
Mathematics of Control, Signals, and Systems (2019) 31:7
https://doi.org/10.1007/s00498-019-0237-5

ORIG INAL ART ICLE

Structure theory for ensemble controllability, observability,
and duality

Xudong Chen1

Received: 8 May 2018 / Accepted: 10 June 2019 / Published online: 18 June 2019
© Springer-Verlag London Ltd., part of Springer Nature 2019

Abstract
Ensemble control deals with the problem of using a finite number of control inputs to
simultaneously steer a large population (in the limit, a continuum) of control systems.
Dual to the ensemble control problem, ensemble estimation deals with the problem
of using a finite number of measurement outputs to estimate the initial state of every
individual system in the ensemble.We introduce in the paper a novel class of ensemble
systems, termed distinguished ensemble systems, and establish sufficient conditions
for controllability and observability of such systems. Every distinguished ensemble
system has two key components, namely a set of distinguished control vector fields
and a set of codistinguished observation functions. Roughly speaking, a set of vector
fields is distinguished if it is closed (up to scaling) under Lie bracket, and moreover,
every vector field in the set can be obtained by a Lie bracket of two vector fields
in the same set. Similarly, a set of functions is codistinguished to a set of vector
fields if the Lie derivatives of the functions along the given vector fields yield (up to
scaling) the same set of functions. We demonstrate in the paper that the structure of
a distinguished ensemble system can significantly simplify the analysis of ensemble
controllability and observability. Moreover, such a structure can be used as a guiding
principle for ensemble system design. We further address in the paper the problem
about existence of a distinguished ensemble system for a given manifold. We provide
an affirmative answer for the case where the manifold is a connected semi-simple Lie
group. Specifically, we show that every such Lie group admits a set of distinguished
vector fields, togetherwith a set of codistinguished functions. The proof is constructive,
leveraging the structure theory of semi-simple real Lie algebras and representation
theory. Examples will be provided along the presentation of the paper illustrating key
definitions and main results.
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1 Introduction

We address in the paper controllability and observability of a continuum ensemble of
control systems. Roughly speaking, ensemble control deals with the problem of using
a finite number of control inputs to simultaneously steer a large population (in the limit,
a continuum) of control systems. These individual control systems may be structurally
identical, but show variations in their tuning parameters. Dual to ensemble control,
ensemble estimation deals with the problem of estimating the state of every individual
control system in the ensemble using only a finite number of measurement outputs.
We refer the reader to Fig. 1 for an illustration of a continuum ensemble of control
systems indexed by a parameter of a two-dimensional surface. Note that any finite
ensemble of control systems can be viewed as a proper subsystem of the continuum
ensemble. Controllability (or observability) of the continuum ensemble will guarantee
the controllability (or observability) of any such finite subsystem of it.

The framework of ensemble control and estimation naturally has many applications
across various disciplines in engineering and science. The individual control systems
in the ensemble can be used to model, for example, spin dynamics that are controlled
by a magnetic field [14], molecules that respond to external stimuli such as light [35]
and heat [33], or micro-robotics that are steered by a broadcast control signal [3]. We
further note that an individual control system does not necessarily have only one single
physical entity, but rather it can comprise multiple interacting components (or agents).
In this case, every individual control system is itself a networked control system (or a
multi-agent system). For example, a mathematical model for a continuum ensemble
of multi-agent formation systems has recently been proposed and investigated in [5].

Many existing ensemble control and estimation theories deal only with linear
ensembles (i.e., ensembles of linear control systems). For nonlinear ensembles, the

Fig. 1 A continuum ensemble of
systems indexed by a parameter
of a surface �. A controller
broadcasts a signal u(t) as a
common control input to steer
every individual system in the
ensemble. Meanwhile, it
receives a measurement output
y(t) integrating the information
of individual states of all the
systems
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literature is relatively sparse on controllability, and much less on observability. There
is also a lack of methodologies for designing nonlinear dynamics of individual con-
trol systems so that an ensemble of such systems is controllable and observable. To
address the above issues, we introduce in the paper a novel class of nonholonomic
ensemble systems, termed distinguished ensembles. Every such system has two key
components: a set of finely structured control vector fields, termed distinguished vec-
tor fields, and a set of costructured observations functions, termed codistinguished
functions. Details about the structure of a distinguished ensemble will be provided
below.We will demonstrate that controllability and/or observability of a distinguished
ensemble system can be easily fulfilled under some mild assumption. The first half of
the paper is devoted to establishing the fact. For the second half, we will investigate
the problem about existence of a distinguished ensemble. We focus on the case where
the state space of every individual system is a Lie group or its homogeneous space.We
leverage existing results [6] and structure theory of Lie algebras to construct explicitly
distinguished vector fields and codistinguished functions.

1.1 Mathematical models for ensemble control and estimation

Themodel of an ensemble system considered in the paper comprises two parts, namely
ensemble control and ensemble estimation.We introduce these two parts subsequently.

Model for ensemble controlWe consider a continuum ensemble of control systems
indexed by a parameter σ ∈ �, where � is the parameterization space. We assume
in the paper that � is compact, real analytic, and path-connected. We allow � to have
boundary. If an individual control system in the ensemble is associated with index σ ,
then we call it system-σ . The state space of each individual system is the same, which
we denote by M . We assume that M is real analytic. Further, let xσ (t) ∈ M be the
state of system-σ at time t . Then, in general, the control model of an ensemble system
can be described by the following differential equation:

ẋσ (t) := ∂xσ (t)

∂t
= f (xσ (t), σ, u(t)), xσ ∈ M for all σ ∈ �, (1)

where u(t) is a finite-dimensional control input common to all of the individual control
systems and f is an analytic vector field. Let

x�(t) := {xσ (t) | σ ∈ �}

be the collection of system states. One can treat x�(t) as a function from � to M .
We call x�(t) a profile. Let Cω(�, M) be the space of real analytic functions from �

to M . We assume that for any given t , the profile x�(t) belongs to Cω(�, M). We call
Cω(�, M) the profile space.

We focus in the paper on a special class of ensemble systems, namely systems
such that the vector fields f are separable in state x , the parameter σ , and the control
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input u. Specifically, we consider the following type of ensemble system:

ẋσ (t) = f0(xσ (t), σ ) +
m∑

i=1

r∑

s=1

ui,s(t)ρs(σ ) fi (xσ (t)), xσ ∈ M and σ ∈ �, (2)

where f0 is a drifting term, the fi ’s are control vector fields depending only on xσ (t),
the ρi ’s are parameterization functions defined on�, and the ui,s’s are scalar control
inputs.We assume in the paper that all the vector fields and parameterization functions
are analytic in their variables. All the control inputs are integrable functions over any
finite time interval. For convenience, we let u(t) be the collection of all the ui,s(t)’s.

Model for ensemble estimation We assume that there are l (scalar) measurement
outputs y j (t), for j = 1, . . . , l, at our disposal. Each y j (t) is a certain average of an
observation function φ j (xσ (t)) over the parameterization space �. Specifically, we
first let � be equipped with a strictly positive Borel measure, i.e.,

∫
U dσ > 0 for any

nonempty open subset U of �. Next, let each φ j , for j = 1, . . . , l, be an analytic
function defined on M . Then, the measurement outputs {y j (t)}lj=1 are described by

y j (t) =
∫

�

φ j (xσ (t))dσ, j = 1, . . . , l. (3)

For convenience, let y(t) be the collection of the y j (t)’s.
Model for an ensemble system Combining (2) and (3), we arrive at the following

mathematical model of an ensemble system:

⎧
⎨

⎩

ẋσ (t) = f0(xσ (t), σ ) +∑m
i=1

∑r
s=1 ui,s(t)ρs(σ ) fi (xσ (t)), ∀σ ∈ �,

y j (t) =
∫

�

φ j (xσ (t))dσ, ∀ j = 1, . . . , l.
(4)

Examples of the above system will be given along the presentation.

1.2 Distinguished structure and examples

A major contribution of the paper is to introduce a novel class of nonholonomic
ensemble systems (4), termed distinguished ensembles. Every such ensemble system
has two key components: a set of distinguished control vector fields { fi }mi=1 and a set
of codistinguished observation functions {φ j }lj=1. Roughly speaking, a set of vector
fields { fi }mi=1 is said to be distinguished if the Lie bracket of any two vector fields fi
and f j is, up to scaling, another vector field fk , i.e., [ fi , f j ] = λ fk for λ a constant, and
conversely, any vector field fk in the set can be obtained in this way. Such a structure
is motivated by Li and Khaneja [26] for their earlier study on ensemble control of
Bloch equations. Similarly, a set of functions {φ j }lj=1 is said to be codistinguished to

the vector fields { fi }mi=1 if the Lie derivative of any φ j along any fi is, up to scaling,
another function φk , i.e., fiφ j = λφk for λ a constant, and conversely, any function
φk in the set can be obtained in this way (see Definitions 2 and 3, Sect. 3.1 for details).
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We note here that although the notion of a “distinguished set” of a Lie algebra
appears to be new, such set arises naturally in different areas. Here are a few examples:

(1) When dealing with the rigid motions of a three-dimensional object with a fixed
center, we have that the infinitesimal motions of rotations around three axes of an
orthonormal frame 	 ∈ SO(3) are given by

f1(	) = 	
23, f2(	) := 	
31, f3(	) := 	
12,

where each 
i j is a skew-symmetric matrix with 1 on the i j th entry, −1 on the
j i th entry, and 0 elsewhere. By computation, [ fi , f j ] = fk where (i, j, k) is any
cyclic rotation of (1, 2, 3). Thus, the above vector fields form a distinguished set.

(2) In quantum mechanics, the Pauli spin matrices are used to represent angular
momentum operators. We recall that they are given by

σ1 :=
[
0 1
1 0

]
σ2 :=

[
0 −i
i 0

]
σ3 :=

[
1 0
0 −1

]
,

where i is the imaginary unit. Similarly, if (i, j, k) is a cyclic rotation of (1, 2, 3),
then [σi , σ j ] = 2iσk . Although the constant 2i is not real, one can multiple all the
three matrices by i so that the new set {iσi }3i=1 now satisfies [iσi , iσ j ] = −2iσk .
Note that the set {iσi }3i=1 belongs to su(2) i.e., the special unitary Lie algebra.
However, we shall note that su(2) is isomorphic to so(3).

(3) We also note that the ladder operators represented by the following matrices in the
special linear Lie algebra sl(2, R):

H :=
[
1 0
0 −1

]
X :=

[
0 1
0 0

]
Y :=

[
0 0
1 0

]

satisfy the desired property: [H , X ] = 2X , [H ,Y ] = −2Y , and [X ,Y ] = H .

The examples given above demonstrate the existence of distinguished sets in Lie
algebras so(3) ≈ su(2) and sl(2, R). In fact, we have shown in [6] that every semi-
simple real Lie algebra has a distinguished set. We review such a fact in Sect. 4.1.

1.3 Literature review

Among related works about controllability of nonlinear ensembles, we first mention
[25,26] by Li and Khaneja in which the authors establish the controllability of an
ensemble of Bloch equations parameterized by a pair of scalar parameters (σ1, σ2)

over a square � := [a1, b1] × [a2, b2] in R
2:

ẋ(t) = (σ1
12 + u1(t)σ2
13 + u2(t)σ2
23)x(t).

Ensemble control of Bloch equations has also been addressed in [2] using tools from
functional analysis. We further note that the controllability of a general ensemble
of control-affine systems has been recently addressed in [1], in which the authors
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established an ensemble version of Rachevsky–Chow theorem via a Lie algebraic
method. We do not to intend to reproduce in the paper the results established there,
but rather our contribution related to ensemble controllability is to demonstrate that
if the set of control vector fields { fi }mi=1 is distinguished, then the ensemble version
of Rachevsky-Chow criterion can be easily verified in analysis and fulfilled in system
design. For ensemble control of linear systems, we refer the reader to [19,24], [11,
Ch. 12] and references therein.We further refer the reader to [4,7,8] for optimal control
of probability distributions evolving along linear systems.

Observability of a continuum ensemble system has been mostly addressed within
the class of linear systems.We first refer the reader to [11, Ch. 12] where the following
ensemble of linear systems is investigated:

ẋσ (t) = A(σ )xσ (t) ∈ R
n, y(t) =

∫

�

C(σ )xσ (t)dσ ∈ R
l .

The authors addressed the observability of the above ensemble system using the
duality between controllability and observability of infinite-dimensional linear sys-
tems [9]. We also refer the reader to [36] for a related observability problem about
estimating the probability distribution of the initial state. Specifically, the authors
there considered a single time-invariant linear system: ẋ(t) = Ax(t) + Bu(t) and
y(t) = Cx(t). An initial probability distribution p0 of x ∈ R

n induces a distribution
p̄t of y(t) for a given control input u(t). The observability problem addressed there
is whether one is able to estimate p0 given that the entire distributions p̄t (which are
infinite-dimensional), for all t ≥ 0, are known.A key difference between ourmodel (4)
and theirs is that we only allow a finite-dimensional measurement output y(t). We fur-
ther refer the reader to [10,12,13,20,34] for the study of observability of a single
nonlinear system using the so-called observability codistribution.

1.4 Outline of contribution and organization of the paper

The technical contribution of the paper is twofold: (1) We establish a structure theory
for controllability and observability of a distinguished ensemble system. (2) We prove
the existence of distinguished ensemble systems over semi-simple Lie groups.

Structure theory We establish in Sect. 3 a sufficient condition for controllability
and observability of a distinguished (and pre-distinguished) ensemble system. In par-
ticular, we demonstrate how distinguished vector fields and codistinguished functions
can simplify the analysis and lead to ensemble controllability and observability. The
structure theory established in the paper also provides a solution to the problem of
ensemble system design—i.e., the problem of codesigning the control vector fields
fi ’s, the observations functions φ j ’s, and the parameterization functions ρs’s so that
system (4) is controllable and/or observable. In particular, it divides the problem into
two independent subproblems—one is about finding a set of distinguished vector fields
{ fi }mi=1 and a set of codistinguished function {φ j }lj=1 over the givenmanifoldM while
the other is about finding a set of parameterization functions {ρs}rs=1 that separates
points of the parameterization space �.
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Existence of distinguished ensembles We prove in Sect. 4 that every semi-simple
Lie group G admits a set of distinguished vector fields, together with a set of
codistinguished functions. The proof of the existence result is constructive: (1) For
distinguished vector fields, we leverage the result established in [6] where we have
shown how to construct a distinguished set on the Lie algebra level. We then identify
the distinguished set with the corresponding set of left- (or right-) invariant vector
fields over the group G. (2) For codistinguished functions, we show how to generate
these functions using representation theory. In particular, we show in Sect. 4.2 that a
selected set of matrix coefficients associated with a finite-dimensional Lie group rep-
resentation could be used as a set of codistinguished functions (with respect to a set of
left-invariant vector fields). Then, in Sect. 4.3, we focus on a special representation,
namely the adjoint representation. We show, in this case, that there indeed exists a set
of matrix coefficients as codistinguished functions. In particular, if G is a matrix Lie
group, then these matrix coefficients are simply given by φi j (g) = tr(gX j g−1X�

i )

where Xi and X j are selected matrices out of the Lie algebra g of G. We further
address, in Sect. 4.5, the existence problem for homogeneous spaces.

We provide key definitions and notations in Sect. 2 and conclusions at the end.

2 Definitions and notations

(1) Manifolds Let M be a real analytic manifold. For a point x ∈ M , let TxM be the
tangent space and T ∗

x M be the cotangent space of M at x . Let T M := ∪x∈MTxM be
the tangent bundle and T ∗M := ∪x∈MT ∗

x M be the cotangent bundle.
Let Cω(M) be the set of real analytic functions on M . Denote by 1M ∈ Cω(M) the

constant function whose value is 1 everywhere. Let X(M) be the set of real analytic
vector fields over M . Let φ ∈ Cω(M) and f ∈ X(M). Denote by f φ ∈ Cω(M) the
Lie derivative of φ along f . If we embed M into a Euclidean space, then f φ is simply
given by

( f φ)(x) := lim
ε→0

φ(x + ε f (x)) − φ(x)

ε
, ∀x ∈ M .

For any φ ∈ Cω(M), we let dφ ∈ T ∗M be a one-form defined as follows: Let
dφx ∈ T ∗

x M be the evaluation of dφ at x . Then, for any f ∈ X(M), we have that
dφx ( f (x)) = ( f φ)(x). For two vector fields fi , f j ∈ X(M), we let [ fi , f j ] be the Lie
bracket, which is defined such that [ fi , f j ]φ = fi f jφ − f j fiφ for all φ ∈ Cω(M).

Let { fi }mi=1 be a subset of X(M). Let w = w1 · · ·wk be a word over the alphabet
{1, . . . ,m} of length k. For a function φ ∈ Cω(M), we define fwφ := fw1 · · · fwkφ.
If w = ∅, i.e., an empty word (of zero length), then we set fwφ := φ.

Let η : M → N be a diffeomorphism. Denote by η∗ : T M → T N the derivative
of η. For a vector field f ∈ X(M), let η∗ f ∈ X(N ) be the pushforward defined as
(η∗ f )(y) := η∗( f (η−1y)) for all y ∈ N . For a functionφ ∈ Cω(N ), let η∗φ ∈ Cω(M)

be the pullback defined as (η∗φ)(x) := φ(η(x)) for all x ∈ M .
(2) Algebra of functions Let � be an analytic, compact manifold and {ρs}rs=1 be a set
of real-valued functions on�. For any k ≥ 0, let ρk

s (σ ) := ρs(σ )k . Note, in particular,
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that ρ0
s = 1� . If ρs is everywhere nonzero, then ρk

s is defined for all k ∈ Z. We call∏r
s=1 ρ

ks
s , for ks ≥ 0, a monomial. Its degree is defined by k := ∑r

s=1 ks . Let P
be the collection of all monomials. We decompose P = 
k≥0P(k), where P(k) is
comprised of monomials of degree k. Denote by S the subalgebra generated by the
set of functions {ρs}rs=1. It is defined such that if p ∈ S, then p can be expressed as a
linear combination of a finite number of monomials with real coefficients.
(3) Lie groups and Lie algebras Let G be a Lie group with e the identity element.
Let g be the associated Lie algebra, and [·, ·] be the Lie bracket. We identify each
element X ∈ g with a left-invariant vector field LX over G, i.e., LX (g) = gX for any
g ∈ G. Thus, L [X ,Y ] = [LX , LY ]. Note that to each X ∈ g, there also corresponds a
right-invariant vector field RX . For any X ,Y ∈ g, we have R[X ,Y ] = −[RX , RY ].

A subalgebra h of g is a vector subspace closed under Lie bracket, i.e., [h, h] ⊆ h.
An ideal i of g is a subalgebra such that [i, g] ⊆ i. We say that g is simple if it is not
abelian and, moreover, the only ideals of g are 0 and itself. Simple real Lie algebras
have been completely classified (up to isomorphism) by Élie Cartan. A complete list
of (non-complex) simple real Lie algebras can be found in [22, Thm. 6.105]. A semi-
simple Lie algebra is a direct sum of simple Lie algebras. A Cartan subalgebra h of g
is maximal among the abelian subalgebras h′ of g such that the adjoint representation
ad(X)(·) := [X , ·] is simultaneously diagonalizable (over C) for all X ∈ h′.
(4) Representation Let V be a finite-dimensional vector space over R. Let Aut(V )

and End(V ) be the sets of automorphisms and endomorphisms of V , respectively. A
representation π of G on V is a group homomorphism π : G → Aut(V ), i.e., π(e)
is the identity map and π(gh) = π(g)π(h).

Let 〈·, ·〉 be an inner product on V . We say that the representation π is Ck (i.e., kth
continuously differentiable) if the map π : (g, v) ∈ G × V �→ π(g)v ∈ V is Ck . A
matrix coefficient is any Ck-function onG defined as 〈vi , π(g)v j 〉where vi , v j belong
to V . In particular, if the vi ’s form an orthonormal basis of V , then 〈vi , π(g)v j 〉 is
exactly the i j th entry of the matrix π(g) with respect to the given basis.

A group representation π induces a Lie algebra homomorphism π∗ : g → End(V ),
whereπ∗ is the derivative ofπ at the identity e ∈ G. It satisfies the following condition:

π∗([X , Y ]) = π∗(X)π∗(Y ) − π∗(Y )π∗(X), ∀X ,Y ∈ g.

We call π∗ a representation of g on V , or simply a Lie algebra representation.
Let Ad : G → Aut(g) be the adjoint representation, i.e., for each g ∈ G, Ad(g) :

TeG → TeG is the derivative of the conjugation h ∈ G �→ ghg−1 ∈ G at the
identity e. Denote by ad : g → End(g) the induced Lie algebra representation of Ad,
which is given by ad(X)(·) = [X , ·] for all X ∈ g.
(5) Lie products Let A := {X1, . . . , Xk} be a set of free generators. Let LA be the
collection of formal Lie products of the Xi ’s in A. For a given element ξ ∈ LA, we
let dep(ξ) be the depth of ξ defined as the number Lie brackets in ξ . For example, the
depth of [Xi1 , [Xi2 , Xi3 ]] is 2. We further decomposeLA = 
k≥0LA(k)whereLA(k)
is comprised of Lie products of depth k.
(6) Miscellaneous Let {ei }ni=1 be the standard basis of R

n . We denote by
det(ei1 , . . . , ein ) the determinant of a matrix whose j th column is ei j for i j ∈
{1, . . . , n}.
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Let V be a vector space over R. We denote by V ∗ the dual space, i.e., it is the
collection of all linear functions from V to R.

The following definition will be frequently used throughout the paper:

Definition 1 Two subsets V ′ and V ′′ of a real vector space V are said to beprojectively
identical if for any v′ ∈ V ′, there exists a v′′ ∈ V ′′ and a constant c ∈ R such that
v′ = cv′′, and vice versa. We write V ′ ≡ V ′′ to indicate such equivalence relation.

Let S be an arbitrary set with an operation “∗” defined so that s1 ∗ s2 belongs to S
for all s1, s2 ∈ S. For any two subsets S′ and S′′ of S, we let S′ ∗ S′′ be the subset of S
comprised of the elements s′ ∗ s′′ for all s′ ∈ S′ and s′′ ∈ S′′. Here are two examples
in which such a notation will be used: (i) If S is a vector space and “∗” is the addition
“+”, then we write S′ + S′′. (ii) If S is the commutative algebra of analytic functions
Cω(�) and “∗” is the pointwise multiplication, then we simply write S′S′′.

However, we note that the above notation does not apply to [g1, g2] for g1 and g2
two subsets of a Lie algebra g. By convention, [g1, g2] is the linear span of all [X1, X2]
with X1 ∈ g1 and X2 ∈ g2. We adopt such a convention in the paper as well.

For a general control system ẋ(t) = f (x(t), u(t)), we denote by u[0, T ] the control
input u(t) over the time interval [0, T ] for T > 0. Correspondingly, we let x[0, T ] be
the trajectory of the control system generated by u[0, T ].

3 Distinguished ensemble systems

3.1 Distinguished vector fields and codistinguished functions

We introduce in the section the class of (pre-)distinguished ensemble systems and
establish controllability and observability of any such ensemble system. We start by
introducing two key components of the system, namely distinguished vector fields and
codistinguished functions. We first have the following definition:

Definition 2 (Distinguished vector fields)A set of vector fields { fi }mi=1 over an analytic
manifold M is distinguished if the following hold:

(1) For any x ∈ M , the set { fi (x)}mi=1 spans TxM .
(2) For any two fi and f j , there exist an fk and a real number λ such that

[ fi , f j ] = λ fk; (5)

conversely, for any fk , there exist fi and f j and a nonzero λ such that (5) holds.

Recall that X(M) is the Lie algebra of analytic vector fields over M , which is
infinite-dimensional. However, if F := { fi }mi=1 is distinguished, then by item 2 of
Definition 2, the R-span of the fi ’s, which we denote by LF , is a finite-dimensional
subalgebra of X(M). We note here that LF is perfect, i.e., [LF , LF ] = LF .

Let N be anymanifold diffeomorphic toM , andη : M → N be the diffeomorphism.
Recall that for a vector field f over M , we denote by η∗ f the pushforward of f as a
vector field over N . We have the following fact:
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Lemma 1 If { fi }mi=1 is distinguished over M, then {η∗ fi }mi=1 is distinguished over N.

Proof If [ fi , f j ] = λ fk , then [η∗ fi , η∗ f j ] = η∗[ fi , f j ] = λη∗ fk . �

We next introduce the definition of codistinguished functions:

Definition 3 (Codistinguished functions) A set of functions {φ j }lj=1 on M is codis-
tinguished to a set of vector fields { fi }mi=1 if the following hold:

(1) For any x ∈ M , the set of (exact) one-forms {dφ j
x } spans T ∗

x M .
(2) For any fi and any φ j , there exist a φk and a real number λ such that

fiφ
j = λφk; (6)

conversely, for any φk , there exist fi , φ j , and a nonzero λ such that (6) holds.
(3) For x, x ′ ∈ M , if φ j (x) = φ j (x ′) for all j = 1, . . . , l, then x = x ′.
If {φ j }lj=1 satisfies only (1) and (2), then it is weakly codistinguished to { fi }mi=1.

Let η̃ : N → M be a diffeomorphism. Recall that for a function φ on M , we denote
by η̃∗φ the pullback of φ as a function on N . We have the following fact:

Lemma 2 If {φ j }lj=1 on M is codistinguished to { fi }mi=1, then {η̃∗φ j }lj=1 on N is

codistinguished to {η̃−1∗ fi }mi=1.

Proof If fiφ j = λφk , then (η̃−1∗ fi )(η̃∗φ j ) = η̃∗( fiφ j ) = λη̃∗φk . �

We say that a set of vector fields F := { fi }mi=1 and a set of functions � :=

{φ j }lj=1 are (weakly) jointly distinguished if F is distinguished and � is (weakly)
codistinguished to F . Note that Lemmas 1 and 2 imply that the property of having a
set of (weakly) jointly distinguished pair (F,�) is topologically invariant. Let F and
� be (weakly) disjoined. Recall that LF is a finite-dimensional Lie algebra spanned
by F (since F is distinguished). Let L� be the R-span of �. Then, by the second item
of Definition 3, the following map:

( f , φ) ∈ LF × L� �→ f φ ∈ L�

is a finite-dimensional Lie algebra representation of LF on L�.
For the remainder of the subsection, we provide an example about jointly distin-

guished vector fields and functions on SO(3). These vector fields and functions will
be further generalized in Sect. 4 so that they exist on any semi-simple Lie group.

Example 1 Let SO(3) be the matrix Lie group of 3 × 3 special orthogonal matrices,
and so(3) be the associated Lie algebra.We define a basis {Xi }3i=1 of so(3) as follows:

Xi := e j e
�
k − eke

�
j where det(ei , e j , ek) = 1, ∀i = 1, 2, 3.

Let {LXi }3i=1 be the corresponding left-invariant vector fields. By computation,

[LXi , LX j ] = − det(ei , e j , ek)LXk , ∀i �= j . (7)
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It follows that {LXi }3i=1 is distinguished.
Denote by tr(·) the trace of a square matrix. We next define functions {φi j }3i, j=1 on

SO(3) as follows:

φi j (g) := tr(gX j g
�X�

i ), 1 ≤ i, j ≤ 3.

We show below that {φi j }3i, j=1 is codistinguished to {LXi }3i=1. First, for any left-
invariant vector field LX with X ∈ so(3), we obtain by computation that

dφi j
g (LX (g)) = (LXφi j )(g) = tr(g[X , X j ]g�X�

i ). (8)

We now prove that the three items of Definition 3 are satisfied for {φi j }3i, j=1 and

{LXi }3i=1:

(1) We fix an arbitrary group element g ∈ SO(3) and show that {dφi j
g }3i, j=1 spans

T ∗
g SO(3). For convenience, let X̂i j := [X j , g�X�

i g]. Then, by (8), we obtain
that

dφi j
g (LX (g)) = tr(X [X j , g

�X�
i g]) = tr(X X̂i j ).

Note that tr(·, ·) is negative definite on so(3). Thus, {dφi j
g }3i, j=1 spans T ∗

g SO(3)

if and only if {X̂i j }3i, j=1 spans so(3). It now suffices to show that {X̂i j }3i, j=1

spans so(3). But, this holds because both {X j }3j=1 and {g�X�
i g}3i=1 span so(3).

Moreover, so(3) is simple so that [so(3), so(3)] = so(3).
(2) For the second item, we combine (7) and (8) to obtain the following:

LXi φ
i ′ j =

{− det(ei , e j , ek)φi ′k, if i �= j,
0, otherwise.

(3) Finally, let g and g′ be such that φi j (g) = φi j (g′) for all 1 ≤ i, j ≤ 3:

tr(gX j g
�X�

i ) = tr(g′X j g
′�X�

i ), ∀i = 1, 2, 3.

Because {Xi }3i=1 spans so(3) and tr(·, ·) is negative definite on so(3), we have that
gX j g� = g′X j g′�. Since this holds for all X j , it follows that g�g′ belongs to the
center of SO(3). But the center is trivial. We thus conclude that g = g′. �


3.2 Controllability and observability of distinguished ensemble system

We establish in the subsection a sufficient condition for controllability and observabil-
ity of ensemble system (4). For convenience, we reproduce below the mathematical
model of the ensemble system introduced in Sect. 1:
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⎧
⎨

⎩

ẋσ (t) = f0(xσ (t), σ ) +∑m
i=1

∑r
s=1 ui,s(t)ρs(σ ) fi (xσ (t)), ∀σ ∈ �,

y j (t) =
∫

�

φ j (xσ (t))dσ, ∀ j = 1, . . . , l.
(9)

The common state space M is an analytic manifold, equipped with a Riemannian
metric. We denote by dM (x1, x2) the distance between two points x1 and x2 in M .
The parameterization space� is analytic, compact, and path-connected. It is equipped
with a strictly positive measure. All vector fields and parameterization functions are
analytic. For any T > 0, the control inputs ui,s : [0, T ] → R are integrable functions.
We denote by u(t) (resp. y(t)) the collection of ui,s(t) (resp. y j (t)).

We recall that x�(t) is the profile of system (9) at time t , which can be viewed as
an analytic function � to M . We also recall that Cω(�, M) is the profile space. Now,
let x�[0, T ] be the collection of trajectories of individual systems:

x�[0, T ] := {xσ [0, T ] | σ ∈ �}.
We call x�[0, T ] a trajectory of profiles. We assume in the paper that x�[0, T ] is

continuous in time t .Wenowhave the followingdefinition for ensemble controllability.

Definition 4 (Ensemble controllability) System (9) is approximately ensemble path-
controllable if for any initial profile x�(0), any target trajectory of profiles x̂�[0, T ]
of class C1 with x̂�(0) = x�(0), and any error tolerance ε > 0, there is a control
input u(t) such that the trajectory x�[0, T ] generated by u(t) satisfies

dM (xσ (t), x̂σ (t)) < ε, ∀(t, σ ) ∈ [0, T ] × �.

If, further, the control input u(t) can always be of class Ck , then system (9) is approx-
imately ensemble path-controllable under Ck-inputs.

Remark 1 The continuity of x̂�[0, T ] implies that any two profiles x̂�(t1) and x̂�(t2),
for t1, t2 ∈ [0, T ], are homotopic. Thus, the above definition concerns about capability
of approximating a target trajectory of profiles within a homotopy class. In general,
theremay exist multiple homotopy classes. For example, if� = Sn , then all the homo-
topy classes of continuous functions from Sn to M form the so-called nth homotopy
group [17]. If, further, M = Sn , then the group is known to beZ. The above arguments
imply that given an initial profile x�(0) and a target profile x̂�(T ), there may not exist
a continuous trajectory of profiles that connects x�(0) and x̂�(T ). �


We next introduce the definition for ensemble observability. To proceed, we first
have the following one about output equivalence, which straightforwardly generalizes
the notion for a single nonlinear control system (see, for example, [20]):

Definition 5 (Output equivalence) Two initial profiles x�(0) and x̄�(0) of system (9)
are output equivalent, which we denote by x�(0) ∼ x̄�(0), if for any T > 0 and any
integrable function u : [0, T ] → R

m as a control input, the following holds:

∫

�

φ j (xσ (t))dσ =
∫

�

φ j (x̄σ (t))dσ,

for all t ∈ [0, T ] and for all j = 1, . . . , l.
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For a given x�(0), we let O(x�(0)) be the collection of all initial profiles in
Cω(�, M) that are output equivalent to x�(0), i.e.,

O(x�(0)) := {x̄�(0) | x̄�(0) ∼ x�(0)} . (10)

The set O(x�(0)) can be viewed as a “measure of ambiguity” for the ensemble
estimation problem.With the above definition of output equivalence,we now introduce
the definition of ensemble observability.

Definition 6 (Ensemble observability) System (9) is weakly ensemble observable if
for any profile x�(0), there is an ε > 0 such that if x̄�(0) ∼ x�(0) and x̄�(0) �= x�(0),
then dM (xσ (0), x̄σ (0)) ≥ ε for all σ ∈ �. Further, system (9) is ensemble observable
if for any profile x�(0), the set O(x�(0)) = {x�(0)} is a singleton.

We establish below a sufficient condition for ensemble controllability and observ-
ability of system (9). To state the condition, we need a few more preliminaries.

First, we say that the set of parameterization functions {ρs}rs=1 defined on � is
a separating set if for any two distinct points σ, σ ′ ∈ �, there exists a function ρs ,
for some s ∈ {1, . . . , r}, such that ρs(σ ) �= ρs(σ

′). Note that by Stone–Weierstrass
theorem [30, Chp. 7], if {ρs}rs=1 separates point and contains an everywhere nonzero
function, then the subalgebra generated by {ρs}rs=1 is dense in the space C0(�) of
continuous functions on �.

Next, for convenience, we let φ := (φ1, . . . , φl) be a vector-valued function on M .
For a given x ∈ M , we let [x]φ be the pre-image of φ(x), i.e., [x]φ is the collection of

all points x ′ in M such that φ(x ′) = φ(x). Note that if the set of one-forms {dφ j
x }lj=1

spans T ∗
x M for all x ∈ M , then [x]φ is a discrete set. Let χφ be defined as follows:

χφ := sup
x∈M

∣∣[x]φ
∣∣ .

If χφ is unbounded, then we set χφ := ∞. We have the following fact:

Lemma 3 If M is compact and the one-forms {dφ j
x }lj=1 span T ∗

x M for all x ∈ M,
then χφ is a finite number.

Proof First, note that for any x ∈ M , |[x]φ | is a finite number because otherwise [x]φ
contains an accumulation point x∗ and the one-forms {dφ j

x∗}lj=1 cannot span T ∗
x∗M .

In fact, since the one-forms {dφ j
x }lj=1 span T ∗

x M for all x ∈ M , there is an open
ball Bε(x)(x) centered at x with radius ε(x) such that |[x ′]φ | = |[x]φ | for all x ′ ∈
Bε(x)(x). The collection of open balls {Bε(x)(x)}x∈M is an open cover of M . Since M
is compact, there is a finite subcover {Bε(xi )(xi )}Ni=1. It then follows thatχφ := maxNi=1|[xi ]φ |. �


We are now in a position to state the first main result of the paper. The result estab-
lishes connections between the “distinguished” structure introduced in the previous
subsection and ensemble controllability/observability of system (9):
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Theorem 1 Consider ensemble system (9). Suppose that {ρs}rs=1 is a separating set
and contains an everywhere nonzero function; then, the following hold:

(1) If the set of control vector fields { fi }mi=1 is distinguished, then system (9) is approx-
imately ensemble path-controllable under C1-inputs.

(2) If the set of observation functions {φ j }lj=1 is (weakly) codistinguished to { fi }mi=1,
then system (9) is (weakly) ensemble observable. If, further, M is compact, then
for any x�(0), the set O(x�(0)) defined in (10) is finite and |O(x�(0))| ≤ χφ .

Following the above theorem, we introduce the following definition:

Definition 7 Anensemble system (9) isdistinguished if (1) the set of parameterization
functions {ρs}rs=1 separates points and contains an everywhere nonzero function, and
(2) the set of control vector fields { fi }mi=1 and the set of observation functions {φ j }lj=1
are (weakly) jointly distinguished.

By Theorem 1, a distinguished ensemble system is approximately ensemble path-
controllable and (weakly) ensemble observable. We provide below an example of a
distinguished ensemble system:

Example 2 Recall that in Example 1, we have introduced jointly distinguished left-
invariant vector fields {LXi }3i=1 and functions {tr(gX j g�X�

i )}3i, j=1 on SO(3). Now,
consider a continuum ensemble of control systems defined on SO(3), parameterized
by a scalar parameter σ over a closed interval [a, b]with 0 < a < b. Let ρ(σ) := σ be
the parameterization function. The singleton {ρ} is a separating set andρ is everywhere
nonzero. Thus, the following ensemble system is distinguished:

⎧
⎨

⎩
ġσ (t) = f0(gσ (t), σ ) +∑3

i=1 ui (t)σ LXi (gσ (t)), σ ∈ [a, b],
yi j (t) =

∫

�

tr(gσ (t)X j g
�
σ (t)X�

i )dσ, 1 ≤ i, j ≤ 3.

Thus, it is approximately ensemble path-controllable and ensemble observable. �

We have the following remark on the set of parameterization functions:

Remark 2 For any analytic manifold�, there exists a set of separating set. By the Nash
embedding theorem [15,29], the manifold � can be isometrically embedded into a
Euclidean space R

N . We write σ = (σ1, . . . , σN ) as the coordinate of a point σ ∈ �.
Now, let ρs(σ ) := σs , for s = 1, . . . , N , be the standard coordinate functions (more
precisely, the restrictions of the coordinate functions to �). Further, let ρN+1 := 1�

be the unit function. Then, {ρs}N+1
s=1 satisfies the assumption of Theorem 1. �


We establish Theorem 1. The proof will be divided into two parts: We deal with
ensemble controllability and ensemble observability separately. The proofs will be
given in Sects. 3.3 and 3.4, respectively.

3.3 Proof of approximate ensemble path controllability

We establish here the first item of Theorem 1. The proof relies on the use of the
technique of Lie extension, the structure of distinguished vector fields, and the Stone-
Weierstrass theorem. We provide details below.
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3.3.1 On the use of Lie extension and distinguished vector fields

Recall that for an arbitrary single control-affine system:

ẋ(t) = f0(x(t)) +
m∑

i=1

ui (t) fi (x(t)), (11)

the first-order Lie extension of the system is a new control-affine system given by

ẋ(t) = f0(x(t)) +
m∑

i=1

ui (t) fi (x(t)) +
m∑

i, j=1

ui j (t)[ fi , f j ](x(t)).

By repeatedly applying Lie extensions, we obtain a family of control-affine systems
with an increasing number of control vector fields. All of these control vector fields
can be expressed as Lie products involving the fi ’s in (11). We make the statement
precise below. First, for the given set of vector fields F := { fi }mi=1, we use LF to
denote the collection of Lie products generated by F in which the fi ’s are treated
as if they were “free” generators. For ease of notation, we will simply write L by
omitting the subindex F . Decompose L := 
k≥0L(k) where each L(k) is comprised
of Lie products of depth k. Then, the kth-order Lie extension of (11) is a control-affine
system given by

ẋ(t) = f0(x(t)) +
k∑

l=0

∑

ξ∈L(l)

uξ (t)ξ(x(t)). (12)

By increasing the order k, we obtain an infinite family of Lie extended systems. Lie
extension has been used in [23,28,32] for nonholonomic motion planning.

It is known that original control-affine system (11) is approximately path-
controllable if and only if any of its Lie extended systems is. Specifically, we let u∗(t)
be the collection of control inputs uξ (t) of Lie extended system (12). The following
fact is established in [27,32] by Sussmann and Liu:

Lemma 4 Given any order k of Lie extension and any control input u∗[0, T ] of classC1

for system (12), there exist a sequence of control inputs {u( j)[0, T ]}∞j=1 of class C
1 for

original system (11) such that the trajectory generated by u( j) converges uniformly to
the trajectory of system (12) generated by u∗ over [0, T ].
Remark 3 We note here that the above result is “formal” in a sense that the control
sequence {u( j)}∞j=1 depends only on u

∗ but not on the vector fields fi [27,32]—if one
replaces fi with any other sufficiently smooth vector fields gi , then the same control
sequence {u( j)[0, T ]}∞j=1 can still be used to obtain the convergence result. �


We now apply the technique of Lie extension to ensemble system (9). For conve-
nience, we reproduce below the control part of the system:

ẋσ (t) = f0(xσ (t), σ ) +
m∑

i=1

r∑

s=1

ui,s(t)ρs(σ ) fi (xσ (t)), ∀σ ∈ �. (13)
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In this case, we have that for any individual system-σ , the control vector fields are
ρs(σ ) fi (xσ ), for 1 ≤ s ≤ r and 1 ≤ i ≤ m. Note that the Lie bracket of any two
of these control vector fields is given by [ρs(σ ) fi , ρs′(σ ) f j ] = ρs(σ )ρs′(σ )[ fi , f j ].
Thus, the first-order Lie extension of (13) is given by

ẋσ (t) = f0(xσ (t), σ ) +
m∑

i=1

r∑

s=1

ui,s(t)ρs(σ ) fi (xσ (t))

+
m∑

i, j=1

r∑

s,s′=1

ui j,ss′(t)ρs(σ )ρs′(σ )[ fi , f j ](xσ (t)), ∀σ ∈ �.

The last term of the above expression can be simplified as follows:

∑

ξ∈L(1)

∑

p∈P(2)

uξ,p(t)p(σ )ξ(xσ (t)),

where P(2) is the collection of monomials ρsρs′ of degree 2. In general, we obtain
the following kth-order Lie extension of (13):

ẋσ (t) = f0(xσ (t), σ ) +
k∑

l=0

∑

ξ∈L(l)

∑

p∈P(l+1)

uξ,p(t)p(σ )ξ(xσ (t)), ∀σ ∈ �. (14)

Recall that two arbitrary sets of vector fields { fi }mi=1 and { f ′
i ′ }m

′
i ′=1 over M are said

to be projectively identical, which we denote by { fi }mi=1 ≡ { f ′
i ′ }m

′
i ′=1, if for any fi ,

there exist an f ′
i ′ and a real number λ such that fi = λ f ′

i ′ , and vice versa. We will
use such an equivalence relation in the following way: In original ensemble control
system (13), the set of control vector fields { fi }mi=1 is, by assumption, distinguished.
Thus, by the second item of Definition 2, if we evaluate the Lie products in eachL(k),
then

L(k) ≡ { fi }mi=1 , ∀k ≥ 0. (15)

Since every control vector field f in (14) is obtained by evaluating a Lie product
involving the fi ’s, by using the above fact, we can simplify Lie extended system (14)
as follows:

ẋσ (t) = f0(xσ (t), σ ) +
m∑

i=1

k∑

l=0

∑

p∈P(l+1)

(
ui,p(t)p(σ )

)
fi (xσ (t)), ∀σ ∈ �. (16)

The control inputs ui,p(t) in the above expression are defined such that

ui,p(t) :=
∑

ξ

λξ uξ,p(t),
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where the summation is over Lie products ξ of depth (deg(p)−1) such that ξ = λξ fi .
We now have the following fact (see, also, similar results in [1]):

Lemma 5 Original system (13) is approximately ensemble path-controllable under
C1-inputs if and only if any of its Lie extended system (16) is.

Proof ByLemma 4 and Remark 3, we know that for any control input u∗[0, T ] of class
C1 for Lie extended system (16), there is a sequence of control inputs {u( j)[0, T ]}∞j=1

of class C1 for each individual system-σ such that the trajectory x ( j)
σ [0, T ] generated

by u( j)[0, T ] converges uniformly to the trajectory x∗
σ [0, T ] of system (16) generated

by u∗[0, T ]. We now fix an arbitrary ε > 0 and show that there exists an integer j�
such that if j ≥ j� , then

dM (x ( j)
σ (t), x∗

σ (t)) < ε, ∀(t, σ ) ∈ [0, T ] × �. (17)

To establish the fact, we first note that the initial profile x�(0) is analytic in σ . We
next note that the drifting vector field f0 and the monomials p are analytic functions.
It follows that for any σ ∈ �, there exist an integer jσ and an open neighborhood

Uσ of σ such that dM (x ( j ′)
σ ′ (t), x∗

σ ′(t)) < ε for any j ′ ≥ jσ , any σ ′ ∈ Uσ , and any
t ∈ [0, T ]. All suchUσ form an open cover of �. Since � is compact, there is a finite
subcover {Uσi }Ni=1. It then suffices to set j� := maxNi=1{ jσi } so that (17) holds. �


3.3.2 On the use of Stone–Weierstrass theorem

By Lemma 5, it now suffices to establish controllability of system (16) for a certain
order k with C1-control inputs ui,p[0, T ]. We prove the fact below. Let x̂�[0, T ] be
an arbitrary target trajectory of profiles. By the first item of Definition 2, we have that
the set { fi (x)}mi=1 spans TxM for all x ∈ M . This, in particular, implies that there are
functions ci (t, σ ) continuous in both t and σ , for i = 1, . . . ,m, such that

∂ x̂σ (t)

∂t
− f0(x̂σ (t), σ ) =

m∑

i=1

ci (t, σ ) fi (x̂σ (t)), ∀(t, σ ) ∈ [0, T ] × �. (18)

To see this, we first note that for any given (t, σ ), there is an open neighborhood
U of (t, σ ) in [0, T ] × � such that local existence of such continuous functions
cUi (t, σ ) is guaranteed overU . All such open neighborhoodsU form an open cover of
[0, T ]×�. Since [0, T ]×� is compact, there is a finite subcover {Uj }Nj=1. Let {h j }Nj=1

be a partition of unity [31] subordinate to {Uj }Nj=1. We then define ci := ∑N
j=1 h j c

U j
i .

Comparing (16) with (18), we see that if there exist an order k ≥ 0 and a set of
control inputs ui,p, for i = 1, . . . ,m and for p a monomial with 1 ≤ deg(p) ≤ k + 1,
such that the following holds:

ci (t, σ ) =
k∑

l=0

∑

p∈P(l+1)

ui,p(t)p(σ ), ∀(t, σ ) ∈ [0, T ] × � and ∀i = 1, . . . ,m,

(19)
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then the trajectory of profiles x�[0, T ] generated by system (16), with x�(0) = x̂�(0),
will be exactly x̂�[0, T ]. Said in another way, if (19) holds, then one can steer the
kth-order Lie extended system (16) to follow the trajectory x̂�[0, T ].

But, in general, equality (19) cannot be satisfied by a finite sum. Nevertheless, we
show below that the two sides of the expression can be made arbitrarily close to each
other provided that k is sufficiently large, i.e.,

∣∣∣∣∣∣

k∑

l=0

∑

p∈P(l+1)

ui,p(t)p(σ ) − ci (t, σ )

∣∣∣∣∣∣
< δ, (20)

for all (t, σ ) ∈ [0, T ] × � and for all i = 1, . . . ,m. This essentially follows from
the Stone-Weierstrass theorem. We provide details below. Note that if (20) holds for
any given δ > 0, then one can apply Grönwall type inequalities [16] to show that the
distance ‖xσ (t) − x̂σ (t)‖ or, in general, dM (xσ (t), x̂σ (t)) can be made uniformly and
arbitrarily small for all (t, σ ) ∈ [0, T ] × �.

We now establish (20) for any given δ > 0. By the assumption of Theorem 1, the
set {ρs}rs=1 is a separating set and contains an everywhere nonzero function. Without
loss of generality, we let ρ1 be such a function, i.e., ρ1(σ ) �= 0 for all σ ∈ �. It
follows from the Stone-Weierstrass theorem that the subalgebra generated by the set
{ρs}rs=1 is dense in C0(�). In particular, we have the following fact: For any given
δ′ > 0, there exist an integer k ≥ 0 and a set of smooth functions u′

i,p′ : [0, T ] → R,
for i = 1, . . . ,m and for p′ a monomial with 0 ≤ deg(p′) ≤ k, such that

∣∣∣∣∣∣

k∑

l=0

∑

p′∈P(l)

u′
i,p′(t)p′(σ ) − ρ−1

1 (σ )ci (t, σ )

∣∣∣∣∣∣
< δ′, (21)

for all (t, σ ) ∈ [0, T ] × � and for all i = 1, . . . ,m. To see this, we first note that
for any given t ∈ [0, T ], there is an open neighborhood I of t such that the local
existence of such functions u′

i,p′ : I → R is guaranteed by the Stone-Weierstrass
theorem. Then, by applying smooth partition of unity for the closed interval [0, T ],
we obtain desired functions u′

i,p′ defined globally over the entire [0, T ].
Let γ := max{|ρ−1

1 (σ )| | σ ∈ �} > 0. Note that γ exists because ρ1 is everywhere
nonzero and � is compact. Now, given an arbitrary δ > 0, we define δ′ := δ/γ and
let inequality (21) be satisfied. By the definition of γ , we have that

∣∣∣∣∣∣

k∑

l=0

∑

p′∈P(l)

u′
i,p′(t)(ρ1(σ )p′(σ )) − ci (t, σ )

∣∣∣∣∣∣
< γδ′ = δ,

for all (t, σ ) ∈ [0, T ] × � and for all i = 1, . . . ,m. Note that each ρ1p′ in the above
expression is a monomial and 1 ≤ deg(ρ1p′) ≤ k + 1. Next, for any i = 1, . . . ,m
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and any monomial p with 1 ≤ deg(p) ≤ k + 1, we let the corresponding control input
ui,p(t) be defined such that for any t ∈ [0, T ],

ui,p(t) :=
{
u′
i,p′(t) if p = ρ1p′ with 0 ≤ deg(p′) ≤ k,

0 otherwise.

With the above-defined control inputs ui,p(t), we conclude that (20) is satisfied. �


3.4 Proof of ensemble observability

We will now establish the second item of Theorem 1. Let a profile x̄�(0) be chosen
such that it is output equivalent to x�(0). The majority of effort will be devoted to
proving the following fact: If {φ j }lj=1 is weakly codistinguished to { fi }mi=1, then there
is an open neighborhoodU of x�(0) in Cω(�, M) such that if x̄�(0) intersectsU , then
x̄�(0) = x�(0). The proof relies on the use of a special class of control inputs, namely
piecewise constant control inputs and the structure of codistinguished functions.

3.4.1 On the use of piecewise constant control inputs

We first introduce a few key notations that will be used in the proof. For an arbitrary
differential equation ẋ(t) = f (x(t)), we denote by et f x(0) the solution of the equation
at time t with initial condition x(0). We will use such a notation to denote a solution
xσ (t), for any σ ∈ �, of system (9). Next, we recall that u(t) is the collection of the
control inputs ui,s(t), for 1 ≤ i ≤ m and 1 ≤ s ≤ r , in system (9). We introduce a
notation for a piecewise constant control input u(t) over [0, T ] as follows:

u[0, T ] := (i1, s1, ν1, t1) · · · (ik, sk, νk, tk), (22)

where 0 < t1 < · · · < tk = T is an increasing sequence of switching times, νp’s are
real numbers, and (i p, sp)’s are pairs of indices chosen out of {1, . . . ,m}×{1, . . . , r}.
The piecewise constant control input u[0, T ] is defined such that if t ∈ [tp−1, tp),
then

ui,s(t) =
{

νp, if (i, s) = (i p, sp),
0, otherwise.

Note, in particular, that at any time t ∈ [0, T ], there is at most one nonzero scalar
control input ui,s(t) in u(t).

We will now apply piecewise constant control input (22) to excite system (9). For
convenience, we define

τp := tp − tp−1, ∀p = 1, . . . , k,

with t0 := 0. We further define a set of vector fields { f̃ p}kp=1 as follows:

f̃ p := νpρsp fi p + f0, ∀p = 1, . . . , k,
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where we have omitted all the arguments in the expression. Since x�(0) ∼ x̄�(0), we
have that for all j = 1, . . . , l,

∫

�

φ j
(
eτk f̃k · · · eτ1 f̃1xσ (0)

)
dσ =

∫

�

φ j
(
eτk f̃k · · · eτ1 f̃1 x̄σ (0)

)
dσ.

Moreover, the above equality holds for any τp and νp, with p = 1, . . . , k.
We next take the partial derivative ∂k/∂τ1···∂τk on both sides of the above expression

and evaluate the derivatives at τ1 = · · · = τk = 0. By computation, we obtain that

∫

�

(
f̃1 · · · f̃kφ j

)
(xσ (0))dσ =

∫

�

(
f̃1 · · · f̃kφ j

)
(x̄σ (0))dσ.

We further take the partial derivative ∂k/∂ν1···∂νk and evaluate at ν1 = · · · = νk = 0.
By computation, we obtain that

∫

�

( fwφ j )(xσ (0))p(σ )dσ =
∫

�

( fwφ j )(x̄σ (0))p(σ )dσ, (23)

where w := i1 · · · ik is a word and p := ρs1 · · · ρsk is a monomial.

3.4.2 On the use of codistinguished functions

Note that {φ j }lj=1 is (weakly) codistinguished to { fi }mi=1. By the second item of Def-
inition 3, we have that for any j ′ = 1, . . . , l, there exist a word w over the alphabet
{1, . . . ,m} of length k, a function φ j , and a nonzero λ such that fwφ j = λφ j ′ .
Since (23) holds for all words w of length k for k arbitrary, we obtain that

∫

�

φ j (xσ (0))p(σ )dσ =
∫

�

φ j (x̄σ (0))p(σ )dσ, (24)

for all j = 1, . . . , l and for all monomials p ∈ P.
We now let L2(�) be the Hilbert space of all square-integrable functions on �,

where the inner product is defined as follows:

〈q1, q2〉L2 :=
∫

�

q1(σ )q2(σ )dσ, ∀q1, q2 ∈ L2(�).

Note that� is compact. By the assumption of Theorem1, the set of parameterization
functions {ρs}rs=1 separates points and contains an everywhere nonzero function, so
the subalgebra generated by the set is dense in L2(�). Thus, if there is a function
q ∈ L2(�) such that 〈q, p〉L2 = 0 for all monomials p ∈ P, then q is zero almost
everywhere (it differs from the identically zero function over a set of measure zero).
In the case here, we define for each j = 1, . . . , l the following function:

q j (σ ) := φ j (xσ (0)) − φ j (x̄σ (0)).
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Then, one can rewrite (24) as follows:

〈q j , p〉L2 = 0, ∀p ∈ P and ∀ j = 1, . . . , l.

Because xσ (0), x̄σ (0) are analytic in σ and each φ j (x) is analytic in x , we have that
each q j (σ ) is analytic in σ . Furthermore, since � is equipped with a strictly positive
Borel measure, we have that each q j is identically zero, i.e.,

φ j (xσ (0)) = φ j (x̄σ (0)), ∀σ ∈ � and ∀ j = 1, . . . , l. (25)

Since {φ j }lj=1 is (weakly) codistinguished to { fi }mi=1, by the first item of Defini-

tion 3, the set of one-forms {dφ j
x }lj=1 spans the cotangent space T

∗
x M for all x ∈ M .

It follows that for any x ∈ M , there is an open ball Bε(x)(x) centered at x with radius
ε(x) > 0 such that if x̄ ∈ Bε(x)(x) and φ j (x) = φ j (x̄) for all j = 1, . . . , l, then
x̄ = x . Furthermore, since each φ j is analytic, for any fixed x ∈ M , the radius ε(x)
of the open ball can be chosen such that it is locally continuous around x . Since the
initial profile x�(0) is analytic in σ , the above arguments have the following impli-
cation: For each σ ∈ �, there is an open neighborhood Vσ of σ in � and a positive
number εσ such that if σ ′ ∈ Vσ and x̄σ ′(0) belongs to the open ball Bεσ (xσ ′(0)) with
φ j (xσ ′(0)) = φ j (x̄σ ′(0)) for all j = 1, . . . , l, then x̄σ ′(0) = xσ ′(0).

The collection of the above open sets {Vσ }σ∈� is an open cover of �. Since � is
compact, there exists a finite subcover {Vσi }Ni=1 of �. We then let

ε := min
{
εσi | i = 1, . . . , N

}
> 0.

We show below that if there is a certain σ ∈ � such that dM (xσ (0), x̄σ (0)) < ε, then
x̄�(0) = x�(0). This, in particular, impliesweak ensemble observability of system (9).

To establish the fact, we first note that by the construction of ε, x̄σ (0) = xσ (0).
Now, let σ ′ be any other point of�. We need to show that x̄σ ′(0) = xσ ′(0). Because�

is path-connected, there is a continuous path p : [0, 1] → � with p(0) = σ and
p(1) = σ ′. Again, by the definition of ε, we have that for any λ ∈ [0, 1], there are only
two cases: Either x̄ p(λ)(0) = xp(λ)(0) or dM (xp(λ), x̄ p(λ)) ≥ ε. On the other hand, the
profile x̄�(0) is continuous in σ and p(λ) is continuous in λ, so x̄ p(λ)(0) is continuous
in λ as well. But then, since x̄ p(0)(0) = xp(0)(0), it follows that x̄ p(λ)(0) = xp(λ)(0)
for all λ ∈ [0, 1]. In particular, x̄σ ′(0) = xσ ′(0).

We now show that if, further, M is compact, then |O(x�(0))| ≤ χφ . Recall that
φ := (φ1, . . . , φl) and [x]φ is the pre-image of φ(x). Because any two different
profiles in O(x�(0)) are completely disjoint, it suffices to show that |[xσ (0)]φ | ≤ χφ

for some (and, hence, any) σ ∈ �. But, this follows from the definition of χφ and
Lemma 3.

Finally, note that if {φ j }lj=1 is codistinguished to { fi }mi=1 (and, hence, the third
item of Definition 3 is satisfied), then by (25), xσ (0) = x̄σ (0) for all σ ∈ �, i.e.,
O(x�(0)) = {x�(0)}. Thus, system (9) is ensemble observable. This completes the
proof. �


123



7 Page 22 of 40 Mathematics of Control, Signals, and Systems (2019) 31 :7

3.5 Pre-distinguished ensemble system

We consider in the subsection a scenario where the set of control vector fields
{ fi (x)}mi=1 (resp. the set of one-forms {dφ j (x)}lj=1) in system (9) does not neces-
sarily span the tangent space TxM (resp. the cotangent space T ∗

x M). Nevertheless, the
two sets { fi }mi=1 and {φ j }lj=1 together can “generate” (weakly) jointly distinguished
vector fields and functions. We make the statement precise below.

To proceed, we first introduce a few definitions and notations. Let F := { fi }mi=1
andLF be the collection of Lie products generated by F (the fi ’s are treated as “free”
generators). We say that LF is projectively finite if there is a finite set of vector fields
F̄ := { f̄i }m̄i=1 over M such that if one evaluates the Lie products inLF , thenLF ≡ F̄ .

Next, letW be the collection of all words over the alphabet {1, . . . ,m}. Recall that
for a given word w = i1 · · · ik and an analytic function φ on M , we use fwφ to denote
fi1 · · · fikφ. If w = ∅, then fwφ = φ. Given a set function � := {φ j }lj=1 on M and
the set of vector fields F , we define

FW� := { fwφ j | w ∈ W and j = 1, . . . , l}.

Similarly, we say that FW� is projectively finite if there is a finite subset �̄ :=
{φ̄ j }l̄j=1 of C

ω(M) such that FW� ≡ �̄. Note, in particular, that F and � are, up to

scaling, subsets of F̄ and �̄, respectively. We now have the following definition:

Definition 8 A set of vector fields F := { fi }mi=1 over M is pre-distinguished if there
exists a distinguished set F̄ of vector fields such that LF ≡ F̄ . Similarly, a set of
functions � := {φ j }lj=1 on M is (weakly) pre-codistinguished to F if there exists a

finite set �̄ of functions, (weakly) codistinguished to F , such that FW� ≡ �̄.

Note that given a pair of jointly distinguished sets F and�, one can look for (proper)
subsets F ′ ⊆ F and �′ ⊆ � so that LF ′ ≡ F and F ′W�′ ≡ �, i.e., F ′ and �′ are
jointly pre-distinguished. In particular, we say that (F ′,�′) is minimal if removal of
any element out of F ′ or �′ will violate the condition in the above definition. We
do not intend to characterize here minimal pairs for a given jointly distinguished pair
(F,�). But instead, we provide below an example for illustration.

Example 3 We consider again the vector fields F := {LXi }3i=1 and the functions
� := {φi j = tr(gX j g�X�

i )}3i, j=1 introduced in Example 1. We have shown that F
and� are jointly distinguished on SO(3). Now, we define for each i = 1, 2, 3, a subset
Fi := F − {LXi } and for each j = 1, 2, 3, a subset � j := {φi j }3i=1. Recall that we
have the following relationships:

[LXi , LX j ] = det(ei , e j , ek)LXk and LXi φ
i ′ j = − det(ei , e j , ek)φ

i ′k .

It follows that LFi ≡ F for all i = 1, 2, 3, and FiW� j ≡ � for all 1 ≤ i, j ≤ 3.
Moreover, every such pair (Fi ,� j ) is minimal. �


With the above definition, we state the following fact which generalizes Theorem 1:
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Theorem 2 Consider ensemble system (9). Suppose that {ρ2
s }rs=1 is a separating set

and contains an everywhere nonzero function; then, the following hold:

(1) If the set of control vector fields { fi }mi=1 is pre-distinguished, then system (9) is
approximately ensemble path-controllable under C1-inputs.

(2) If the set of observation functions {φ j }lj=1 is (weakly) pre-codistinguished to
{ fi }mi=1, then system (9) is (weakly) ensemble observable. If, further, M is compact,
then for any initial profile x�(0), the set O(x�(0)) is finite and |O(x�(0))| ≤ χφ .

We establish Theorem 2 in the following subsection. Similar to Definition 7, we
have the following definition:

Definition 9 An ensemble system (9) is a pre-distinguished if (1) the set {ρ2
s }rs=1

separates points and contains an everywhere nonzero function, and (2) the set of
control vector fields { fi }mi=1 and the set of observation functions {φ j }lj=1 are (weakly)
jointly pre-distinguished.

It follows from Theorem 2 that if a system is pre-distinguished, then it is approxi-
mately ensemble path-controllable and (weakly) ensemble observable. We next have
the following remark on the existence of a desired set of parameterization functions
that satisfies the assumption of Theorem 2 (compared to Remark 2):

Remark 4 We first note that if {ρ2
s }rs=1 is a separating set, then, for any positive inte-

ger k, {ρk
s }rs=1 is also a separating set. Conversely, if {ρs}rs=1 is a separating set and

each ρs is nonnegative (i.e., ρs(σ ) ≥ 0 for all σ ∈ �), then {ρ2
s }rs=1 will be a separat-

ing set. Such a set {ρs}rs=1 exists for any analytic, compact manifold �. To see this,
we again embed � into a Euclidean space R

N . Since � is compact, one can translate
the coordinates, if necessary, such that � is embedded in the positive orthant of R

N .
Then, by restricting the coordinate functions of R

N to �, we obtain a separating set
{ρi (σ ) := σi }Ni=1 comprised of all positive functions. �


3.6 Analysis and proof of Theorem 2

3.6.1 Indicator sequences

Let F̄ = { f̄i }m̄i=1 be such that F̄ ≡ LF . Decompose LF := 
k≥0LF (k) where LF (k)
is comprised of Lie products of depth k. In contrast to (15), we do not necessarily have
that L(k) ≡ F̄ for all k ≥ 0. It is possible that each LF (k) is, up to scaling, a proper
subset of F̄ (see Example 4). To tackle the issue, we first introduce the following
definitions:

Definition 10 Let LF be projectively finite and F̄ = { f̄i }m̄i=1 be such that F̄ ≡ LF .
For each i = 1, . . . , m̄, define a sequence of natural numbers Ni as follows: If k ∈ Ni ,
then there exist a Lie product ξ ∈ LF (k) and a real number λ such that by evaluating ξ ,
we have f̄i = λξ . We call every such sequence Ni an indicator sequence for f̄i .
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Similarly, we have the following counterpart of the above definition:

Definition 11 Let FW� be projectively finite and �̄ = {φ̄ j }l̄j=1 be such that �̄ ≡
FW�. For each j = 1, . . . , l̄, define a sequence of natural numbers N

j as follows: If
k ∈ N

j , then there exist a word w of length k over the alphabet {1, . . . ,m}, a function
φ j ′ ∈ �, and a real number λ such that φ̄ j = λ fwφ j ′ . We call every such sequence
N

j an indicator sequence for φ̄ j .

Note that if F and � are (weakly) jointly distinguished, then Ni = N
j = N for all

i = 1, . . . ,m(= m̄) and for all j = 1, . . . , l(= l̄).

Example 4 Consider the subsets F1 = F − {LX1} and �1 = {φi1}3i=1 introduced in
Example 3. We have that LF1 ≡ F and F1W�1 ≡ �. By computation (with details
omitted), the indicator sequences Ni for LXi are given by N1 = {2k + 1}k≥0 and
N2 = N3 = {2k}k≥0. The indicator sequences N

i j for φi j are given by N
i1 = {2k}k≥0

and N
i2 = N

i3 = {2k + 1}k≥0 for all i = 1, 2, 3. �

A sequence {nk}∞k=0 is said to be an arithmetic sequence if there is a δ such that

nk+1 − nk = δ for all k ≥ 0. We now establish the following fact:

Proposition 1 Every indicator sequence Ni for f̄i (or N
j for φ̄ j ) contains an infinite

arithmetic sequence as a subsequence.

Proof We establish the proposition for Ni and N
j subsequently.

Proof for N
i . We fix an i = 1, . . . , m̄ and prove that Ni contains an arithmetic

sequence. Because F is pre-distinguished, there exists a Lie product ξ1 ∈ LF , with
dep(ξ1) ≥ 1, and a real number λ1 such that λ1ξ1 = f̄i . Denote by fi1 ∈ F the first
element that shows up in ξ1 (e.g., ξ1 = [ fi1 , [ fi ′1 , fi ′′1 ]]). Applying the same argument,

but with f̄i replaced by fi1 , we obtain that λ2ξ2 = fi1 for some ξ2 ∈ LF with
dep(ξ2) ≥ 1 and some λ2 ∈ R.

Next, we let ξ1�ξ2 be a Lie product inLF defined by replacing the first element fi1
in ξ1 with the Lie product ξ2. For example, if ξ1 = [ fi1 , [ fi ′1 , fi ′′1 ]], then ξ1 � ξ2 =
[ξ2, [ fi ′1 , fi ′′1 ]]. It should be clear that

λ1λ2ξ1 � ξ2 = fi , with dep(ξ1 � ξ2) = dep(ξ1) + dep(ξ2).

By repeating the above procedure, we obtain (1) a sequence of Lie products {ξk}k≥1,
(2) a sequence of vector fields { fik }k≥1 with fik ∈ F , and (3) a sequence of real
numbers {λk}k≥1 such that the first element in ξk is fik and λkξk = fik−1 . It then
follows that

αkξ1 � · · · � ξk = fi where αk :=
k∏

l=1

λl , ∀k ≥ 1.

Note that ξ1 � · · · � ξk is well defined because the operator “�” is associative.
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Since each fik belongs to the finite set F , there is a repetition in the sequence.
Without loss of generality, we assume that fik = fik′ for some k′ > k ≥ 1. We then
define a Lie product ξ as follows:

ξ := ξk+1 � · · · � ξk′ and δ := dep(ξ) =
k′∑

l=k+1

dep(ξl).

Note that the first element in ξ is fik and αk′/αkξ = fik . In fact, the statement can be
strengthened: For any given N ≥ 0, we define

ξ N := ξ � · · · � ξ

where the number of copies of ξ in the expression is N . If N = 0, thenwe let ξ0 := fik .
It should be clear that for any N ≥ 0, the first element in ξ N is fik and, moreover,
αN
k′/αN

k ξ N = fik . We further define a Lie product ξ0 as follows:

ξ0 := ξ1 � · · · � ξk and δ0 := dep(ξ0) =
k∑

l=1

dep(ξl).

It then follows that for any N ≥ 0.

(
αN
k′/αN−1

k

)
ξ0 � ξ N = f̄i ,

which implies that Ni contains {δ0 + Nδ}N≥0 as a subsequence.
Proof for N

j . The arguments will be similar to the ones used above. We fix a
j = 1, . . . , l̄, and prove that N

j contains an arithmetic sequence. Since � is pre-
codistinguished to F , there exist a word w1 of positive length, a function φ j1 out of�,
and a real number μ1 such that μ1 fw1φ

j1 = φ̄ j . Applying the same argument, but
with φ̄ j replaced by φ j1 , we obtain thatμ2 fw2φ

j2 = φ j1 for some word w2 of positive
length, some function φ j2 out of�, and some real numberμ2. Note, in particular, that

μ1μ2 fw1 fw2φ
j2 = φ̄ j .

By repeating the procedure, we obtain (1) a sequence of functions {φ jk }k≥1 where
each φ jk belongs to �, (2) a sequence of words {wk}k≥1 of positive lengths, and (3) a
sequence of real numbers {μk}k≥1 such that μk fwkφ

jk = φ jk−1 . It then follows that

βk fw1 · · · fwkφ
jk = φ̄ j where βk :=

k∏

l=1

μl , ∀k ≥ 1.

Since each φ jk belongs to the finite set �, there is a repetition in the sequence, say
φ jk = φ jk′ for some k′ > k ≥ 1. It then implies that βk′/βk fwφ jk = φ jk where
w := wk+1 · · ·wk′ is obtained by concatenation. Denote by δ the length w. For a
nonnegative integer N , we let wN be a word obtained by concatenating N copies of w.
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If N = 0, then wN = ∅. We further let w0 := w1 · · ·wk and δ0 be the length of w0.
It then follows that for any N ≥ 0,

(
βN
k′/βN−1

k

)
fw0 fwN φ jk = φ̄ j ,

which implies that N
j contains {δ0 + Nδ}N≥0 as a subsequence. �


3.6.2 Proof of Theorem 2

The arguments we will use for proving the theorem will be similar to those for Theo-
rem 1. We elaborate below only on the difference.

We first establish item 1 of Theorem 2. By repeatedly applying Lie extensions of
system (9), we obtain the following formal expression:

ẋσ (t) = f0(xσ (t), σ ) +
∑

l≥0

∑

ξ∈LF (l)

∑

p∈P(l+1)

uξ,p(t)p(σ )ξ(xσ (t)), ∀σ ∈ �.

One obtains a kth-order Lie extended system by truncating the infinite summation
over l and keeping only the terms with l ≤ k. Because F = { fi }mi=1 is pre-
distinguished, we let F̄ = { f̄i }m̄i=1 be such that F̄ ≡ LF . Then, by the definition
of indicator sequence Ni for f̄i , the above equation can be simplified as follows:

ẋσ (t) = f0(xσ (t), σ ) +
m̄∑

i=1

∑

l∈Ni

∑

p∈P(l+1)

ui,p(t)p(σ ) f̄i (xσ (t)), ∀σ ∈ �.

To establish ensemble controllability of the above system (or more precisely, a trun-
cated version after a certain order), it suffices to show that for any i = 1, . . . , m̄, the
R-span of monomials in 
l∈NiP(l + 1) is dense in C0(�). We prove this fact below.

We fix an i = 1, . . . , m̄. By Proposition 1, the indicator sequence Ni contains an
infinite arithmetic sequence, which we denote by {nk}k≥0 with δ := nk+1 − nk > 0
for all k ≥ 0. We next define functions on � as follows:

ρ̄s := ρδ
s , ∀s = 1, . . . , r .

By the assumption of Theorem 2, the set {ρ2
s }rs=1 is a separating set and contains an

everywhere nonzero function, say ρ1. It follows that {ρ̄s}rs=1 is also a separating set
with ρ̄1 an everywhere nonzero function. Thus, the subalgebra generated by {ρ̄s}rs=1
is dense in C0(�). Denote the subalgebra by S̄. Since ρ1 is everywhere nonzero, the
following set:

ρ
n0+1
1 S̄ :=

{
ρ
n0+1
1 p | p ∈ S̄

}

123



Mathematics of Control, Signals, and Systems (2019) 31 :7 Page 27 of 40 7

is dense in C0(�) as well. On the other hand, the R-span of 
l∈NiP(l + 1) contains
ρ
n0+1
1 S̄ as a subset; indeed, if p is a monomial that can be expressed as

p = ρ
n0+1
1

r∏

s=1

ρ̄ks
s

with ks ≥ 0, then p ∈ P(nk + 1) where k := ∑r
s=1 ks . We have thus shown that the

R-span of 
l∈NiP(l + 1) is dense in C0(�).
We now establish item 2 of Theorem 2. Let x̄�(0) and x�(0) two initial profiles

that are output equivalent. The same arguments in Sect. 3.4 can be used here to obtain
the following fact: Let k ≥ 0 be an arbitrary integer. Let w be any word of length k
and p be any monomial of degree k. Then, for any j = 1, . . . , l, we have

∫

�

( fwφ j )(xσ (0))p(σ )dσ =
∫

�

( fwφ j )(x̄σ (0))p(σ )dσ. (26)

Because � = {φ j }lj=1 is (weakly) pre-codistinguished to F , we let �̄ = {φ̄ j }l̄j=1 be

such that FW� = �̄. For each j = 1, . . . , l̄, we define a function q j on� as follows:

q j (σ ) := φ̄ j (xσ (0)) − φ̄ j (x̄σ (0)).

By the definition of indicator sequence N
j for φ̄ j , we can simplify (26) as follows:

〈q j , p〉L2 = 0, ∀p ∈ 
l∈N jP(l).

Note that the above expression holds for all j = 1, . . . , l̄. It now suffices to show that
the R-span of 
l∈N jP(l) is dense in L2(�). This, again, follows from Proposition 1;
indeed, since N

j contains an infinite arithmetic sequence, it follows by the same
arguments (for Ni ) that the R-span of 
l∈N jP(l) is dense in C0(�). Because � is
compact, C0(�) is dense in L2(�). This completes the proof. �


4 Existence of distinguished ensemble systems

We have shown in the previous section that (weakly) jointly distinguished vector
fields { fi }mi=1 and functions {φ j }lj=1 are key ingredients for an ensemble system to
be approximately ensemble path-controllable and (weakly) ensemble observable. We
address in the section the issue about the existence of these finely structured vector
fields and functions for a given manifold M . Among other things, we provide an
affirmative answer for the case where M is a connected, semi-simple Lie group:

Theorem 3 For any connected semi-simple Lie group G, there exist weakly jointly
distinguished vector fields { fi }mi=1 and functions {φ j }lj=1 on G. Moreover, if G has a

trivial center, then { fi }mi=1 and {φ j }lj=1 are jointly distinguished.
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4.1 Distinguished sets of semi-simple real Lie algebras

LetG be a semi-simple Lie group and g be its Lie algebra.We address in the subsection
the existence of distinguished vector fields over G. These vector fields will be certain
left- (or right-) invariant vector fields. We can thus address the existence issue on the
Lie algebra level. To proceed, we first have the following definition [6]:

Definition 12 Let g be a semi-simple real Lie algebra. A spanning set {Xi }mi=1 of g is
distinguished if for any Xi and X j , there exist an Xk and a real number λ such that

[Xi , X j ] = λXk . (27)

Conversely, for any Xk , there exist Xi , X j , and a nonzero λ such that (27) holds.

Note that the cardinality of a distinguished set {Xi }mi=1 is, in general, greater than
the dimension of g, i.e., the spanning set {Xi }mi=1 may contain a basis of g as its proper
subset. We have established in [6] the following result:

Proposition 2 Every semi-simple real Lie algebra admits a distinguished set.

The proposition then implies that every semi-simple Lie group admits a set of
distinguished left- (or right-) invariant vector fields. Since the proposition will be of
great use in the paper, we outline below a constructive approach for generating a
desired distinguished set. A complete proof can be found in [6]. The proof leverages
the structure theory of semi-simple real Lie algebras. A reader not interested in the
proof can skip the remainder of the subsection.

Sketch of proof Recall that ad(X)(·) := [X , ·] is the adjoint representation. Denote
by B(X ,Y ) := tr(adX adY ) the Killing form. Let h be a Cartan subalgebra of g, and
gC (resp. hC) be the complexification of g (resp. h). We let � be the set of roots. For
each α ∈ �, we let hα ∈ hC be such that α(H) = B(hα, H) for all H ∈ hC. Denote
by 〈α, β〉 := B(hα, hβ), which is an inner product defined over the R-span of �. We
denote by |α| := √〈α, α〉 the length of α. Let Hα := 2hα/|α|2. For a root α ∈ �, let gα

be the corresponding root space (as a one-dimensional subspace of gC over C). �

Suppose, for the moment, that one aims to obtain a distinguished set for the semi-

simple complex Lie algebra gC; then, with slight modification, such a set can be
obtained via the Chevalley basis [21, Chapter VII], which we recall below:

Lemma 6 There are Xα ∈ gCα , for α ∈ �, such that the following hold:

(1) For any α ∈ �, we have [Xα, X−α] = Hα .
(2) For any two non-proportional roots α, β, we let β + nα, with −q ≤ n ≤ p, be the

α-string that contains β. Then,

[Xα, Xβ ] =
{
cα,βXα+β, if α + β ∈ �,

0, otherwise,

where cα,β ∈ Z with c2α,β = (q + 1)2.
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We also note that for any α, β ∈ �, [Hα, Xβ ] = 2〈α,β〉/|α|2Xβ and, moreover,
2〈α,β〉/|α|2 ∈ Z. It thus follows from Lemma 6 that

A := {Hα, Xα, X−α | α ∈ �}

is a distinguished set of gC. The above arguments have the following implications:

(1) A semi-simple complex Lie algebra can also be viewed as a Lie algebra over R.
We call any such real Lie algebra complex [22, Chapter VI]. In particular, if the
real Lie algebra g is complex, then the R-span of A ∪ iA, with A defined above,
is g. Moreover, since the coefficients 2〈α,β〉/|α|2 and cα,β are all integers (and hence
real), the set A ∪ iA is a distinguished set of g.

(2) If the Lie algebra g is obtained as the R-span of A (i.e., g is a split real form of
gC), then A is a distinguished set of g.

Thus, the technical difficulty for establishing Proposition 2 lies in the case where g is
neither complex nor a split real form of gC. We have dealt with such a case in [6]. We
reproduce below a key result established in that paper.

First, recall that aCartan involution θ : g → g is a Lie algebra automorphism, with
θ2 = id. Moreover, the symmetric bilinear form Bθ , defined as

Bθ (X ,Y ) := −B(X , θY ),

is positive definite on g. One can extend θ to gC by θ(X + iY ) = θX + iθY .
Next, for a subset S ⊂ g, we let LS be the collection of Lie products generated

by S. Similarly, we say that LS is projectively finite if there exists a finite subset S̄
of g such that LS ≡ S̄. Further, we say that the set S is pre-distinguished if S̄ is a
distinguished set of g (compared with Definition 8). We now have the following fact:

Proposition 3 Let g be a simple real Lie algebra, which is neither complex nor a split
real form of gC. Then, there exist a Cartan involution θ and elements Xα ∈ gCα , for
α ∈ �, such that the items of Lemma 6 are satisfied and the following set belongs to g:

S := {Yα := Xα − θX−α, Zα := i(Xα + θX−α) | α ∈ �} .

Furthermore, the following hold:

(1) If the underlying root system of g is not G2, then the set S is pre-distinguished.
(2) If the underlying root system of g is G2, then g is the compact real form of gC.

Decompose � = �short ∪ �long where �short (resp. �long) is comprised of short
(resp. long) roots. Then, the following set is pre-distinguished:

⋃

γ∈�long

{Yγ , Zγ } ∪
⋃

α, β ∈ �short
and α �= ±β

{[Yα,Yβ ], [Yα, Zβ ], [Zα,Yβ ], [Zα, Zβ ]} .

We refer the reader to [6] for a complete proof. It follows from Proposition 3
that every semi-simple real Lie algebra admits a distinguished set. This establishes
Proposition 2.
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4.2 Matrix coefficients as codistinguished functions

Let {Xi }mi=1 be a distinguished set of g. We address in the subsection the existence
of (weakly) codistinguished functions on G to the set of left- (resp., right-) invariant
vector fields {LXi }mi=1 (resp. {RXi }mi=1). Because of the symmetry, the focus will be
mostly on the functions codistinguished to the left-invariant vector fields. We provide
a remark at the end of the subsection to address the existence of codistinguished
functions to the right-invariant vector fields.

To proceed, we first recall that the so-called right-regular representation of G on
Cω(G), denoted by r : G × Cω(G) → Cω(G), is defined by

(x, φ) ∈ G × Cω(G) �→ (r(x)φ)(g) := φ(gx).

Correspondingly, the induced Lie algebra representation r∗ is the Lie derivative along a
left-invariant vector field, i.e., r∗(X)φ = LXφ. Note, in particular, that if� = {φ j }lj=1
is codistinguished to {LXi }mi=1, then r∗|L�

is a finite-dimensional representation of g
on L�; indeed, we have that

r∗([Xi , Xi ′ ])φ j = r∗(Xi )r∗(Xi ′)φ
j − r∗(Xi ′)r∗(Xi )φ

j

= LXi L Xi ′ φ
j − LXi ′ LXi φ

j = L [Xi ,Xi ′ ]φ
j ∈ L�.

Thus, in order to find a set of codistinguished functions to {LXi }mi=1, our strategy is
comprised of two steps as outlined below:

(1) Construct a finite-dimensional subspace L of Cω(G) such that it is closed under r
so that r∗|L will be a Lie algebra representation of g on L;

(2) Find a finite subset � = {φ j }lj=1 out of the space L such that it is codistinguished
to a certain set of left-invariant vector fields {LXi }mi=1.

We now address, one by one, the above two steps.
Our approach for the first step about constructing a finite-dimensional subspaceL of

Cω(G) is to use matrix coefficients associated with a Lie group representation. Specif-
ically, we consider an arbitrary analytic representation π of G on a finite-dimensional
inner-product space (V , 〈·, ·〉). Let {vi }pi=1 be any spanning subset of V .We next define
a set of matrix coefficients as follows:

π i j (g) := 〈vi , π(g)v j 〉 ∈ Cω(G), 1 ≤ i, j ≤ p. (28)

Then, we let Lπ be a finite-dimensional subspace of Cω(G) spanned by π i j :

Lπ :=
⎧
⎨

⎩

p∑

i, j=1

ci jπ
i j | ci j ∈ R

⎫
⎬

⎭ .

The following fact is certainly known in the literature. But, for completeness of pre-
sentation, we provide a proof after the statement:
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Lemma 7 The vector spaceLπ is closed under r(x) for all x ∈ G, i.e., for any φ ∈ Lπ ,
r(x)φ ∈ Lπ . Thus, r |Lπ

(resp. r∗|Lπ
) is a representation of G (resp. g) on Lπ .

Proof The lemma follows directly from computation. For any x ∈ G and any g ∈ G,

(r(x)π i j )(g) = π i j (gx) = 〈vi , π(gx)v j 〉 = 〈vi , π(g)π(x)v j 〉.

Since {v1, . . . , vp} spans V , there exist real coefficients clk’s such that

π(x)v j =
p∑

l,k=1

clk〈vl , π(x)v j 〉vk =
p∑

l,k=1

clkπ
l j (x)vk .

It then follows that

(r(x)π i j )(g) =
p∑

l,k=1

(
clkπ

l j (x)
)

π ik(g),

which implies that r(x)π i j is a linear combination of π ik for k = 1, . . . , p. �

Wenow address the second step of our strategy about finding a finite subset {φ j }lj=1

out of Lπ so that it is codistinguished to a given set of left-invariant vector fields
{LXi }mi=1. To proceed, we first have the following definition as a dual to Definition 12:

Definition 13 Let π be a finite-dimensional representation of G on V , and π∗ be the
corresponding Lie algebra representation. A spanning set {v j }pj=1 of V is codistin-
guished to a subset {Xi }mi=1 of g if it satisfies the following properties:

(1) The set of one-forms {dπ i j
e }pi, j=1 spans T

∗
e G ≈ g∗.

(2) For any Xi and v j , there exist a vk and a real number λ such that

π∗(Xi )v j = λvk; (29)

conversely, for any vk , there exist Xi , v j , and a nonzero λ such that (29) holds.
(3) For any g, g′ ∈ G, if π i j (g) = π i j (g′) for all 1 ≤ i, j ≤ p, then g = g′.

If only (1) and (2) hold, then {v j }pj=1 is weakly codistinguished to {Xi }mi=1.

With the above definition, we now have the following fact:

Lemma 8 If {v j }pj=1 is codistinguished to {Xi }mi=1, then the set of matrix coefficients

{π i j }pi, j=1 is codistinguished to the set of left-invariant vector fields {LXi }mi=1.

Proof We show below that if {v j }pj=1 is codistinguished to {Xi }mi=1, then the three
items of Definition 3 are satisfied.
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(1) For the first item of Definition 3, we show that for any g ∈ G, the one-forms
{dπ i j

g }pi, j=1 span T ∗
g G. With slight abuse of notation, we write

dπ i j
g (X) := dπ i j

g (gX) = 〈vi , π(g)π∗(X)v j 〉, ∀X ∈ g.

In this way, each one-forms dπ i j
g can be viewed as an element in g∗. But then, the

two subspaces of g∗: span{dπ i j
e }pi, j=1 and span{dπ i j

g }pi, j=1 are isomorphic:

p∑

i, j=1

ci j 〈vi , π∗(·)v j 〉
π(g)−−−−⇀↽−−−−

π(g−1)

p∑

i, j=1

ci j 〈vi , π(g)π∗(·)v j 〉.

The first item of Definition 3 then follows from the first item of Definition 13.
(2) For the second item of Definition 3, it suffices to show that if π∗(Xi )v j = λvk ,

then LXi π
q j = λπqk for any q = 1, . . . , p. This holds because

(LXi π
q j )(g) = 〈vq , π(g)π∗(Xi )v j 〉 = λ〈vq , π(g)vk〉 = λπqk(g).

(3) The third item of Definition 3 directly follows from the third item of Definition 13.

�

We have so far provided an approach for generating a set of matrix coefficients

that is (weakly) codistinguished to a given set of left-invariant vector fields. The same
approach can be slightly modified to generate a set of functions codistinguished to a
set of right-invariant vector fields. We provide details in the following remark:

Remark 5 We first recall that the left-regular representation of G is given by

(x, φ) ∈ G × Cω(G) �→ (l(x)φ)(g) := φ(x−1g),

The corresponding Lie algebra representation is given by l∗(X)φ = −RXφ. We again
let π be a representation of G on a finite-dimensional inner-product space (V , 〈·, ·〉),
and {vi }pi=1 be a spanning set of V . We next define functions on G as follows:

π̃ i j (g) := 〈vi , π(g−1)v j 〉, ∀1 ≤ i, j ≤ p. (30)

Let Lπ̃ be the R-span of these π̃ i j . The same arguments in the proof of Lemma 7
can be used here to show that Lπ̃ is closed under l(x) for all x ∈ G. Furthermore,
if the set {v j }pj=1 is chosen to be codistinguished to {Xi }mi=1, then similar arguments

in the proof of Lemma 8 can be used to show that the set of functions {π̃ i j }pi, j=1 is
codistinguished to the set of right-invariant vector fields {RXi }mi=1. �


In summary, we have shown in the subsection that a finite-dimensional represen-
tation π of G on an inner-product space V can be used to generate a set of matrix
coefficients codistinguished to a given set of left- (or right-) invariant vector fields
provided that the assumption of Lemma 8 is satisfied.
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4.3 On the adjoint representation

We follow the discussions in the previous subsection, and consider here the adjoint
representation of G on g, i.e., π = Ad and V = g. We show that in this special
case, there indeed exists a set of matrix coefficients (weakly) codistinguished to a
distinguished set of left- (or right-) invariant vector fields.

To proceed, we first recall that B(X ,Y ) = tr(adX adY ) is the Killing form, θ is a
Cartan involution of g, and Bθ (X ,Y ) = −B(X , θY ) is an inner product on g. We also
recall that by Proposition 2, there exists a distinguished set {Xi }mi=1 out of g. We fix
such a set in the sequel. Note, in particular, that by Definition 12, the distinguished
set {Xi }mi=1 spans g. Now, we follow the two-step strategy proposed in the previous
section and define a set of matrix coefficients {φi j }mi, j=1 as follows:

φi j (g) := Adi j (g) = Bθ (Ad(g)X j , Xi ), 1 ≤ i, j ≤ m. (31)

This is nothing but specializing (28) to the case of adjoint representation. To further
illustrate (31), we take advantage of the following fact [22, Prop. 6.28]:

Lemma 9 Every semi-simple real Lie algebra g is isomorphic to a Lie algebra of
real matrices that is closed under transpose, with the Cartan involution θ carried to
negative transpose, i.e., θX = −X� for all X ∈ g.

We note that for a given semi-simple Lie algebra g of real matrices, the Killing
form B(X ,Y ) is linearly proportional to tr(XY ), i.e., B(X ,Y ) = c tr(XY ) for a real
positive constant c. Now, suppose that G is isomorphic to a matrix Lie group; then, it
follows from Lemma 9 that one can rewrite (31) as follows:

φi j (g) = c tr(gX j g
−1X�

i ). (32)

In particular, it generalizes the functions {φi j }1≤i, j≤3 on SO(3) introduced in Exam-
ple 1 to functions on an arbitrary semi-simple matrix Lie group. However, we shall
note that not every semi-simple Lie group is isomorphic to a matrix Lie group. Nev-
ertheless, expression (31) is always valid.

Recall that a center Z(G) of a group G is defined such that if z ∈ G, then z
commutes with every group element g of G, i.e.,

Z(G) := {z ∈ G | zg = gz, ∀g ∈ G}.

Let φ := (. . . , φi j , . . .) be the collective of φi j . For any group element g ∈ G, we let
[g]φ be the pre-image of φ(g). We now have the following result:

Theorem 4 Let {Xi }mi=1 be a distinguished set of g. Then, the set of matrix coefficients
{φi j }mi, j=1 defined in (31) is weakly codistinguished to {LXi }mi=1. Moreover,

[g]φ = {gz | z ∈ Z(G)}, ∀g ∈ G. (33)

In particular, {φi j }mi, j=1 is codistinguished to {LXi }mi=1 if and only if Z(G) is trivial.
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Theorem3 then follows fromProposition 2 andTheorem4.We establish Theorem4
in the next subsection.

Remark 6 Note that if one aims to construct a set of functions codistinguished to
the right-invariant vector fields {RXi }mi=1; then, by Remark 5, one can simply define
functions as follows:

φ̃i j (g) := Bθ (Ad(g
−1)X j , Xi ), ∀1 ≤ i, j ≤ m. (34)

If one replaces in the statement LXi with RXi and correspondingly, φ
i j with φ̃i j , then

Theorem 4 will still hold.

Since g is semi-simple, the center Z(G) is discrete. If, further, G is compact, then
Z(G) is finite. The centers of a few commonly seenmatrix Lie groups are given below:

(1) If G = SU(n) is the special unitary group, then Z(G) = {z I | zn = 1, z ∈ C}.
(2) If G = SL(n, R) is the special linear group or if G = SO(n) is the special

orthogonal group, then

Z(G) =
{ {I } if n is odd,

{±I } if n is even.

(3) Similarly, if G = SO+(p, q) is the identity component of indefinite orthogonal
group O(p, q) (e.g., the Lorentz group O(1, 3)), then

Z(G) =
{ {I } if p + q is odd,

{±I } if p + q is even.

(4) If G = Sp(2n, R) is the symplectic group, then Z(G) = {±I2n}.

4.4 Analysis and proof of Theorem 4

We establish in subsection Theorem 4. By Lemma 8, it suffices to show that the subset
{Xi }mi=1 of g is codistinguished to itself with respect to the adjoint representation. This
fact will be established after a sequence of lemmas. For convenience, we reproduce
below the set of functions {φi j }mi, j=1:

φi j (g) := Adi j (g) = Bθ (Ad(g)X j , Xi ), 1 ≤ i, j ≤ m.

We show below that the set {φi j }mi, j=1 satisfies the three items of Definition 13
under the assumption of Theorem 4. The arguments we will use below generalize the
ones used in Example 1. For the first item of Definition 13, we have the following fact:

Lemma 10 The set of one-forms {dφi j
e }mi, j=1 spans the cotangent space T

∗
e G ≈ g∗.
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Proof First, note that for any X ∈ g, we have

dφi j
e (X) = Bθ ([X , X j ], Xi ) = −B([X , X j ], θXi ).

Because the Killing form is adjoint-invariant, i.e., B([X ,Y ], Z) = B(X , [Y , Z ]) for
any X ,Y , Z ∈ g, it follows that

dφi j
e (X) = −B([X , X j ], θXi ) = −B(X , [X j , θXi ]) = Bθ (X , [θX j , Xi ]),

where the last equality holds because θ is a Lie algebra automorphism with θ2 = id
and, hence, θ [X j , θXi ] = [θX j , Xi ].

For convenience, let Y j := θX j for all j = 1, . . . ,m. Since θ is a Lie algebra
automorphism and {Xi }mi=1 spans g, the set {Y j }mj=1 spans g as well. Next, note that g

is semi-simple and, hence, [g, g] = g. Thus, {X̂i j := [Y j , Xi ]}mi, j=1 is a spanning set

of g. It now remains to show that the set of one-forms {Bθ (·, X̂i j )}mi, j=1 spans g
∗. But,

this follows from the fact that Bθ is positive definite on g; indeed, any nondegenerate
bilinear form induces a linear isomorphism between g and g∗. Since the set {X̂i j }mi, j=1

spans g, the set of one-forms {Bθ (·, X̂i j )}mi, j=1 spans g
∗. �


For the second item of Definition 13, we have the following fact:

Lemma 11 If [Xi , X j ] = λXk, then LXi φ
i ′ j = λφi ′k for all i ′ = 1, . . . ,m.

Proof The lemma directly follows from computation:

(LXi φ
i ′ j )(g) = Bθ (Ad(g)[Xi , X j ], Xi ′) = λBθ (Ad(g)Xk, Xi ′) = λφi ′k(g),

which holds for any g ∈ G. �

CombiningLemmas 10 and 11,we have that the set of functions {φi j }mi, j=1 isweakly

codistinguished to the set of left-invariant vector fields {LXi }mi=1. Finally, for (33), we
have the following fact:

Lemma 12 If φi j (g) = φi j (g′) for all 1 ≤ i, j ≤ m, then g−1g′ ∈ Z(G) and vice
versa.

Proof We fix a j = 1, . . . ,m and have the following:

φi j (g) − φi j (g′) = Bθ (Ad(g)X j − Ad(g′)X j , Xi ) = 0, ∀i = 1, . . . ,m.

Since Bθ is positive definite and {Xi }mi=1 spans g, Ad(g)X j = Ad(g′)X j . This holds
for all j = 1, . . . ,m. Using again the fact that {X j }mj=1 spans g, we obtain that

Ad(g−1g′)X = X for all X ∈ g. Thus, g−1g′ belongs to the centralizer of the identity
component of G. Since G is connected, this holds if and only if g−1g′ ∈ Z(G). �
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4.5 On homogeneous spaces

Let a groupG act on a manifold M . We say that the group action is transitive if for any
x, y ∈ M , there exists a group element g ∈ G such that gx = y. Correspondingly, the
manifoldM is said to be a homogeneous space ofG. Note that any homogeneous space
can be identified with the space G/H of left cosets gH for H a closed Lie subgroup
of G. More specifically, we pick an arbitrary point x ∈ M , and let H be the subgroup
of G which leaves x fixed (i.e., H is the stabilizer of x). Then, M is diffeomorphic
to G/H , and we write M ≈ G/H . The group action can thus be viewed as a map by
sending a pair (g, g′H) to gg′H . We also note that the homogeneous space M can be
equipped with a unique analytic structure (see [18, Thm. 4.2]).

We address in the subsection the existence of distinguished vector fields and
codistinguished functions on homogeneous spaces of a semi-simple Lie group. We
provide at the end of the subsection a simple example in which the unit sphere
S2 ≈ SO(3)/SO(2) is considered.

4.5.1 On distinguished vector fields

There is a canonical way of translating a distinguished set {Xi }mi=1 of the Lie algebra g
to a distinguished set of vector fields over a homogeneous space of G. Precisely, we
define a map τ : g → X(M) as follows: Let exp : g → G be the exponential map. For
a given X ∈ g, we define a vector field τ(X) ∈ X(M) such that for any φ ∈ Cω(M),
the following hold:

(τ (X)φ)(x) := lim
t→0

φ(exp(t X)x) − φ(x)

t
, ∀x ∈ M . (35)

Let Xi and X j be any two elements in g. It is known [18, Chapter 2.3]) that

[τ(Xi ), τ (X j )] = −τ([Xi , X j ]), (36)

which then leads to the following result:

Proposition 4 Let G be a semi-simple Lie group with g the Lie algebra, and M be a
homogeneous space of G. If {Xi }mi=1 is a distinguished set of g, then {τ(Xi )}mi=1 is a
distinguished set of vector fields over M.

Proof It suffices to show that {τ(Xi )(x)}mi=1 spans the tangent space TxM for all
x ∈ M . Let H be the stabilizer of x , and h be the corresponding Lie algebra of H .
Since {Xi }mi=1 spans g, there must exist a subset of {Xi }mi=1, say {Xi }m′

i=1, such that if

we let m := span{Xi }m′
i=1, then g = m ⊕ h. Moreover, the following map:

(a1, . . . , am′) ∈ R
m′ �→ exp

⎛

⎝
m′∑

i=1

ai Xi

⎞

⎠ x ∈ M
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is locally a diffeomorphism around 0 ∈ R
m′

to an open neighborhood of x ∈ M . This,
in particular, implies that {τ(Xi )(x)}m′

i=1 is a basis of the tangent space TxM . �

4.5.2 On codistinguished functions

We now discuss how to translate a set of codistinguished functions defined on a Lie
group G to a set of codistinguished functions on its homogeneous space M ≈ G/H .
We consider below for the case where the closed subgroup H is compact.

We say that a function φ ∈ Cω(G) is H-invariant if for any g ∈ G and h ∈ H ,
we have φ(gh) = φ(g). In particular, if φ is H -invariant, then one can simply define
a function ψ on M by ψ(gH) := φ(g). This is well defined because if gH = g′H ,
then g−1g′ belongs to H and, hence, φ(g) = φ(gg−1g′) = φ(g′). Thus, without any
ambiguity, we can treat an H -invariant φ as a function defined on M as well.

If a function φ is not H -invariant, then one can construct an H -invariant function by
averagingφ over the subgroup H . Since H is compact,we equip H with the normalized
Haar measure [22, Ch. VIII], i.e.,

∫
H 1Hdh = 1. We then define a function on G (and

on M) by averaging the given function φ over H as follows:

φ̄(g) :=
∫

H
φ(gh)dh. (37)

It should be clear that φ̄ is H -invariant; indeed, for any h′ ∈ H , we have

φ̄(gh′) :=
∫

H
φ(gh′h)dh =

∫

H
φ(gh)d(h′−1h) =

∫

H
φ(gh)dh = φ̄(g).

Note that if φ itself is H -invariant, then φ̄ = φ. We now have the following fact:

Lemma 13 Let {φ j }lj=1 be a set of functions on G codistinguished to a set of right-

invariant vector fields {RXi }mi=1. If RXi φ
j = λφk , then τ(Xi )φ̄

j = λφ̄k .

Proof The lemma directly follows from computation:

(τ (Xi )φ̄
j )(gH) =

∫

H
(RXi φ

j )(gh)dh = λ

∫

H
φk(gh)dh = λφ̄k(gH),

which holds for all gH ∈ M ≈ G/H . �

Thus, if the set of one-forms {dφ̄

j
x }lj=1 spans T

∗
x M , then, by Lemma 13, {φ̄ j }lj=1 is

(weakly) codistinguished to {τ(Xi )}mi=1.We provide below an example for illustration.

4.5.3 Example on S2 ≈ SO(3)/ SO(2)

Let SO(3) act S2 by sending (g, x) ∈ SO(3) × S2 to gx ∈ S2. Let H be a subgroup
of G defined as follows:

H =
⎧
⎨

⎩h(θ) :=
⎡

⎣
1 0 0
0 cos(θ) sin(θ)

0 − sin(θ) cos(θ)

⎤

⎦ | θ ∈ [0, 2π)

⎫
⎬

⎭ ≈ SO(2).
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It follows that H is the stabilizer of the vector e1 ∈ S2. Let {Xi }3i=1 and {φi j }3i, j=1 be
given in Example 1, i.e.,

{
Xi = e j e�

k − eke�
j , where det(ei , e j , ek) = 1,

φi j (g) = tr(gX j g�X�
i ), 1 ≤ i, j ≤ 3.

Because the set {Xi }3i=1 is distinguished in so(3), by Proposition 4, it induces a
distinguished set of vector fields {τ(Xi )}3i=1 over S

2 as follows:

τ(X1)(x) =
⎡

⎣
0
x3

−x2

⎤

⎦ , τ (X2)(x) =
⎡

⎣
−x3
0
x1

⎤

⎦ , τ (X3)(x) =
⎡

⎣
x2

−x1
0

⎤

⎦ .

These vector fields satisfy the following relationship:

[τ(Xi ), τ (X j )] = det(ei , e j , ek)τ (Xk).

We next compute the averaged H -invariant functions {φ̄i j }3i, j=1. The normalized
Haar measure on H , in this case, is simply given by dh = dθ/2π . It follows that

φ̄i j (gH) = 1

2π

∫ 2π

0
tr(gh(θ)X jh(θ)�g�X�

i )dθ.

To evaluate the above integral, we first have the following computational result:

1

2π

∫ 2π

0
h(θ)X jh(θ)�dθ =

{
X1 if j = 1,
0 otherwise.

Thus, the nonzero φ̄i j ’s are given by

φ̄i (gH) := φ̄i1(gH) = tr(gX1g
�X�

i ), ∀i = 1, 2, 3. (38)

Each left coset gH corresponds to the point x = ge1 ∈ S2. Note that ge1 is simply
the first column of g. We now compute each function φ̄i (x) and express the results
using only the coordinates xi of x . First, by computation, we obtain

gX1g
� =

⎡

⎣
0 c31 c21

−c31 0 c11
−c21 −c11 0

⎤

⎦ ,

where each ci j is the i j th entry of the cofactor matrix [ci j ] of g ∈ SO(3). Since g is
a special orthogonal matrix, g = [ci j ]. In particular, (c11, c21, c31) is the first column
of g, i.e., (c11, c21, c31) = ge1 = (x1, x2, x3) and, hence,

gX1g
� =

⎡

⎣
0 x3 x2

−x3 0 x1
−x2 −x1 0

⎤

⎦ .
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Thus, the functions φ̄i in (38), for i = 1, 2, 3, are nothing but twice the coordinate
functions, i.e.,

φ̄i (x) = 2xi .

It should be clear that {φ̄ j }3j=1 satisfies items1 and3ofDefinition 3. For item2,wehave

that τ(Xi )φ̄
j = det(ei , e j , ek)φ̄k . Thus, {φ̄ j }3j=1 is codistinguished to {τ(Xi )}3i=1.

5 Conclusions

We introduced in the paper a novel class of ensemble systems, which we call distin-
guished ensemble systems. Every such system is comprised of two key components: A
set of distinguished vector fields and a set of (weakly) codistinguished functions. We
established in Sect. 3 that a distinguished ensemble system is approximately ensem-
ble path controllability and (weakly) ensemble observable. We further extended in
Sect. 3.5 the result to a pre-distinguished ensemble system.

We proposed and addressed in Sect. 4 the problem about existence of distinguished
vector fields and codistinguished functions on a given manifold M . We provided an
affirmative answer for the case where M is a connected, semi-simple Lie group G.
Specifically, we showed that every such Lie group G admits a set of distinguished
left- (or right-) invariant vector fields, together with a set of matrix coefficients that is
(weakly) codistinguished to the set of vector fields. Finally, we discussed in Sect. 4.5
how to translate distinguished vector fields and codistinguished functions from the Lie
group G to its homogeneous spaces, yet the problem has not been solved completely
and will be addressed in our future work.

References

1. Agrachev A, Baryshnikov Y, Sarychev A (2016) Ensemble controllability by Lie algebraic methods.
ESAIM Control Optim Calc Var 22(4):921–938

2. Beauchard K, Coron JM, Rouchon P (2010) Controllability issues for continuous-spectrum systems
and ensemble controllability of Bloch equations. Commun Math Phys 296(2):525–557

3. Becker A, Bretl T (2012) Approximate steering of a unicycle under bounded model perturbation using
ensemble control. IEEE Trans Robot 28(3):580–591

4. Brockett RW (2007) Optimal control of the Liouville equation. AMS IP Stud Adv Math 39:23
5. Chen X (2018) Controllability of ensemble formation systems over digraphs. Automatica

arXiv:1805.11196
6. Chen X, Gharesifard B (2017) Distinguished sets of semi-simple Lie algebras. arXiv:1711.01719
7. Chen Y, Georgiou TT, Pavon M (2016) Optimal steering of a linear stochastic system to a final proba-

bility distribution, Part I. IEEE Trans Autom Control 61(5):1158–1169
8. Chen Y, Georgiou TT, Pavon M (2016) Optimal steering of a linear stochastic system to a final proba-

bility distribution, Part II. IEEE Trans Autom Control 61(5):1170–1180
9. Curtain RF, Zwart H (2012) An introduction to infinite-dimensional linear systems theory, vol 21.

Springer, Berlin
10. De Persis C, Isidori A (2000) On the observability codistributions of a nonlinear system. Syst Control

Lett 40(5):297–304
11. Fuhrmann PA, Helmke U (2015) The mathematics of networks of linear systems. Springer, Berlin

123

http://arxiv.org/abs/1805.11196
http://arxiv.org/abs/1711.01719


7 Page 40 of 40 Mathematics of Control, Signals, and Systems (2019) 31 :7

12. Gauthier J, Bornard G (1981) Observability for any u(t) of a class of nonlinear systems. IEEE Trans
Autom Control 26(4):922–926

13. Gauthier JP, Kupka IA (1994) Observability and observers for nonlinear systems. SIAM J Control
Optim 32(4):975–994

14. Glaser SJ, Schulte-Herbrüggen T, SievekingM, Schedletzky O, Nielsen NC, Sørensen OW, Griesinger
C (1998) Unitary control in quantum ensembles: maximizing signal intensity in coherent spectroscopy.
Science 280(5362):421–424

15. Greene RE, Jacobowitz H (1971) Analytic isometric embeddings. Ann Math 93(1):189–204
16. Gronwall TH (1919) Note on the derivatives with respect to a parameter of the solutions of a system

of differential equations. Ann Math 20(4):292–296
17. Hatcher A (2002) Algebraic topology. Cambridge University Press, Cambridge
18. Helgason S (2001) Differential geometry, Lie groups, and symmetric spaces, vol 34. American Math-

ematical Society, Providence
19. Helmke U, Schönlein M (2014) Uniform ensemble controllability for one-parameter families of time-

invariant linear systems. Syst Control Lett 71:69–77
20. Hermann R, Krener A (1977) Nonlinear controllability and observability. IEEE Trans Autom Control

22(5):728–740
21. Humphreys J (1972) Introduction to Lie algebras and representation theory, vol 9. Springer, Berlin
22. Knapp AW (2013) Lie groups beyond an introduction, vol 140. Springer, Berlin
23. Leonard NE, Krishnaprasad PS (1995) Motion control of drift-free, left-invariant systems on Lie

groups. IEEE Trans Autom control 40(9):1539–1554
24. Li JS (2011) Ensemble control of finite-dimensional time-varying linear systems. IEEE Trans Autom

Control 56(2):345–357
25. Li JS, Khaneja N (2006) Control of inhomogeneous quantum ensembles. Phys Rev A 73(3):030302
26. Li JS, Khaneja N (2009) Ensemble control of Bloch equations. IEEE Trans Autom Control 54(3):528–

536
27. Liu W (1997) An approximation algorithm for nonholonomic systems. SIAM J Control Optim

35(4):1328–1365
28. Murray RM, Sastry SS (1993) Steering nonholonomic control systems using sinusoids. In: Li Z, Canny

JF (eds) Nonholonomic motion planning. Springer, Berlin, pp 23–51
29. Nash J (1966) Analyticity of the solutions of implicit function problems with analytic data. Ann Math

84(3):345–355
30. Rudin W (1976) Principles of mathematical analysis. McGraw-Hill, New York
31. Rudin W (2006) Real and complex analysis. Tata McGraw-Hill Education, New York
32. Sussmann HJ, Liu W (1993) Lie bracket extensions and averaging: the single-bracket case. In: Li Z,

Canny JF (eds) Nonholonomic motion planning. Springer, Berlin, pp 109–147
33. Taniguchi T, Sugiyama H, Uekusa H, Shiro M, Asahi T, Koshima H (2018) Walking and rolling of

crystals induced thermally by phase transition. Nat Commun 9(1):538
34. Van der Schaft A (1982) Observability and controllability for smooth nonlinear systems. SIAM J

Control Optim 20(3):338–354
35. Yu Y, Nakano M, Ikeda T (2003) Photomechanics: directed bending of a polymer film by light. Nature

425(6954):145
36. Zeng S, Waldherr S, Ebenbauer C, Allgöwer F (2016) Ensemble observability of linear systems. IEEE

Trans Autom Control 61(6):1452–1465

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123


	Structure theory for ensemble controllability, observability, and duality
	Abstract
	1 Introduction
	1.1 Mathematical models for ensemble control and estimation
	1.2 Distinguished structure and examples
	1.3 Literature review
	1.4 Outline of contribution and organization of the paper

	2 Definitions and notations
	3 Distinguished ensemble systems
	3.1 Distinguished vector fields and codistinguished functions
	3.2 Controllability and observability of distinguished ensemble system
	3.3 Proof of approximate ensemble path controllability
	3.3.1 On the use of Lie extension and distinguished vector fields
	3.3.2 On the use of Stone–Weierstrass theorem

	3.4 Proof of ensemble observability
	3.4.1 On the use of piecewise constant control inputs
	3.4.2 On the use of codistinguished functions

	3.5 Pre-distinguished ensemble system
	3.6 Analysis and proof of Theorem 2
	3.6.1 Indicator sequences
	3.6.2 Proof of Theorem 2


	4 Existence of distinguished ensemble systems
	4.1 Distinguished sets of semi-simple real Lie algebras
	4.2 Matrix coefficients as codistinguished functions
	4.3 On the adjoint representation
	4.4 Analysis and proof of Theorem 4
	4.5 On homogeneous spaces
	4.5.1 On distinguished vector fields
	4.5.2 On codistinguished functions
	4.5.3 Example on S2approxSO(3)/SO(2)


	5 Conclusions
	References




