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Abstract
Along the ideas of Curtain and Glover (in: Bart, Gohberg, Kaashoek (eds) Operator
theory and systems, Birkhäuser, Boston, 1986), we extend the balanced truncation
method for (infinite-dimensional) linear systems to arbitrary-dimensional bilinear and
stochastic systems. In particular, we applyHilbert space techniques used inmany-body
quantum mechanics to establish new fully explicit error bounds for the truncated sys-
tem and prove convergence results. The functional analytic setting allows us to obtain
mixed Hardy space error bounds for both finite-and infinite-dimensional systems, and
it is then applied to the model reduction of stochastic evolution equations driven by
Wiener noise.

Keywords Balanced truncation · Bilinear balanced truncation · Stochastic balanced
truncation · Infinite-dimensional system theory

1 Introduction

Model reduction of bilinear systems has become a major field of research, partly trig-
gered by applications in optimal control and the advancement of iterative numerical
methods for solving large-scale matrix equations. High-dimensional bilinear systems
often appear in connection with semi-discretized controlled partial differential equa-
tions or stochastic (partial) differential equations with multiplicative noise. A popular
class of model reduction methods that is well established in the field of linear systems
theory is based on first transforming the system to a form in which highly controllable
states are highly observable and vice versa (“balancing”) and then eliminating the least
controllable and observable states. For finite-dimensional linear systems, balanced

B Simon Becker
simon.becker@damtp.cam.ac.uk

Carsten Hartmann
carsten.hartmann@b-tu.de

1 DAMTP, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, UK

2 Institute for Mathematics, BTU Cottbus-Senftenberg, 03046 Cottbus, Germany

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00498-019-0234-8&domain=pdf


5 Page 2 of 37 Mathematics of Control, Signals, and Systems (2019) 31 :5

truncation and residualization (a.k.a. singular perturbation approximation) feature
computable error bounds and are known to preserve important system properties, such
as stability or passivity [1]; see also [2] and references therein. For a generalization of
(linear) balanced truncation to infinite-dimensional systems, see [3,4].

For bilinear systems, no such elaborate theory as in the linear case is available, in
particular approximation error bounds for the reduced system are not known. The pur-
pose of this paper therefore is to extend balanced truncation to bilinear and stochastic
evolution equations, specifically, to establish convergence results and prove explicit
truncation error bounds for the bilinear and stochastic systems. For finite-dimensional
systems, our framework coincides with the established theory for bilinear and stochas-
tic systems as studied in [5,6], and references therein.We start by introducing a function
space setting that allows us to define bilinear balanced truncation in arbitrary (sepa-
rable) Hilbert spaces which extends the finite-dimensional theory. However, instead
of just extending the finite-dimensional theory to infinite dimensions, we harness the
functional analytic machinery available in infinite dimensions to obtain new explicit
error bounds for finite-dimensional systems as well.

The figure of merit in our analysis is a Hankel-type operator acting between certain
function spaces which are ubiquitous in many-body quantum mechanics and within
this theory called Fock spaces. We show that under mild assumptions on the dynamics,
the Hankel operator is a Hilbert–Schmidt or even trace class operator. The key idea is
that the algebraic structure of the Fock space, that is, a direct sum of tensor products of
copies of Hilbert spaces, mimics the nested Volterra kernels representing the bilinear
system. This allows us to perform an analysis of the singular value decomposition of
this operator along the lines of the linear theory developed by Curtain and Glover [3].
For more recent treatments of infinite-dimensional linear systems, we refer to [4,7,8].
For applications of the bilinear method to finite-dimensional open quantum systems
and Fokker–Planck equations, we refer to [9,10].

The article is structured as follows: The rest of the introduction is devoted to fix
the notation that is used throughout the article and to state the main results. Section 2
introduces the concept of balancing based on observability and controllability (or
reachability) properties of bilinear systems, which is then used in Sect. 3 to define
the Fock space-valued Hankel operator and study properties of its approximations.
The global error bounds for the finite-rank approximation based on the singular value
decomposition of the Hankel operator are given in Sect. 4. Finally, in Sect. 5 we
discuss applications of the aforementioned results to the model reduction of stochas-
tic evolution equations driven by multiplicative Lévy noise. The article contains two
appendices. The first one records a technical lemma stating the Volterra series repre-
sentation of the solution to infinite-dimensional bilinear systems. The second appendix
provides more background on how to compute the error bounds found in this article.

Set-up andmain results

Let X be a separable Hilbert space and A : D(A) ⊂ X → X the generator of an
exponentially stable C0-semigroup (T (t))t≥0 of bounded operators, i.e. a strongly
continuous semigroup that satisfies ‖T (t)‖ ≤ Me−νt for some ν > 0 and M ≥ 1.
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For exponentially stable semigroups generated by A, bounded operators Ni ∈
L(X), B ∈ L(Rn, X), an initial state ϕ0 ∈ X , and control functions u =
(u1, . . . , un) ∈ L2((0, T ), R

n), we study bilinear evolution equations on X of the
following type

ϕ′(t) = Aϕ(t) +
n∑

i=1

Niϕ(t)ui (t) + Bu(t), for t ∈ (0, T ) such that

ϕ(0) = ϕ0. (1.1)

It follows from standard fixed-point arguments [11, Proposition 5.3] that such equa-
tions always have unique mild solutions ϕ ∈ C([0, T ], X) that satisfy

ϕ(t) = T (t)ϕ0 +
∫ t

0
T (t − s)

(
n∑

i=1

ui (s)Niϕ(s) + Bu(s)

)
ds. (1.2)

Let � :=
√∑n

i=1

∥∥Ni N∗
i

∥∥ and assume that M2�2(2ν)−1 < 1. We then introduce

the observability O = W ∗W and reachability gramian P = RR∗ for Eq. (1.1) in
Definition 2.1. The gramians we define coincide for finite-dimensional system spaces
X 
 R

k, and control B ∈ L(Rn, R
k) and observation C ∈ L(Rk, R

m) matrices with
the gramians introduced in [12], see also [6, (6) and (7)]. More precisely, if X is finite
dimensional, then the reachability gramian P is defined by

P1(t1) = eAt1B,

Pi (t1, . . . , ti ) = eAt1 (N1Pi−1 N2Pi−1 · · · Nn Pi−1) (t2, . . . , ti ), i ≥ 2

P =
∞∑

i=1

∫

(0,∞)i
Pi (t1, , ., ti )Pi (t1, . . . , ti )

T dt

(1.3)

and the observability gramian O by

Q1(t1) = CeAt1 ,

Qi (t1, . . . , ti ) = (Qi−1N1 Qi−1N2 · · · Qi−1Nn) (t2, . . . , ti )e
At1 , i ≥ 2

O =
∞∑

i=1

∫

(0,∞)i
Qi (t1, , ., ti )

T Qi (t1, . . . , ti )dt .

(1.4)

The condition M2�2(2ν)−1 < 1, stated in the beginning of this paragraph, appears
naturally to ensure the existence of the twogramians. To see this, consider, for example,
the reachability gramian for which we find [6, Theorem 2]

‖P‖ ≤
∞∑

i=1

∫

(0,∞)i

∥∥∥Pi (t1, , ., ti )Pi (t1, . . . , ti )T
∥∥∥ dt ≤

∥∥BBT
∥∥

�2

∞∑

i=1

(
M2�2

2ν

)i

which is summable if M2�2(2ν)−1 < 1.
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For general bilinear and stochastic systems, the gramians will be decomposed, as
indicated above, by an observability W and reachability map R that are explicitly
constructed in Sect. 3. Although there are infinitely many possible decompositions
of the gramians, our analysis relies on constructing an explicit decomposition. The
Hankel operator is then defined as H = WR and is a map between Fock spaces. From
the Hankel operator construction, we obtain two immediate corollaries:
The Lyapunov equations for bilinear or stochastic systems are known to be notoriously
difficult to solve. It is therefore computationallymore convenient [13] to compute a kth-
order truncation of the gramians which we introduce in Definition 3.5. Our first result
implies exponentially fast convergence of the balanced singular values calculated from
the truncated gramians to the balanced singular values obtained from the full gramians
O and P:

Proposition 1.1 Let (σi )i∈N denote the balanced singular values σi := √
λi (OP)

and (σ k
i )i∈N the singular values of the kth-order truncated gramians. The Hankel

operator Hk obtained from the kth-order truncated gramians converges in Hilbert–
Schmidt norm to H and for all i ∈ N

∣∣∣σi − σ k
i

∣∣∣ = O

⎛

⎜⎝

⎛

⎝M2�2(2ν)−1
︸ ︷︷ ︸

<1

⎞

⎠
k
⎞

⎟⎠ and
∣∣∣‖σ‖�2 −

∥∥∥σ k
∥∥∥

�2

∣∣∣

= O

⎛

⎜⎝

⎛

⎝M2�2(2ν)−1
︸ ︷︷ ︸

<1

⎞

⎠
k
⎞

⎟⎠ .

Although our framework includes infinite-dimensional systems, such systems are
usually numerically approximated by finite-dimensional systems.

We therefore state a result on systems that are approximated by projections onto
suitable subspaces. Let V1 ⊂ V2 ⊂ · · · ⊂ X be a nested sequence of closed vector
spaces of arbitrary dimension such that

⋃
i∈N Vi = X for which we assume that Vi is

an invariant subspace of both T (t) and N . In this case, Vi is also an invariant subspace
of the generator A of the semigroup [14, Chapter 2, Section 2.3], and we can consider
the restriction of (1.1) to Vi 1

ϕ′
Vi (t) = AϕVi (t) +

n∑

i=1

ui (t)NiϕVi (t) + PVi Bu(t), for t ∈ (0, T ),

ϕ(0) = PVi (ϕ0).

Proposition 1.2 Let HVi be the Hankel operator of the system restricted to Vi . If the
observability map W is a Hilbert–Schmidt operator, then the Hankel operator HVi
converges in nuclear (trace) norm to H . If W is only assumed to be bounded, then the
convergence of Hankel operators is still in Hilbert–Schmidt norm.

1 PVi is the orthogonal projection on the closed space Vi .
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Sufficient conditions for W to be a Hilbert–Schmidt operator are given in
Lemma 3.4. Norm convergence of Hankel operators implies convergence of its sin-
gular values and so the convergence of Hankel singular values holds also under the
assumptions of Proposition 1.2.

We then turn to global error bounds for bilinear systems: For linear systems, the
existence of a Hardy space H ∞ error bound is well known and a major theoretical
justification of the linear balanced truncation method both in theory and practice. That
is, the difference of the transfer function for the full and reduced system in H ∞
norm is controlled by the difference of the Hankel singular values that are discarded
in the reduction step. To the best of our knowledge, there is no such bound for bilinear
systems and we are only of aware of two recent results in that direction [15,16].

In [17], a family of transfer functions (Gk)k∈N0 for bilinear systemswas introduced.
We consider the difference of these transfer functions for two systems andwrite�(Gk)

for the differenceof transfer functions and�(H) for the differenceofHankel operators.
In terms of these two quantities, we obtain an error bound that extends the folklore
bound for linear systems to bilinear systems:

Theorem 1 Consider two bilinear systems that both satisfy the stability condition
M2�2(2ν)−1 < 1 with the same finite-dimensional input space R

n and output space
H 
 R

m .2 The difference of the transfer functions of the two systems �(Gk) in mixed
H ∞-H 2 Hardy norms, defined in (1.7), is bounded by

∞∑

k=1

(
‖�(G2k−2)‖H ∞

k H 2
2k−2

+ ‖�(G2k−1)‖H ∞
k H 2

2k−1

)
≤ 4 ‖�(H)‖TC .

The trace distance of the Hankel operators can be explicitly evaluated using the com-
posite error system, see “Appendix B”, and does not require a direct computation of
Hankel operators.

The proof of Theorem 1 is done by extending the framework of the linear balancing
theory and extends the 2 ‖�(H)‖TC bound on theH ∞ norm of the transfer function
for linear equations to bilinear systems. From the Hankel estimates, we then obtain an
explicit error bound on the dynamics for two systems with initial condition zero:

Theorem 2 Consider two bilinear systems that both satisfy the stability condition
M2�2(2ν)−1 < 1 with the same finite-dimensional input space R

n and output space
H 
 R

m. Let�(Cϕ(t)) be the difference of the outputs of the two systems. For control
functions, u ∈ L∞((0,∞), R

n) ∩ L2((0,∞), R
n) such that ‖u‖L2((0,∞),(Rn ,‖•‖∞)) <

min
(

1√
n
,

√
2ν

M	

)
with 	 :=∑n

i=1 ‖Ni‖ and initial conditions zero it follows that

sup
t∈(0,∞)

‖�(Cϕ(t))‖Rm ≤ 4
√
n ‖�(H)‖TC ‖u‖L∞((0,∞),(Rn ,‖•‖∞)) .

As stated in Theorem 1, the trace distance of the Hankel operators can be explicitly
evaluated using the composite error system, see “Appendix B”, and does not require
a direct computation of Hankel operators.

2 We freely identify H with R
m in the sequel when we assume that they are isomorphic.
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As an application of the theoretical results, we discuss generalized stochastic bal-
anced truncation of stochastic (partial) differential equations in Sect. 5. The links
between bilinear balanced truncation and stochastic balanced truncation are well
known for finite-dimensional systems driven byWiener noise (see e.g. [5]). In Sect. 5,
we extend the Hankel operator methods to the finite-dimensional stochastic systems
discussed in [18,19], but our methods also cover a large class of infinite-dimensional
stochastic systems as well. By pursuing an approach similar to the linear setting, we
obtain an error bound on the expected output in terms of the Hankel singular values:

Proposition 1.3 Consider two stochastic systems with the same finite-dimensional
input space R

n and output space H 
 R
m. Let u ∈ L p((0,∞), R

n) for p ∈ [1,∞]
be a deterministic control and let 
 and 
̃ be the stochastic flows of each respective
system. The two stochastic flows shall be exponentially stable in mean square sense
and define Cb-Markov semigroups. The difference �(CY ) of processes Y defined in
(5.4) with initial conditions zero satisfies then

‖E�(CY•(u))‖L p((0,∞),Rm ) ≤ 2 ‖�(H)‖TC ‖u‖L p((0,∞),Rn) .

The trace distance of the Hankel operators can be explicitly evaluated using the com-
posite error system, see “Appendix B”.

It was first shown in [18, Example II.2] that the difference of full and reduced stochastic
systems cannot be estimated by the sum of truncated singular values, which is the case
for linear systems. Instead, the following result can be obtained by arguing along the
lines of the bilinear framework:

Theorem 3 Consider two stochastic systems with the same finite-dimensional input
space R

n and output space H 
 R
m such that the respective stochastic flows 
 and


̃ are independent. The two stochastic flows shall be exponentially stable in mean
square sense and define Cb-Markov semigroups. The difference �(CY ) of processes
Y defined in (5.4) with zero initial conditions satisfies

sup
t∈(0,∞)

E ‖�(CYt (u))‖Rm ≤ 2 ‖�(H)‖TC ‖u‖H(0,∞)
2 (Rn)

(1.5)

with controls in the Banach space
(
H(0,∞)

2 (Rn), supt∈(0,∞)

(
E (‖u(t)‖Rn )2

)1/2)
. The

trace distance of the Hankel operators can be explicitly evaluated using the composite
error system, see “Appendix B”.

Finite-dimensional intermezzo and relation to balanced truncation

Hitherto, stochastic and bilinear balanced truncation have only been considered for
finite-dimensional systems and so we devote a few preliminary remarks towards this
setting. When applying, for example, balanced truncation to finite-dimensional sys-
tems, one computes the observability and reachability gramians O and P from the
Lyapunov equations and decomposes these symmetric positive-definite matrices into
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some other (non-unique) matrices O = K ∗K and P = VV ∗. In the next step, a sin-
gular value decomposition of the matrix KV is computed. The singular values of this
matrix KV are just the square roots of the eigenvalues of the product of the gramians
σ j := √λ j (OP) independent of the particular form of K and V . (Zero is not counted
as a singular value here.)

By discarding a certain number of “small” singular values of KV , one can reduce
the order of the system by applying, for example, the balancing transformations, see
[6, Proposition 2]. A paradigm of such a decomposition KV , where K and V are
not matrices but operators, is the Hankel operator H . Yet most importantly, all such
decompositions of the gramians are equivalent [7, Theorem 5.1]. That is, there are
unitary transformations U1 : ran(H) → ran(KV ) and U2 : ker(H)⊥ → ker(KV )⊥
such that any decomposition KV |ker(KV )⊥ of the gramians is equivalent to the Hankel
operator studied in this paper H |ker(H)⊥ = U∗

1 KV |ker(KV )⊥U2.Thismakes our results
on error bounds widely applicable since the Hankel decomposition is as good as any
other decomposition.

This follows, as to evaluate the trace norm of the difference of Hankel operators
appearing in our error bound, it suffices to compute the gramians of the composite
system and not the actual Hankel operators, see the explanation given in “Appendix
B”. In particular, the respective gramians of the composite system can be computed,
for example, directly from the Lyapunov equations of the composite error system.

Notation

The space of bounded linear operators between Banach spaces X ,Y is denoted by
L(X ,Y ) and just by L(X) if X = Y . The operator norm of a bounded operator
T ∈ L(X ,Y ) is written as ‖T ‖. The trace class operators from X to Y are denoted
by TC(X ,Y ) and the Hilbert–Schmidt operators by HS(X ,Y ). In particular, we recall
that for a linear trace class operator T ∈ TC(X ,Y ), where X and Y are separable
Hilbert spaces, the trace norm is given by the following supremum over orthonormal
systems of basis vectors (ONB),

‖T ‖TC = sup

{
∑

n∈N
|〈 fn, T en〉Y | ; (en) ONB of X and ( fn) ONB of Y

}
. (1.6)

∂BX (1) denotes the unit sphere of a Banach space X and we write g = O( f ) if there
is C > 0 such that ‖g‖ ≤ C ‖ f ‖ . In order not to specify the constant C , we also write
‖g‖ � ‖ f ‖ . The indicator function of an interval I is denoted by 1I . The domain of
unbounded operators A is denoted by D(A).

Let H be a separable Hilbert space. For the n-fold Hilbert space tensor product of
a Hilbert space H , we write H⊗n := H ⊗· · ·⊗ H . To define the Hankel operator, we
require a decomposition of the positive gramians. For this purpose, we introduce the
Fock space Fn(H) of H -valued functions Fn(H) :=⊕∞

k=1 F
n
k (H)where Fn

k (H) :=
L2((0,∞)k, H ⊗ (Rn)⊗(k−1)), and Fn

0 (H) := H .

Thus, elements of the Fock space Fn are sequences taking values in Fn
k .
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Let C+ be the right complex half-plane, then we define the H -valued Hardy spaces
H 2 andH ∞ ofmultivariable holomorphic functions F : C

k+ → H with finite norms

‖F‖H 2 := sup
x∈Rk

1

(2π)k/2

(∫

(0,∞)k
‖F(x + iy)‖2H dy

) 1
2

and

‖F‖H ∞ := sup
z∈Ck+

‖F(z)‖H ,

respectively. We also introduce mixed L1
i L

2
k−1 and H ∞

i H 2
k−1 norms which for H -

valued functions f : (0,∞)k → H and g : C
k+ → H read

‖ f ‖L1
i L

2
k−1(H) =

∫ ∞

0
‖ f (•, . . . , •, si , •, . . . , •)‖L2((0,∞)k−1,H) dsi and

‖g‖H ∞
i H 2

k−1(H) = sup
si∈C+

‖g(•, . . . , •, si , •, . . . , •)‖H 2((0,∞)k−1,H) .
(1.7)

Finally, for k-variable functions h we occasionally use the short notation

h(i)(s, t) := h(s1, . . . , si−1, t, si , . . . , sk−1). (1.8)

In Sect. 5, the space L p
ad denotes the L p spaces of stochastic processes that are

adapted to an underlying filtration and we introduce the notation 
I := I × 
 where
I is some interval.

2 The pillars of bilinear balanced truncation

We start with the definition of the gramians on X which extend the standard definition
on finite-dimensional spaces (1.3), (1.4) to arbitrary separable Hilbert spaces.

2.1 Gramians

LetH be a separable Hilbert space andC ∈ L(X ,H) the state-to-output (observation)
operator. The spaceH is called the output space. As we assume that there are n control
functions, the space R

n will be referred to as the input space. Adopting the notation
used in (1.1) with strongly continuous semigroup (T (t)) generated by A, we then
introduce the bilinear gramians for times ti ∈ (0,∞):

Definition 2.1 Let O0(t1) := CT (t1). For i ≥ 1 and y ∈ X , define

Oi (t1, . . . , ti+1)y := CT (t1)
n∑

n1,...,ni=1

(
i+1∏

l=2

(
Nnl−1T (tl)

)
)
y ⊗ (ên1 ⊗ · · · ⊗ êni

)

with êi denoting the standard basis vectors of R
n .
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Let M2�2(2ν)−1 < 1, then the bounded operators Ok defined for x, y ∈ X by

〈x,Ok y〉X :=
∫

(0,∞)k+1
〈Ok(s)x, Ok(s)y〉H⊗Rn⊗k ds (2.1)

are summable in operator norm. The limiting operator, given by O := ∑∞
k=0 Ok , is

called the observability gramian O in L(X).

To define the reachability gramian, let P0(t1) := T (t1)∗. For i ≥ 1 and y ∈ X , we
introduce

Pi (t1, . . . , ti+1)y :=
n∑

n1,...,ni=1

(
i∏

l=1

(
T (tl)

∗N∗
nl

)
)
T (ti+1)

∗y ⊗ (ên1 ⊗ · · · ⊗ êni
)
.

The control operator B ∈ L(Rn, X) shall be of the form Bu =∑n
i=1 ψi ui forψi ∈ X

such that BB∗ = ∑n
i=1〈•, ψi 〉ψi is a finite-rank operator. Define operators Pk for

any x, y ∈ X by

〈x,Pk y〉X :=
∫

(0,∞)k+1

〈
Pk(s)x,

(
BB∗ ⊗ id

Rn⊗k

)
Pk(s)y

〉

X⊗Rn⊗k ds. (2.2)

If M2�2(2ν)−1 < 1, the reachability gramian is defined as P := ∑∞
k=0 Pk ∈

TC(X). The TC(X)-convergence follows from the characterization (1.6) of the trace
norm: For arbitrary orthonormal systems (ei ), ( fi ) of X

dim(X)∑

i=1

|〈 fi ,Pei 〉X |

≤ ∥∥BB∗∥∥
TC(X)

∞∑

k=0

∫

(0,∞)k+1

n∑

n1,...,nk=1

∥∥∥∥∥

k∏

l=1

(
T (tl)

∗N∗
nl

)
T (tk+1)

∗
∥∥∥∥∥

2

dt < ∞.

Assumption 1 We assume M2�2(2ν)−1 < 1 such that both gramiansO andP exist.

As in finite dimensions [6, Theorems 3 and 4], the gramians are solutions to Lya-
punov equations. However, the Lyapunov equations hold only in a weak sense if the
generator of the semigroup A is unbounded.

Lemma 2.2 For all x1, y1 ∈ D(A) and all x2, y2 ∈ D(A∗)

〈OAx1, y1〉X + 〈Ox1, Ay1〉X +
n∑

i=1

〈ONi x1, Ni y1〉X + 〈Cx1,Cy1〉H = 0 and

〈PA∗x2, y2〉X + 〈Px2, A
∗y2〉X +

n∑

i=1

〈PN∗
i x2, N

∗
i y2〉X + 〈BB∗x2, y2〉X = 0.

(2.3)
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Proof We restrict us to the proof of the first identity, since the proof of the second one
is fully analogous. Let x ∈ D(A) then by (2.1)

〈O0Ax, x〉 + 〈O0x, Ax〉X + ‖Cx‖2H
=
∫ ∞

0

(〈CT ′(s)x,CT (s)x〉H + 〈CT (s)x,CT ′(s)x〉H
)
ds + ‖Cx‖2H

=
∫ ∞

0

d

ds
‖CT (s)x‖2H ds + ‖Cx‖2H = 0.

Similarly, for x ∈ D(A) and k ≥ 1 by the fundamental theorem of calculus, the
exponential decay of the semigroup at infinity, and the definition of the observability
gramian

〈Ok Ax, x〉X + 〈Ok x, Ax〉X +
n∑

i=1

〈Ok−1Ni x, Ni x〉X =
n∑

i=1

〈Ok−1Ni x, Ni x〉X

+
n∑

i=1

∫

(0,∞)k

∫

(0,∞)

d

dτ
‖Ok−1(s1, . . . , sk)(NiT (τ )x)‖2H⊗Rn⊗(k−1) dτds = 0.

The uniform convergence of O =∑∞
k=0 Ok implies that

〈OAx, x〉X + 〈Ox, Ax〉X +
n∑

i=1

〈ONi x, Ni x〉X + ‖Cx‖2H = 0.

Finally, we may use the polarization identity to obtain (2.3). ��

As stated for finite-dimensional systems in [5, Theorem 3.1], we obtain the follow-
ing eponymous properties for the gramians.

Lemma 2.3 All elements ϕ0 ∈ ker(O) are unobservable in the homogeneous system,
i.e. solutions to

ϕ′(t) = Aϕ(t) +
n∑

i=1

Niϕ(t)ui (t), for t > 0 (2.4)

with ϕ(0) = ϕ0 ∈ ker(O) satisfy Cϕ(t) = 0 for all t ≥ 0.

Proof An element x ∈ X is in ker(O) if and only if 〈Ok x, x〉X = 0 for all k ∈ N0.

We start by showing that ker(O) is an invariant subspace of the semigroup (T (t)). Let
x ∈ ker(O), then for all t ≥ 0 and all k by (2.1) and the semigroup property
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0 ≤ 〈OkT (t)x, T (t)x〉X =
∫

(0,∞)k+1
‖Ok(s)T (t)x‖2H⊗Rn⊗k ds

=
∫

(0,∞)k

n∑

i=1

∫ ∞

0
‖Ok−1(s)NiT (sk+1 + t)x‖2H⊗Rn⊗k−1 dsk+1ds

=
∫

(0,∞)k

∫ ∞

t
〈Ok(s, τ )x, Ok(s, τ )x〉H⊗Rn⊗k dτds

≤
∫

(0,∞)k+1
〈Ok(s)x, Ok(s)x〉H⊗Rn⊗k ds = 〈Ok x, x〉X = 0,

where we used the semigroup property of (T (t)), substituted τ = sk+1 + t, and
extended the integration domain to get the final inequality. Thus, (T (t)) restricts to
a C0-semigroup on the closed subspace ker(O) and the generator of A is the part of
A in ker(O) [14, Chapter II 2.3]. In particular, D(A) ∩ ker(O) is dense in ker(O).

Let x ∈ ker(O) ∩ D(A), then positivity of O implies, by the first Lyapunov equation
(2.3) with x1 = y1 = x , that Ni x ∈ ker(O) and x ∈ ker(C). Thus, a density argument
shows Ni (ker(O)) ⊂ ker(O) and ker(O) ⊂ ker(C).

This shows, by Li andYong [11, Proposition 5.3], that (2.4) is well posed on ker(O),
i.e. for initial data in ker(O) the solution to (2.4) stays in ker(O). From the inclusion
ker(O) ⊂ ker(C), we then obtain Cϕ(t) = 0. ��

Lemma 2.4 The closure of the range of the reachability gramian P is an invariant
subspace of the flow of (1.1), i.e. for ϕ0 ∈ ran(P) it follows that ϕ(t) ∈ ran(P) for all
times t ≥ 0.

Proof Analogous to Lemma 2.3. ��

3 Hankel operators on Fock spaces

To decompose the observability gramian as O = W ∗W and the reachability gramian
as P = RR∗, we start by defining the observability and reachability maps.

Definition 3.1 For k ∈ N0, let Wk ∈ L (X , Fn
k+1 (H)

)
be the operators that map

X � x �→ Ok(•)x, then ‖Wk‖ = O
((

M�(2ν)−1/2
)k)

. The adjoint operators

W ∗
k ∈ L (Fn

k+1 (H) , X
)
are given by W ∗

k f := ∫
(0,∞)k+1 O∗

k (s) f (s)ds.
By Assumption 1, we can define the observability map W ∈ L (X , Fn (H)) as
W (x) := (Wk(x))k∈N0

with adjoint operator W ∗, given for ( fk)k ∈ Fn (H) , by
W ∗(( fk)k) =∑∞

k=0 W
∗
k fk .

Similarly, to the decomposition of the observability gramian,we introduce a decom-
position of the reachability gramian P = RR∗. Let

Rk ∈ HS
(
Fn
k+1

(
R
n) , X
)
be given by Rk f :=

∫

(0,∞)k+1
Pk(s)

∗(B ⊗ id
Rn⊗k ) f (s)ds.
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The adjoint operators of the Rk are the operators

R∗
k ∈ HS

(
X , Fn

k+1

(
R
n)) with R∗

k x :=
(
B∗ ⊗ id

Rn⊗k

)
Pk(•)x .

If the gramians exist, then the reachability map is defined as

R ∈ HS
(
Fn (

R
n) , X
)
such that ( fk)k∈N0 �→

∞∑

k=0

Rk fk .

Its adjoint is given by R∗ ∈ HS (X , Fn(Rn)) , X � x �→ (R∗
k (x)
)
k∈N0

.

To see that Rk is a Hilbert–Schmidt operator, we take an ONB (ei ) of Fn
k+1 (Rn), such

that the ei are tensor products of an ONB of L2((0,∞), R) and standard unit vectors
of R

n , and an arbitrary ONB ( f j ) of X

‖Rk‖2HS(Fn
k+1(R

n),X
) =

dim(X)∑

j=1

∞∑

i=1

∣∣〈 f j , Rkei
〉
X

∣∣2 =
dim(X)∑

j=1

∞∑

i=1

∣∣∣
〈
R∗
k f j , ei

〉
Fn
k+1(R

n)

∣∣∣
2

=
dim(X)∑

j=1

n∑

i=1

n∑

n1,...,nk=1

∫

(0,∞)k+1

∣∣〈 f j , Pk(s)∗(ψi ⊗ ên1 ⊗ · · · ⊗ ênk )
〉
X

∣∣2 ds

=
n∑

i=1

n∑

n1,...,nk=1

∫

(0,∞)k+1

∥∥Pk(s)∗(ψi ⊗ ên1 ⊗ · · · ⊗ ênk )
∥∥2
X ds

= O
((

M2�2(2ν)−1
)k)

.

(3.1)
One can then check that the maps W and P indeed decompose the gramians as O =
W ∗W and P = RR∗. We now introduce the main object of our analysis:

Definition 3.2 The Hankel operator is the Hilbert–Schmidt operator H := WR ∈
HS (Fn(Rn), Fn(H)) .

Since any compact operator acting between Hilbert spaces possesses a singular
value decomposition, we conclude that:

Corollary 3.3 There are (ek)k∈N ⊂ Fn(Rn) and ( fk)k∈N ⊂ Fn(H)-orthonormal sys-
tems as well as singular values (σk)k∈N ∈ �2(N) such that

H =
∞∑

k=1

σk〈•, ek〉Fn(Rn) fk, Hek = σk fk, and H∗ fk = σkek . (3.2)

We now state a sufficient condition under which H is a trace class operator such
that (σk)k∈N ∈ �1(N).
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Lemma 3.4 If H 
 R
m for any m ∈ N, then W is a Hilbert–Schmidt operator just

like R. Consequently, H = WR and O = W ∗W are both of trace class.

Proof Since for any i ∈ {1, . . . ,m} and i1, . . . , ik ∈ {1, . . . , n} the operator

X � x �→ 〈êi ⊗ êi1 ⊗ · · · ⊗ êik ,Wkx
〉
Rm⊗Rn⊗k =: Qi,i1,...,ik (x)

is a Carleman operator, we can apply [20, Theorem 6.12(iii)] that characterizes Car-
leman operators of Hilbert–Schmidt type. The statement of the Lemma follows from
the summability of

‖Wk‖2HS =
m∑

i=1

n∑

i1,...,ik=1

∥∥Qi,i1,...,ik

∥∥2
HS(X ,L2((0,∞)k+1,R))

≤
m∑

i=1

n∑

i1,...,ik=1

∫

(0,∞)k+1

∥∥Ok(t)
∗ (êi ⊗ êi1 ⊗ · · · ⊗ êik

)∥∥2
X dt

= O
((

M2�2(2ν)−1
)k)

.

��
In the rest of this section, we discuss immediate applications of our preceding con-
struction. We start by introducing the truncated gramians.

Definition 3.5 The kth-order truncation of the gramians is the first k summands of the
gramians, i.e. O(k) := ∑k−1

i=0 Oi and P(k) := ∑k−1
i=0 Pi . The associated kth-order

truncated Hankel operator is H (k) f := (Wi
∑k−1

j=0 R j f j )i∈{0,...,k−1}.

The proof of Proposition 1.1 follows then from our preliminary work very easily:

Proof of Proposition 1.1 From [21, Corollary 2.3], it follows that for any i ∈ N

the difference of singular values can be bounded as
∣∣σi − σ k

i

∣∣ ≤ ∥∥H − H (k)
∥∥ ≤∥∥H − H (k)

∥∥
HS and by the inverse triangle inequality

∣∣‖σ‖�2 − ∥∥σ k
∥∥

�2

∣∣ ≤∥∥H − H (k)
∥∥
HS. Thus, it suffices to bound by (3.1) and Definition 3.1

∥∥∥H − H (k)
∥∥∥
2

HS
=

∑

(i, j)∈N2
0\{0,...,k−1}2

∥∥Hi j
∥∥2
HS =

∑

(i, j)∈N2
0\{0,...,k−1}2

‖Wi‖2
∥∥R j
∥∥2
HS

= O
((

M2�2(2ν)−1
)2k)

.

��
We now give the proof of Proposition 1.2 on the approximation by subsystems. The

Hankel operator for the subsystem on Vi is then HVi := WRVi , where

RVi ( f ) :=
∞∑

k=0

∫

(0,∞)k+1
Pk(s)

∗(PVi B ⊗ id
Rn⊗k ) fk(s)ds
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with PVi being the orthogonal projection onto Vi .

Proof of Proposition 1.2 Using elementary estimates

∥∥H − HVi

∥∥
TC ≤ ‖W‖HS

∥∥R − RVi

∥∥
HS and

∥∥H − HVi

∥∥
HS ≤ ‖W‖ ∥∥R − RVi

∥∥
HS ,

it suffices to show HS-convergence of RVi to R. This is done along the lines of (3.1).
��

3.1 Convergence of singular vectors

The convergence of singular values is addressed in Proposition 1.1. For the con-
vergence of singular vectors, we now assume that there is a family of compact
operators H(m) ∈ L (Fn (Rn) , Fn (H)) converging in operator norm to H . By
compactness, every operator H(m) has a singular value decomposition H(m) =∑∞

k=1 σk(m)〈•, ek(m)〉 fk(m).

Assumption 2 Without loss of generality, let the singular values be ordered asσ1(m) ≥
σ2(m) ≥ · · · . Furthermore, for the rest of this section, all singular values of H are
assumed to be nonzero and non-degenerate, i.e. all eigenspaces of HH∗ and H∗H
are one dimensional.

Lemma 3.6 Let the family of compact operators (H(m)) converge to the Hankel oper-
ator H in operator norm, then the singular vectors converge in norm as well.

Proof of Lemma 3.6 We give the proof only for singular vectors (e j ) since the argu-
ments for ( f j ) are analogous. We start by writing e j = r(m)e j (m) + x j (m) where
〈e j (m), x j (m)〉 = 0.Then, the arguments stated in the proof of [22, Appendix 2] show
that form sufficiently large (the denominator is well defined as the singular values are
non-degenerate)

∥∥x j (m)
∥∥2
Fn(Rn)

≤
σ 2
j −
(
σ j − 2

∥∥Hj − Hj (m)
∥∥L(Fn(Rn),Fn(H))

)2

σ 2
j − σ 2

j+1

−−−−→
m→∞ 0,

where Hj := H −∑ j−1
k=0 σk〈•, ek〉 fk and Hj (m) := H(m) −∑ j−1

k=0 σk(m)〈•, ek(m)〉
fk(m). ��

4 Global error estimates

We start by defining a control tensor Uk(s) ∈ L
(
H ⊗ R

n⊗k
,H
)

Uk(s) :=
n∑

i1,...,ik=1

ui1(s1) · · · · · uik (sk) idH ⊗ 〈êi1 ⊗ · · · ⊗ êik , •
〉
.
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Using sets �k(t) := {(s1, . . . , sk) ∈ R
k; 0 ≤ sk ≤ · · · ≤ s1 ≤ t}, we can

decompose the output map (0,∞) � t �→ Cϕ(t) with ϕ as in (1.2) for controls

‖u‖L2((0,∞),(Rn ,‖•‖∞)) <
√
2ν

M	
and 	 := ∑n

i=1 ‖Ni‖ according to Lemma A.1 into
two terms Cϕ(t) = K1(t) + K2(t) such that

K1(t) :=
∞∑

k=1

∫

�k (t)
Uk(s) (Ok(t − s1, ., sk−1 − sk, sk)ϕ0) ds + CT (t)ϕ0 and

K2(t) :=
∞∑

k=1

∫

�k (t)
Uk(s)

(
n∑

i=1

Ok−1(t − s1, s1 − s2, . . . , sk−1 − sk)ψi ⊗ êi

)
ds.

(4.1)
The first term K1 is determined by the initial state ϕ0 of the evolution problem (1.1).
If this state is zero, the term K1 vanishes. The term K2 on the other hand captures
the intrinsic dynamics of Eq. (1.1). A technical object linking the dynamics of the
evolution equation to the operators from the balancing method is the Volterra kernels
we introduce next:

Definition 4.1 The Volterra kernels associated with (1.1) are the functions

hk, j ∈ L2
(
(0,∞)k+ j+1,HS

(
R
n⊗( j+1)

,H ⊗ R
n⊗k
))

hk, j (σ0, . . . , σk + σk+1, . . . , σk+ j+1) := Ok(σ0, . . . , σk)P
∗
j (σk+ j+1, . . . , σk+1)

(B ⊗ id
Rn⊗ j ).

The Volterra kernels satisfy an invariance property for all p, q, k, j ∈ N0 such that
p + q = k + j :
∥∥hk, j
∥∥
L1
k+1L

2
k+ j

(
HS
(
Rn⊗( j+1)

,H⊗Rn⊗k
)) = ∥∥h p,q

∥∥
L1
k+1L

2
k+ j

(
HS
(
Rn⊗(q+1)

,H⊗Rn⊗p
)) .

(4.2)
The Volterra kernels appear also as integral kernels of the Hankel operator

(
WkR j f

)
(s0, . . . , sk) =

∫

(0,∞) j+1
hk, j (s0, . . . , sk + t1, . . . , t j+1) f (t)dt .

Remark 1 In particular, the kernels hk,0 appear in the definition of the H 2-system
norm introduced in [6, Eq. 15]

‖�‖2H 2 :=
∞∑

k=0

∥∥hk,0
∥∥2
L2
(
(0,∞)k+1,HS

(
Rn ,H⊗Rn⊗k

))

=
∞∑

k=0

∫

(0,∞)k+1

n∑

n1,...,nk=1

∥∥∥∥∥CT (t1)
k+1∏

l=2

(
Nnl−1T (tl)

)
B

∥∥∥∥∥

2

HS(Rn ,H)

dt

for which robust numerical algorithms with strongH 2-error performance exist [23].
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This system norm can also be expressed directly in terms of the gramians

‖�‖2H 2 = tr
(
BB∗O

) = tr
(
C∗CP

)

which is well defined as B∗B and P are both trace-class operators.

In [17], the kth-order transfer function Gk has been introduced as the k+1-variable
Laplace transform of the Volterra kernel hk,0

Gk(s) :=
∫

(0,∞)k+1
hk,0(t)e

−〈s,t〉dt .

Using mixed Hardy norms as defined in (1.7), the Paley–Wiener theorem implies the
following estimate for i ∈ {1, . . . , k + 1}

‖Gk‖H ∞
i H 2

k

(
HS
(
Rn ,H⊗Rn⊗k

))

≤
∫ ∞

0

∥∥∥∥
∫

(0,∞)k
h(i)
k,0(s, σ )e−〈•,s〉ds

∥∥∥∥
H 2
(
(0,∞)k ,HS

(
Rn ,H⊗Rn⊗k

)) dσ

=
∥∥∥h(i)

k,0

∥∥∥
L1
i L

2
k

(
HS
(
Rn ,H⊗Rn⊗k

)) .

(4.3)

For two systems� and �̃ satisfyingAssumption 1with the same number of controls
and the same output spaceH, we then define the difference Volterra kernel and the dif-
ference Hankel operator �(h) := h− h̃ and �(H) := H − H̃ = (Wi R j − W̃i R̃ j

)
i j .

The next Lemma bounds the mixed L1–L2 norm of the difference Volterra kernel:

Lemma 4.2 Consider two systems satisfying Assumption 1 with the same number of
controls and the same output spaceH 
 R

m such that H is trace class (Lemma 3.4).
Then, the Volterra kernels hk, j satisfy

∥∥�(hk, j )
∥∥
L1
k+1L

2
k+ j

(
HS
(
Rn⊗( j+1)

,Rm⊗Rn⊗k
)) ≤ 2

∥∥�(WkR j )
∥∥
TC
(
Fn
j+1(R

n),Fn
k+1(R

m)
) .

Proof Given the difference Volterra kernel �(hk, j ) associated with �(WkR j ).

For every z ∈ N0 and α > 0 fixed, we define a family of sesquilinear forms (Lz,α)

Lz,α : F1
k

(
R
m ⊗ R

n⊗k
)

⊕ F1
j

(
R
n⊗( j+1)
)

→ R( f , g)

�→
∫

(0,∞)k+ j

〈
f (s1, . . ., sk),�

(
h(k+1)
k, j (s, 2zα)

)
g(sk+1, . . ., sk+ j )

〉

Rm⊗Rn⊗k ds.
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Since �
(
h(k+1)
k, j (•, 2zα)

)
∈ F1

k

(
R
m ⊗ R

n⊗k
)

⊗ F1
j

(
R
n⊗( j+1)
)

=: Z , there exists a
Hilbert–Schmidt operator Q : F1

j

(
R
n⊗( j+1)
)

→ F1
k

(
R
m ⊗ R

n⊗k
)
3 of unit HS-norm

(Qϕ)(s) :=
∫

(0,∞) j

�
(
h(k+1)
k, j ((s,t),2zα)

)

∥∥∥�
(
h(k+1)
k, j (•,2zα)

)∥∥∥
Z

ϕ(t)dt .

The singular value decomposition of Q provides orthonormal systems fz,i ∈
F1
k

(
R
m ⊗ R

n⊗k
)
, gz,i ∈ F1

j

(
R
n⊗( j+1)
)
, parameterized by i ∈ N, and singular values

σz,i ∈ [0, 1] such that for any δ > 0 given there is N (δ) large enough with

∥∥∥∥∥∥

�
(
h(k+1)
k, j (•,2zα)

)

∥∥∥�
(
h(k+1)
k, j (•,2zα)

)∥∥∥
Z

−
N (δ)∑

i=1

σz,i ( fz,i ⊗ gz,i )

∥∥∥∥∥∥
Z

< δ.

Let ε > 0, then forM sufficiently large
∫∞
M

∥∥∥�
(
h(k+1)
k, j (•, v)

)∥∥∥
Z
dv < ε.Thus, for

z ∈ N0 there are fz,i ∈ F1
k

(
R
m ⊗ R

n⊗k
)
and gz,i ∈ F1

j

(
R
n⊗( j+1)
)
orthonormalized,

σz,i ∈ [0, 1], and Nz ∈ N such that

∣∣∣∣∣∣

〈
�
(
h(k+1)
k, j (•,2zα)

)

∥∥∥�
(
h(k+1)
k, j (•,2zα)

)∥∥∥
Z

−
Nz∑

i=1

σz,i ( fz,i ⊗ gz,i ),�
(
h(k+1)
k, j (•, 2zα)

)〉

Z

∣∣∣∣∣∣

=
∣∣∣∣∣∣

∥∥∥�
(
h(k+1)
k, j (•, 2zα)

)∥∥∥
Z

−
Nz∑

i=1

σz,i Lz,α( fz,i , gz,i )

∣∣∣∣∣∣
<

ε

M
.

(4.4)

Then, sz,i (r , u) := 1√
α
1[zα,(z+1)α)(r)gz,i (u) and tz,i (r , u) := 1√

α
1[zα,(z+1)α)(r)

fz,i (u) form orthonormal systems parameterized by z and i in spaces Fn
j+1(R

n) and
Fn
k+1 (Rm), respectively, such that using the auxiliary quantities

I := (zα, (z + 1)α)2 × (0,∞)k+ j , J := (2zα, 2(z + 1)α) × (0,∞)k+ j , and

λ(v) := min {v − 2zα, 2(z + 1)α − v}

3 For separable Hilbert spaces H1 and H2, there is the isometric isomorphism H1 ⊗ H2 ≡ HS(H∗
1 , H2).
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it follows that

〈tz,i , �(Wk R j )sz,i 〉Fn
k+1(R

m )

= 1

α

∫

I

〈
fz,i (s1, ., sk),�

(
h(k+1)
k, j

)
(s, r + t)gz,i (sk+1, ., sk+ j )

〉

Rm⊗Rn⊗k drdtds

= 1

2α

∫

J

∫ λ(v)

−λ(v)

〈
fz,i (s1, ., sk), �

(
h(k+1)
k, j

)
(s, v)gz,i (sk+1, ., sk+ j )

〉

Rm⊗Rn⊗k dwdvds

= 1

α

∫

J
λ(v)
〈
fz,i (s1, ., sk),�

(
h(k+1)
k, j

)
(s, v)gz,i (sk+1, ., sk+ j )

〉

Rm⊗Rn⊗k dvds

(4.5)
where we made the change of variables v := r + t andw := r − t . For α small enough
and v1, v2 ∈ [0, M + 1], we have by strong continuity of translations

∥∥∥�
(
h(k+1)
k, j (•, v1)

)
− �
(
h(k+1)
k, j (•, v2)

)∥∥∥
Z

<
ε

M
if |v1 − v2| < 2α. (4.6)

Hence, using the above uniform continuity as well as (4.4) and (4.5)

∣∣∣∣∣∣

Nz∑

i=1

σz,i 〈tz,i , �(Wk R j )sz,i 〉Fn
k+1(R

m) − α

∥∥∥�
(
h(k+1)
k, j (•, 2zα)

)∥∥∥
Z

∣∣∣∣∣∣

≤ 1

α

∫ 2(z+1)α

2zα
λ(v)

⎛

⎝

∣∣∣∣∣∣

Nz∑

i=1

σz,i

〈
fz,i ⊗ gz,i , �

(
h(k+1)
k, j (•, v)

)
− �
(
h(k+1)
k, j (•, 2zα)

)〉

Z

∣∣∣∣∣∣

+
∣∣∣∣∣∣

Nz∑

i=1

σz,i Lz,α( fz,i , gz,i ) −
∥∥∥�
(
h(k+1)
k, j (•, 2zα)

)∥∥∥
Z

∣∣∣∣∣∣

⎞

⎠ dv � αε

M
.

This implies immediately by uniform continuity (4.6)

∣∣∣∣∣∣

Nz∑

i=1

σz,i 〈tz,i ,�(WkR j )sz,i 〉Fn
k+1(R

m) − 1

2

∫ 2(z+1)α

2zα

∥∥∥�
(
h(k+1)
k, j (•, v)

)∥∥∥
Z
dv

∣∣∣∣∣∣
� αε

M
.

Summing over z up to
⌊ M
2α

⌋
implies by the choice of M that

∣∣∣∣∣∣∣∣

⌊
M
2α

⌋

∑

z=0

Nz∑

i=1

σz,i 〈tz,i ,�(WkR j )sz,i 〉Fn
k+1(R

m) − 1

2

∥∥∥�
(
h(k+1)
k, j

)∥∥∥
L1
k+1L

2
k+ j (HS)

∣∣∣∣∣∣∣∣
� ε.

The Lemma follows then from the characterization of the trace norm stated
in (1.6). ��

The preceding Lemma provides us with bounds on the difference of the dynamics
of two systems � and �̃ satisfying Assumption 1. In particular, Lemma 4.2 allows us
to prove Theorem 1.
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Proof of Theorem 1 The Hankel operator is an infinite matrix with operator-valued
entries Hi j = Wi R j .Using the invariance property (4.2), we can combine Lemma 4.2
with estimate (4.3), relating the transfer functions to the Volterra kernels, to obtain
from the definition of the trace norm (1.6) that

∞∑

k=1

‖�(G2k−1)‖H ∞
k H 2

2k−1
≤ 2

∞∑

k=1

‖�(WkRk−1)‖TC ≤ 2 ‖�(H)‖TC and

∞∑

k=1

‖�(G2k−2)‖H ∞
k H 2

2k−2
≤ 2

∞∑

k=0

‖�(WkRk)‖TC ≤ 2 ‖�(H)‖TC

which by summing up the two bounds yields the statement of the theorem. ��

While Theorem 1 controls the transfer functions, the subsequent theorem controls
the actual dynamics from zero:

Proof of Theorem 2 The operator norm of the control tensor is bounded by

‖Uk(s)‖ ≤
k∏

i=1

‖u(si )‖(Rn ,‖•‖∞)

∥∥∥∥∥∥
idH ⊗

n∑

i1,...,ik=1

〈̂ei1 ⊗ · · · ⊗ êik , •〉
∥∥∥∥∥∥

≤
k∏

i=1

‖u(si )‖(Rn ,‖•‖∞)

∥∥∥∥∥∥

n∑

i1,...,ik=1

〈̂ei1 ⊗ · · · ⊗ êik , •〉 · 1
∥∥∥∥∥∥

≤ nk/2
k∏

i=1

‖u(si )‖(Rn ,‖•‖∞)

where we applied the Cauchy–Schwarz inequality to the product inside the sum to
bound the �1 norm by an �2 norm.

It follows from (4.1), Hölder’s inequality, andMinkowski’s integral inequality that

‖�(Cϕ(t))‖Rm ≤
∞∑

k=1

∫

�k (t)

(
‖Uk(s)‖L(Rm⊗Rn⊗k

,Rm )

·
∥∥∥∥∥

n∑

i=1

�(Ok−1(t − s1, . . . , sk−1 − sk)ψi ) ⊗ êi

∥∥∥∥∥
Rm⊗Rn⊗k

)
ds

≤
∞∑

k=1

∫

�k (t)
‖Uk(s)‖L(Rm⊗Rn⊗k

,Rm )︸ ︷︷ ︸
≤nk/2

∏k
i=1‖u(si )‖(Rn ,‖•‖∞)

∥∥�hk−1,0(t − s1, . . . , sk−1 − sk)
∥∥
HS
(
Rn ,Rm⊗Rn⊗(k−1)

) ds

≤
∞∑

k=1

(∥∥�(h2k−1,0)
∥∥
L1
k L

2
2k−1(HS)

+ ∥∥�(h2k−2,0)
∥∥
L1
k L

2
2k−2(HS)

)√
n ‖u‖L∞((0,∞),(Rn ,‖•‖∞)) .
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Then, by (1.6), Lemma 4.2, and the invariance property (4.2)

‖�(Cϕ(t))‖Rm ≤
∞∑

k=1

∥∥�(hk−1,k)
∥∥
L1
k L

2
2k−1(HS)

√
n ‖u‖L∞((0,∞),(Rn ,‖•‖∞))

+
∞∑

k=1

∥∥�(hk−1,k−1)
∥∥
L1
k L

2
2k−2(HS)

√
n ‖u‖L∞((0,∞),(Rn ,‖•‖∞))

≤ 4
√
n ‖�(H)‖TC ‖u‖L∞((0,∞),(Rn ,‖•‖∞)) .

��

5 Applications

Throughout this section, we assume that we are given a filtered probability space
(
,F , (Ft )t≥T0 , P) satisfying the usual conditions, i.e. the filtration is right-
continuous and FT0 contains all F null-sets. We assume X to be a real separable
Hilbert space. In the following subsection, we study an infinite-dimensional stochastic
evolution equation with Wiener noise to motivate the extension of stochastic bal-
anced truncation to infinite-dimensional systems that we introduce thereupon. We
stick mostly to the notation introduced in the preceding sections and also consider
the state-to-output (observation) operator C ∈ L(X ,H), the control-to-state (con-
trol) operator Bu = ∑n

i=1 ψi ui , and A the generator of an exponentially stable
C0-semigroup (T (t)) on X .

5.1 Stochastic evolution equation withWiener noise.

Let Y be a separable Hilbert space and TC(Y ) � Q = Q∗ ≥ 0 a positive trace class
operator. We then consider a Wiener process (Wt )t≥T0 [24, Def. 2.6] adapted to the
filtration (Ft )t≥T0 with covariance operator Q.

We introduce the Banach space
(
H(T0,T )

2 (X), supt∈(T0,T )

(
E (‖Zt‖X )2

)1/2)
of

jointly measurable ((T0, T ) × 
 � (t, ω) �→ Zt (ω)), X -valued processes adapted
to the filtration (Ft )t≥T0 and consider mappings4 N ∈ L(X ,L(Y , X)) and controls
u ∈ L2

ad(
R≥0 , R
n) ∩ L∞

ad(
R≥0 , R
n) where we recall the notation 
X := 
 × X .

For the stochastic partial differential equation

dZt = (AZt + Bu(t)) dt + N (Zt ) dWt , t > 0,

Z0 = ξ ∈ L2(
, X),
(5.1)

4 We will drop an argument whenever it is convenient and at no risk of confusion. For instance, we will
sometimes write u(t) instead of u(ω, t) or omit the measure and σ -algebra such that L2(
,F0, P, X) is
just denoted as L2(
, X).
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there exists by Gawarecki andMandrekar [24, Theorem 3.5] a unique continuous mild
solution inH(T0,T )

2 , satisfying P-a.s. for t ∈ [0, T ]

Zt = T (t)ξ +
∫ t

0
T (t − s)Bu(s)ds +

∫ t

0
T (t − s)N (Zs) dWs . (5.2)

We refer to (5.1)with B ≡ 0 as the homogeneous part of that equation. For solutions
Zhom
t to the homogeneous part of (5.1) starting at t = 0, let 
(•) : L2(
,F0, X) →

H(0,T )
2 (X) be the flow defined by the mild solution, i.e. 
(t)ξ := Zhom

t . If the ini-
tial time is some T0 rather than 0, we denote the (initial time-dependent) flow by

(•, T0) : L2(
,FT0 , X) → H(T0,T )

2 (X). The (X -)adjoint of the flow is defined by
〈
(•, T0)ϕ1, ϕ2〉X = 〈ϕ1,
(•, T0)∗ϕ2〉X for arbitrary ϕ1, ϕ2 ∈ X .

Definition 5.1 (Exponential stability in m.s.s.) The solution to the homogeneous sys-
tem with flow 
 is called exponentially stable in the mean square sense (m.s.s.) if
there is some c > 0 such that for all ϕ0 ∈ X and all t ≥ 0

E

(
‖
(t)ϕ0‖2X

)
� e−ct ‖ϕ0‖2X . (5.3)

Lyapunov techniques to verify exponential stability for SPDEs of the form (5.1)
are discussed in [24, Section 6.2].

We then define the variation of constants process Y of the flow 
 as

Yt (u) :=
∫ t

0

(t, s)Bu(s) ds =

n∑

i=1

∫ t

0

(t, s)ψi ui (s)ds. (5.4)

This variation of constants process coincides with themild solution to the full SPDE
(5.1) almost surely if ξ = 0, as an application of the stochastic Fubini theorem [24,
Theorem 2.8] and (5.2) shows

∫ t

0
T (t − s)N (Ys) dWs =

∫ t

0
T (t − s)N

(∫ s

0

(s, r)Bu(r)dr

)
dWs

=
∫ t

0
T (t − s)N

⎛

⎜⎝
∫ t

0
1[0,s](r)︸ ︷︷ ︸
=1[r ,t](s)


(s, r)Bu(r) dr

⎞

⎟⎠ dWs

=
∫ t

0

(∫ t

0
T (t − s)N

(
1[r ,t](s)
(s, r)Bu(r)

)
dWs

)
dr

=
∫ t

0

(∫ t

r
T (t − s)N (
(s, r)Bu(r)) dWs

)
dr

=
∫ t

0

(t, r)Bu(r) − T (t − r)Bu(r) dr = Yt −

∫ t

0
T (t − r)Bu(r)dr

such that upon rewriting Yt = ∫ t0 T (t − s)N (Ys) dWs + ∫ t0 T (t − r)Bu(r) dr .
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Another important property of the homogeneous solution to (5.1) is that it sat-
isfies the homogeneous Markov property [24, Section 3.4]. Although the flow 
 is
time dependent as the SPDE is non-autononomous, there is an associated Cb-Markov
semigroup P(t) : Cb(X) → Cb(X) satisfying P(t) f (x) = E( f (
(s + t, s)x)) for
all s ≥ 0 and P(t + s) f = P(t)P(s) f .

TheCb-Feller property, i.e. P(t)mapsCb(X) again intoCb(X),will not be needed
in our subsequent analysis, but reflects the continuous dependence of the solution (5.1)
on initial data. We shall also use that the Cb-Markov semigroup can be extended to all
f for which the process is still integrable, i.e. f (
(t, s)x) ∈ L1(
, R) for arbitrary
s ≤ t and x ∈ X .

By applying the Markov property to the auxiliary functions fx,y defined as follows

〈

(T − t + s, s)∗x, BB∗
(T − t + s, s)∗y

〉

=
n∑

i=1

〈
(T − t + s, s)ψi , y〉 〈x,
(T − t + s, s)ψi 〉︸ ︷︷ ︸
=: fx,y(
(T−t+s,s)ψi )

with 0 ≤ t ≤ T , x, y ∈ X , and 0 ≤ s ≤ T − t , it follows by evaluating E( fx,y(
(T −
t + s, s)ψi )) at s = 0 and s = t that

E
〈

(T − t, 0)∗y, BB∗
(T − t, 0)∗x

〉 = E
〈

(T , t)∗y, BB∗
(T , t)∗x

〉
. (5.5)

In the following subsection, we introduce a generalized stochastic balanced trun-
cation framework for systems similar to the stochastic evolution equation (5.1).

5.2 Generalized stochastic balanced truncation

For an exponentially stable flow 
, we define the stochastic observability mapW and
reachability map R

W ∈ L(X , L2(
(0,∞),H)) with (Wx)(t, ω) := C
(t, ω)x and

R ∈ HS(L2(
(0,∞), R
n), X) with R f := E

(∫

(0,∞)

n∑

i=1


(s)ψi 〈 f (s), êi 〉 ds
)

.

(5.6)

Remark 2 LetH 
 R
m, then each map x �→ 〈̂ei ,Wx〉 is a Carleman operator and by

the characterization of Carleman operators of Hilbert–Schmidt type [20, Theorem 6.4
(iii)] the operator W is a Hilbert–Schmidt operator as well.

We define stochastic observability O = W ∗W ∈ L(X) and reachability P =
RR∗ ∈ TC(X) gramians for all x, y ∈ X by

〈x,O y〉 = E

(∫ ∞

0
〈C
(t)x,C
(t)y〉 dt

)

〈x,P y〉 = E

(∫ ∞

0
〈B∗
(t)∗x, B∗
(t)∗y〉 dt

)
.

(5.7)
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To obtain a dynamical interpretation of the gramians, let us recall that for compact
self-adjoint operators K : X → X , we can define the (possibly unbounded) Moore–
Penrose pseudoinverse as

K # : ran(K ) ⊕ ran(K )⊥ ⊂ X → X such that K #x :=
∑

λ∈σ(K )\{0}
λ−1〈x, vλ〉vλ

using any orthonormal eigenbasis (vλ)λ∈σ(K ) associated with eigenvalues λ of K .
Then, for any time τ > 0 one defines the input energy Eτ

input : X → [0,∞] and
output energy Eτ

output : X → [0,∞] up to time τ as

Eτ
input(x) := inf

u∈L2((0,∞),Rn);E(Yτ (u))=x

∫ τ

0
‖u(t)‖2 dt and

Eτ
output(x) := ‖C
x‖2L2(
(0,τ ),H)

,

(5.8)

where Yt is the variation of constants process of the flow defined in (5.4). In particular,
the expectation value E(Yτ (u)) appearing in the definition of the input energy is a
solution to the deterministic equation

ϕ′(t) = T (t)ϕ(t) + Bu(t), ϕ(0) = 0, (5.9)

where u ∈ L2((0,∞), R
n) is a deterministic control. The theory of linear systems

implies that x is then reachable, by the dynamics of (5.9), after a fixed finite time
τ > 0 if x ∈ ranPdet

τ where Pdet
τ is the time-truncated deterministic linear gramian

which for x, y ∈ X is defined as

〈x,Pdet
τ y〉 :=

∫ τ

0
〈B∗T (s)∗x, B∗T (s)∗y〉 ds.

The control, of minimal L2 norm, that steers the deterministic system (5.9) into state
x after time τ is then given by u(t) = 1[0,τ ](t)B∗T (τ − t)∗

(
Pdet

τ

)#
x . We also

define time-truncated stochastic reachability and observability gramians Pτ and Oτ

for x, y ∈ X

〈x,Pτ y〉 = E

(∫ τ

0
〈B∗
(t)∗x, B∗
(t)∗y〉 dt

)
and

〈x,Oτ y〉 = E

(∫ τ

0
〈C
(t)x,C
(t)y〉 dt

)
.
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An application of the Cauchy–Schwarz inequality shows that ker(Pτ ) ⊂ ker(Pdet
τ )

and thus ran(Pdet
τ ) ⊂ ran(Pτ ) :

〈x,Pdet
τ x〉 =

∫ τ

0

∥∥B∗T (t)∗x
∥∥2 dt =

∫ τ

0

∥∥E(B∗
(t, 0)∗x)
∥∥2 dt

≤ E

∫ τ

0

∥∥B∗
(t, 0)∗x
∥∥2 dt = 〈x,Pτ x〉.

Since for τ1 > τ2 : ker(Pτ1) ⊂ ker(Pτ2), it also follows that ran(Pτ2) ⊂ ran(Pτ1).

Then, one has, as for finite-dimensional systems [19, Prop. 3.10], the following bound
on the input energy (5.8):

Lemma 5.2 Let x be a reachable by the flow defined in (5.9) and x ∈ ran(Pτ ) then

Eτ
input(x) =

〈
x,
(
Pdet

τ

)#
x

〉
≥ 〈x,P#

τ x〉.

The output energy of any state x ∈ X satisfies

Eτ
output(x) = 〈x,Oτ x〉 ≤ 〈x,Ox〉 .

Proof The representation of the output energy is immediate from the definition of the
(time-truncated) observability gramian. For the representation of the input energy, we
have by assumption x ∈ ran(Pdet

τ ) ∩ ran(Pτ ). Consider then functions

u(t) := B∗T (τ − t)∗
(
Pdet

τ

)#
x and v(t) := B∗
(τ, t)∗P#

τ x .

Hence, we find since x = Pdet
τ

(
Pdet

τ

)#
x = PτP#

τ x

E

∫ T

0
〈v(s), u(s) − v(s)〉Rn ds = 0,

which implies the claim on the (time-truncated) reachability gramian

〈
x,
(
Pdet

τ

)#
x

〉
= E

∫ t

0
‖u(s)‖2

Rn ds

= E

∫ t

0
‖v(s)‖2

Rn ds + E

∫ t

0
‖u(s) − v(s)‖2

Rn ds

≥
〈
x, P#

τ x
〉
.

��
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Remark 3 (Reachability concept) Apart from the energy concept discussed above,
interesting ideas relating the eigendecomposition of the reachability gramian to the
set of reachable states have been recently presented in [25, Sec.3] and apply to infinite-
dimensional systems as well.

Definition 5.3 The stochastic Hankel operator is defined as

H ∈ HS
(
L2(
(0,∞), R

n), L2(
(0,∞),H)
)
such that (H f )(t, ω) = (WR f )(t, ω).

(5.10)
By Remark 2, the Hankel operator is trace class if H 
 R

m for some m ∈ N.

From standard properties of the stochastic integral, it follows that the expectation
value of the solutionE(Zt ) orE(CZt ) to (5.17) is just the solution ϕ orCϕ to the linear
and deterministic equationϕ′(t) = Aϕ(t)+BEu(t).Wecan then showProposition 1.3
which extends this analogy between stochastic and linear systems to the error bounds
for deterministic controls:

Proposition 1.3 Let (en) and ( fn) be orthonormal systems in L2((0,∞), R
n) and

L2((0,∞), R
m), then they are also orthonormal in L2(
(0,∞), R

n) and L2(
(0,∞),

R
m).
Let qk(x) := 〈̂ek,Cx〉Rm and g(σ ) := �(E (C
(σ)B)) ∈ R

m×n . From the defi-
nition of the trace norm (1.6) and the semigroup property, it follows that

‖�(H)‖TC ≥
∑

i∈N
|〈 fi ,�(H)ei 〉| =

∑

i∈N

∣∣∣∣
∫

R
2
>0

m∑

k=1

�

(∫


2
〈 fi (s), êk〉

〈
êk ,C
(s, ω′)
(t, ω)Bei (t)

〉
dP(ω′)dP(ω)

)
ds dt

∣∣∣∣

=
∑

i∈N

∣∣∣∣∣∣

∫

R
2
>0

n∑

j=1

m∑

k=1

〈 fi (s), êk〉 �
(
E((P(s)qk)(
(t)ψ j ))

) 〈̂e j , ei (t)〉 ds dt
∣∣∣∣∣∣
.

Then, by the semigroup property of the time-homogeneous Markov process it fol-
lows that

E((P(s)qk)(
(t)ψ j )) = (P(t)P(s)qk)(ψ j ) = (P(t + s)qk)(ψ j )

and thus

‖�(H)‖TC ≥
∑

i∈N

∣∣∣∣∣∣

∫

(0,∞)2

n∑

j=1

〈
fi (s),�(CP(s + t)ψ j )〈ei (t), ê j 〉

〉
Rm ds dt

∣∣∣∣∣∣

=
∑

i∈N

∣∣∣∣
∫

(0,∞)2
〈 fi (s),� (E (C
(s + t)B)) ei (t)〉Rm ds dt

∣∣∣∣

=
∑

i∈N

∣∣∣∣
∫

(0,∞)2
〈 fi (s), g(s + t) ei (t)〉Rm ds dt

∣∣∣∣ .
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The standard estimate for linear systems [22, Theorem 2.1] implies then

‖g‖L1((0,∞),L(Rn ,Rm )) ≤ 2 ‖�(H)‖TC .

By homogeneity of the Markov semigroup and Young’s inequality, we find

‖E�(CY•(u))‖L p((0,∞),Rm ) ≤
∥∥∥∥
∫

(0,•)
‖� (E(C
(• − s)B)) u(s)‖Rm ds

∥∥∥∥
L p((0,∞),R)

≤
∥∥∥∥
∫

(0,∞)

∥∥1(0,∞)(• − s)� (E(C
(• − s)B))
∥∥L(Rn ,Rm )

∥∥1(0,∞)(s)u(s)
∥∥
Rm ds

∥∥∥∥
L p((0,∞),R)

≤
∥∥∥
∥∥1(0,∞)� (E(C
B))

∥∥L(Rn ,Rm )
∗ ∥∥1(0,∞)u

∥∥
Rn

∥∥∥
L p((0,∞),R)

≤ ‖g‖L1((0,∞),L(Rn ,Rm ))
‖u‖L p((0,∞),Rn) ≤ 2 ‖�(H)‖TC ‖u‖L p((0,∞),Rn) .

��
While the error bound in Proposition 1.3 relied essentially on linear theory, our

next estimate in Theorem 3 bounds the expected error. The proof strategy resembles
the proof presented for bilinear systems in Lemma 4.2. We start, as we did for bilinear
systems, by introducing the Volterra kernels of the stochastic Hankel operator.

Definition 5.4 The Volterra kernel of the stochastic Hankel operator is defined as

h((s, ω), (t, ω′)) := C
(s, ω)
(t, ω′)B

and the compressed Volterra kernel is h(s, ω) := C
(s, ω)B.

Proof of Theorem 3 We will show that the difference of compressed Volterra kernels
h of the two systems satisfies

∫ ∞

0

∥∥�(h(v, •))
∥∥
L2(
,HS(Rn ,Rm ))

dv ≤ 2 ‖�(H)‖TC(L2(
(0,∞),R
n),L2(
(0,∞),R

m )) .

(5.11)
We start by showing how (5.11) implies (1.5)

sup
t∈(0,∞)

E ‖�(CYt (u))‖Rm ≤ sup
t∈(0,∞)

∫

(0,t)
E ‖�(C
(t, s)B) u(s)‖Rm ds

≤ sup
t∈(0,∞)

∫

(0,t)

(
E ‖� (C
(t, s)B)‖2L(Rn ,Rm )

)1/2 (
E ‖u(s)‖2

Rn

)1/2
ds

≤
∫

(0,∞)

(
E ‖�(C
(t)B)‖2L(Rn ,Rm )

)1/2
dt ‖u‖H(0,∞)

2 (Rn )

≤ 2 ‖�(H)‖TC ‖u‖H(0,∞)
2 (Rn )

.

Thus, it suffices to verify (5.11). Let Z := L2 (
, R
m) ⊗ L2 (
, R

n). The indepen-
dence assumption in the theorem has been introduced for

∥∥�(h((s, •), (t, •′)))
∥∥
Z = ∥∥�(h(s + t, •))

∥∥
L2(
,HS(Rn ,Rm ))

123



Mathematics of Control, Signals, and Systems (2019) 31 :5 Page 27 of 37 5

to hold. To see this, we consider an auxiliary function ξi (x1, x2) := (〈̂ei ,Cx1 −
C̃x2〉Rm

)2, where C and C̃ are the observation operators of the two systems. By the
independence assumption, there is again a Markov semigroup (P(t))t≥0 associated
with the time-homogeneous Markov process determined by the vector-valued flow
(�(t))t≥0 := (
(t), 
̃(t))t≥0 such that (P(t)ξi )(x1, x2) := E(ξi (
(s+t, s)x1, 
̃(s+
t, s)x2)). Let (ψ j ) j∈{1,...,n}, (ψ̃) j∈{1,...,n} be the vectors in X comprising the control
operators B and B̃, respectively. The semigroup property of (P(t))t≥0 implies then

∥∥�(h((s, •), (t, •′)))
∥∥2
Z

=
m∑

i=1

n∑

j=1

∫


×


ξi
(
�(s, ω)�(t, ω′)(ψ j , ψ̃ j )

)
dP(ω) dP(ω′)

=
m∑

i=1

n∑

j=1

E
(
P(s)ξi

(
�(t)(ψ j , ψ̃ j )

))

=
m∑

i=1

n∑

j=1

(P(t)P(s)ξi )(ψ j , ψ̃ j ) =
m∑

i=1

n∑

j=1

(P(s + t)ξi )(ψ j , ψ̃ j )

= ∥∥�(h(s + t, •))
∥∥2
L2(
,HS(Rn ,Rm ))

.

(5.12)

Let M be large enough such that 1
2

∫
(2M,∞)

∥∥�(h(v, •))
∥∥
L2(
,HS(Rn ,Rm ))

dv ≤ ε.

Then, consider the integral function defined for 0 < α/2 < x

G(x, α) := 1

α

∫ x+α/2

x−α/2
�(h(2s, •)) ds.

By Lebesgue’s differentiation theorem for Bochner integrals, this function converges
for x ∈ (0, M) pointwise on a set I ⊂ (0, M) of full measure to its integrand evaluated
at s = x as α ↓ 0. In particular, for any x ∈ I there is δx < min(x, M − x) such that
if 0 < α/2 ≤ δx then

∣∣∣∣
1

α

∫ x+α/2

x−α/2

∥∥�(h(2s, •))
∥∥
L2(
,HS(Rn ,Rm ))

ds − ∥∥�(h(2x, •))
∥∥
L2(
,HS(Rn ,Rm ))

∣∣∣∣

≤ 1

α

∫ x+α/2

x−α/2

∥∥�(h(2s, •) − h(2x, •))
∥∥
L2(
,HS(Rn ,Rm ))

ds ≤ ε/M .

(5.13)
Since�(h((s, •), (t, •′))) contains the products of two flows, the function�(h((x, •),

(x, •′))) is a.e. well defined on the diagonal. Then, there is a set J of full measure such
that every x ∈ J ⊂ (0, M) is a Lebesgue point of the Volterra kernel on the diagonal.
Thus, as for the condensed Volterra kernel above, there is also for the full Volterra
kernel some 0 < γx < min(x, M − x) such that if 0 < α/2 ≤ γx then
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1

α2

∫ x+α/2

x−α/2

∫ x+α/2

x−α/2

∥∥�(h((s, •), (t, •′))) − �(h((x, •), (x, •′)))
∥∥
Z ds dt ≤ ε/M .

(5.14)
This is due to Lebesgue’s differentiation theorem for Banach space-valued inte-

grands applied to the flows 
, 
̃ and the following estimate

1

α2

∫ x+α/2

x−α/2

∫ x+α/2

x−α/2

∥∥�
(
h((s, •), (t, •′))

)− �
(
h((x, •), (x, •′))

)∥∥
Z ds dt

≤ 1

α2

∫ x+α/2

x−α/2

∫ x+α/2

x−α/2

∥∥�
(
h((s, •), (t, •′))

)− �
(
h((s, •), (x, •′))

)∥∥
Z ds dt

+ 1

α2

∫ x+α/2

x−α/2

∫ x+α/2

x−α/2

∥∥�
(
h((s, •), (x, •′))

)− �
(
h((x, •), (x, •′))

)∥∥
Z ds dt

≤ ‖C‖ ‖B‖HS
α2

∫ x+α/2

x−α/2

∫ x+α/2

x−α/2
‖
(s)‖L2(
,L(X)) ‖
(t) − 
(x)‖L2(
,L(X)) ds dt

+ ‖C‖ ‖B‖HS
α2

∫ x+α/2

x−α/2

∫ x+α/2

x−α/2
‖
(s) − 
(x)‖L2(
,L(X)) ‖
(x)‖L2(
,L(X)) ds dt

+
∥∥C̃
∥∥ ∥∥B̃
∥∥
HS

α2

∫ x+α/2

x−α/2

∫ x+α/2

x−α/2

∥∥∥
̃(s)
∥∥∥
L2(
,L(X))

∥∥∥
̃(t) − 
̃(x)
∥∥∥
L2(
,L(X))

ds dt

+
∥∥C̃
∥∥ ∥∥B̃
∥∥
HS

α2

∫ x+α/2

x−α/2

∫ x+α/2

x−α/2

∥∥∥
̃(s) − 
̃(x)
∥∥∥
L2(
,L(X))

∥∥∥
̃(x)
∥∥∥
L2(
,L(X))

ds dt .

Consider then the family of intervals Ix := [x −min (δx , γx ) , x +min (δx , γx )] for
x ∈ I ∩ J . Lebesgue’s covering theorem [26, Theroem 26] states that, after possibly
shrinking the diameter of the sets Ix first, there exists an at most countably infinite
family of disjoint sets (Ixi )i∈N covering I ∩ J such that the Lebesgue measure of

I ∩ J ∩ (⋃i∈N Ixi
)C is zero. The additivity of the Lebesgue measure implies that

there are for every ε > 0 finitely many points x1, . . . , xn ∈ I ∩ J such that the set
I ∩ J ∩ (⋃n

i=1 Ixi
)C has Lebesgue measure at most ε . Thus, we have obtained finitely

many disjoint sets Ixi of total measure M − ε such that for 0 < αi/2 ≤ diam(Ixi )/2
both estimates (5.13) and (5.14) hold at x = xi where xi is the midpoint of Ixi .

For every i ∈ {1, . . . , n} fixed, we introduce the family of sesquilinear forms (Li )

Li : L2 (
, R
m)⊕ L2 (
, R

n)→ R

( f , g) �→
∫


2

〈
f (ω),�(h((xi , ω), (xi , ω

′)))g(ω′)
〉
Rm dP(ω) dP(ω′)

and for Z := L2 (
, R
m) ⊗ L2 (
, R

n) we can define a Hilbert–Schmidt operator of
unit HS-norm given by Qi : L2 (
, R

n) → L2 (
, R
m)

(Qiϕ)(ω) :=
∫




�(h((xi ,ω),(xi ,ω′)))
‖�(h((xi ,•),(xi ,•′)))‖Z ϕ(ω′) dP(ω′).

The singular value decomposition of Qi yields orthonormal systems fk,i ∈
L2 (
, R

m) , gk,i ∈ L2 (
, R
n) as well as singular values σk,i ∈ [0, 1] parameterized
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by k ∈ N. For any δ > 0, given there is N (δ) large enough such that

∥∥∥∥∥∥
�(h((xi ,•),(xi ,•′)))

‖�(h((xi ,•),(xi ,•′)))‖Z −
N (δ)∑

k=1

σk,i ( fk,i ⊗ gk,i )

∥∥∥∥∥∥
Z

< δ.

Thus, there are also fk,i ∈ L2 (
, R
m) and gk,i ∈ L2 (
, R

n) orthonormalized,
Ni ∈ N, and σk,i ∈ [0, 1] such that

∣∣∣∣∣∣

〈
�(h((xi ,•),(xi ,•′)))

‖�(h((xi ,•),(xi ,•′)))‖Z −
Ni∑

k=1

σk,i ( fk,i ⊗ gk,i ),�(h((xi , •), (xi , •′)))
〉

Z

∣∣∣∣∣∣

=
∣∣∣∣∣∣

∥∥�(h((xi , •), (xi , •′)))
∥∥
Z −

Ni∑

k=1

σk,i Li ( fk,i , gk,i )

∣∣∣∣∣∣
< ε/M .

(5.15)

Then, sk,i (s, ω) :=
√∣∣Ixi
∣∣−1

gk,i (ω)1Ixi
(s) and tk,i (s, ω) :=

√∣∣Ixi
∣∣−1

fk,i (ω)1Ixi
(s)

formorthonormal systems in L2
(

(0,∞), R

n
)
and L2

(

(0,∞), R

m
)
, respectively, both

in k and i , such that for Ii := 
Ixi
× 
Ixi

it follows that

〈tk,i ,�(H)sk,i 〉L2(
(0,∞),R
m)

= 1∣∣Ixi
∣∣

∫

Ii

〈
fk,i (ω),�(h((s, ω), (t, ω′)))gk,i (ω′)

〉
Rm dt ds dP(ω) dP(ω′).

(5.16)
Hence, we get

∣∣∣∣∣∣

n∑

i=1

⎛

⎝
Ni∑

k=1

σk,i 〈tk,i ,�(H)sk,i 〉L2(
(0,∞),R
m) −
∫

I 2xi

∥∥�(h(2xi ,•))
∥∥
L2(
,HS(Rn ,Rm ))∣∣Ixi
∣∣ ds dt

⎞

⎠

∣∣∣∣∣∣

≤
n∑

i=1

1∣∣Ixi
∣∣

∫

I 2xi

⎛

⎝

∣∣∣∣∣∣

Ni∑

k=1

σk,i
〈
gk,i ⊗ fk,i ,

(
�
(
h((s, •), (t, •′))

)− �(h((xi , •), (xi , •′)))
)〉
Z

∣∣∣∣∣∣

+
∣∣∣∣∣∣

Ni∑

k=1

σk,i Li ( fk,i , gk,i ) − ∥∥�(h((xi , •), (xi , •′)))
∥∥
Z

∣∣∣∣∣∣

+
∣∣∣∣∣∣

Ni∑

k=1

∥∥�(h((xi , •), (xi , •′)))
∥∥
Z − ∥∥�(h(2xi , •))

∥∥
L2(
,HS(Rn ,Rm ))

∣∣∣∣∣∣

⎞

⎠ ds dt � ε.

The bound on the first term follows from (5.14) and
∥∥∥
∑Ni

i=1 σk,i gk,i ⊗ fk,i
∥∥∥
Z

≤ 1.

The bound on the second term follows from (5.15) and the third term is (5.12). We
then compute further that
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∣∣∣∣∣

n∑

i=1

(∫

I 2xi

∥∥�(h(2xi ,•))
∥∥
L2(
,HS(Rn ,Rm ))∣∣Ixi
∣∣ ds dt −

∫

2Ixi

∥∥�(h(v,•))
∥∥
L2(
,HS(Rn ,Rm ))

2 dv

)∣∣∣∣∣

≤
∣∣∣∣∣

n∑

i=1

(∫

I 2xi

∥∥�(h(2xi ,•))
∥∥
L2(
,HS(Rn ,Rm ))∣∣Ixi
∣∣ ds dt − ∣∣Ixi

∣∣ ∥∥�(h(2xi , •))
∥∥
L2(
,HS(Rn ,Rm ))

)∣∣∣∣∣

+
∣∣∣∣∣

n∑

i=1

(
∣∣Ixi
∣∣ ∥∥�(h(2xi , •))

∥∥
L2(
,HS(Rn ,Rm ))

−
∫

2Ixi

∥∥�(h(v,•))
∥∥
L2(
,HS(Rn ,Rm ))

2 dv

)∣∣∣∣∣ � ε

where we used (5.13) to obtain the second estimate. Combining the two preceding
estimates, the theorem follows from the characterization of the trace norm given in
(1.6). ��

Next, we study conditions under which convergence of flows implies conver-
gence of stochastic Hankel operators. Let (
i ) be a sequence of flows converging
in L2(
(0,∞),L(X)) to 
 andWi , Ri the observability and reachability maps derived
from 
i as in (5.6). For the observability map, this yields convergence in operator
norm

‖W − Wi‖2 = E

∫

(0,∞)

‖C(
 − 
i )(t)‖2L(X ,H) dt −−−→
i→∞ 0.

If H 
 R
m , then it follows by an analogous estimate that Wi converges to W in

Hilbert–Schmidt norm, too [20, Theorem 6.12(iii)].
For the reachability map, we choose an ONB (ek)k∈N of L2(
(0,∞), R) which we

extend by tensorization e jk := ek⊗ê j for j ∈ {1, . . . , n} to anONBof L2(
(0,∞), R
n).

Using this basis and an orthonormal basis ( fl)l∈N of X , it follows that

‖Ri − R‖2HS(L2(
(0,∞),R
n),X)

=
∑

l∈N

∑

k∈N

n∑

j=1

∣∣∣∣∣

∫


(0,∞)

〈
fl , (
 − 
i )(t)(ω)ψ j

〉
X ek(t)(ω) dt dP(ω)

∣∣∣∣∣

2

=
∑

l∈N

n∑

j=1

∫


(0,∞)

∣∣〈 fl , (
 − 
i )(t)(ω)ψ j
〉
X

∣∣2 dt dP(ω)

=
n∑

j=1

∫


(0,∞)

∥∥(
 − 
i )(t)(ω)ψ j
∥∥2
X dt dP(ω) −−−→

i→∞ 0.

As in the bilinear case, we obtain from this a convergence result for stochastic Hankel
operators:

Corollary 5.5 Let Hi denote the Hankel operators associated with flows
i converging
in L2(
(0,∞),L(X)) to 
. Then, the Hi converge in Hilbert–Schmidt norm to H

‖Hi − H‖HS ≤ ‖Wi − W‖ ‖Ri‖HS + ‖W‖ ‖Ri − R‖HS −−−→
i→∞ 0,
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and ifH 
 R
m, then the convergence is also in the sense of trace class operators

‖Hi − H‖TC ≤ ‖Wi − W‖HS ‖Ri‖HS + ‖W‖HS ‖Ri − R‖HS −−−→
i→∞ 0.

In particular, all singular values of Hi converge to the singular values of H [21,
Corollary 2.3] and, if the respective singular values non-degenerate, then the singular
vectors converge in norm as well (see the proof of Lemma 3.6).

To exhibit the connection between the model reduction methods for SPDEs and bilin-
ear systems, we finally state a weak version of the stochastic Lyapunov equations
for real-valued Lévy noise as stated for finite-dimensional systems in [19, Eq. (14),
(22)]. Let (Lt ) be a square-integrable scalar Lévy process, then Mt := Lt − tE(L1)

is a square-integrable centred martingale [19, Theorem 2.7]. Its quadratic variation
measure satisfies d〈M, M〉t = E

(
M2

1

)
dt . Let (Xs) be an X -valued, predictable pro-

cess with
∫ T
0 ‖Xs‖2X d〈M, M〉s < ∞, then the stochastic integral is defined by the

unconditional convergent series
∫ t
0 Xs dMs := ∑k∈N

∫ t
0 〈Xs, ek〉 dMs ek where (ek)

is any ONB of X for t ∈ [0, T ] and the isometry formula

E

∥∥∥∥
∫ t

0
Xs dMs

∥∥∥∥
2

X
= E

∫ t

0
‖Xs‖2X d〈M, M〉s

holds [27, Def.6 and Prop.8]. Moreover, from the series representation it follows
from one-dimensional theory [19, Theorem 2.11] that

∫ T
0 Xs dMs is a martingale and

E
∫ T
0 Xs dMs = 0.

Consider n independent copies of such martingales (M ( j)
t ) j∈{1,...,n} and the control

operator B as before. We then study the stochastic evolution equation

dZt = (AZt + Bu) dt +
n∑

j=1

N j Zt dM
( j)
t , t > 0

Z0 = ξ

(5.17)

for ξ ∈ L2(
,F0, P, X), A the generator of a C0-semigroup (T (t)), and N j ∈ L(X).
Then, the homogeneous part of (5.17), i.e. without the control term Bu, defines a
unique predictable process Zhom

t := 
(t)ξ ∈ H(0,T )
2 [28, Def. 9.11, Theorem 9.15,

Theorem 9.29] with flow
 that satisfies the homogeneousMarkov property [28, Prop.
9.31 and 9.32] and

Zhom
t = T (t)ξ +

n∑

j=1

∫ t

0
T (t − s)N j Z

hom
s dM ( j)

s . (5.18)
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The adjoint equation to (5.17) shall be defined with initial condition Y0 = ξ as

dYt = (A∗Yt + Bu) dt +
n∑

j=1

N∗
j Yt dM

( j)
t , t > 0,

and the mild solution to the homogeneous part of this equation is

Y hom
t = T (t)∗ξ +

n∑

j=1

∫ t

0
T (t − s)∗N∗

j Y
hom
s dM ( j)

s . (5.19)

Let� be the flow of the adjoint equation such that Y hom
t := �(t)ξ , then the X -adjoint

of � satisfies the variation of constant formula

�(t)∗ξ = T (t)ξ +
n∑

j=1

∫ t

0
�(s)∗N jT (t − s)ξ dM ( j)

s .

For 
 being an exponentially stable flow in m.s.s. to (5.18), we then define another
observability gramian for (5.17) by

〈x,OLévyy〉 :=
∫ ∞

0
〈C�(t)∗x,C�(t)∗y〉 dt .

To see that OLévy coincides with the standard stochastic observability gramian (5.7)
O , it suffices to show that for all x ∈ X : E ‖C
(t)x‖2H = E ‖C�(t)∗x‖2H .Applying
Itō’s isometry, we obtain from (5.18) using sets �k(t) := {(s1, . . . , sk) ∈ R

k; 0 ≤
sk ≤ · · · ≤ s1 ≤ t}

E ‖C
(t)x‖2H = ‖CT (t)x‖2H +
n∑

i=1

E

(
M (i)(1)2

)
E

∫ t

0
‖CT (t − s1)Ni
(s1)x‖2H ds1

= ‖CT (t)x‖2H +
∞∑

k=1

n∑

i1,...,ik=1

k∏

j=1

E

(
M (i j )(1)2

)
·

·
∫

�k (t)

∥∥∥∥∥∥
CT (t − s1)

k−1∏

j=1

(
Ni j T (s j − s j+1)

)
Nik T (sk)x

∥∥∥∥∥∥

2

H

ds,
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whereas it follows from (5.19)

E
∥∥C�(t)∗x

∥∥2
H = ‖CT (t)x‖2H +

n∑

i=1

E

(
M (i)(1)2

)
E

∫ t

0

∥∥C�(s1)
∗Ni T (t − s1)x

∥∥2
H ds1

= ‖CT (t)x‖2H +
∞∑

k=1

n∑

i1,...,ik=1

k∏

j=1

E

(
M (i j )(1)2

)

·
∫

�k (t)

∥∥∥∥∥∥
CT (sk)

1∏

j=k−1

(
Ni j+1T (s j − s j+1)

)
Ni1T (t − s1)x

∥∥∥∥∥∥

2

H

ds.

An inflection of the integration domain shows then that both expressions (and hence
the gramians) coincide.

Finally, the gramians satisfy the following Lyapunov equations for scalar Lévy-type
noise (cf. [19] for the finite-dimensional analogue):

Lemma 5.6 Let 
 be an exponentially stable flow in m.s.s. to (5.18) such that both
gramians exist. Let x1, y1 ∈ D(A∗) and x2, y2 ∈ D(A), then

〈x1, BB∗y1〉 + 〈A∗x1,P y1〉 + 〈x1,PA∗y1〉 +
n∑

j=1

〈N∗
j x1,PN∗

j y1〉 E(M ( j)(1)2) = 0 and

〈x2,C∗Cy2〉 + 〈Ax2,O y2〉 + 〈x2,OAy2〉 +
n∑

j=1

〈N j x2,ON j y2〉 E(M ( j)(1)2) = 0.

Proof For every i ∈ {1, . . . , n}, there is a weak formulation of the homogeneous
solution to (5.17) [28, Theorem 9.15]

〈
(t)ψi , x1〉 = 〈ψi , x1〉 +
∫ t

0
〈
(s)ψi , A

∗x1〉 ds +
n∑

j=1

∫ t

0
〈
(s)ψi , N

∗
j x1〉 dM ( j)

s .

Stochastic integration by parts yields after summing over i ∈ {1, . . . , n}

〈
(t)∗x1, BB∗
(t)∗y1〉 = 〈x1, BB∗y1〉 +
n∑

i=1

∫ t

0
〈
(s)ψi , x1〉− d〈
(s)ψi , y1〉

+
n∑

i=1

∫ t

0
〈
(s)ψi , y1〉− d〈
(s)ψi , x1〉 +

n∑

i=1

〈〈x1,
(t)ψi 〉, 〈
(t)ψi , y1〉〉t

where the subscript − indicates left limits.
From the quadratic variation process [19, Eq.(8)]

n∑

i=1

E〈〈x1,
(t)ψi 〉〉t =
n∑

j=1

E

(∫ t

0
〈
(s)∗N∗

j x1, BB
∗
(s)∗N∗

j x1〉 ds
)

E(M ( j)(1)2),
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we obtain together with the martingale property of the stochastic integral

E
(〈
(t)∗x1, BB∗
(t)∗y1〉

) = 〈x1, BB∗y1〉 + E

(∫ t

0
〈
(s)∗A∗x1, BB∗
(s)∗y1〉 ds

)

+ E

(∫ t

0
〈
(s)∗x1, BB∗
(s)∗A∗y1〉 ds

)

+
n∑

j=1

E

(∫ t

0
〈
(s)∗N∗

j x1, BB∗
(s)∗N∗
j y1〉 ds

)
E

(
M ( j)(1)2

)
.

Letting t tend to infinity, we obtain the first Lyapunov equation as by exponential
stability limt→∞ E (〈x1,
(t)ψi 〉 〈
(t)ψi , y1〉) = 0.

The second Lyapunov equation can be obtained by an analogous calculation: Let
x0 ∈ X be arbitrary, then we study the evolution for initial conditions

√
C∗Cx0 in the

weak sense of the adjoint flow

〈
�(t)

√
C∗Cx0, x2

〉
=
〈√

C∗Cx0, x2
〉
+
∫ t

0

〈
�(s)

√
C∗Cx0, Ax2

〉
ds

+
n∑

j=1

∫ t

0

〈
�(s)

√
C∗Cx0, N j x2

〉
dM ( j)

s .

Proceeding as before, stochastic integration by parts yields

E

(〈
x2, �(t)

√
C∗Cx0

〉 〈
�(t)

√
C∗Cx0, y2

〉)
=
〈
x2,

√
C∗Cx0

〉 〈√
C∗Cx0, y2

〉

+ E

(∫ t

0

〈√
C∗C�(s)∗Ax2, (x0 ⊗ x0)

√
C∗C�(s)∗y2

〉
ds

)

+ E

(∫ t

0

〈√
C∗C�(s)∗x2, (x0 ⊗ x0)

√
C∗C�(s)∗Ay2

〉
ds

)

+
n∑

j=1

E

(∫ t

0

〈√
C∗C�(s)∗N j x2, (x0 ⊗ x0)

√
C∗C�(s)∗N j y2

〉
ds

)
E(M ( j)(1)2).

Using Parseval’s identity, i.e. summing over an orthonormal basis replacing x0, yields
after taking the limit t → ∞ the second Lyapunov equation. ��
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Appendix A: Volterra series representation

Lemma A.1 Consider controls ‖u‖L2((0,∞),(Rn ,‖•‖∞)) <
√
2ν

M	
, an exponentially stable

C0-semigroup ‖T (t)‖ ≤ Me−νt with ν > 0, and 	 := ∑n
i=1 ‖Ni‖. Then, for such

control functions the Volterra series

ζ(t) :=
∞∑

m=0

ζm(t) (A.1)

defined recursively by

ζ0(t) := T (t)ϕ0, ζ1(t) :=
∫ t

0
T (t − s)

(
n∑

i=1

ui (s)Niζ0(s) + Bu(s)

)
ds

ζk(t) :=
∫ t

0
T (t − s)

n∑

i=1

ui (s)Niζk−1(s) ds for k ≥ 2

converges uniformly on (0,∞) and the solution is given by the Volterra series ζ (A.1).

Proof For all k ≥ 2, we obtain recursively an exponentially decreasing bound

‖ζk‖L∞ ≤ sup
t>0

∫ t

0
Me−ν(t−s)	 ‖u(s)‖(Rn ,‖•‖∞) ds ‖ζk−1‖L∞

≤ M	

√

sup
t>0

1 − e−2tν

2ν
‖u‖L2((0,∞),(Rn ,‖•‖∞)) ‖ζk−1‖L∞

= M	√
2ν

‖u‖L2((0,∞),(Rn ,‖•‖∞))

︸ ︷︷ ︸
<1

‖ζk−1‖L∞ .

Thus, (A.1) is an absolutely convergent series. To see that ζ and the mild solution
coincide, it suffices to verify that the Volterra series (A.1) satisfies (1.2). ��

Appendix B: the composite error system

The construction of an auxiliary error system can be found, for example, also in [6],
and repeated here to explain how to actually compute error bounds derived in this
article. Consider two systems on Hilbert spaces X and Xr with operators

N ∈ L(X), A : D(A) ⊂ X → X , C ∈ L(X ,H), B ∈ L(Rn, X), and

Nr ∈ L(Xr ), Ar : D(A) ⊂ Xr → Xr , Cr ∈ L(Xr ,H), Br ∈ L(Rn, Xr ).

(B.1)
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For instance, the system on X can be thought of as the full system and the system on
Xr as the reduced system. One can then define a composite error system on the direct
sum of Hilbert spaces X = X ⊕ Xr with the same input space R

n and output spaceH

C = (C,−Cr ), N =
(
N 0
0 Nr

)
A =
(
A 0
0 Ar

)
, and B = (B, Br ). (B.2)

If the composite system satisfies then the stability assumption, one can then compute
to the above composite error system (B.2) again an observability and reachability
gramian O and P. Moreover, to the above system there exists an associated Hankel
operator which is precisely the difference of the Hankel operators of the two systems,
i.e.

H = WR =
〈(

W
−Wr

)
,

(
R
Rr

)〉
= H − Hr = �(H). (B.3)

Let σi :=
√

λi (OP) be the Hankel singular values of the composite error system
indexed by some i ∈ I , then it follows from the unitary invariance of the trace norm
that ‖�(H)‖TC = ∥∥H∥∥TC =∑i∈I σi .
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