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Abstract
This paper shows that within the space of all LTI systems, equipped with the Zariski
topology, the set of impulse controllable systems contains an open dense set of systems;
in other words, impulse controllable systems are generic. This genericity persists for
many closed subsets of LTI systems of interest, such as the class of singular descriptor
systems.
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1 Introduction

This paper studies initial value problems for under-determined linear time-invariant
systems described by differential-algebraic equations (DAE). The trajectories of the
system are defined for t � 0, driven by the initial value at t = 0−. As the system
is under-determined, and therefore non-autonomous, there are several possible trajec-
tories satisfying the same initial value, some of which could be impulsive at t = 0,
i.e. have singular support at t = 0. An important control problem for such systems is
to determine an input which eliminates such impulses in its response, and to further
determine whether a feedback controller could implement such elimination. If this is
possible, then the system is said to be impulse controllable.
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These questions were first posed for singular descriptor state space systems
described by

Eẋ = Ax + Bu,

for instance, see [3] for an exposition. In this work, Dai’s focus is on descriptor
systems defined by so-called regular pencils, whereas we include those defined by
singular pencils as well. The problem of impulses due to initial values was viewed as
an ‘inconsistency’ in the initial conditions. A comprehensive solution to the problem
of eliminating these impulses was provided in [7,12] and then in [2], in terms of
necessary and sufficient conditions on the matrices E, A and B. The implementation
of eliminating impulses by feedback controllers was also investigated in this work.
More about work in this area can be found in the recent survey paper [1].

A vast generalisation of Kalman’s state space theory was developed byWillems and
summarised in [13]. In this paradigm, a system is defined to be the collection of all its
possible trajectories, called its behaviour. These trajectories, those that could possibly
arise, are exactly the ones that obey the laws of the system. For example, in the case of
a descriptor system, the above equations of state are rewritten as Eẋ − Ax − Bu = 0,
and these equations are the laws that govern all the possible evolutions of x and u. All
these evolutions, considered together as one object, are the descriptor system, or its
behaviour. Additional laws imposed on the system, in the form of additional equations
relating x and u, would restrict this set of possible trajectories to a smaller subset,
namely those which satisfy these additional equations as well. A careful choice of the
additional equations would then result in a desired behaviour of the descriptor system,
the undesired trajectories having been ruled out by the imposition of additional laws.
This is precisely Willems’ behavioural generalisation of the notion of control.

With this interpretation, Willems generalised state space theory further, by con-
sidering systems whose laws are more general DAEs, of possibly higher order. In
this larger framework, the study of impulsive solutions in higher-order systems, and
of their elimination, has been pursued in [5,11]. More recently, in [4], the notion of
impulse controllability has also been generalised and conditions deduced for higher-
order systems to be impulse controllable.

In this paper, we work in the above general framework. Here we address issues
which arise because the equations describing a system involve parameters which can
only be approximately determined. For this reason, it is important to study the persis-
tence of system properties due to perturbations of these parameters [10]. These ideas
go back to Pontryagin’s theory of structural stability for autonomous systems. Thus,
we first formulate a notion of perturbation (following [9]) and then determine whether
impulse controllability is robust with respect to these perturbations.

We illustrate the nature of the problemwith the following elementary example from
power electronics.

Example 1.1 Consider the following RLC circuit, which is a substantial simplification
of the DC-DC buck-boost converter.

Closing the switch in the circuits in Fig. 1 can cause sparking and damage. This occurs
because of a so-called inconsistency in the initial conditions: this is defined later below.
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Fig. 1 RLC circuit: a simplified boost converter

The control problem is to prevent this sparking. The system equations for the circuit
in Fig. 1a are:

⎡
⎣
C1

d
dt + 1

R 1 −1 0
−1 L d

dt 0 0
1 0 0 −1

⎤
⎦

⎡
⎢⎢⎣

vC
iL
i
v

⎤
⎥⎥⎦ = 0, (1)

whose input is v, often a constant DC source.
In the unforced case, i.e. when the external input v = 0, we obtain the circuit in

Fig. 1b and this is described by the equations:

⎡
⎣
C1

d
dt + 1

R 1 −1
−1 L d

dt 0
1 0 0

⎤
⎦

⎡
⎣

vC
iL
i

⎤
⎦ = 0. (2)

In this case, the system contains impulsive solutions. However, with nonzero inputs,
the original system i.e. Fig. 1a, described by Eq. (1), is impulse controllable; namely,
for every initial condition, there exists an input v for which the solution is free of
impulses.

We next consider the case when the input v is a feedback of the current i , for
example the circuit in Fig. 1c with a capacitor C2 as shown. This system is described
by the equations:

⎡
⎢⎢⎣

C1
d
dt + 1

R 1 −1 0
−1 L d

dt 0 0
1 0 0 −1
0 0 1 C2

d
dt

⎤
⎥⎥⎦

⎡
⎢⎢⎣

vC
iL
i
v

⎤
⎥⎥⎦ = 0. (3)

This system, now autonomous, still has impulsive solutions and is not impulse con-
trollable. ��

The rest of the paper is organised as follows: In Sect. 2, we recall results on impulse
controllability. In Sect. 3, we equip the set of all LTI systems with a topology with
respect to which we study perturbations of a system. Section 4 contains the main
results of this paper, which include robustness results for singular descriptor systems
also. Finally, we use the above example to explain these results.
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2 Preliminaries

Central to the study of impulse controllability is the space F in which we locate
solutions to a differential equation with initial conditions. We construct it as follows.

For every ε > 0, defineFε to be the set of distributions on (−ε,∞)whose singular
support is contained in {0}. Thus, an element in Fε is an infinitely differentiable
function on (−ε, 0) ∪ (0,∞), but not necessarily so in any neighbourhood of 0.
We define an equivalence relation ∼ on the disjoint union

⊔
ε>0 Fε as follows: two

elements f1 ∈ Fε1 and f2 ∈ Fε2 are equivalent if there exists an ε > 0, less than both
ε1 and ε2, such that f1|(−ε,∞) = f2|(−ε,∞). The space F is the set {⊔ε>0 Fε/ ∼} of
all equivalence classes. We differentiate an element in F by differentiating any one
of its representatives (in the distributional sense). The derivative is well defined and
belongs to F . Differentiation equips F with the structure of a module over the ring
A = C[ d

dt ] of ordinary differential operators.
In this paper, we study systems defined as the kernel of an operator of the type

M

(
d

dt

)
: Fk → F�, � � k

where M( d
dt ) ∈ M�,k , the set of all � × k matrices with entries from the ring A. Such

operators are precisely the linear, shift invariant and support decreasing operators,
which we abbreviate to differential operators henceforth. Singular descriptor state
space systems are thus a special case of our study.

We next recall the definition of impulse controllability; it requires the notions of a
statemap, the set of initial conditions, and that of the consistency of an initial condition.

Given the differential operator M( d
dt ) ∈ M�,k , we construct a differential operator

XM ( d
dt ), called its state map, by the shift-and-cut method of [8].

Define σ : A → A by σ
(
c0 + c1

d
dt + · · · + cr+1

dr+1

dtr+1

)
= c1 + · · · + cr+1

dr

dtr .

Higher-order actions σ i of σ are defined recursively. The action σ(M( d
dt )) on a

differential operator M( d
dt ) is defined by the action of σ on each of its entries.

Suppose n is the highest degree amongst the entries in M( d
dt ). Then, its state map,

XM ( d
dt ), is the operator obtained by stacking σ(M( d

dt )), σ
2(M( d

dt )), . . . , σ
n(M( d

dt ))

into a column and then retaining only those rows which form a basis, as a C-vector
space, for the row span of this tall matrix. Let the number of these rows of XM ( d

dt ) be
denoted by �X .

The map obtained by the above procedure (i.e. shift and cut, followed by retaining
those rows which form a basis) that maps an operator M( d

dt ) ∈ M�,k to the operator

XM ( d
dt ) ∈ M�X ,k is called the canonical state map.

Now define the set SX (M) ⊆ C
�X by

SX (M) =
{(

XM

(
d
dt

)
f

)

t=1
| f ∈ Fk

}
. (4)
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The set SX (M) is1 the space of all initial conditions.
An element α ∈ SX (M) is said to be a consistent initial condition if there exists an

L1
loc representative of f ∈ Fk such that α =

(
XM ( d

dt ) f
)
t=0− .

Definition 2.1 The system defined by the kernel of M( d
dt ) : Fk → F� is said to be

impulse controllable if every element in the space of initial conditions SX (M), con-
structed from the corresponding canonical state map, is a consistent initial condition.

We now point out an important difference between the systems defined above and
those systemswhose trajectories are functions or distributions on the entire real line (for
instance Willems [13]). In the latter case, the object of importance is not the operator
M( d

dt ) itself, but the A-submodule M of Ak generated2 by the � rows of M( d
dt ). Thus,

two operators whose rows generate the same submodule of Ak define the same system
and are hence equivalent. However, in the context of initial value problems that we
study in this paper, operators whose rows generate the same submodule need not define
the same system, due to differences in their impulsive responses to initial conditions.
Thus, we need a different notion of equivalence, and for the purposes of this paper we
use the following definition.

Definition 2.2 Differential operators M( d
dt ) and N ( d

dt ) in M�,k are equivalent over

F if there exists an invertible matrix C ∈ C
�×� such that N ( d

dt ) = CM( d
dt ).

We denote the set of these equivalence classes by S�,k := (M�,k/ ∼), where, to
emphasise, the equivalence∼ is given by left multiplication by GL�(C) as in the above
definition and not by the action of a general unimodular matrix in GL�(A) (for the
reason that we have noted above).

Formally, we define a system to be an element of S�,k , and any operator in its
equivalence class is a representation of it.

A more general notion of equivalence over the space F has been studied in [6],
which involves the concept of zeros of a polynomial matrix at infinity (see below).
This notion of equivalence is dependent on the specific degrees of the entries in the
two matrices, but since in this paper we work with families of systems of arbitrary
degree, we use instead the above stronger definition of equivalence. This definition is
consistent with our study of initial value problems, because two differential operators
whose rows span the sameC-subspace ofM�,k define the same system over the space
F . Thus, while the rows of the differential operator need not be A-independent, in
view of the above definition we can, and do, assume that they are C-independent. We
also assume always that � � k, i.e. in this paper, we restrict our study to systems which
are under-determined.

We now state a result for a class of systems to be impulse controllable. This notion
is the ability to eliminate impulses in the system by using appropriate inputs, and it

1 By shift invariance, the choice of t = 1 above is not important, any t 
= 0 suffices. We use the value(
XM ( d

dt ) f
)
t=1

as an initial value of a potential solution f to M( d
dt ), i.e. for limt↗0 f (t).

2 Indeed, the kernel of the operator M( d
dt ) : (D′)k → (D′)� is isomorphic to HomA(Ak/M, D′), the

module of homomorphisms from Ak/M to the space of distributions D′, for instance [9].
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has been shown to be equivalent to the elimination of impulses by feedback control
[2,4]. The result is formulated using the following notion of zeros at infinity.

Let M( d
dt ) ∈ M�,k , and suppose that δi is the maximum degree of all the i × i

minors of M( d
dt ) (the degree of the 0 operator in A is defined to be−∞). Then, M( d

dt )

is said to have no zeros at infinity if each of the following �−1 inequalities is satisfied:

δ1 � δ2 � · · · � δ�−1 � δ�. (5)

Remark 2.1 Suppose that the above chain of inequalities is satisfied by M( d
dt ) and that

δ� = −∞. Then, δ1 is also equal to −∞, and so M( d
dt ) is the 0 operator. Hence, we

may always assume that if M( d
dt ) satisfies Eq. (5), then δ� � 0. By Proposition 3.1 of

[9], this is equivalent to asserting that the rows of M( d
dt ) are A-independent.

We next observe that if a nonzero M( d
dt ) satisfies Eq. (5), then so does any differ-

ential operator N ( d
dt ) equivalent to it in the sense of Definition 2.2.

Clearly, δ� of one operator equals that of any other equivalent one, for the maximal
minors of one are equal to the corresponding maximal minors of the other multiplied
by the determinant of an element in GL�(C). By the above remark, this δ� � 0. Fur-
thermore, the rows of one operator are C-linear combinations of the rows of the other.
Thus, in order to establish our observation, it suffices to assume that if r1, r2, . . . , r�
are the rows of M( d

dt ), then the first row of N ( d
dt ) equals c1r1 + c2r2 + · · · + c�r�

(where the ci are in C), and that its other rows are again r2, . . . , r�. It now follows
that c1 
= 0, for otherwise, all the � × � minors of N ( d

dt ) would be 0, and its δ� would
equal −∞, a contradiction. By multi-linearity of the determinant, the i × i minors
which involve the first row of N ( d

dt ) are equal to the corresponding minors of M( d
dt )

multiplied by c1. The other minors of N ( d
dt ), not involving the first row, are of course

identical to the corresponding minors of M( d
dt ). Hence, the corresponding δi of the

two differential operators are equal for all i .
Thus, the chain of inequalities in Eq. (5) descends to equivalence classes of differ-

ential operators, i.e. to S�,k . On the other hand, elementary examples show that left
multiplication by an element in GL�(A) does not necessarily preserve the chain of
inequalities in Eq. (5).

The following result from [4, Theorem 5.5] provides a necessary and sufficient
condition for a subset of systems to be impulse controllable using the notion of zeros
at infinity defined just before Eq. (5).

Theorem 2.1 Consider the system described by M( d
dt ) ∈ M�,k . Suppose that its rows

are A-independent. Then, the system is impulse controllable if and only if M( d
dt ) has

no zeros at infinity.

We remarked above that we require the rows of M( d
dt ) to be only C-independent, and

not necessarily A-independent as in the statement of the above theorem.However, with
respect to the topology we impose on M�,k in the next section, the rows of a generic
matrix are in fact A-independent, and hence, the assumption in the above theorem is
generically satisfied (Remark 3.2).
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In the rest of the paper, we use the chain of inequalities in (5) to study impulse
controllability in families of systems. Specifically, we ask: given a family of systems,
how many of them are impulse controllable? Given an impulse controllable system,
do perturbations of it move it to other impulse controllable systems? Given a system
which is not impulse controllable, is it possible to perturb it to obtain one which is
impulse controllable?

3 Perturbations of LTI systems

As explained in the introduction, we wish to study the persistence of impulse con-
trollability under perturbations. Towards this, we need to first specify a notion of
perturbation, i.e. we need to specify when one system is close to another. We accom-
plish this by defining a topology on the set of all systems.

We consider under-determined systems described by k attributes; these attributes
are elements of the signal space F of distributions defined on [0,∞) whose singular
support is contained in {0} (as described in Sect. 2). Suppose that an LTI system is
determined by � laws, with � � k. It is then represented by the kernel of a differential
operator in M�,k whose � rows are precisely these laws. Two equivalent differential
operators (in the sense of Definition 2.1) define the same system, and thus, the set S�,k

of these systems is a quotient of M�,k . We first topologise M�,k and then equip S�,k

with the quotient topology. Let P : M�,k → S�,k be the quotient map.
We now describe the topology onM�,k . Let A(r) be the subset of A consisting of

differential operators of order at most r . We identify A(r) with the affine space Cr+1

by identifying p = c0 + c1
d
dt +· · ·+ cr

dr

dtr with the point (c0, c1, . . . , cr ) ∈ C
r+1. By

means of this identification, we carry over the Zariski topology3 of the affine space
C
r+1 to A(r). The topological space A(r) injects continuously into A(r+1) as aZariski

closed subspace by means of the map (c0+· · ·+cr
dr

dtr ) 
→ (c0+· · ·+cr
dr

dtr +0 dr+1

dtr+1 ).
Thus, {A(r), r � 0} is a directed system, and its (strict) direct limit, lim−→ A(r), is the
topological space of all differential operators, also denoted by A. In the notation of
the previous section, this is the construction of the Zariski topology onM1,1.

The construction of the topology in the general case is similar: an element M( d
dt ) ∈

M�,k(r), the set of � × k matrices whose entries are all in A(r), can be identified
with a point in the affine spaceC�k(r+1). Again, we carry over the Zariski topology on
C

�k(r+1) toM�,k(r) via this correspondence. The spaceM�,k(r) injects continuously
intoM�,k(r + 1) as a Zariski closed subset, and the (strict) direct limit, lim−→M�,k(r),
of the directed system {M�,k(r), r � 0}, is the spaceM�,k with the Zariski topology.
The quotient S�,k is equipped with the quotient topology, and we refer to it as the
Zariski topology on the set of systems with k attributes that are governed by � laws.

Remark 3.1 Suppose C is an invertible � × � matrix with coefficients in C, then the
endomorphism mC of M�,k(r) given by left multiplication by C is an isomorphism
of affine space for each r and hence an isomorphism of M�,k . Thus, if an element

3 We refer to any standard book on Algebra for definitions, for instance, D. Eisenbud: Commutative algebra
with a view towards algebraic geometry.
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M( d
dt ) belongs to an open subsetU , then CM( d

dt ) belongs to the open subsetmC (U ).
The notion of equivalence in M�,k then implies that P−1(P(U )) is also open and
hence that P : M�,k → S�,k is an open map. For each r , P induces an open map
P(r) : M�,k(r) → S�,k(r), whereby definition S�,k(r) is the set of systems defined
by operators of degree at most r .

The above construction of theZariski topologyonM�,k , and hence onS�,k , assumes
that a perturbation of a systemgoverned by � laws results again in a systemgoverned by
the samenumber �of laws.Wecould replace thiswith themore general assumption that
a perturbation of a system in S�,k could result in a system in S�′,k , where � � �′ � k.
We incorporate this by appending to the � rows of any differential operator representing
the system, the (�′ − �) × k matrix 0�′−�,k , whose every entry is the 0 operator in A.
The system defined by this enlarged differential operator is identical to the first, but
the differential operator representing it now is in M�′,k . Two equivalent operators in
M�,k remain equivalent in M�′,k after appending 0�′−�,k , and thus, this construction
descends to the quotient. In other words, the above injection ofM�,k inM�′,k induces
an injection S�,k ↪→ S�′,k , and we can thereby study perturbations of a system where
the number of its defining laws has increased.

Thus, we can consider the chain of inclusions

M1,k ↪→ · · · M�,k ↪→ M�+1,k · · · ↪→ Mk,k

and the corresponding chain

S1,k ↪→ · · · S�,k ↪→ S�+1,k · · · ↪→ Sk,k .

We observe thatM�,k embeds inM�+1,k as a Zariski closed subset and thus also S�,k

in S�+1,k . Hence, the topology we have defined implies that generically the number
of laws governing a system cannot decrease but can only increase. (This is analogous
to the statement that the number 0 can be easily perturbed to become nonzero, but
it is unlikely that a nonzero number, when perturbed, becomes 0.) We can therefore
either study perturbations of a system defined by � laws within the space of systems
all defined by � laws, i.e. withinM�,k , or study perturbations which result in �′ laws,
�′ > �, by studying the inclusion M�,k ↪→ M�′,k .

In this paper, we are concerned only with genericity questions or, in other words,
concerned about systems belonging to an open dense set. Hence, we confine ourselves
to the case where the number of laws defining a system remains constant under pertur-
bations, as the image of S�,k ↪→ S�+1,k is proper closed. In other words, in the space
of systems that are described by (�+1) laws, those systems that could be described by
a fewer number of laws are a Zariski closed subset, and those that need to be described
by (� + 1) laws are open dense.

We first collect a few elementary properties of these spaces.

Lemma 3.1 The map α : M�1,k ×M�2,k → M�1+�2,k , given by appending the rows
of an �2 × k matrix to the rows of an �1 × k matrix (entries in A), is an isomorphism.
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Proof The above map induces, for every r , a map α(r) : M�1,k(r) × M�2,k(r) →
M�1+�2,k(r). This map is the isomorphism C

�1k(r+1) × C
�2k(r+1) � C

(�1+�2)k(r+1),
and the lemma now follows. ��
Lemma 3.2 Let I = {i1, . . . , i�1} be a set of �1 indices between 1 and �, and J =
{ j1, . . . , jk1} a set of k1 indices between 1 and k. Let s : M�,k → M�1,k1 map an
� × k matrix with entries in A to its �1 × k1 submatrix determined by the indices I
and J . Then, s is continuous and open.

Proof The map s(r) : M�,k(r) → M�1,k1(r) induced by s, is continuous and open
for every r as it is a projectionC�k(r+1) → C

�1k1(r+1) of an affine space onto the affine
space given by a subset of its coordinates. Hence it follows that s is continuous and
open. ��
Lemma 3.3 Let det : Mi,i → A map a square matrix of size i with entries in A to its
determinant. This map is continuous. Hence, the set of differential operators satisfying
δi = 0 is a Zariski closed subset of Mi,i .

Proof The map det induces a map Mi,i (r) → A(ir) of affine spaces, which is
continuous with respect to the Zariski topology as it is given by algebraic operations.

��
Corollary 3.1 The subsetM∗

�,k of differential operators inM�,k which satisfy δ� � 0
is open dense.

Proof To say that δ� � 0 is to say that at least one maximal minor is nonzero. By the
above two lemmas, this is an open subset ofM�,k . ��
Remark 3.2 Theorem 2.1 requires the rows of the definingmatrix to be A-independent,
whereas systems over the signal space F are defined by matrix differential operators
whose rows can be assumed to be only C-independent. In other words, Theorem 2.1
is not applicable for every system in S�,k . However, as A-independence of the rows
of a differential operator is equivalent to the condition that at least one of its maximal
minors is nonzero (Remark 2.1), this subset of differential operators, namely M∗

�,k ,
is by the above corollary, a Zariski open subset of M�,k . Thus, Theorem 2.1 is valid
for this large class of systems. In what follows, our strategy of proof is to identify an
open dense subset in M∗

�,k using Theorem 2.1 and then to observe that this subset is
also open dense inM�,k .

The subset of differential operators in M∗
�,k whose entries are all of order at most

r is denotedM∗
�,k(r). These subsets are stable under our notion of equivalence (Def-

inition 2.1), and so define subsets of systems, denoted S∗
�,k and S∗

�,k(r), respectively.
They are Zariski open dense subsets of S�,k and S�,k(r).

Lemma 3.4 The spaces M∗
�,k and S∗

�,k are irreducible (i.e. they cannot be written as
the union of two proper closed subsets). Thus, nonempty open subsets in them are also
dense.
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Proof Suppose M�,k = C1 ∪ C2 is a decomposition where C1 and C2 are proper
closed subsets. Then, there is an r such that Ci ∩ M�,k(r), i = 1, 2 are both proper,
but as their union is all of M�,k(r), it follows that M�,k(r) is not irreducible. This
is a contradiction as M�,k(r) is isomorphic to the affine space C�k(r+1). As S�,k is a
quotient of an irreducible space, it is also irreducible. Since M∗

�,k is open in M�,k ,
the lemma now follows. ��

4 Genericity

We now prove a key result of the paper. We recall our standing assumption that our
discussion is about under-determined systems, i.e. � � k always.

Theorem 4.1 The set C�,k ⊂ S�,k of impulse controllable systems contains an open
dense set, i.e. impulse controllability is a generic property.

Proof We first show that the set B�,k of differential operators in M�,k that define
impulse controllable systems contains an open dense set, and to show it, we establish
this statement forM�,k(r), for every r � 0 (by definition of the direct limit topology on
M�,k). ByTheorem2.1, a systemdefined byM( d

dt ) ∈ M∗
�,k(r) is impulse controllable

if and only if the chain of inequalities (5) holds. We now show that there is an open
dense set inM�,k(r) for which δi = ir , 1 � i � � for every r � 0.

Define deti : M�,k(r) → A(ir) by mapping M( d
dt ) to the determinant of the

i × i submatrix given by the first i rows and columns. This map is continuous by
Lemmas 3.2 and 3.3. The set Ui of differential operators in A(ir) whose order is
equal to ir is open, as it is the complement of the closed subspace A(ir −1) of A(ir).
Clearly the image of deti intersects Ui , hence det

−1
i (Ui ) is nonempty and open, and

so open dense (as M�,k(r) is irreducible). Every differential operator in det−1
i (Ui )

satisfies δi = ir .
Consider the opendense subsetV = ⋂�

i=1 det
−1
i (Ui ) inM�,k(r); every differential

operator in it satisfies δi = ir for 1 � i � � and hence also satisfies the chain of
inequalities (5). Thus, the set of operators in V ∩M∗

�,k(r), all of which define impulse
controllable systems by Theorem 2.1, is open dense inM∗

�,k(r), for all r � 0. Hence,
B�,k contains an open dense subset ofM∗

�,k and so also an open dense subset ofM�,k .
The image P(B�,k) = C�,k in S�,k is clearly dense, and by Remark 3.1, this image

also contains an open subset of S�,k . This completes the proof of the theorem. ��
InWillems’ behavioural approach to dynamical systems [13], the notion of feedback

control is studied as a special case of the interconnection of two systems. We next ask
if the interconnection of two impulse controllable systems results in a system which
is also impulse controllable.

A system S ∈ S�,k is said to be the interconnection of systems S1 ∈ S�1,k and
S2 ∈ S�2,k for � = �1+�2, if a differential operator defining S is obtained by appending
the rows of an operator representing S1 to the rows of an operator representing S2.
This construction is easily seen to be independent of the choice of the representing
operators.
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Corollary 4.1 Let �1 + �2 = � � k. Then, there are open dense sets Ui ⊂ S�i ,k, i =
1, 2, such that the interconnection of any S1 ∈ U1 and any S2 ∈ U2 is impulse
controllable. Hence, the interconnection of two generic impulse controllable systems
is also impulse controllable.

Proof Let U (r) be the open dense subset ofM�,k(r) consisting of differential opera-
tors that define impulse controllable systems (guaranteed by the above theorem). By
Lemma 3.1, α−1(U ) is open in M�1,k(r) × M�2,k(r). Its projection to each factor
is open, as the projection of a product of affine spaces to a factor is an open map.
The images of these two open sets in S�i ,k(r), i = 1, 2, are open sets Ui (r) with the
property that the interconnection of any two from each of them is impulse controllable.
As this is true for every r , the corollary follows. ��

Wenowstudy persistence of the property of impulse controllability under structured
perturbations. By this, we mean the following: suppose T�,k ⊂ S�,k , and suppose the
allowed perturbations of a system in T�,k leaves it in T�,k . Such perturbations are
said to be structured. We ask if impulse controllability continues to remain generic;
in other words, does T�,k with the subspace topology contain an open dense set of
impulse controllable systems?This is equivalent to askingwhether P−1(T�,k) ⊂ M�,k

contains an open dense set (in the subspace topology).
For instance, suppose we allow only those perturbations of a system of degree r

which do not increase the degree; in other words, suppose T�,k equals S�,k(r). The
proof of Theorem 4.1 shows that impulse controllability is generic for this subset of
systems; indeed, the proof of genericity for S�,k required us to prove the claim first
for S�,k(r), for each r � 0.

The following proposition is elementary.

Proposition 4.1 Any open T�,k ⊂ S�,k is generically impulse controllable.

Proof The set C�,k ∩ T�,k of impulse controllable systems in T�,k contains an open
dense set since S�,k is irreducible. ��

From this proposition follows the next corollary.

Corollary 4.2 (Systems bounded below in degree)LetN�,k(ri, j ) ⊂ M�,k be the subset
of those differential operators whose (i, j)-th entry has degree at least ri, j , where
ri, j ∈ {−∞, 0, 1, 2 . . .}. Then, the set of systems P(N�,k(ri, j )) in S�,k is generically
impulse controllable.

Proof In the ring A, the set of operators of degree at least r is open, as its complement,
the set of operators of degree at most r −1 is closed. Thus,N�,k(ri, j ) is open inM�,k ,
and so is the set of systems determined by it. ��

We now study impulse controllability for Zariski closed subsets of systems other
than S�,k(r), which we have already discussed above. We consider the important case
of systems bounded above in degree, but not uniformly. These include state space and
descriptor systems for which the notion of impulse controllability was first introduced.
The entries of the system matrix are of different degrees, and structured perturbations
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might preserve these differences. In other words, when a system is perturbed, it can be
that different parameters are subject to different changes, independent of each other.
We use the following notation.

Let I = {1, . . . , �}, J = {1, . . . , k}, and let π = {(1, j1), . . . , (�, j�)} be a choice
of � elements from I × J , where j1, . . . , j� are all distinct. Let 	 be the set of
all such choices; its cardinality is k(k − 1) · · · (k − � + 1). Let ρ = (ri, j ) be an
� × k matrix whose entries are from {−∞, 0, 1, 2, . . .}; ρ is a degree matrix. Define
r−
π (ρ) = min{r1, j1, . . . , r�, j�}, rπ (ρ) = r1, j1 + · · · + r�, j� , and let r∗

π (ρ) be the sum
of those terms in rπ (ρ) which are not equal to −∞. Let R(ρ) = max{rπ (ρ)} and
R∗(ρ) = max{r∗

π (ρ)}, where the maximum is over all π ∈ 	; clearly R(ρ) � R∗(ρ).
The purpose of this notation is to carve out closed subsets of M�,k .
Given ρ = (ri, j ), a degree matrix as above, let M�,k(ρ) ⊂ M�,k be the subset of

differential operators whose (i, j)th entry has degree at most ri, j ; it is the C-affine
space of dimension

∑
(ri, j +1), where the sum is over those (i, j) for which ri, j � 0.

(If every ri, j = r , then we use the earlier notation of Sect. 3, namelyM�,k(r), for this
subset.) LetM∗

�,k(ρ) denote the subsetM�,k(ρ) ∩M∗
�,k of those operators such that

at least one maximal minor is nonzero. It is open dense in M�,k(ρ) if R(ρ) > −∞.
Systems they define are denoted by S�,k(ρ) and S∗

�,k(ρ), respectively.
We elucidate the above construction by an example.

Example 4.1 (i) Let a 3 × 4 degree matrix be given by

ρ =
⎡
⎣
1 0 0 −∞
0 1 −∞ −∞
0 −∞ −∞ 0

⎤
⎦ .

Let π = {(1, 4), (2, 2), (3, 1)}. Then, r−
π (ρ) = −∞, rπ (ρ) = −∞, and r∗

π (ρ) = 1.
Both R(ρ) and R∗(ρ) equal 2 (attained for π ′ = {(1, 1), (2, 2), (3, 4)}).

This ρ defines M3,4(ρ), it is the affine space C9. The operator of Eq. (1) belongs
to it; in fact it belongs toM∗

3,4(ρ).
(ii) Consider the degree matrix

ρ′ =
⎡
⎣
1010 1010 0 1
0 1010 −∞ 0

1010 1010 −∞ 1010

⎤
⎦

For π = {(1, 4), (2, 2), (3, 1)}, r−
π (ρ′) = 1, rπ (ρ′) = r∗

π (ρ) = 2× 1010 + 1. Both
R(ρ) and R∗(ρ) equal 3 × 1010, again attained for π ′ = {(1, 1), (2, 2), (3, 4)}. ��
Definition 4.1 A degree matrix ρ is a descriptor matrix if for all i ,

ri, j � 1, 1 � j � �, and ri, j � 0, � + 1 � j � k.

The systems in S�,k(ρ) are called descriptor systems defined by ρ. It is a closed subset
of S�,k(1), the space of first-order systems.

The degree matrix in (i) of the above example is a descriptor matrix.
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Proposition 4.2 Let ρ be a descriptor matrix such that R(ρ) = R∗(ρ). Then, S�,k(ρ)

is generically impulse controllable.

Proof Let R(ρ) = R∗(ρ) = �1 say,where 0 � �1 � �. Letπ = {(1, j1), . . . , (�, j�)} ∈
	 be such that rπ (ρ) = �1, this is the number of elements (i, ji ) ∈ π such that
ri, ji = 1. Let det : M�,k(ρ) → A(�1) map a differential operator to the determinant
of the operator inM�,� determined by the columns j1, . . . , j�. LetU be the open dense
subset of A(�1) consisting of operators whose degree is equal to �1. Then, det

−1(U )

is nonempty, hence open dense in M�,k(ρ). Every differential operator in it satisfies
the chain condition (5); indeed, δi = i for i � �1, and δi = �1 for i � �1. These
differential operators define an open dense subset of impulse controllable systems in
S�,k(ρ). Hence, S�,k(ρ) is generically impulse controllable. ��
Proposition 4.3 Suppose ρ = (ri, j ) is a descriptor matrix such that R(ρ) < R∗(ρ).
Then, an open dense set of systems in S�,k(ρ) is not impulse controllable.

Proof Let R∗(ρ) = �1, and let π = {(1, j1), . . . , (�, j�)} ∈ 	 be such that r∗
π (ρ) =

�1. Let the number of elements (i, ji ) ∈ π such that ri, ji > −∞ be �2; necessarily
�2 < �, for otherwise R(ρ) = R∗(ρ). Let det : M�,k(ρ) → A(�1) map a differential
operator M( d

dt ) to the determinant of the operator determined by its �2 ×�2 submatrix
whose rows and columns are the above indices i and ji for which ri, ji > −∞. Let
U be the open dense subset of A(�1) consisting of operators whose degree is equal
to �1. Then, det

−1(U ) is nonempty, hence open dense inM�,k(ρ). Every operator in
it satisfies δ�2 = �1 and δ�2+1 < �1. Thus, every operator in this open dense subset
fails to satisfy the chain condition (5), and so the system defined by it is not impulse
controllable. ��

We combine the above propositions to obtain the following theorem.

Theorem 4.2 (Singular descriptor systems) Let ρ be a descriptor matrix. The set of
descriptor systems S�,k(ρ) is generically impulse controllable if and only if R(ρ) =
R∗(ρ). Otherwise, S�,k(ρ) is generically not impulse controllable.

It follows as a corollary to Proposition 4.2 (for R(ρ) = �) that every regular state
space system, i.e. ẋ = Ax + Bu, is impulse controllable.

Wenext provide a partial generalisation of Theorem4.2 inwhichwe consider closed
subsets of higher-order systems. Given a degree matrix ρ, define for every π ∈ 	, the
subset

M−
π (ρ) =

{
M

(
d

dt

)
= (mi, j )|deg(mi, j ) � ri, j , (i, j) ∈ π, deg(mi, j )

� rπ (ρ)−, (i, j) /∈ π

}
⊂ M�,k(ρ).

It is a closed subset of M�,k(ρ). In this notation, we have the following result.

Theorem 4.3 Let ρ be a degree matrix. Define M−+(ρ) ⊂ M�,k(ρ) by M−+(ρ) :=⋃M−
π (ρ) with the union being over all π ∈ 	 for which rπ (ρ) � 0. Then, the set

P(M−+(ρ)) of systems in S�,k determined by it is generically impulse controllable.
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Proof It suffices to prove thatM−
π (ρ) is generically impulse controllable for every π

such that rπ (ρ) � 0. Fix such a π .
Let M( d

dt ) be the following differential operator: for every (i, j) ∈ π , choose a

p( d
dt ) ∈ A of degree ri, j , and set all other entries equal to 0. This operator defines an

impulse controllable system as it satisfies the chain of inequalities (5), and thus, the
set of operators which define impulse controllable systems has nonempty intersection
with M−

π (ρ). Moreover, this intersection has nonempty interior as M( d
dt ) is in the

interior of M−
π (ρ). (A neighbourhood of M( d

dt ) is the set of differential operators
with the entry 0 in the (i, j) /∈ π replaced by operators of degree r−

π (ρ).) ButM−
π (ρ)

is a C-affine space; hence, the intersection is dense as well, and the theorem follows.
��

Example 4.2 (Example 1.1 revisited) In this example, we apply the results of this
section to the three circuits shown in Fig. 1 and infer results about their generic
impulse controllability/uncontrollability. The three cases are:

(a) Figure 1a with the voltage source present: described in Eq. (1),
(b) Figure 1b with the voltage source set equal to 0: described in Eq. (2), and
(c) Figure 1c with a capacitor across the port: described in Eq. (3).

The three degree matrices ρa , ρb and ρc are defined below:

ρa :=
⎡
⎣
1 0 0 −∞
0 1 −∞ −∞
0 −∞ −∞ 0

⎤
⎦ , ρb :=

⎡
⎣
1 0 0
0 1 −∞
0 −∞ −∞

⎤
⎦

and ρc :=

⎡
⎢⎢⎣

1 0 0 −∞
0 1 −∞ −∞
0 −∞ −∞ 0

−∞ −∞ 0 1

⎤
⎥⎥⎦ .

Note that ρa is also the degree matrix considered in Example 4.1(i), and the systems
corresponding to ρa belong toM3,4(ρa). Similarly, the systems described by circuits
in Fig. 1b, c belong toM3,3(ρb) and toM4,4(ρc), respectively.
We next evaluate R(ρ) and R∗(ρ) as in Example 4.1.

(a) Consider the circuit in Fig. 1a. We verify that for ρa , we get R(ρa) = 2, achieved
for π = {(1, 1), (2, 2), (3, 4)}. Further, R∗(ρa) also equals 2, which is also
achieved for the same π = {(1, 1), (2, 2), (3, 4)}. So the system described by
it is impulse controllable, and in fact, we conclude using Proposition 4.2 that this
system belongs to the Zariski open dense subset of impulse controllable systems
in S3,4(ρa) described there in Proposition 4.2.

(b) Next consider the autonomous system corresponding to the circuit shown in Fig. 1b
and described in Eq. (2), for which the degree matrix ρb is above. For this case,
one can verify that R(ρb) = 1 (achieved for π = {(1, 3), (2, 2), (3, 1)}), while
R∗(ρb) = 2 (achieved forπ = {(1, 1), (2, 2)}). Since R(ρc) < R∗(ρc), the system
is not impulse controllable. Indeed, using Proposition 4.3, this system belongs to
the Zariski open neighbourhood in S3,3(ρb) consisting of systems none of which
are impulse controllable.
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(c) In the context of the circuit in Fig. 1c, with equations described in Eq. (3), the
degree matrix ρc is above. Obtain R(ρc) = 2 (achieved for π = {(1, 1), (2, 2),
(3, 4), (4, 3)}), and R∗(ρc) = 3 (achieved for π = {(1, 1), (2, 2), (4, 4)}). Since
R(ρc) < R∗(ρc) again, using Proposition 4.3, this system also belongs to a Zariski
open neighbourhood of systems within S4,4(ρc) which are not impulse control-
lable.

Finally, consider the degree matrix ρ′ of Example 4.1(ii). The system described by
Eq. (1) is also in the Zariski open dense subset of impulse controllable systems in
S3,4(ρ

′) described by Theorem 4.3. This open subset strictly contains the set described
in (a) above. ��
In summary, we have equipped the set of all systems with a topology that is very
coarse, as every open set in it is of full measure, everywhere dense, and of the second
category. Indeed the closed sets are affine varieties and are therefore not only of zero
measure, but are also nowhere dense. The genericity results established in the paper
with respect to this topology thus provide very strong answers to the questions raised
at the end of Sect. 2, in the sense that we allow perturbations corresponding to open
subsets of the Zariski topology.
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