problem for high-order systems.

We initially expected the analysis to follow in a straight-forwardmanner from either
the first-order tracking approach of [19] or the pole placement approach of [20,25];
this has not proven to be the situation. It turns out that the importance of the system
delay in this setting creates significant additional complexity not found in either case,
and the tracking objective is not present in the latter case. That being said, we have
adopted ideas from the pole placement setting of [20,25] as a starting point, but we
have carried out several innovative modifications in order to allow us to prove not

2 An exception is the work of Ydstie [43,44], who considers the ideal projection algorithm as a special
case; however, a crisp bound on the effect of the initial condition and a convolution bound on the effect of
the exogenous inputs are not proven. Another notable exception is the work of Akhtar and Bernstein [1],
where they are able to prove Lyapunov stability; however, they do not prove a convolution bound on the
effect of the exogenous inputs either, and they assume that the high-frequency gain is known.
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only the same highly desirable linear-like properties, but also several highly desirable
tracking results:

(i) if there is no noise, we prove an explicit 2-norm bound on the size of the tracking
error in terms of the size of the initial condition and the reference signal (in the
literature on classical adaptive control it is typically proven only that the tracking
error is square summable);

(ii) if there is no noise but there are slow time-variations, then we prove that we can
bound the size of the average tracking error by the size of the time-variation (in
the literature this situation is rarely considered);

(iii) if there is noise, then under some technical conditions, we prove a bound on
the average tracking error in terms of the average disturbance times another
complicated quantity (in the literature it is usually proven only that the tracking
error is bounded).

The proofs of the results contained herein are significantly more involved than the
proofs of the classical results in the literature, such as the seminal work of Goodwin
et al. [5]. The main reason is that here we are interested in obtaining crisp quantitative
bounds on the closed-loop response, rather than the typical qualitative bounds provided
in most of the literature.3 Last of all, we would like to point out that an early version
of this work appears in [26].

At this point, we provide an outline of the paper. In Sect. 2, we introduce the
plant, rewrite it into a form more amenable to analysis and introduce the parameter
estimator as well as the adaptive control law. In Sect. 3, we introduce three high-level
models for use in system analysis; we provide several technical results which will be
useful in the closed-loop analysis. In Sect. 4, we use the three models of the previous
section to prove that highly desirable convolution bounds on the system state hold. In
Sect. 5, we show that convolution bounds still hold even in the presence of a degree
of unmodelled dynamics and plant parameter variations. In Sect. 6, we derive bounds
on the tracking error in a variety of situations: the noise-free case, the noise-free
case with time-variation and the time-invariant noisy case. In Sect. 7, we will provide
several illustrative simulation examples. Last of all, we wrap up with a Summary and
Conclusions in Sect. 8.

Before proceeding, we present some mathematical preliminaries. Let Z denote the
set of integers,Z+ the set of non-negative integers,N the set of natural numbers,R the
set of real numbers, andR+ the set of non-negative real numbers.We use the Euclidean
2-norm for vectors and the corresponding induced norm for matrices and denote the
norm of a vector or matrix by ‖ · ‖. We let s(Rn×m) denote the set of all Rn×m-valued
sequences, and we let l∞(Rn×m) denote the subset of bounded sequences; we define
the norm of u ∈ l∞(Rn×m) by ‖u‖∞ := supk∈Z ‖u(k)‖.

If S ⊂ Rp is a convex and compact set, we define ‖S‖ := maxx∈S ‖x‖ and the
function πS : Rp → S denotes the projection onto S; it is well-known that πS is
well-defined.

3 An exception is the work of [12]: they provide crisp bounds on the size of the tracking error; however,
they do not prove the nice linear-like properties which we desire.
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2 The setup

In this paper, we start with a linear time-invariant discrete-time plant described by

n∑

i=0

ai y(t − i) =
m∑

i=0

biu(t − d − i) + w(t), t ∈ Z, (1)

with

• y(t) ∈ R the measured output,
• u(t) ∈ R the control input,
• w(t) ∈ R the disturbance (or noise) input;
• the parameters regularized so that a0 = 1, and
• the system delay d ≥ 1 being known (so b0 �= 0).

Associated with this plant model are the polynomials A(z−1) := ∑n
i=0 ai z

−i and

B(z−1) := ∑m
i=0 bi z

−i , the transfer function z−d B(z−1)

A(z−1)
, and the list of plant parame-

ters:

θ∗
ab := [

a1 · · · an b0 · · · bm
]T

.

Remark 1 It is straight-forward to verify that if the system has a disturbance at both
the input and output, then it can be converted to a system of the above form.

The goal is closed-loop stability and asymptotic tracking of an exogenous reference
input y∗(t). We impose several assumptions on the set of admissible parameters. The
first set is standard in the literature, e.g. [5,6]:

Assumption 1

(i) n is known;
(ii) m is known;
(iii) the system delay d is known;
(iv) sgn(b0) is known;
(v) the polynomial B(z−1) has all of its zeros in the open unit disk.

Remark 2 Since we do not require an �= 0, Assumption 1 (i) can be interpreted as
assuming that an upper bound on n is known; similarly, Assumption 1 (ii) can be
interpreted as assuming that an upper bound on m is known. The constraint on the
zeros of B(z−1) in Assumption 1 (v) is a requirement that the plant beminimum phase;
this is necessary to ensure tracking of an arbitrary bounded reference signal [21].

The second assumption is less standard:

Assumption 2 The set of admissible parameters, which we label Sab ⊂ Rn+m+1, is
compact.
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Remark 3 The boundedness requirement on Sab is quite reasonable in practical sit-
uations; it is used here to prove uniform bounds and decay rates on the closed-loop
behaviour.

There are many ways to pose and solve an adaptive tracking problem, with the
d-step-ahead approach and the more general model reference control approach being
the standard ones—see [5,6]. To minimize complexity, we choose the first one, since
it is the simpler of the two. To proceed we use a parameter estimator together with
an adaptive d-step-ahead control law. To design the estimator, it is convenient to put
the plant into the so-called predictor form. To this end, following [6], we carry out
long division by dividing A(z−1) into one, and define F(z−1) = ∑d−1

i=0 fi z−i and
G(z−1) = ∑n−1

i=0 gi z−i satisfying

1

A(z−1)
= F(z−1) + z−d G(z−1)

A(z−1)
.

Hence, if we define

β(z−1) :=
m+d−1∑

i=0

βi z
−i := F(z−1)B(z−1),

α(z−1) :=
n−1∑

i=0

αi z
−i := G(z−1),

w̄(t) := f0w(t + d) + · · · + fd−1w(t + 1),

then we can rewrite the plant model as

y(t + d) =
n−1∑

i=0

αi y(t − i) +
m+d−1∑

i=0

βi u(t − i) + w̄(t)

=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

y(t)
...

y(t − n + 1)
u(t)

...

u(t − m − d + 1)

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

︸ ︷︷ ︸
=:φ(t)T

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

α0
...

αn−1
β0
...

βm+d−1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

︸ ︷︷ ︸
=:θ∗

+w̄(t), t ∈ Z. (2)

Let Sαβ denote the set of admissible θ∗ which arise from the original plant param-
eters which lie in Sab; since the associated mapping is analytic, it is clear that the
compactness of Sab means that Sαβ is compact as well. Furthermore, it is easy to
see that f0 = 1, so β0 = b0, which means that the sign of β0 is always the same.
It is convenient that the set of admissible parameters in the new parameter space be
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convex and closed; so at this point let S ⊂ Rn+m+d be any compact and convex set
containing Sαβ for which the n + 1th element (the one which corresponds to β0) is
never zero, e.g. the convex hull of Sαβ would do.

The d-step-ahead control law is the one given by

y∗(t + d) =
n−1∑

i=0

αi y(t − i) +
m+d−1∑

i=0

βi u(t − i),

or equivalently

u(t) = 1

β0

[
y∗(t + d) −

n−1∑

i=0

αi y(t − i) −
m+d−1∑

i=1

βi u(t − i)

]
;

in the absence of a disturbance, and assuming that this controller is applied for all
t ∈ Z, we have y(t) = y∗(t) for all t ∈ Z. Of course, if the plant parameters are
unknown, we need to use estimates; also, the adaptive version of the d-step-ahead
control law is only applied after some initial time, i.e. for t ≥ t0.

2.1 Initialization

In most adaptive control results, the goal is to prove asymptotic behaviour, so the
details of the initial condition are unimportant. Here, however, we wish to get a bound
on the transient behaviour so we must proceed carefully. In the pole placement setting
of [20], this was relatively straight-forward: the delay plays no role, the controller is
strictly causal, and we start the plant estimator off at time t0, with an initial “plant
state” of φ(t0) = φ0. Here we have a more complicated situation, even in the case of
d = 1, since the proposed controller is not strictly causal.

To proceed, observe that if we wish to solve (2) for y(t) starting at time t0, then it
is clear that we need an initial condition of

x0 := [
y(t0 − 1) · · · y(t0 − n − d + 1) u(t0 − 1) · · · u(t0 − m − 2d + 1)

]T

∈ Rn+m+3d−2. (3)

Observe that this is sufficient information to obtain {φ(t0 − 1), . . . , φ(t0 − d)}.

2.2 Parameter estimation

We can rewrite the plant (2) as

y(t) = φ(t − d)T θ∗ + w̄(t − d), t ≥ t0, (4)
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with an initial condition of x0. Given an estimate θ̂ (t) of θ∗ at time t , we define the
prediction error by

e(t + 1) := y(t + 1) − φ(t − d + 1)T θ̂ (t); (5)

this is a measure of the error in θ̂ (t). A common way to obtain a new estimate is from
the solution of the optimization problem

argminθ {‖θ − θ̂ (t)‖ : y(t + 1) = φ(t − d + 1)T θ},

yielding the ideal (projection) algorithm

θ̂ (t + 1) =
{

θ̂ (t) if φ(t − d + 1) = 0
θ̂ (t) + φ(t−d+1)

‖φ(t−d+1)‖2 e(t + 1) otherwise;
(6)

at this point, we can also constrain the estimate to S by projection. Of course, if
φ(t − d + 1) is close to zero, numerical problems can occur, so it is very common
in the literature (e.g. [5,6]) to add a constant to the denominator and possibly another
gain in the numerator: with 0 < ᾱ < 2 and β̄ > 0, consider the classical algorithm4

θ̂ (t + 1) = θ̂ (t) + ᾱφ(t)

β̄ + φ(t)Tφ(t)
e(t + 1). (7)

However, as pointed out in [19,20,25], this can lead to the loss of exponential stability
and a loss of a bounded gain on the noise.

We propose a middle ground: as proposed in [20,25], we turn off the estimation
if it is clear that the disturbance signal w̄(t) is swamping the estimation error.5 More
specifically, if we examine the update law in (6) when φ(t − d + 1) �= 0, we see that

‖θ̂ (t + 1) − θ̂ (t)‖ = |e(t + 1)|
‖φ(t − d + 1)‖ .

Suppose that θ0 ∈ S and θ̂ (t) ∈ S; if this update quantity is large but less than 2‖S‖,
then it could verywell be that θ̂ (t+1) ∈ S and it could be that the large update is due to
θ̂ (t) being very inaccurate; on the other hand, if this quantity is larger than 2‖S‖, then it
is clear that θ̂ (t + 1) /∈ S and probably quite inaccurate—in this case the disturbance
may be fairly large relative to the other signals. To this end, with δ ∈ (0,∞], we
turn off the estimator if the update is larger than 2‖S‖ + δ in magnitude; so define
ρδ : Rn+m+d × R → {0, 1} by

ρδ(φ(t − d + 1), e(t + 1)) :=
{
1 if |e(t + 1)| < (2‖S‖ + δ)‖φ(t − d + 1)‖
0 otherwise;

4 We can make this even more general by letting ᾱ be time-varying.
5 It is common in the literature to turn off the estimator if the prediction error is small, e.g. see [6]; this is
a completely different idea.
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given θ̂ (t0 − 1) = θ0, for t ≥ t0 − 1 we define6

θ̌ (t + 1) = θ̂ (t) + ρδ(φ(t − d + 1), e(t + 1)) × φ(t − d + 1)

‖φ(t − d + 1)‖2 e(t + 1), (8)

which we then project onto S:

θ̂ (t + 1) := πS(θ̌(t + 1)). (9)

Remark 4 We label this approach vigilant estimation for two reasons.

(i) First of all, suppose that the disturbance is zero, i.e.w(t) = 0, andφ(t−d+1) �= 0.
Then a careful examination of the update quantity reveals that ρδ(·, ·) = 1 and

ρδ(·, ·) φ(t − d + 1)

‖φ(t − d + 1)‖2 e(t + 1) = −φ(t − d + 1)φ(t − d + 1)T

‖φ(t − d + 1)‖2 [θ̂ (t) − θ∗];

so we see that the gain on the parameter estimate error θ̂ (t) − θ∗ is exactly

−φ(t − d + 1)φ(t − d + 1)T

‖φ(t − d + 1)‖2 ,

which is scale invariant—if we replace φ(t − d + 1) by cφ(t − d + 1) for any
non-zero c, then the quantity is the same. Hence, the estimator is as alert when φ

is small as when it is large; this differs from the classical algorithm, wherein the
gain gets small when φ is small.

(ii) Second of all, as discussed above, the update algorithm turns off if it is clear that
the disturbance is over-whelming the estimation process.

2.3 Properties of the estimation algorithm

Analysing the closed-loop system will require a careful analysis of the estimation
algorithm. We define the parameter estimation error by θ̃ (t) := θ̂ (t) − θ∗ and the
corresponding Lyapunov function associated with θ̃ (t), namely V (t) := θ̃ (t)T θ̃ (t). In
the following result, we list a property of V (t); it is a straight-forward generalization
of what holds in the pole placement setup of [20,25].

Proposition 1 For every t0 ∈ Z, x0 ∈ Rn+m+3d−2, θ0 ∈ S, θ∗
ab ∈ Sab, y∗, w ∈ l∞,

and δ ∈ (0,∞], when the estimator (8) and (9) is applied to the plant (1), the following
holds:

6 If δ = ∞, then we adopt the understanding that ∞ × 0 = 0, in which case this formula collapses into
the original version (6).
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‖θ̂ (t + 1) − θ̂ (t)‖ ≤ ρδ(φ(t − d + 1), e(t + 1)) × |e(t + 1)|
‖φ(t − d + 1)‖ , t ≥ t0 − 1,

V (t) ≤ V (t) +
t−1∑

j=t

ρδ(φ( j − d + 1), e( j + 1))

×
[
−1

2

[e( j+1)]2
‖φ( j−d+1)‖2 +2

[w̄( j − d + 1)]2
‖φ( j − d + 1)‖2

]
, t≥ t≥ t0−1.

(10)

2.4 The control law

The elements of θ̂ (t) are partitioned in a natural way as

[
α̂0(t) · · · α̂n−1(t) β̂0(t) · · · β̂m+d−1(t)

]T
.

The d-step-ahead adaptive control law is that of

y∗(t + d) = θ̂ (t)Tφ(t), t ≥ t0,

or equivalently

m+d−1∑

i=0

β̂i (t)u(t − i) = y∗(t + d) −
n−1∑

i=0

α̂i (t)y(t − i), t ≥ t0. (11)

Hence, as is common in this setup, we assume that the controller has access to the
reference signal y∗(t) exactly d time units in advance.

Remark 5 With this choice of control law, it is easy to prove that the prediction error
e(t) and the tracking error

ε(t) := y(t) − y∗(t)

are different if d �= 1. Indeed, it is easy to see that

ε(t) = −φ(t − d)T θ̃ (t − d) + w̄(t − d), t ≥ t0 + d, (12)

e(t) = −φ(t − d)T θ̃ (t − 1) + w̄(t − d), t ≥ t0. (13)

Notice, in particular, that (12) provides a nice closed-form expression for the tracking
error ε(t) only for t ≥ t0 + d; the reason is that the tracking error for t = t0, . . . , t0 +
d − 1 is determined by x0, w and y∗.

The goal of this paper is to prove that the adaptive controller consisting of the
estimator (8), (9) together with the control equation (11) yields highly desirable linear-
like convolution bounds on the closed-loop behaviour aswell as provides good tracking
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of y∗. In the next section, we develop several models used in the development, after
which we state and prove the main result.

Remark 6 While the proposed adaptive controller which consists of the estimator (8),
(9) together with the controller (11) is nonlinear, when it is applied to the plant it turns
out that the closed-loop system enjoys the homogeneity property. While it does not
enjoy the additivity property needed for linearity, we will soon see that we are still
able to prove linear-like convolution bounds on the closed-loop behaviour.

3 Preliminary analysis

In the pole-placement adaptive control setup of our earlier work [20,25], a key closed-
loop model consists of an update equation for φ(t), with the state matrix consisting
of controller and plant estimates; this was effective—the characteristic polynomial
of this matrix is time-invariant and has all roots in the open unit disk. If we were to
mimic this in the d-step-ahead setup, the characteristic polynomial would have roots
which are time-varying, with some at zero and the rest at the zeros of the naturally
defined polynomial β̂(t, z−1), which is time-varying and may not have roots in the
open unit disk. Hence, at this point we make an important deviation from the approach
of [20,25]: we construct three different models for use in the analysis.

3.1 A good closed-loopmodel

In the first model, we obtain an update equation for φ(t) which avoids the use of plant
parameter estimates, but which is driven by the tracking error. Only two elements of
φ have a complicated description:

φ1(t + 1) = y(t + 1) = ε(t + 1) + y∗(t + 1), t ≥ t0 − 1,

and the u(t + 1) term, for which we use the original plant model to write

φn+1(t + 1) = u(t + 1)

= 1

b0

[
d∑

i=0

ai (ε(t + d + 1 − i) + y∗(t + d + 1 − i))

+
n∑

i=d+1

ai y(t + d + 1 − i) −
m−1∑

i=0

bi+1u(t − i) − w(t + d + 1)

]
.

With ei ∈ Rn+m+d the i th normal vector, if we now define

B1 := e1, B2 := en+1, (14)

then it is easy to see that there exists amatrix Ag ∈ R(n+m+d)×(n+m+d) (which depends
implicitly on θ∗

ab ∈ Sab) so that the following equation holds:
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φ(t + 1) = Agφ(t)+B1ε(t + 1)+B2

d∑

j=0

[
ad− j

b0
ε(t+1+ j)+ ad− j

b0
y∗(t+1+ j)

]

+B1y
∗(t + 1) − 1

b0
B2w(t + d + 1), t ≥ t0 − 1. (15)

The characteristic equation of Ag equals 1
b0
zn+m+d B(z−1), so all of its roots are in

the open unit disk.

3.2 A crude closed-loopmodel

At times, we will need to use a crude model to bound the size of the growth of φ(t)
in terms of the exogenous inputs. Once again, only two elements of φ(t) have a
complicated description: to describe y(t + 1) we use the plant model (1):

φ1(t + 1) = y(t + 1)

= −
n∑

i=1

ai y(t + 1 − i) +
m∑

i=0

biu(t + 1 − d − i) + w(t + 1)

=: θ̄∗
abφ(t) + w(t + 1),

and to describe u(t + 1) we use the control law:

y∗(t + d) = θ̂ (t)Tφ(t)

⇒ y∗(t + d + 1) = θ̂ (t + 1)Tφ(t + 1), t ≥ t0 − 1;

it is easy to define θ̄αβ(t) in terms of the elements of θ̂ (t + 1) so that

y∗(t + d + 1) = θ̄αβ(t)Tφ(t) + α̂0(t + 1)y(t + 1) + β̂0(t + 1)u(t + 1), t ≥ t0 − 1.

If we combine this with the formula for y(t + 1) above, we end up with

u(t + 1) = 1

β̂0(t + 1)
[−θ̄αβ(t) − α̂0(t + 1)θ̄∗

ab]φ(t)

+ 1

β̂0(t + 1)
y∗(t + d + 1) − α̂0(t + 1)

β̂0(t + 1)
w(t + 1), t ≥ t0 − 1.

Hence, we can define matrices Ab(t), B3(t) and B4(t) so that

φ(t + 1) = Ab(t)φ(t) + B3(t)y
∗(t + d + 1) + B4(t)w(t + 1), t ≥ t0 − 1; (16)

due to the compactness of Sab, Sαβ and S, the following is immediate:
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Proposition 2 There exists a constant c1 so that for every t0 ∈ Z, x0 ∈ Rn+m+3d−2,
θ0 ∈ S, θ∗

ab ∈ Sab, y∗, w ∈ l∞, and δ ∈ (0,∞], when the adaptive controller (8), (9)
and (11) is applied to the plant (1), the following holds:

‖Ab(t)‖ ≤ c1, ‖B3(t)‖ ≤ c1, ‖B4(t)‖ ≤ c1, t ≥ t0 − 1.

3.3 A better closed-loopmodel

The good closed-loop model (15) is driven by future tracking error signals. We can
now combine this with the crude closed-loop model (16) to create a new model which
is driven by perturbed versions of the present and past values of φ, with the weights
associated with the parameter update law. Motivated by the form of the term in the
parameter estimator, we first define

ν(t − 1) := ρδ(φ(t − d), e(t)) × φ(t − d)

‖φ(t − d)‖2 e(t), t ≥ t0. (17)

The following result plays a pivotal role in the analysis of the closed-loop system.

Proposition 3 There exists a constant c2 so that for every t0 ∈ Z, x0 ∈ Rn+m+3d−2,
θ0 ∈ S, θ∗

ab ∈ Sab, y∗, w ∈ l∞, and δ ∈ (0,∞], when the adaptive controller (8), (9)
and (11) is applied to the plant (1), the following holds:

φ(t + 1) = Agφ(t) +
d−1∑

j=0

� j (t)φ(t − j) + η(t), t ≥ t0 + d − 1,

with

‖η(t)‖ ≤ c2(1 + ‖ν(t + 2)‖ + · · · + ‖ν(t + d + 1)‖)

×
⎡

⎣
d+1∑

j=1

|y∗(t + j)| +
d+1∑

j=1

(|w(t + j)| + |w̄(t + 2 − j)|)
⎤

⎦

and

‖� j (t)‖ ≤ c2(‖ν(t − d + 1)‖ + · · · + ‖ν(t + d)‖), j = 0, . . . ., d − 1.

Proof See Appendix. �
Tomake themodel of Proposition 3 amenable to analysis, we define a new extended

state variable and associated matrices:

φ̄(t) :=

⎡

⎢⎢⎢⎣

φ(t)
φ(t − 1)

...

φ(t − d + 1)

⎤

⎥⎥⎥⎦ , Āg :=

⎡

⎢⎢⎢⎣

Ag

I
. . .

I 0

⎤

⎥⎥⎥⎦ , (18)
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and

B̄1 :=

⎡

⎢⎢⎢⎣

I
0
...

0

⎤

⎥⎥⎥⎦ ,�(t) =

⎡

⎢⎢⎢⎣

�0(t) �1(t) · · · �d−1(t)
0 · · · · · · 0
... · · · · · · ...

0 0 0 0

⎤

⎥⎥⎥⎦ , (19)

which gives rise to a state-space model which will play a key role in our analysis:

φ̄(t + 1) = [ Āg + �(t)]φ̄(t) + B̄1η(t), t ≥ t0 + 2d − 2. (20)

Now Ag arises from θ∗
ab ∈ Sab and lies in a corresponding compact setA; furthermore,

its eigenvalues are at zero and at the zeros of B(z−1), which has all of its roots in the
open unit disk, so we can use classical arguments to prove that there exist constants γ

and σ ∈ (0, 1) so that for all θ∗
ab ∈ Sab, we have

‖ Āi
g‖ ≤ γ σ i , i ≥ 0; (21)

indeed, for every σ larger than

λ := max
θ∗
ab∈Sab

{|λ| : λ ∈ C and B(λ−1) = 0},

we can choose γ so that (21) holds.
Equations of the form given in (20) arise in classical adaptive control approaches.

While we can view (20) as a linear time-varying system, we have to bear in mind that
both �(t) and η(t) are (nonlinear) implicit functions of all of the data: θ∗

ab, θ0, x0,
y∗ and w. That being said, the linear time-varying interpretation is very convenient
for analysis; to this end, we let �A denote the state transition matrix of a general
time-varying square matrix A. The following result will prove useful in analysing our
closed-loop systems on sub-intervals for which the constraints hold.

Proposition 4 With σ ∈ (λ, 1), suppose that γ ≥ 1 is such that (21) is satisfied for
every Ag ∈ A. For every μ ∈ (σ, 1), β0 ≥ 0, β1 ≥ 0, and

β2 ∈
[
0,

1

γ
(μ − σ)

)
,

there exists a constant γ̄ ≥ 1 so that for every Ag ∈ A and � ∈
s(R(n+m+d)d×(n+m+d)d)) satisfying

t−1∑

i=τ

‖�(i)‖ ≤ β0 + β1(t − τ)1/2 + β2(t − τ), t ≤ τ ≤ t − 1 ≤ t̄, (22)

we have
‖� Āg+�(t, τ )‖ ≤ γ̄ μt−τ , t ≤ τ < t ≤ t̄ . (23)
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Proof Fix σ ∈ (λ, 1) and γ ≥ 1 so that (21) is satisfied for every Ag ∈ A. For every
μ ∈ (σ, 1), β0 ≥ 0, β1 ≥ 0, and

β2 ∈
[
0,

1

γ
(μ − σ)

)
,

it follows from the lemma of Kreisselmeier [10] that there exists a constant γ̄ , which
is independent of Ag ∈ A (though dependant on β2, γ , μ, and σ ), so that if (22) holds
then (23) holds as well. �

In the next section, we prove that the closed-loop system is exponentially stable
and that there is a convolution bound on the closed-loop behaviour. Following that,
we analyse robustness and address the tracking problem.

4 Closed-loop stability

Theorem 1 For every δ ∈ (0,∞] and λ ∈ (λ, 1), there exists a constant c > 0 so
that for every t0 ∈ Z, plant parameter θ∗

ab ∈ Sab, exogenous signals y∗, w ∈ �∞,
estimator initial condition θ0 ∈ S, and plant initial condition

x0 = [
y(t0 − 1) · · · y(t0 − n − d + 1) u(t0 − 1) · · · u(t0 − m − 2d + 1)

]T
,

when the adaptive controller (8), (9) and (11) is applied to the plant (1), the following
bound holds:

‖φ(k)‖ ≤ cλk−t0‖x0‖ +
k∑

j=t0

cλk− j (|y∗( j + d)| + |w( j)|), k ≥ t0. (24)

Remark 7 Theorem 1 implies that the system has a bounded gain (from y∗ and w to
y) in every p-norm.

Remark 8 Most adaptive controllers are proven to yield a weak form of stability, such
as boundedness (in the presence of a non-zero disturbance) or asymptotic stability (in
the case of a zero disturbance), which means that details surrounding initial conditions
can be ignored. Here the goal is to prove a stronger, linear-like, convolution bound as
well as exponential stability, so it requires a much more detailed analysis.

Proof Fix δ ∈ (0,∞] and λ ∈ (λ, 1), and let t0 ∈ Z, θ∗
ab ∈ Sab, y∗, w ∈ l∞, θ0 ∈ S,

and x0 ∈ Rn+m+3d−2 be arbitrary. Now choose σ ∈ (λ, λ). Observe that x0 gives rise
to φ(t0 − 1),…, φ(t0 − d + 1), and therefore φ̄(t0 − 1), which we label φ̄0; it is clear
that ‖φ̄0‖ ≤ d‖x0‖ and

‖φ(t0 − j)‖ ≤ ‖x0‖, j = 1, . . . , d − 1.

Step 1 Preamble and preliminary results

123



256 Mathematics of Control, Signals, and Systems (2020) 32:241–291

To proceed we will analyse (20), namely

φ̄(t + 1) = [ Āg + �(t)]φ̄(t) + B̄1η(t), t ≥ t0 + 2d − 2, (25)

and obtain a bound on φ̄(t) in terms of η(t), w̄(t), and y∗(t), which we will then
convert to the desired form. First of all, we see from Proposition 3 that there exists a
constant γ1 so that7

‖η(t)‖ ≤ γ1(1 + ‖ν(t + 2)‖ + · · · + ‖ν(t + d + 1)‖)

×
⎡

⎣
d+1∑

j=1

|y∗(t + j)| +
d+1∑

j=1

(|w(t + j)| + |w̄(t + 2 − j)|)
⎤

⎦

≤ γ1(1 + ‖ν(t + 2)‖ + · · · + ‖ν(t + d + 1)‖)

×
⎡

⎣
d+1∑

j=1

|y∗(t + j)| +
d+1∑

j=1−d

(|w(t + j)| + |w̄(t + j)|)
⎤

⎦

︸ ︷︷ ︸
=:w̃(t)

, (26)

and

‖�(t)‖ ≤ γ1(‖ν(t − d + 1)‖ + · · · + ‖ν(t + d)‖), t ≥ t0 + d − 1. (27)

Second of all, following Sect. 3.3 we see that there exists a constant γ2 so that for
every Ag ∈ A, we have that the corresponding matrix Āg satisfies

‖ Āi
g‖ ≤ γ2σ

i , i ≥ 0.

Before proceeding, we provide several preliminary results. The first shows that we
can always obtain a nice bound on the closed-loop behaviour on a short interval.

Claim 1 There exists a constant γ3 so that for every t ≥ t0 − 1, we have

‖φ(t)‖ ≤ γ3λ
t−t‖φ(t)‖ + γ3

t−1∑

j=t

λt−1− j |w̃( j)|, t = t, t + 1, . . . , t + 4d.

Proof of Claim 1 Using the crude model given in (16) together with Proposition 2, we
see that there exists a constant c1 ≥ 1 so that

‖φ(t + 1)‖ ≤ c1‖φ(t)‖ + c1|y∗(t + d + 1)| + c1|w(t + 1)|, t ≥ t0 − 1.

Using the definition of w̃(t), this immediately implies that

‖φ(t + 1)‖ ≤ c1‖φ(t)‖ + c1|w̃(t)|, t ≥ t0 − 1. (28)

7 We’ve chosen to define w̃(t) in this way to simplify the analysis later on in the proof.
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Now let t ≥ t0 − 1 be arbitrary. By solving (28) from t = t , we have

‖φ(t + 1)‖ ≤ c
t−t
1 ‖φ(t)‖ +

t−1∑

j=t

ct−1− j
1 |w̃( j)|

≤
(c1

λ

)t−t [λt−t‖φ(t)‖ +
t−1∑

j=t

λt−1− j |w̃( j)|], t ≥ t .

If we set γ3 := ( c1
λ

)4d , then the result follows. �
In order to apply Proposition 4, we need to compute a bound on the sum of ‖�(t)‖

terms; the following result provides an avenue.

Claim 2 There exists a constant γ4 so that

t2−1∑

j=t1

‖�( j)‖ ≤ γ4[
t2+d−1∑

j=t1−d+1

‖ν( j)‖2]1/2(t2 − t1)
1/2, t2 > t1 ≥ t0 + d − 1.

Proof of Claim 2 Since there are 2d terms in the RHS of (27), it is easy to see that

t2−1∑

j=t1

‖�( j)‖ ≤ 2d
t2+d−1∑

j=t1−d+1

‖ν( j)‖.

If we apply the Cauchy–Schwarz inequality, then we have

t2+d−1∑

j=t1−d+1

‖ν( j)‖ ≤
⎡

⎣
t2+d−1∑

j=t1−d+1

‖ν( j)‖
⎤

⎦
1/2

(t2 − t1 + 2d − 1)1/2.

But

(t2 − t1 + 2d − 1)1/2 ≤ (2d)1/2(t2 − t1)
1/2, t2 > t1,

so the result follows. �
Step 2 Partition the time-line.

Now we consider the closed-loop system behaviour. To proceed, we partition the
timeline into two parts: one in which the noise is small and one where it is not; the
idea is that when the noise is small, the closed-loop behaviour should be similar to
that when the noise is zero. Of course, here we have to choose the notion of “small”
carefully: we do so by using the scaled version of the noise, namely |w̄(t)|

‖φ(t)‖ , which
appears in the bound on V given in Proposition 1. To this end, with ξ > 0 to be chosen
shortly, partition { j ∈ Z : j ≥ t0} into

123



258 Mathematics of Control, Signals, and Systems (2020) 32:241–291

Sgood :=
{
j ≥ t0 : φ( j) �= 0 and

[w̄( j)]2
‖φ( j)‖2 < ξ

}
,

Sbad :=
{
j ≥ t0 : φ( j) = 0 or

[w̄( j)]2
‖φ( j)‖2 ≥ ξ

}
;

clearly { j ∈ Z : j ≥ t0} = Sgood ∪ Sbad.8 Observe that this partition implicitly
depends on the system parameters θ∗

ab ∈ Sab, as well as the initial conditions. We will
apply Proposition 4 to analyse the closed-loop system behaviour on Sgood; on the other
hand, we will easily obtain bounds on the system behaviour on Sbad. Before doing so,
we partition the time index { j ∈ Z : j ≥ t0} into intervals which oscillate between
Sgood and Sbad. To this end, it is easy to see that we can define a (possibly infinite)
sequence of intervals of the form [ki , ki+1) satisfying:

(i) k1 = t0;
(ii) [ki , ki+1) either belongs to Sgood or Sbad; and
(iii) if ki+1 �= ∞ and [ki , ki+1) belongs to Sgood (respectively, Sbad), then the interval

[ki+1, ki+2) must belong to Sbad (respectively, Sgood).

Now we analyse the behaviour during each interval.

Step 3 The closed-loop behaviour on Sbad.

Let j ∈ [ki , ki+1) be arbitrary. In this case, either φ( j) = 0 or [w̄( j)]2
‖φ( j)‖2 ≥ ξ holds.

In either case, we have

‖φ( j)‖ ≤ 1

ξ1/2
|w̄( j)|, j ∈ [ki , ki+1). (29)

From the crude model (16) and Proposition 2, we have

‖φ( j + 1)‖ ≤ c1
ξ1/2

|w̄( j)| + c1|y∗( j + d + 1)| + c1|w( j + 1)|

≤
(

c1
ξ1/2

+ c1

)
|w̃( j)|, j ∈ [ki , ki+1).

If we combine this with (29), we end up with

‖φ( j)‖ ≤
{ 1

ξ1/2
|w̃( j)| if j = ki

c1
(
1 + 1

ξ1/2

)
|w̃( j − 1)| if j = ki + 1, . . . , ki+1.

(30)

Step 4 The closed-loop behaviour on Sgood.
Suppose that [ki , ki+1) lies in Sgood; this case is much more involved than in the

proof of [20,25] since the bound on ‖�(t)‖ provided by Claim 2 extends both forward
and backward in time, occasionally outside Sgood. Furthermore, the difference equation
for φ̄ given in (25) only holds for t ≥ t0 + 2d − 2, so if ki = t0 then we cannot use

8 If the disturbance is zero, then Sgood may be the whole time-line [t0,∞).
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it until ki + 2d − 2. For this reason, we will handle the first 2d and last 2d time units
separately.

To this end, first suppose that ki+1 ≤ ki + 4d. Then by Claim 1, we see that there
exists a constant γ5 so that

‖φ(k)‖ ≤ γ5λ
k−ki ‖φ(ki )‖ +

k−1∑

j=ki

γ5λ
k−1− j |w̃( j)|, ki ≤ k ≤ ki+1. (31)

Now suppose that ki+1 > ki + 4d. Define k̄i := ki + 2d and ki+1 := ki+1 − 2d.
By the definition of Sgood and the fact that ρδ(·, ·) ∈ {0, 1}, it follows that

ρδ(φ( j), e( j + d))
w̄( j)2

‖φ( j)‖2 < ξ, j ∈ [ki , ki+1),

so

ρδ(φ( j − d + 1), e( j + 1))
w̄( j − d + 1)2

‖φ( j − d + 1)‖2 < ξ, j ∈ [ki + d − 1, ki+1 + d − 1).

(32)
By Proposition 1, we see that

V (k̄) ≤ V (k) +
k̄−1∑

j=k

ρδ(φ( j − d + 1), e( j + 1))

×
[
−1

2

[e( j + 1)]2
‖φ( j − d + 1)‖2 + 2

[w̄( j − d + 1)]2
‖φ( j − d + 1)‖2

]
, ki ≤ k < k̄ ≤ ki+1.

Using the fact that the first term in the sum is ν( j), using (32) to provide a bound on
the second term in the sum, and using the fact that

V (k) = ‖θ̂ (k) − θ∗‖ ≤ 4‖S‖2,

it follows that

k̄−1∑

j=k

‖ν( j)‖2 ≤ 8‖S‖2 + 4ξ(k̄ − k), ki + d − 1 ≤ k < k̄ ≤ ki+1 + d − 2. (33)

We would like to leverage this bound on ν( j) to obtain a bound on ‖�( j)‖. From
Claim 2

k̄−1∑

j=k

‖�( j)‖ ≤ γ4

⎡

⎣
k̄+d−1∑

j=k−d+1

‖ν( j)‖2
⎤

⎦
1/2

(k̄ − k)1/2, k̄ > k ≥ t0 + d − 1;
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as long as we keep

k − d + 1 ≥ ki + d − 1 ≥ t0 + d − 1 and k̄ + d − 1 ≤ ki+1 + d − 2

or equivalently

k ≥ ki + 2d − 2 ≥ t0 + 2d − 2 and k̄ ≤ ki+1 − 1,

then we can use (33) to provide a bound on the RHS; this will definitely be the case
if we restrict

k̄i ≤ k < k̄ ≤ ki+1,

resulting in

k̄−1∑

j=k

‖�( j)‖ ≤ γ4[8‖S‖2 + 4ξ(k̄ − k + 2d − 1)]1/2(k̄ − k)1/2, k̄i ≤ k < k̄ ≤ ki+1.

If we restrict ξ ≤ 1, then we obtain

k̄−1∑

j=k

‖�( j)‖ ≤ γ4[8‖S‖2 + 4ξ(2d − 1) + 4ξ(k̄ − k)]1/2(k̄ − k)1/2

≤ γ4[8‖S‖2 + 4(2d − 1)]1/2(k̄ − k)1/2

+2γ4ξ
1/2(k̄ − k), k̄i ≤ k < k̄ ≤ ki+1;

if we define

γ6 := γ4[8‖S‖2 + 4(2d − 1)]1/2 + 2γ4,

then for ξ ≤ 1 we have

k̄−1∑

j=k

‖�( j)‖ ≤ γ6(k̄ − k)1/2 + γ6ξ
1/2(k̄ − k), k̄i ≤ k < k̄ ≤ ki+1.

Now we will apply Proposition 4: we set

β0 = 0, β1 = γ6, β2 = γ6ξ
1/2, μ = λ, γ = γ2;

we need β2 < 1
γ
(μ − σ), or equivalently

γ6ξ
1/2 <

1

γ2
(λ − σ)
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⇔ ξ <

(
λ − σ

γ2γ6

)2

,

so we set

ξ := min

{
1,

1

2

(
λ − σ

γ2γ6

)2
}

.

So from Proposition 4, we see that there exists a constant γ7 so that the state transition
matrix � Āg+�(t, τ ) satisfies

‖� Āg+�(t, τ )‖ ≤ γ7λ
t−τ , k̄i ≤ τ ≤ t ≤ ki+1.

In order to solve (25), we need a bound on η(t). But (33) implies that

|ν( j)|2 ≤ 8‖S‖2 + 4ξ ≤ 8‖S‖2 + 4, k̄i ≤ j ≤ ki+1,

so from (26) we see that

‖η(t)‖ ≤ γ1[1 + d(8‖S‖2 + 4)1/2]|w̃(t)|, k̄i ≤ t ≤ ki+1.

If we use this in the difference equation (25), we see that there exists a constant γ8 so
that

‖φ̄(k)‖ ≤ γ8λ
k−k̄i ‖φ̄(k̄i )‖ +

k−1∑

j=k̄i

γ8λ
k−1− j |w̃( j)|, k̄i ≤ k ≤ ki+1. (34)

However, we would like a bound on the whole interval [ki , ki+1), and we’d like it on
φ rather than φ̄.

Claim 3 There exists a constant γ9 so that

‖φ(k)‖ ≤ γ9λ
k−ki ‖φ(ki )‖ +

k−1∑

j=ki

γ9λ
k−1− j |w̃( j)|, ki ≤ k ≤ ki+1.

Proof of Claim 3 First of all, on the interval [ki , k̄i ] we can apply Claim 1:

‖φ(k)‖ ≤ γ3λ
k−ki ‖φ(ki )‖ +

k−1∑

j=ki

γ3λ
k−1− j |w̃( j)|, ki ≤ k ≤ k̄i .

This provides a bound of the desired form on the first sub-interval of [ki , ki+1).
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Next, from (34) we have

‖φ(k)‖ ≤ γ8λ
k−k̄i ‖φ̄(k̄i )‖ +

k−1∑

j=k̄i

γ8λ
k−1− j |w̃( j)|, k̄i ≤ k ≤ ki+1. (35)

Using the definition of φ̄ and Claim 1 (with t = ki ), we have

‖φ̄(k̄i )‖ ≤ ‖φ(k̄i )‖ + ‖φ(k̄i − 1)‖ + · · · + ‖φ(k̄i − d + 1)‖
≤ γ3(λ

k̄i−ki + λk̄i−ki+1 + · · · + λk̄i−ki+d−1)‖φ(ki )‖

+γ3

⎡

⎣
k̄i−1∑

j=ki

λk̄i−1− j |w̃( j)|+
k̄i−2∑

j=ki

λk̄i−2−j |w̃( j)|+· · ·+
k̄i−d∑

j=ki

λk̄i−d− j |w̃( j)|
⎤

⎦

≤ γ3d

λd−1︸ ︷︷ ︸
=:γ̄3

λk̄i−ki ‖φ(ki )‖ + γ3

⎡

⎣
k̄i−1∑

j=ki

λk̄i−1− j |w̃( j)|

+1

λ

k̄i−2∑

j=ki

λk̄i−1− j |w̃( j)| + · · · + 1

λd−1

k̄i−d∑

j=ki

λk̄i−1− j |w̃( j)|
⎤

⎦

≤ γ̄3λ
k̄i−ki ‖φ(ki )‖ + γ̄3

k̄i−1∑

j=ki

λk̄i−1− j |w̃( j)|.

If we now substitute this into (35), then we have

‖φ(k)‖ ≤ γ8γ̄3λ
k−ki ‖φ(ki )‖ + γ8γ̄3λ

k−k̄i
k̄i−1∑

j=ki

λk̄i−1− j |w̃( j)|

+γ8

k−1∑

j=ki

λk−1− j |w̃( j)|, k̄i ≤ k ≤ ki+1;

if we define γ̄8 := γ8 + γ8γ̄3, then it follows that

‖φ(k)‖ ≤ γ̄8λ
k−ki ‖φ(ki )‖ + γ̄8

k−1∑

j=ki

λk−1− j |w̃( j)|, k̄i ≤ k ≤ ki+1. (36)

This provides a bound of the desired form on the second sub-interval of [ki , ki+1].
Last of all, we would like to obtain a bound of the desired form on [ki+1, ki+1]. By

Claim 1 we have
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‖φ(k)‖ ≤ γ3λ
k−ki+1‖φ(ki+1)‖ +

k−1∑

j=ki+1

γ3λ
k−1− j |w̃( j)|, ki+1 ≤ k ≤ ki+1.

Using (36) to obtain a bound on ‖φ(ki+1)‖, we obtain

‖φ(k)‖ ≤ γ3λ
k−ki+1

⎡

⎣γ̄8λ
ki+1−ki ‖φ(ki )‖ + γ̄8

ki+1−1∑

j=ki

λki+1−1− j |w̃( j)|
⎤

⎦

+
k−1∑

j=ki+1

γ3λ
k−1− j |w̃( j)|

≤ γ3γ̄8λ
k−ki ‖φ(ki )‖ + (γ3γ̄8 + γ3)

k−1∑

j=ki

λk−1− j |w̃( j)|, ki+1 ≤ k ≤ ki+1.

So if we set

γ9 := max{γ3, γ̄8, γ3γ̄8 + γ3},

then the result holds. �
Step 5 Analysing the whole time-line.

At this point, we glue together the bounds obtained on Sbad and Sgood together to
obtain a bound which holds on all of [t0,∞).

Claim 4 There exists a constant γ10 so that the following bound holds:

‖φ(k)‖ ≤ γ10λ
k−t0‖φ(t0)‖ +

k∑

j=t0

γ10λ
k− j |w̃( j)|, k ≥ t0. (37)

Proof of Claim 4 If [k1, k2) = [t0, k2) ⊂ Sgood, then (37) holds for k ∈ [t0, k2] by
Claim 3 as long as

γ10 ≥ max
{
γ9,

γ9

λ

}
. (38)

If [k1, k2) = [t0, k2) ⊂ Sbad, then from (30) we see that the bound holds as long as

γ10 ≥ max

{
1

ξ1/2
,
c1
λ

(
1 + 1

ξ1/2

)}
. (39)

Wenowuse induction - suppose that (37) holds for k ∈ [k1, ki ];weneed to prove that
it holds for k ∈ (ki , ki+1] as well. If [ki , ki+1) ⊂ Sbad, then from (30) we see that the
bound holds on (ki , ki+1] as long (39) holds. On the other hand, if [ki , ki+1) ⊂ Sgood,
then ki − 1 ∈ Sbad; from (30) we have that

‖φ(ki )‖ ≤ c1

(
1 + γ3

ξ1/2

)
|w̃(ki − 1)|;
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combining this with Claim 3, which provides a bound on ‖φ(k)‖ for k ∈ [ki , ki+1),
we have

‖φ(k)‖ ≤ γ9λ
k−ki ‖φ(ki )‖ +

k−1∑

j=ki

γ9λ
k−1− j |w̃( j)|

≤ γ9λ
k−ki c1

(
1 + γ3

ξ1/2

)
|w̃(ki − 1)| +

k−1∑

j=ki

γ9λ
k−1− j |w̃( j)|

≤
[
γ9c1

(
1 + γ3

ξ1/2

)
+ γ9

] k−1∑

j=ki−1

γ9λ
k−1− j |w̃( j)|, k ∈ [ki , ki+1].

So the bound holds in this case as long as

γ10 ≥ 1

λ

[
γ9c1

(
1 + γ3

ξ1/2

)
+ γ9

]
.

�
Step 6 Obtaining a bound of the desired form

The last step is to convert the bound proven in Claim 4 to one of the desired form,
i.e. we need to replace w̃ with w and y∗. First of all, using the definition of w̃ given
in (26), we see that

w̃(t) =
d+1∑

j=1

|y∗(t + j)| +
d+1∑

j=1−d

(|w(t + j)| + |w̄(t + j)|).

From the definition of w̄(t), we have that

|w̄(t)| ≤ | f0||w(t + d)| + · · · + | fd−1||w(t + 1)|;

the f ′
i s arise from long division and are continuous functions of θ∗

ab ∈ Sab, so it
follows that exists a constant γ11 so that for all θ∗

ab ∈ Sab, we have

|w̃(t)| ≤
d+1∑

j=1

|y∗(t + j)| + γ11

2d+1∑

j=1−d

|w(t + j)|.

It turns out that some of the terms in the sum are superfluous:

(i) We see from the control law (11) that y∗(t) affects φ(t) only via u(t). Indeed, u(t)
explicitly depends on y∗(t + d) which means, by causality, that y∗(t + d + 1) has
no effect on φ(t).

(ii) We see from the original plant equation (1) thatw(t) affects φ(t) via y(t). Indeed,
y(t) explicitly depends onw(t), whichmeans, by causality, that

∑2d+1
j=1 |w(t+ j)|

can have no effect on φ(t).
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If we combine these observations with Claim 4, we see that the bound becomes

‖φ(k)‖ ≤ γ10λ
k−t0‖φ(t0)‖ +

k∑

j=t0

γ10λ
k− j [|y∗( j + 1)| + · · · + |y∗( j + d)|

+γ11|w( j − d + 1)| + · · · + γ11|w( j)|];
if we examine each term in the summation, it is straight-forward to verify that

‖φ(k)‖ ≤ γ10λ
k−t0‖φ(t0)‖ + γ10d

λd−1

k∑

j=t0−d+1

λk− j |y∗( j + d)|

+γ10γ11d

λd−1

k∑

j=t0−d+1

λk− j |w( j)|

≤ γ10λ
k−t0‖φ(t0)‖ + γ10d(1 + γ11)

λd−1

k∑

j=t0

λk− j (|y∗( j + d)| + |w( j)|)|

+ γ10d

λd−1

t0−1∑

j=t0−d+1

λk− j |y∗( j + d)|
︸ ︷︷ ︸

ψ1(k)

+ γ10γ11d

λd−1

t0−1∑

j=t0−d+1

λk− j |w( j)|
︸ ︷︷ ︸

=:ψ2(k)

.

Now y∗ affects φ via the control signal, and it is clear that y∗(k) for k < t0 + d has
no effect on φ(k), k ≥ t0, so the ψ1(k) term can be ignored. 9 On the other hand, the
ψ2(k) term does have an effect: first observe that ψ2 can be rewritten as

ψ2(k) = γ10γ11d

λd−1

⎡

⎣
t0−1∑

j=t0−d+1

λt0− j |w( j)|
⎤

⎦ λk−t0;

second of all, it follows from the plant equation (1) that each of {w(t0 − d +
1), . . . , w(t0 − 1)} can be rewritten as a linear function of x0, so it follows that there
exists a constant γ12 so that

‖ψ2(k)‖ ≤ γ12λ
k−t0‖x0‖, k ≥ t0.

Since ‖φ(t0)‖ ≤ ‖x0‖, we conclude that
‖φ(k)‖ ≤ (γ10 + γ12)λ

k−t0‖x0‖

+γ10d(1 + γ11)

λd−1

k∑

j=t0

λk− j (|y∗( j + d)| + |w( j)|), k ≥ t0,

as desired. �
9 Alternatively, we can argue that the closed-loop system response for k ≥ t0 is identical if we were to
replace y∗ by another signal which is the same for t ≥ t0 + d and zero elsewhere, in which case the
corresponding ψ1(k) = 0 for k ≥ t0.
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5 Robustness to time-variations and unmodelled dynamics

It turns out that the exponential stability property and the convolution bounds proven
in Theorem 1 will guarantee robustness to a degree of time-variations and unmodelled
dynamics; in this way, the approach has a lot in common with an LTI closed-loop
system, which also enjoys this feature. Indeed, as we have recently proven in [36],
this is true even in a more general situation than that considered here. At this point,
we will state the key result and then simply refer to that paper for the proof.

To proceed, consider a time-varying version of the reparameterized plant (2), in
which θ∗ is now time-varying and there are some unmodelled dynamics which enter
the system via w̄�(t):

y(t + d) = θ∗(t)Tφ(t) + w̄(t) + w̄�(t). (40)

(i) Time variation model Since themapping fromSab toSαβ is analytic and both sets
are compact, we may as well consider the time-variations in the latter setting. We
adopt a common model of acceptable time-variations used in adaptive control,
e.g. see [10]: with c0 ≥ 0 and ε > 0, we let s(Sαβ, c0, ε) denote the subset of
l∞(Rn+m+d) whose elements θ∗ satisfy θ∗(t) ∈ Sαβ for every t ∈ Z as well as

t2−1∑

t=t1

‖θ∗(t + 1) − θ∗(t)‖ ≤ c0 + ε(t2 − t1), t2 > t1 (41)

for every t1 ∈ Z.
(ii) Unmodelled dynamicsWealso adopt a commonmodel of unmodelled dynamics:

m(t + 1) = βm(t) + β‖φ(t)‖, m(t0) = m0 (42)

w̄�(t) ≤ μm(t) + μ‖φ(t)‖. (43)

As argued in [25], this encapsulates a large class of additive, multiplicative and
uncertainty in a coprime factorization, which is common in the robust control
literature, e.g. see [46], and is commonly used in the adaptive control literature,
e.g. see [11].

We will now show that if the time-variations are slow enough and the size of the
unmodelled dynamics is small enough, then the closed-loop system retains exponential
stability as well as the convolution bounds.

Theorem 2 For every δ ∈ (0,∞], c0 ≥ 0 and β ∈ (0, 1), there exist an ε > 0,
μ > 0, λ ∈ (max{β, λ)}, 1) and c > 0 so that for every t0 ∈ Z, plant parameter
θ∗ ∈ s(Sαβ, c0, ε), exogenous signals y∗, w ∈ �∞, estimator initial condition θ0 ∈ S,
and plant initial condition

x0 = [
y(t0 − 1) · · · y(t0 − n − d + 1) u(t0 − 1) · · · u(t0 − m − 2d + 1)

]T
,
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when the adaptive controller (8), (9) and (11) is applied to the plant (40) with w̄�

satisfying (42), (43), the following bound holds:

‖φ(k)‖ ≤ cλk−t0‖
[
x0
m0

]
‖ +

k∑

j=t0

cλk− j (|y∗( j + d)| + |w( j)|), k ≥ t0. (44)

Proof This was proven in [25] for the case of pole placement and then extended to a
more general setting in Theorems 1 and 3 of [36]; the setup here is a special case of
the latter, so the result follows immediately from that. �

6 Tracking

We now move from the stability problem to the much harder tracking problem. We
first derive a very useful bound on the tracking error in terms of the prediction error.
Following that, we analyse the case when the disturbance is absent: we start with the
original LTI case, and thenwemove to the situation in which the parameters are slowly
time-varying. Last of all, we consider the original LTI case with a disturbance.

6.1 A useful bound

The d-step-ahead control law (11) can be rewritten as

y∗(t) = θ̂ (t − d)�φ(t − d), t ≥ t0 + d.

Since the tracking error is ε(t) = y(t) − y∗(t), we have

ε(t) = y(t) − θ̂ (t − d)�φ(t − d), t ≥ t0 + d.

Combining the above with the prediction error definition in (5), we easily obtain

ε(t) = e(t) + φ(t − d)�
[
θ̂ (t − 1) − θ̂ (t − d)

]
, t ≥ t0 + d. (45)

Observe that the relationship in (45) is true irrespective of the plant model, i.e. it need
not satisfy (1) or (2).

Nowwe turn to the prediction and tracking errors scaledby the stateφ. For t ≥ t0+d,
if ‖φ(t − d)‖ �= 0 then it follows from (45) that

|ε(t)|
‖φ(t − d)‖ ≤ |e(t)|

‖φ(t − d)‖ + ‖θ̂ (t − 1) − θ̂ (t − d)‖;
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multiplying both sides by ρδ(φ(t − d), e(t)) yields

ρδ(φ(t − d), e(t)) × |ε(t)|
‖φ(t − d)‖ ≤ ρδ(φ(t − d), e(t)) × |e(t)|

‖φ(t − d)‖
+ρδ(φ(t − d), e(t)) × ‖θ̂ (t − 1) − θ̂ (t − d)‖

≤ ρδ(φ(t − d), e(t)) × |e(t)|
‖φ(t − d)‖

+‖θ̂ (t − 1) − θ̂ (t − d)‖,
t ≥ t0 + d.

It turns out that the estimator property in (10) holds irrespective of the plant model; if
we use this to yield a bound on the second term on the right-hand side above, then we
obtain

ρδ(φ(t − d), e(t))
|ε(t)|

‖φ(t − d)‖

≤
d−1∑

j=0

ρδ(φ(t − d − j), e(t − j))
|e(t − j)|

‖φ(t − d − j)‖ , t ≥ t0 + d.

By Cauchy–Schwartz

ρδ(φ(t − d), e(t))
|ε(t)|2

‖φ(t − d)‖2

≤
⎛

⎝
d−1∑

j=0

ρδ(φ(t − d − j), e(t − j))
|e(t − j)|

‖φ(t − d − j)‖

⎞

⎠
2

≤
⎛

⎝
d−1∑

j=0

ρδ(φ(t − d − j), e(t − j))
|e(t − j)|2

‖φ(t − d − j)‖2

⎞

⎠

⎛

⎝
d−1∑

j=0

1

⎞

⎠

= d
d−1∑

j=0

ρδ(φ(t − d − j), e(t − j))
|e(t − j)|2

‖φ(t − d − j)‖2 , t ≥ t0 + d.

Hence, it follows that for t̄ ≥ t0 + 2d − 1 we obtain

t∑

j=t̄

ρδ(φ( j − d), e( j))
|ε( j)|2

‖φ( j − d)‖2

≤
t∑

j=t̄

⎛

⎝d
d−1∑

q=0

ρδ(φ( j − d − q), e( j − q))
|e( j − q)|2

‖φ( j − d − q)‖2

⎞

⎠
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≤ d2
t∑

j=t̄−d+1

ρδ(φ( j − d), e( j))
|e( j)|2

‖φ( j − d)‖2 ,

t ≥ t̄ ≥ t0 + 2d − 1. (46)

The inequality in (46) will prove to be useful in the forth-coming analysis.
In the next two sub-sections, we analyse the case when the disturbance is absent;

we start with the case with the original LTI case, and then we move to the situation in
which the parameters are slowly time-varying. After that, we anlyse the general case.

6.2 The LTI case: no disturbance

In the literature, it is typically proven that the tracking error is square summable, e.g.
see [5]. Here we can prove an explicit bound on the 2-norm of the error signal in terms
of the plant initial condition and the size of the reference signal, which is a significant
improvement.

Theorem 3 For every δ ∈ (0,∞] and λ ∈ (λ, 1) there exists a constant c > 0 so that
for every t0 ∈ Z, plant parameter θ∗

ab ∈ Sab, exogenous signal y∗ ∈ �∞, estimator
initial condition θ0 ∈ S, and plant initial condition

x0 = [
y(t0 − 1) · · · y(t0 − n − d + 1) u(t0 − 1) · · · u(t0 − m − 2d + 1)

]T
,

when the adaptive controller (8), (9) and (11) is applied to the plant (1) in the presence
of a zero disturbance w, the following bound holds:

∞∑

k=t0+2d−1

ε(k)2 ≤ c(‖x0‖2 + sup
j≥t0+d

|y∗( j)|2).

Proof Fix δ ∈ (0,∞] and λ ∈ (λ, 1). Let t0 ∈ Z, θ∗
ab ∈ Sab, y∗ ∈ �∞, θ0 ∈ S, and x0

be arbitrary. Now suppose that w = 0; for this case, by the definition of the function
ρδ , for t ≥ t0 + d we have

ρδ(φ(t − d), e(t)) = 0 ⇔ ‖φ(t − d)‖ = 0.

Ifwe incorporate this into the relation (46)with t̄ = t0+2d−1, then for T > t0+2d−1
we obtain

T∑

t=t0+2d−1,φ(t−d) �=0

|ε(t)|2
‖φ(t − d)‖2 ≤ d2

T∑

t=t0+d,φ(t−d) �=0

|e(t)|2
‖φ(t − d)‖2

≤ d2
∞∑

t=t0+d,φ(t−d) �=0

|e(t)|2
‖φ(t − d)‖2

≤ 8d2‖S‖2 (by Proposition 1).
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Since ε(t) = 0 if φ(t − d) = 0, if we now apply the bound on φ(t) proven in
Theorem 1, we conclude that there exists constants c1 > 0 and λ ∈ (0, 1) so that

∞∑

t=t0+2d−1

ε(t)2 ≤ 8d2‖S‖2 × sup
j≥t0

‖φ( j)‖2

≤ 16d2‖S‖2c21
[
‖x0‖2 +

(
1

1 − λ

)2

sup
j≥t0+d

|y∗( j)|2
]

,

which yields the desired result. �

6.3 The slowly time-varying case: no disturbance

Now we turn to the case in which the plant parameter is slowly time-varying (with no
jumps in the parameters) and the disturbancew(t) is zero. We should not expect to get
exact tracking; we will be able to prove, roughly speaking, that the average tracking
error is small on average if the time-variation is small. To proceed, we consider the
time-varying plant of (40) without the unmodelled dynamics and with zero noise:

y(t + d) = θ∗(t)Tφ(t). (47)

Theorem 4 For every δ ∈ (0,∞], there exist constants ε̄ > 0 and γ > 0 so that
for every t0 ∈ Z, ε ∈ (0, ε̄), θ∗ ∈ s(Sαβ, 0, ε), y∗ ∈ �∞, θ0 ∈ S, and plant initial
condition

x0 = [
y(t0 − 1) · · · y(t0 − n − d + 1) u(t0 − 1) · · · u(t0 − m − 2d + 1)

]T
,

when the adaptive controller (8), (9) and (11) is applied to the time-varying plant
(47), the following holds:

lim sup
T→∞

1

T

t0+T−1∑

j=t0

|ε( j)|2 ≤ γ ε2/3‖y∗‖2∞.

Proof Fix δ ∈ (0,∞] and λ1 ∈ (λ, 1), and set w = 0. By Theorem 2, there exist
constants γ1 > 0 and

ε̄ ∈ (0,max{2‖S‖, 23/2d1/2‖S‖})

so that for every t0 ∈ Z, y∗ ∈ �∞, θ0 ∈ S, initial condition x0, and θ∗ ∈ s(Sαβ, 0, ε̄),
when the adaptive controller (8), (9) and (11) is applied to the plant (47), the following
holds:

‖φ(t)‖ ≤ γ1λ
t−t0
1 ‖x0‖ + γ1

1 − λ1
sup

j∈[t0,t]
|y∗( j + d)|, t ≥ t0. (48)

Now, let t0 ∈ Z, y∗ ∈ �∞, θ0 ∈ Sab, x0, ε ∈ (0, ε̄) and θ∗ ∈ s(Sαβ, 0, ε) be
arbitrary. We first want to find a bound on the tracking error in terms of the prediction
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error. Note that the relationship in (45) and (46) holds irrespective of the plant model.
Since w = 0, it follows that for t ≥ t0 + d:

ρδ(φ(t − d), e(t)) = 0 ⇔ ‖φ(t − d)‖ = 0.

Now apply (46); by changing the index to facilitate analysis, we obtain

t−1∑

j=t̄+d−1,φ( j) �=0

|ε( j + d)|2
‖φ( j)‖2 ≤ d2

t−1∑

j=t̄,φ( j) �=0

|e( j + d)|2
‖φ( j)‖2 , t ≥ t̄ + d, t̄ ≥ t0. (49)

Now we incorporate time-variation. Let ti ≥ t0 be arbitrary; then from plant equa-
tion (47) we have

y(t + d) = φ(t)�θ∗(ti ) + φ(t)�
[
θ∗(t) − θ∗(ti )

]
︸ ︷︷ ︸

=:�i (t)

. (50)

Note from (41) that ‖�i (t)‖ ≤ ε‖φ(t)‖ (t − ti ) . Define θ̃i (t) := θ̂ (t) − θ∗(ti ). Since
w = 0, by applying Proposition 1 to the plant (50), we obtain 10

t−1∑

j=ti ,‖φ( j)‖�=0

|e( j + d)|2
‖φ( j)‖2 ≤ 2‖θ̃ (ti )‖2 +

t−1∑

j=ti ,‖φ( j)‖�=0

4‖�i ( j)‖2
‖φ( j)‖2

≤ 2‖θ̃i (ti )‖2 + 4ε2
t−1∑

j=ti

( j − ti )
2

= 2‖θ̃i (ti )‖2 + 4ε2
t−ti−1∑

k=0

k2

≤ 8‖S‖2 + 4ε2(t − ti − 1)3, t ≥ ti + 1, ti ≥ t0.

Using the above bound in (49) with t̄ = ti , we obtain

t−1∑

j=ti+d−1,φ( j) �=0

|ε( j + d)|2
‖φ( j)‖2 ≤ d2

t−1∑

j=ti ,φ( j) �=0

|e( j + d)|2
‖φ( j)‖2

≤ d2
[
8‖S‖2 + 4ε2(t − ti − 1)3

]
, t ≥ ti + d, ti ≥ t0.

(51)

10 Observe that
∑m

k=1 k
2 = m(m+1)(2m+1)

6 = m3

3 + m2

2 + m
6 ≤ m3.
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Since the disturbance is zero here, it follows that ‖φ( j)‖ = 0 implies that ε( j + d) =
0.11 So from (51), we conclude that

t−1∑

j=ti+d−1

|ε( j + d)|2 ≤ 4d2
[
2‖S‖2 + ε2(t − ti − 1)3

]

× sup
j∈[ti+d−1,t)

‖φ( j)‖2, t ≥ ti + d, ti ≥ t0. (52)

As ti ≥ t0 is arbitrary, we can relabel the indexes and obtain

t−1∑

j=ti

|ε( j + d)|2 ≤ 4d2
[
2‖S‖2 + ε2(t − ti − 1 + d − 1)3

]
× sup

j∈[ti ,t)
‖φ( j)‖2,

t ≥ ti + 1, ti ≥ t0 + d − 1. (53)

We now analyse the average tracking error. From (53), we obtain

1

t − ti

t−1∑

j=ti

|ε( j + d)|2 ≤ 4d2
[
2‖S‖2
t − ti

+ ε2
(t − ti + d − 2)3

t − ti

]
× sup

j∈[ti ,t)
‖φ( j)‖2,

t ≥ ti + 1, ti ≥ t0 + d − 1. (54)

Now define

βε :=
(
ε × d‖S‖2

) 2
3

(55)

and Tβ ∈ N by

Tβ :=
⌈
2d‖S‖2

βε

⌉
;

this means that

2d‖S‖2
Tβ

≤ βε.

Since ε ≤ 2‖S‖ by design, we can easily check that Tβ ≥ d, which means that

(Tβ + d − 2)3

Tβ

≤ 8T 2
β .

11 Observe that this is true even when θ∗(t) is time-varying.
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Incorporating this and the definition of Tβ into (54), by choosing t = ti + Tβ we have

1

Tβ

ti+Tβ−1∑

j=ti

|ε( j + d)|2 ≤ 4d

[
2d‖S‖2

Tβ

+ 8ε2dT 2
β

]
× sup

j∈[ti ,ti+Tβ)

‖φ( j)‖2

≤ 4d
[
βε + 8ε2dT 2

β

]
× sup

j∈[ti ,ti+Tβ)

‖φ( j)‖2, ti ≥ t0 + d − 1.

(56)

We would like to obtain a bound on ε2T 2
β . But it follows from (55) that

β3
ε = ε2d2‖S‖4,

so

ε2 = βε

(
βε

d‖S‖2
)2

= 4βε

(
βε

2d‖S‖2
)2

;

if we define x = βε

2d‖S‖2 , then we see that

ε2T 2
β = 4βεx

2
(

�1
x
�
)2

≤ 4βεx
2
(
1

x
+ 1

)2

= 4βε(x + 1)2.

But ε ∈ (0, 23/2d1/2‖S‖) by hypothesis, so

x = βε

2d‖S‖2 = (εd‖S‖2)2/3
2d‖S‖2 <

(23/2d1/2‖S‖ × d‖S‖2)2/3
2d‖S‖2 = 1,

so

ε2T 2
β ≤ 16βε.

Substituting this into (56) and simplifying yields

1

Tβ

ti+Tβ−1∑

j=ti

|ε( j + d)|2 ≤ 516d2βε × sup
j∈[ti ,ti+Tβ)

‖φ( j)‖2, ti ≥ t0 + d − 1.

(57)
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We now analyse the average tracking error over the whole time horizon; we do so
by considering time intervals of length Tβ . From (57) we easily obtain

1

iTβ

t̄+iTβ−1∑

j=t̄

|ε( j + d)|2 ≤ 516d2βε × sup
j∈[t̄,t̄+iTβ )

‖φ( j)‖2, i ∈ N, t̄ ≥ t0 + d − 1.

(58)

The bound in (58) provides a bound on the average tracking error over time intervals
of lengths that are multiples of Tβ . To extend this to intervals of arbitrary length, first
observe that (58) can be rewritten as

t̄+iTβ−1∑

j=t̄

|ε( j + d)|2 ≤ iTβ

⎛

⎝516d2︸ ︷︷ ︸
=:γ2

βε

⎞

⎠ sup
j∈[t̄,t̄+iTβ )

‖φ( j)‖2, i ∈ N, t̄ ≥ t0 + d − 1.

For k ∈ {0, 1, . . . , Tβ − 1}, this inequality implies that

t̄+iTβ−1+k∑

j=t̄+k

|ε( j + d)|2 ≤ iγ2Tββε sup
j∈[t̄+k,t̄+iTβ+k)

‖φ( j)‖2, i ∈ N, t̄ ≥ t0 + d − 1;

adding these two inequalities and simplifying yields

t̄+iTβ−1+k∑

j=t̄

|ε( j + d)|2 ≤ 2iγ2Tββε sup
j∈[t̄,t̄+iTβ+k)

‖φ( j)‖2, i ∈ N,

k ∈ {0, 1, . . . , Tβ − 1}, t̄ ≥ t0 + d − 1.

Changing variables to enhance clarity, we see that this implies that

t̄+T−1∑

j=t̄

|ε( j + d)|2 ≤ 2γ2Tβε sup
j∈[t̄,t̄+T−1)

‖φ( j)‖2, T ≥ Tβ, t̄ ≥ t0 + d − 1,

which means that

1

T

t̄+T−1∑

j=t̄

|ε( j + d)|2 ≤ 2γ2βε sup
j∈[t̄,t̄+T−1)

‖φ( j)‖2, T ≥ Tβ, t̄ ≥ t0 + d − 1. (59)

This means that

lim sup
T→∞

1

T

t̄+T−1∑

j=t̄

|ε( j + d)|2 ≤ 2γ2βε × lim sup
j→∞

‖φ( j)‖2, t̄ ≥ t0 + d − 1.
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From (48), see that

lim sup
j→∞

‖φ( j)‖ ≤ γ1

1 − λ1
‖y∗‖∞;

the boundedness of the tracking error ensures that for every t̄ ≥ t0 we have

lim sup
T→∞

1

T

t̄+T−1∑

j=t̄

|ε( j + d)|2 = lim sup
T→∞

1

T

t0+T−1∑

j=t0

|ε( j + d)|2, t̄ ≥ t0 + d − 1,

so we conclude that

lim sup
T→∞

1

T

t0+T−1∑

j=t0

|ε( j + d)|2 ≤
(

γ1

1 − λ1

)2

2γ2βε × ‖y∗‖2∞.

Since βε = (d‖S‖2)2/3ε2/3, the result follows. �

6.4 Tracking in the presence of a disturbance

Now we turn to the much harder problem of tracking in the presence of a disturbance;
throughout this sub-section, we assume that the plant is LTI. Our goal is to show that
if the noise is small, then the tracking error is small; this is a stringent requirement,
since in adaptive control it is usually only proven that if the noise is bounded, then the
error is bounded. We can, of course, measure signal sizes in a variety of ways, with the
2-norm and the∞-norm the most common; given that a large disturbance can lead the
estimator astray and cause “temporary instability”, the 2-norm seems to be the most
appropriate here.

If the closed-loop system were LTI, then by Parseval’s Theorem we could conclude
that the average power of the tracking error is bounded by the average power of the
disturbance, i.e. there exists a constant c so that

lim sup
T→∞

1

T

t0+T−1∑

j=t0

[ε(t)]2 ≤ c × lim sup
T→∞

1

T

t0+T−1∑

j=t0

[w(t)]2; (60)

unfortunately, while the closed-loop system has some desirable linear-like closed-
loop properties, the controller is nonlinear so the closed-loop system is clearly not
LTI. However, we can prove this bound in two extreme cases:

• if y∗ = 0, then y = ε, so with c and λ as given in Theorem 1, it is easy to see that

lim sup
T→∞

1

T

t0+T−1∑

j=t0

[ε(t)]2 ≤ c2

(1 − λ)2
× lim sup

T→∞
1

T

t0+T−1∑

j=t0

[w(t)]2;
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• on the other hand, if y∗ �= 0 and w = 0, then from Theorem 3 we see that

lim sup
T→∞

1

T

t0+T−1∑

j=t0

[ε(t)]2 = 0.

In the general case, we will prove something weaker than (60), but with much the
same flavour; it is, however, much stronger than the standard result in the literature.

Theorem 5 For every δ ∈ (0,∞], there exists a γ > 0 so that for every t0 ∈ Z,
θ∗
ab ∈ Sab, y∗, w ∈ �∞, θ0 ∈ S, and plant initial condition

x0 = [
y(t0 − 1) · · · y(t0 − n − d + 1) u(t0 − 1) · · · u(t0 − m − 2d + 1)

]T
,

when the adaptive controller (8), (9) and (11) is applied to the plant (1) with
lim inf t→∞ |y∗(t)| > 0 then the following holds:

lim sup
T→∞

1

T

t0+T−1∑

j=t0

|ε( j)|2 ≤ γ × lim sup
T→∞

1

T

t0+T−1∑

j=t0

|w( j)|2

× lim supt→∞ |y∗(t)|2 + lim supt→∞ |w(t)|2
lim inf t→∞ |y∗(t)|2 . (61)

Remark 9 So we see that the bound proven here is similar to that of (60) which holds
in the LTI case, although we have an extra term multiplied on the RHS:

lim supt→∞ |y∗(t)|2 + lim supt→∞ |w(t)|2
lim inf t→∞ |y∗(t)|2 .

If the reference signal is larger than the noise, which is what one would normally
expect, then this would be bounded by

2
lim supt→∞ |y∗(t)|2
lim inf t→∞ |y∗(t)|2 ;

if |y∗(t)| ∈ {−1, 1} then this is exactly two. It is curious that the quantity gets large
if y∗(t) gets close to zero; we suspect that this is an artifact of the proof, since all
simulations indicate that the LTI-like bound (60) holds.

Proof Fix δ ∈ (0,∞] and λ ∈ (λ, 1). Let t0 ∈ Z, θ∗
ab ∈ Sab, y∗, w ∈ �∞, θ0 ∈ S,

and x0 be arbitrary, but so that lim inf t→∞ |y∗(t)| > 0. Before proceeding, choose
t ≥ t0 + 2d − 1 so that

inf{|y∗(t)| : t ≥ t} > 0.
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Now, by using (46) and applying Proposition 1, for t̄ ≥ t0 + 2d − 1 we obtain

t∑

j=t̄

ρδ(φ( j − d), e( j))
|ε( j)|2

‖φ( j − d)‖2

≤ d2
t∑

j=t̄−d+1

ρδ(φ( j − d), e( j))
|e( j)|2

‖φ( j − d)‖2

≤ 8d2‖S‖2 + 4d2
t∑

j=t̄−d+1

ρδ(·, ·) |w̄( j − d)|2
‖φ( j − d)‖2

= 4d2‖S‖2
⎛

⎝2 + 1

‖S‖2
t∑

j=t̄−d+1

ρδ(·, ·) |w̄( j − d)|2
‖φ( j − d)‖2

⎞

⎠

= 4d2‖S‖2
⎛

⎝2 +
t∑

j=t̄−d+1

ρδ(·, ·) |w̄( j − d)|2
(‖S‖‖φ( j − d)‖)2

⎞

⎠ ,

t ≥ t̄ ≥ t0 + 2d − 1. (62)

From the controller equation (11), we have

y∗(t) = θ̂ (t − d)�φ(t − d), t ≥ t0 + d,

which means that

|y∗(t)| ≤ ‖θ̂ (t − d)‖‖φ(t − d)‖ ≤ ‖S‖ × ‖φ(t − d)‖, t ≥ t0 + d;

if we substitute this into (62), then we obtain

t∑

j=t̄

ρδ(φ( j − d), e( j))
|ε( j)|2

‖φ( j − d)‖2

≤ 4d2‖S‖2
⎛

⎝2 +
t∑

j=t̄−d+1

ρδ(φ( j − d), e( j))
|w̄( j − d)|2

|y∗( j)|2

⎞

⎠ ,

t ≥ t̄ ≥ t . (63)

Now we analyse the above bound for two cases: when the estimator is turned on,
i.e. when ρδ(·, ·) = 1 and when the estimator is turned off, i.e. when ρδ(·, ·) = 0.
Before proceeding, we define some notation: for t2 ≥ t1 ≥ t0, we define

y∗
[t1,t2] := inf

j∈[t1,t2], ρδ(φ( j−d),e( j))=1
|y∗( j)|2.

Case 1 The estimator is turned on: ρδ(φ( j − d), e( j)) = 1.
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From (63), we have

t∑

j=t̄, ρδ(φ( j−d),e( j))=1

|ε( j)|2
‖φ( j − d)‖2 ≤ 4d2‖S‖2

⎛

⎝2 + 1

y∗[t̄−d+1,t]

t∑

j=t̄−d+1

|w̄( j − d)|2
⎞

⎠ ,

t ≥ t̄ ≥ t, (64)

which means that

t∑

j=t̄,ρδ(φ( j−d),e( j))=1

|ε( j)|2 ≤ 4d2‖S‖2
(

sup
j∈[t̄−d,t−d]

‖φ( j)‖2
)

×
⎛

⎝2 + 1

y∗
[t̄−d+1,t]

t∑

j=t̄−d+1

|w( j − d)|2
⎞

⎠ , t ≥ t̄ ≥ t .

(65)

Case 2 The estimator is turned off : ρδ(φ( j − d), e( j)) = 0.
In this case, we know from the definition of ρδ that when ρδ(φ(t − d), e(t)) = 0:

• if δ = ∞ then φ(t − d) = 0, so

‖φ(t − d)‖ ≤ 1

δ
|w̄(t − d)|;

• if δ ∈ (0,∞), then we have that

|e(t)| ≥ (2‖S‖ + δ)‖φ(t − d)‖;

using the formula for the prediction error given in (13) we see that

|e(t)| ≤ ‖φ(t − d)‖ × ‖θ̃ (t − 1)‖ + |w̄(t − d)|
≤ 2‖S‖ × ‖φ(t − d)‖ + |w̄(t − d)|;

combining these two equations yields

‖φ(t − d)‖ ≤ 1

δ
|w̄(t − d)|.

Using the formula for the tracking error given in (12), we have

|ε(t)| ≤ ‖φ(t − d)‖‖θ̃ (t − d)‖ + |w̄(t − d)|
≤ 2‖S‖

δ
|w̄(t − d)| + |w̄(t − d)|, t ≥ t0 + 2d − 1.
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Hence,

t∑

j=t̄, ρδ(φ( j−d),e( j))=0

|ε( j)|2 ≤
(
1+ 2‖S‖

δ

)2 t∑

j=t̄, ρδ(φ( j−d),e( j))=0

|w̄( j − d)|2

≤
(
1+ 2‖S‖

δ

)2 t∑

j=t̄

|w̄( j − d)|2, t≥ t̄≥ t0 + 2d − 1.

(66)

We can now combine (65) and (66) of Case 1 and Case 2, respectively, to yield

t∑

j=t̄

|ε( j)|2 ≤ 8d2‖S‖2
(

sup
j∈[t̄,t]

‖φ( j + d)‖2
)

+ max

{(
1 + 2‖S‖

δ

)2
, 4d2‖S‖2

(
sup j∈[t̄,t] ‖φ( j+d)‖2

y∗
[t̄−d+1,t]

)}

×
⎛

⎝
t∑

j=t̄−d+1

|w̄( j − d)|2
⎞

⎠ , t ≥ t̄ ≥ t . (67)

By Theorem 1, there exists constants c > 0 and λ ∈ (0, 1) so that

‖φ(t + d)‖ ≤ cλt+d−t0‖x0‖ +
t+d∑

j=t0

cλt+d− j (|y∗( j)| + |w( j)|), t ≥ t,

so we can choose t̄ ≥ t (which depends implicitly on x0, y∗, θ0, and θ∗) such that

‖φ(t + d)‖ ≤ 2c

1 − λ
lim sup
k→∞

(|y∗(t̄ + k)| + |w(t̄ + k)|), t ≥ t̄,

as well as

|y∗(t)|2 ≥ 1

2
lim inf
k→∞ |y∗(k)|2

︸ ︷︷ ︸
=:y∗

, t ≥ t̄ − d + 1.

If we incorporate this into (67), then we obtain

t∑

j=t̄

|ε( j)|2 ≤ 8d2‖S‖2
(

sup
j∈[t̄,t]

‖φ( j + d)‖2
)

+ max

{(
2‖S‖

δ
+ 1

)2
,
(
4cd‖S‖
1−λ

)2 × lim supk→∞(|y∗(t̄+k)|2+|w̄(t̄+k)|2)
0.5y∗

}
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×
⎛

⎝
t∑

j=t̄−d+1

|w̄( j − d)|2
⎞

⎠ , t ≥ t̄ − d + 1,

which means that

lim sup
T→∞

1

T

t̄+T−1∑

j=t̄

|ε( j)|2 ≤ lim sup
T→∞

1

T

t̄+T−1∑

j=t̄−d+1

|w̄( j − d)|2

× max

{(
2‖S‖

δ
+ 1

)2
,
(
4cd‖S‖
1−λ

)2 × lim supk→∞(|y∗(t̄+k)|2+|w(t̄+k)|2)
0.5y∗

}
.

But w̄(t) is a weighted sum of {w(t + 1), . . . , w(t + d)}, and the boundedness of all
variables makes the starting point of the average sums irrelevant, so the desired bound
(61) follows. �

7 A simulation example

Here we provide several simulation examples to illustrate the results of this paper.
Consider the second-order time-varying plant with relative degree one:

y(t + 1) = −a1(t)y(t) − a2(t)y(t − 1) + b0(t)u(t) + b1(t)u(t − 1) + w(t)

with a1(t) ∈ [−3, 3], a2(t) ∈ [−4, 4], b0(t) ∈ [1.5, 5] and b1(t) ∈ [−1, 1]. When the
parameters are fixed, we see that the corresponding system has a zero in [− 2

3 ,
2
3 ] and

poles which may be stable or unstable.

7.1 Simulation 1: the benefit of vigilant estimation

In the first simulation, we illustrate that the vigilant estimation algorithm provides
better performance than the classical algorithm does. More specifically, we compare
the adaptive controller using the vigilant estimator (8), (9) (with δ = ∞) with the
adaptive controller using the classical estimation algorithm (7) suitably modified to
incorporate projection onto S (and with ᾱ = β̄ = 1). In each case, we apply the
adaptive controller to this plant with the parameters chosen as

a1(t) = 3 cos(0.01t),

a2(t) = 4 sin(0.007t),

b0(t) = 3.25 − 1.75 cos(0.0045t),

b1(t) = − cos(0.002t).

We set y∗ = 0 (so ε(t) = y(t)) and the noise to

w(t) =
{

0 0 ≤ t ≤ 100
0.05 cos(10t) otherwise;
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Fig. 1 The left plot shows the tracking error for Simulation 1 for t ≤ 200 using vigilant estimation; the
right plot shows the tracking error for Simulation 1 for t ≤ 200 using classical estimation
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Fig. 2 Column a shows results using vigilant estimation, and column b shows results using classical
estimation. In each column, the upper plot shows the tracking error for t ≥ 200; the next plot shows the
control signal for t ≥ 200; the last four plots show the parameter estimates (solid) and actual parameters
(dashed) for t ≥ 200

we set y(−1) = y(0) = −0.1, u(−1) = u(−2) = 0, and the initial parameter
estimates to themidpoint of the respective intervals. Fig. 1 shows tracking errors during
the transient phase of 200 steps, and Fig. 2 shows the tracking error and parameter
estimation for the rest of the simulation time of 2000 steps. We can clearly see that the
proposed controller provides better transient performance as well as better disturbance
rejection than the classical algorithm. Furthermore, you can see that the proposed
controller does a much better job of tracking the parameter variations.

7.2 Simulation 2: illustrating robustness

In the second simulation, we illustrate the tolerance to time-variation and unmodelled
dynamics. We apply the proposed adaptive controller (with δ = ∞) to the plant when
the parameters are time-varying:

a1(t) = −3 cos(0.002t),

a2(t) = −4 sin(0.0015t),

b0(t) = 3.25 − 1.75 cos(0.0035t),
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b1(t) =
⎧
⎨

⎩

0.5 0 ≤ t ≤ 1500
−0.5 1500 < t ≤ 3000
1 3000 < t,

and when the unmodelled dynamics (in the associated plant model (40)) are described
by

m(t + 1) = 0.5m(t) + 0.5‖φ(t)‖, m(0) = 0

w̄�(t) =
{
0.1m(t) + 0.1‖φ(t)‖ t ≥ 2500

0 otherwise.

We set the reference signal to

y∗(t) = cos(0.015t)

and the noise signal to

w(t) = 0.01 cos(10t);

we choose initial conditions of y(−1) = y(0) = −1 and u(−1) = u(−2) = 0, and
the initial parameter estimates to θ0 = [−2 −2 2 1]�; Fig. 3 shows the results. The
adaptive controller clearly shows robust performance to both unmodelled dynamics
and time-variations, including parameter jumps: the tracking is quite good, and the
parameter estimator (approximately) tracks the time-varying parameters.

7.3 Simulation 3: tracking with no noise

Theorem 3 says that there exists a constant c so that

∞∑

j=t0+2d−1

ε( j)2 ≤ c(‖y∗‖2∞ + ‖x0‖2),

i.e. the 2-norm of the tracking error is not only finite, but is bounded by a constant
time the sizes of the reference signal and plant initial condition. In this simulation, we
apply the proposed adaptive controller (with δ = ∞) to the plant when

a1(t) = −2, a2(t) = 3, b0(t) = 3.25, b1(t) = −1.

We set the disturbance signal to zero and the reference signal to

y∗(t) = A0 cos(0.025t)

with amplitudes of

A0 ∈
{
10−3, 10−2, 0.1, 1, 10, 102, 103, 104

}
;
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Fig. 3 The upper plot shows both the output signal (solid) and the reference signal (dashed) for Simulation
2; the next four plots show the parameter estimates (solid) and actual parameters (dashed) for Simulation 2

we set the plant initial condititon to y(−1) = y(0) = −1 and u(−1) = u(−2) = 0,
and we set the initial parameter estimate to the midpoint of the respective intervals.
We simulate for 100,000 steps. Because there is no noise, we get asymptotic tracking;
we compute the square sum of the tracking error and compare it to the square of the
reference amplitude and the square of the norm of the plant initial condition; the results
are in Table 1. We see that the result is consistent with Theorem 3: the gain is bounded
above by approximately 1000.

7.4 Simulation 4: tracking with slowly varying parameters

In our fourth simulation, we illustrate the result in Theorem4;we show that the average
tracking error is proportional to the speed of the parameter variation. We apply the
proposed controller (with δ = ∞) with plant parameters of

a2(t) = 1, b0(t) = 3.25, b1(t) = 1,

a1(t) = 2 sin (ω0t) ,
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Table 1 Simulation 3 results

A0

⎛

⎝
100000∑

j=1

ε( j)2

⎞

⎠
/(

A20 + ‖x0‖2
)

10−3 21.1

10−2 29.4

10−1 31.2

1 186.8

10 968.9

102 783.5

103 788.5

104 789.2

with

ω0 ∈ {0.001, 0.002, 0.005, 0.01} .

We choose plant initial conditions of y(−1) = y(0) = −1 and u(−1) = u(−2) = 0,
and the initial parameter estimate equal to the midpoint of the respective intervals.
With a zero disturbance and

y∗(t) = cos(0.015t),

we simulate the closed-loop system for T = 5000 steps; we plot the tracking error
for the last 3000 steps in Fig. 4, i.e. after the transient effect has been eliminated. We
see that, consistent with Theorem 4, average tracking error increases with the speed
of the plant parameter variation.

7.5 Simulation 5: tracking with noise

In the final simulation, we illustrate the tracking result in the presence of noise, namely
Theorem 5. We show that, on average, the tracking error is proportional to the size of
the exogenous noise. We apply the proposed adaptive controller (with δ = ∞) to the
plant when

a1 = −2, a2 = 3, b0 = 3.25, b1 = −1.

We choose an initial condition of y(−1) = y(0) = −1 and u(−1) = u(−2) = 0 and
set the initial parameter estimates to the midpoint of the respective intervals. We set
the noise to

w(t) = W0 cos(10t)
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Fig. 4 The plots show the tracking error for Simulation 4

with different amplitudes:

W0 ∈ {0.001, 0.01, 0.1, 1} ;

we choose the reference signal y∗ to be a squarewave of amplitude one and period 300;
observe that lim inf t→∞ |y∗(t)| = 1, ‖y∗‖∞ = 1 and ‖w‖∞ = |W0|. We simulate for
T = 5000 steps; in Fig. 5, we plot the tracking error for the last 3000 steps, so that we
focus on the “steady-state behaviour”. We clearly see that the average tracking error
magnitude is roughly proportional to the average noise signal magnitude.
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Fig. 5 The “steady-state” tracking error for Simulation 5 for different noise magnitudes

8 Summary and conclusions

Under common assumptions on the plant model, in this paper we use a modified
version of the original, ideal, projection algorithm (termed a vigilant estimator) to
carry out parameter estimation; the corresponding d-step-ahead adaptive controller
guarantees linear-like convolution bounds on the closed-loop behaviour, which
confers exponential stability and a bounded noise gain, unlike almost all other param-
eter adaptive controllers. This is then leveraged in a modular way to prove tolerance to
unmodelled dynamics and plant parameter variation. We examine the tracking ability
of the approach and are able to prove properties which most adaptive controllers do
not enjoy:

(i) in the absense of a disturbance, we obtain an explicit 2-norm on the size of the
tracking error in terms of the size of the initial condition and the reference signal;
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(ii) if there is no noise but there are slow time-variations, then we prove that we can
bound the size of the average tracking error by the size of the time-variation;

(iii) if there is noise, then under some technical conditions we bound the size of
the average tracking error in terms of the size of the average disturbance times
another complicated quantity.

We are working on several extensions of the approach. First of all, we would like to
use a multi-estimator approach to reduce the amount of structural information on the
plant; we have proven this already in the case of first-order systems [35], but extending
this to the general case has proven to be challenging. Second of all, we would like to
obtain a crisper bound on the average tracking error than that discussed in (iii) above,
i.e. prove that the size of the average tracking error is bounded above by a constant
time the size of the average disturbance; while all of our simulations confirm this, as
of yet we have not been able to prove it.

9 Appendix

Proof of Proposition 3 To proceed, we analyse the good closed-loopmodel of Sect. 3.1.
From (15), it is clear that we need to obtain a bound on the terms B1ε(t + 1) and
B2ε(t + j) for j = 1, . . . , d + 1. It will be convenient to define an intermediate
quantity12:

ν̄(t − 1) := ρδ(φ(t − d), e(t)) × φ(t − d)

‖φ(t − d)‖2 ε(t), t ≥ t0.

Step 1Obtain a desirable bound on Biε(t) in terms of ν̄(t −1), φ(t −d) and w̄(t −d).
First of all, for i = 1, 2 define

�̄i (t) := ρδ(φ(t − d), e(t))
ε(t)

‖φ(t − d)‖2 Biφ(t − d)T , t ≥ t0.

It is easy to see that

�̄i (t)φ(t − d) = ρδ(φ(t − d), e(t))Biε(t).

So

Biε(t) = ρδ(φ(t − d), e(t))Biε(t) + [1 − ρδ(φ(t − d), e(t))]ε(t)︸ ︷︷ ︸
=:η0(t)

Bi

= �̄i (t)φ(t − d) + Biη0(t), t ≥ t0. (68)

Using (12) and (13) and the definition of ρδ(φ(t − d), e(t)), it is easy to show that

|η0(t)| ≤
(
1 + 4‖S‖

δ

)
|w̄(t − d)|, t ≥ t0 + d; (69)

12 It is similar to ν(t − 1) except for the ε(t) rather than e(t) at the end.
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furthermore, it is clear that

‖�̄i (t)‖ = ρδ(φ(t − d), e(t))
|ε(t)|

‖φ(t − d)‖ = ‖ν̄(t − 1)‖, t ≥ t0. (70)

Step 2 Bound ν̄(t − 1) in terms of ν(t), . . . , ν(t − d).
It follows from the formulas for ε(t) and e(t) given in (12) and (13) that

ε(t) = e(t) + φ(t − d)T [θ̂ (t − 1) − θ̂ (t − d)], t ≥ t0 + d.

Using the definition of ν̄(t − 1), we have

‖ν̄(t − 1)‖ ≤ ρδ(φ(t − d), e(t))
|e(t)|

‖φ(t − d)‖ + ‖θ̂ (t − 1) − θ̂ (t − d)‖
= ‖ν(t − 1)‖ + ‖θ̂ (t − 1) − θ̂ (t − d)‖, t ≥ t0 + d.

Now it follows from the estimator update law that

‖θ̂ (t − 1) − θ̂ (t − d)‖ ≤ ‖θ̂ (t − 1) − θ̂ (t − 2)‖ + · · · + ‖θ̂ (t − d + 1) − θ̂ (t − d)‖
≤ ρδ(φ(t − d − 1), e(t − 1))

|e(t − 1)|
‖φ(t − d − 1)‖ + · · ·

+ρδ(φ(t − 2d + 1), e(t − d + 1))
|e(t − d + 1)|

‖φ(t − 2d + 1)‖

≤
d∑

j=2

‖ν(t − j)‖.

We conclude that

‖ν̄(t − 1)‖ ≤
d∑

j=1

‖ν(t − j)‖, t ≥ t0 + d. (71)

Step 3Obtain a bound on Biε(t) in terms of {ν(t), . . . , ν(t−d)},φ(t−d) and w̄(t−d).
If we combine (68), (69), (70) and (71), we see that

Biε(t) = �̄i (t)φ(t − d) + Biη0(t)

with

‖�̄i (t)‖ ≤
d∑

j=1

‖ν(t − j)‖
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and

|η0(t)| ≤
(
1 + 4‖S‖

δ

)
|w̄(t − d)|, t ≥ t0 + d.

Step 4 Apply the result of Step 3 to (15).
We can apply the above result to each of the terms on the RHS of (15) containing

ε(·). So from Step 3, we have

B1ε(t + 1) = �̄1(t + 1)φ(t + 1 − d) + B1η0(t + 1) (72)

and

ad− j

b0
B2ε(t + 1 + j) = ad− j

b0
�̄2(t + 1 + j)φ(t + 1 − d + j)

+ad− j

b0
B2η0(t + 1 + j), j = 0, 1, . . . , d. (73)

Each term except one is of the desired form: the case of j = d is problematic since it
contains a φ(t + 1) term. However, we can use the crude model given in (16) to see
that

a0
b0

�̄2(t + d + 1)φ(t + 1)

= a0
b0

�̄2(t + d + 1) × [Ab(t)φ(t) + B3(t)y
∗(t + d + 1) + B4(t)w(t + 1)].

(74)

If we now combine (72), (73) and (74), we see that we should define

�0(t) = a0
b0

�̄2(t + d + 1)Ab(t) + a1
b0

�̄2(t + d),

� j (t) = a j+1

b0
�̄2(t + d − j), j = 1, . . . , d − 2,

and

�d−1(t) = �̄1(t + 1) + ad
b0

�̄2(t + 1).

It is clear from Step 3 that this choice of�i has the desired property for t ≥ t0+d−1.
Last of all, we group all of the remaining terms into η(t):

η(t) := B1y
∗(t + 1) + B2

1

b0

d∑

j=0

ad− j y
∗(t + 1 + j) − 1

b0
B2w(t + d + 1)

+B1η0(t + 1) + a0
b0

�̄2(t + d + 1)[B3(t)y
∗(t + d + 1)
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+B4(t)w(t + 1)] + B2

d−1∑

j=0

ad− j

b0
η0(t + 1 + j).

If we apply Proposition 2 and use the bound on η0(t) given in Step 3, then we see that
η(t) has the desired property for t ≥ t0 + d − 1 as well. �
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