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Abstract
We establish characterizations of weak input-to-state stability for abstract dynamical
systems with inputs, which are similar to characterizations of uniform and of strong
input-to-state stability established in a recent paper by A. Mironchenko and F. Wirth.
We also investigate the relation of weak input-to-state stability to other common sta-
bility concepts, thus contributing to a better theoretical understanding of input-to-state
stability theory.

Keywords Input-to-state stability (weak, strong, uniform) · Robust stability ·
Infinite-dimensional dynamical systems with inputs

1 Introduction

In this paper, we study the property of weak input-to-state stability of general dynam-
ical systemsS = (X ,U , ϕ) with inputs. Such a system is determined by its generally
infinite-dimensional state space X , its set U of admissible input functions, and its
dynamical map

ϕ : [0,∞) × X × U → X

which for a given initial state x0 ∈ X and input u ∈ U yields the state ϕ(t, x0, u) of
the system at any time t ∈ [0,∞). In applications, ϕ(·, x0, u) arises as the solution
(defined in some suitable sense) of an evolution equation

ẋ(t) = f (x(t), u(t)) and x(0) = x0 (1.1)
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and the input u ∈ U often plays the role of an external disturbance signal with values
u(t) in some (finite- or infinite-dimensional) disturbance value spaceU . Also, the setU
of admissible disturbances is often a subset of L p([0,∞),U )with p ∈ [1,∞)∪{∞}.
In many applications, the evolution equation (1.1) is semilinear, that is, of the form

ẋ(t) = Ax(t) + f (x(t), u(t)) (1.2)

or even of the more special form

ẋ(t) = Ax(t) + f (x(t)) + Bu(t), (1.3)

where A is a linear semigroup generator on X , f is a nonlinear map on X × U or
X , respectively, and B is a bounded or unbounded linear control operator in the usual
sense [33,34]. Such semilinear evolution equations (1.2) and (1.3) typically represent
a concrete partial differential equation—parabolic or hyperbolic—from physics or
engineering, and the disturbance u can arise either in the domain or at the boundary
of the domain on which the partial differential equation is defined. (Accordingly, u
is called a distributed disturbance or a boundary disturbance, respectively.) In partic-
ular, the semilinear evolution equation (1.3) can be given by a disturbed semilinear
heat or wave equation. Simple examples of such semilinear heat or wave equations
arise by adding a distributed disturbance to the (undisturbed) equations from [1] (Sec-
tion 5.5 and 6.5) or [32] (Section III.3.1–3.4 and IV.4.3). See, for instance, [5,28,36]
and [6] for concrete examples. Also, the semilinear evolution equation (1.3) can arise
as the closed-loop system of a linear system coupled to a nonlinear—distributed or
boundary—controller whose inputs or outputs are subject to external disturbances
(called sensor disturbances in the first case and actuator disturbances in the second
case). See, for instance, the recent papers [3,25,31] which, in particular, cover the case
where the underlying linear system is described by a partial differential equation from
structural mechanics, namely a string or a beam equation.

In the context of dynamical systems with external disturbances as above, the ques-
tion of robust stability naturally arises and this, in turn, naturally leads to the concept of
weak input-to-state stability. Weak input-to-state stability of a systemS = (X ,U , ϕ)

with disturbance inputs simply means, roughly speaking, that 0 is an asymptotically
stable—that is, stable and attractive—equilibrium point of the (undisturbed) system
with input u = 0 and that this asymptotic stability property is affected only slightly by
small disturbance inputs u �= 0. In precise terms, this means that there are continuous
monotonically increasing functions σ , γ , γ : [0,∞) → [0,∞)which are zero at zero
such that for all (x0, u) ∈ X × U the following estimates hold true:

‖ϕ(t, x0, u)‖ ≤ σ(‖x0‖) + γ (‖u‖U ) (t ∈ [0,∞)) (1.4)

and

lim sup
t→∞

‖ϕ(t, x0, u)‖ ≤ γ (‖u‖U ), (1.5)
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meaning that the stability property and the attractivity property of 0, respectively,
are affected only slightly by disturbance inputs u ∈ U of small magnitude ‖u‖U .
Inequality (1.4) is commonly referred to as the uniform global stability, and (1.5) is
referred to as theweak asymptotic gain property of the system. If the limit relation (1.5)
holds uniformly w.r.t. u ∈ U or, respectively, locally uniformly w.r.t. x0 ∈ X and
uniformly w.r.t. u ∈ U , then the system is even strongly or uniformly input-to-state
stable, respectively. So, weak input-to-state stability is just a non-uniform variant of
strong and of uniform input-to-state stability.

In recent years, the concepts of strong and especially of uniform input-to-state
stability have been intensively studied: On the one hand, abstract characterizations
of these properties in terms of strong and uniform asymptotic gains and in terms of
suitable Lyapunov functions have been established, and on the other hand, uniform
input-to-state stability has been established—often with the help of the aforemen-
tioned abstract characterizations—for a large variety of linear and semilinear systems
of the form (1.3). See [4,6,9–16,18–20,22,31,35,36], for instance. Weak input-to-state
stability can also be established for a rather large class of semilinear systems (1.3) aris-
ing as the closed-loop system of a linear system coupled to a nonlinear distributed [3]
or boundary [24,25] controller. In contrast, uniform input-to-state stability could be
established in [24,25] only for a much smaller class of nonlinear controllers.

In view of these results and developments, it is natural to study the property of
weak input-to-state stability—and especially its relation to other common stability
properties—from a general point of view. And this is precisely the purpose of the
present paper. We establish a characterization of weak input-to-state stability similar
to the characterizations of strong and uniform input-to-state stability from [18] and,
moreover, we investigate the relation of weak input-to-state stability to other common
and natural stability concepts, namely strong input-to-state stability and zero-input
uniformglobal stability. In doing so,we contribute to a better theoretical understanding
of the various input-to-state stability concepts from the literature.

In more detail, the contents of the present paper can be described as follows.
Section 2 provides the necessary preliminaries setting out and recalling the precise def-
initions of abstract dynamical systems with inputs and of the various stability notions
employed later on. In Sect. 3, we establish a characterization of weak input-to-state
stability which is parallel to the characterizations of strong and uniform input-to-state
stability for infinite-dimensional systems recently established in [18]. In Sect. 4, we
investigate the relation of weak input-to-state stability to strong input-to-state stability.
We show, by means of a suitable counterexample, that weak input-to-state stability is
strictly weaker than strong input-to-state stability, thereby answering an open ques-
tion raised in [18]. In our example, we work with modulated linear systems, which
are described by evolution equations of the form

ẋ(t) = α(u(t))Ax(t) (1.6)

with a linear operator A and a modulating prefactor α(u(t)), and the input space U is a
certain subset of L p([0,∞), R).We also show that in the special case of linear systems,
weak input-to-state stability is equivalent to strong input-to-state stability. In the case
of semilinear systems (which from the point of view of applications are, of course,
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more interesting thanmodulated linear systems), the relation of weak and strong input-
to-state stability remains open. We show at least, however, that for semilinear systems
weak input-to-state stability is strictly weaker than uniform input-to-state stability.
In order to do so, we work with semilinear systems (1.3) arising as the closed-loop
system of a collocated linear system [3] coupled to a nonlinear distributed controller. In
Sect. 5, we investigate the relation ofweak input-to-state stability to the combination of
zero-input uniform global stability and the weak asymptotic gain property. We show,
by means of a suitable counterexample, that weak input-to-state stability is strictly
stronger than the aforementioned combination of properties, thereby answering an
open question raised in [18]. In our example, we work with linear systems with input
spaceU being a certain subset of L∞([0,∞), R). We also show that for linear systems
with input space U being a full L p-space, weak input-to-state stability is equivalent
to the aforementioned combination of properties.

In the entire paper, we use the following notational conventions. R
+
0 := [0,∞)

denotes the nonnegative reals and B
Z
r (0) := {z ∈ Z : ‖z‖ ≤ r} for any subset Z of a

normed linear space with norm ‖·‖. As usual, K and L denote the following classes
of comparison functions:

K := {γ ∈ C(R+
0 , R

+
0 ) : γ strictly increasing with γ (0) = 0}

L := {
γ ∈ C(R+

0 , R
+
0 ) : γ strictly decreasing with lim

r→∞ γ (r) = 0
}
.

Also, ‖·‖p for any p ∈ [1,∞) ∪ {∞} stands for the standard norm on L p(R+
0 ,U ),

whereU is anyBanach space, andu1 &τu2 stands for the concatenationof the functions
u1, u2 : R

+
0 → U at time τ ∈ R

+
0 defined by

(u1 &τu2)(t) :=
{
u1(t) (t ∈ [0, τ ))

u2(t − τ) (t ∈ [τ,∞)).

When speaking of a semigroup, we will always mean a strongly continuous semigroup
of bounded linear operators [2,7] and when A is the generator of such a semigroup, the
semigroup will be denoted by eA· as usual. And finally, in the context of admissible
control operators—and, in particular, of extrapolation of semigroup generators—we
adopt the standard notation from [7,33].

2 Setting and definitions

2.1 Systems with inputs

We begin by setting out the class of systems that we—just like [18]—are going to deal
with in this paper.

Definition 2.1 A (forward-complete) dynamical system S = (X ,U , ϕ) with inputs is
determined by

• a normed linear space X (the state space of S) endowed with a norm ‖·‖X
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• a non-empty set U of functions u : R
+
0 → U (the set of admissible inputs of S)

endowed with a norm ‖·‖U
• a map ϕ : R

+
0 × X × U → X (the dynamical map of S)

such that the following properties are satisfied:

(i) U is invariant under shifts to the left, that is,u(·+τ) ∈ U and‖u(· + τ)‖U ≤ ‖u‖U
for every u ∈ U and τ ∈ R

+
0

(ii) U is invariant under concatenations, that is, u1 &τ u2 ∈ U for every u1, u2 ∈ U
and τ ∈ R

+
0

(iii) ϕ(0, x0, u) = x0 for every (x0, u) ∈ X ×U and, moreover, ϕ is cocyclic, that is,

ϕ(t + s, x0, u) = ϕ(t, ϕ(s, x0, u), u(· + s)) (2.1)

for every (x0, u) ∈ X × U and s, t ∈ R
+
0

(iv) ϕ(·, x0, u) : R
+
0 → X is continuous for every (x0, u) ∈ X × U

(v) ϕ is causal, that is,

ϕ(·, x0, u1)|[0,τ ] = ϕ(·, x0, u2)|[0,τ ] (2.2)

for every x0 ∈ X , u1, u2 ∈ U and τ ∈ R
+
0 with u1|[0,τ ] = u2|[0,τ ].

In the following, we will always write ‖·‖ := ‖·‖X for brevity. Since U is not
assumed to be a linear space, it is slightly abusive to speak of a norm ‖·‖U on U .
What we mean is, of course, that ‖·‖U is the restriction of a norm of some linear
spaceF ⊃ U . As has been pointed out already in Introduction, the inputs usually have
the interpretation of external disturbances and the set U of admissible disturbances is
usually a subset of F := L p(R+

0 ,U ) for some p ∈ [1,∞) ∪ {∞}. We point out that
by the cocycle property (2.1), one has

ϕ(t + s, x0, 0) = ϕ
(
t, ϕ(s, x0, 0), x0, 0

)
(t, s ∈ R

+
0 ) (2.3)

for every x0 ∈ X , that is, the undisturbed dynamical map t 
→ ϕ(t, ·, 0) defines
a linear [7] or nonlinear [21] semigroup on X . We also point out that the abstract
dynamical systems with inputs defined above comprise a lot of concrete physical
systems subject to external disturbances. Indeed, many partial differential equations
(both parabolic and hyperbolic) [4,6,11–14,20,25,31,35,36] and ordinary differential
equations on infinite-dimensional state spaces [9,10,19] fall into the above class of
dynamical systems with inputs—as do many delay differential equations [17].

2.2 Stability and attractivity concepts

We continue by recalling the stability and attractivity concepts from [18] that will be
used in the sequel.

Definition 2.2 A dynamical system S = (X ,U , ϕ) with inputs is called
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(i) uniformly globally stable iff there exist σ , γ ∈ K such that for all (x0, u) ∈ X×U

‖ϕ(t, x0, u)‖ ≤ σ(‖x0‖) + γ (‖u‖U ) (t ≥ 0) (2.4)

(ii) uniformly locally stable iff there exist σ , γ ∈ K and r > 0 such that (2.4) holds

true for all (x0, u) ∈ B
X
r (0) × B

U
r (0)

(iii) zero-input uniformly globally stable or zero-input uniformly locally stable,
respectively, iff 0 ∈ U and the restricted systemS0 := (X ,U0, ϕ)withU0 := {0}
is uniformly globally or uniformly locally stable, respectively.

What is called uniform global stability here and in [18] is simply called global
stability in [15,30]. As is explained in [18] (just before Remark 3), the purpose of
the extra uniformity qualifier is to emphasize the fact that the bound σ(‖x0‖) does
not depend on the initial state x0 itself but is uniform w.r.t. all initial states x ′

0 with∥∥x ′
0

∥∥ ≤ ‖x0‖.
Definition 2.3 Suppose S = (X ,U , ϕ) is a dynamical system with inputs and γ ∈
K ∪ {0}.S is said to be

(i) of weak asymptotic gain γ iff for every ε > 0 and (x0, u) ∈ X × U there exists a
time τ(ε, x0, u) ∈ R

+
0 such that

‖ϕ(t, x0, u)‖ ≤ ε + γ (‖u‖U ) (t ≥ τ(ε, x0, u)) (2.5)

(ii) of strong asymptotic gain γ iff for every ε > 0 and x0 ∈ X there exists a time
τ(ε, x0) ∈ R

+
0 such that

‖ϕ(t, x0, u)‖ ≤ ε + γ (‖u‖U ) (t ≥ τ(ε, x0) and u ∈ U) (2.6)

(iii) of uniform asymptotic gain γ iff for every ε > 0 and r > 0 there exists a time
τ(ε, r) ∈ R

+
0 such that

‖ϕ(t, x0, u)‖ ≤ ε + γ (‖u‖U ) (t ≥ τ(ε, r) and (x0, u) ∈ B
X
r (0) × U). (2.7)

Also, S is said to be of weak asymptotic gain iff it is of weak asymptotic gain γ for
some γ ∈ K ∪ {0}.
Definition 2.4 Suppose S = (X ,U , ϕ) is a dynamical system with inputs. S is said
to have the weak limit property iff there is a γ ∈ K such that for every ε > 0 and
(x0, u) ∈ X × U there exists a time τ(ε, x0, u) such that

inf
t∈[0,τ (ε,x0,u)]

‖ϕ(t, x0, u)‖ ≤ ε + γ (‖u‖U ). (2.8)

In [18], theweak asymptotic gain and theweak limit properties are referred to simply
as asymptotic gain and limit property, respectively. We deviate from that terminology
in order to emphasize the logical relation to the strong and uniform variants and in
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order to emphasize the parallelism of the concepts of weak, strong, and uniform input-
to-state stability: Indeed, with our terminology, we have the concise and convenient
relation

∗ input-to-state stability = ∗ asymptotic gain plus uniform global stability

for ∗ ∈ {weak, strong, uniform} (Definition 2.6).

Lemma 2.5 Suppose that S = (X ,U , ϕ) is a dynamical system with inputs and that
U ⊂ L p(R+

0 ,U ) with ‖·‖U := ‖·‖p for some p ∈ [1,∞) or that U ⊂ L∞
0 (R+

0 ,U )

with ‖·‖U := ‖·‖∞, where U is a Banach space and

L∞
0 (R+

0 ,U ) := {
u ∈ L∞(R+

0 ,U ) : ‖u(· + t)‖∞ −→ 0 as t → ∞}
.

If S is of weak asymptotic gain, then it is automatically of weak asymptotic gain 0.

Proof Suppose S is of weak asymptotic gain γ ∈ K (with corresponding times
τ(ε, x0, u)) and let ε > 0 and (x0, u) ∈ X × U be fixed. Since ‖u(· + t)‖U −→ 0 as
t → ∞ by our assumptions on U and γ is continuous with γ (0) = 0, we can choose
a time t0 ∈ R

+
0 such that

γ
( ‖u(· + t0)‖U

) ≤ ε. (2.9)

Since S is of weak asymptotic gain γ , we have by (2.1) for all s ≥ τ(ε, ϕ(t0, x0, u),

u(· + t0)) that

‖ϕ(s + t0, x0, u)‖ = ‖ϕ(s, ϕ(t0, x0, u), u(· + t0))‖
≤ ε + γ

( ‖u(· + t0)‖U
)
. (2.10)

Combining now (2.9) and (2.10), we see that for all

t ≥ τ0(ε, x0, u) := t0 + τ(ε, ϕ(t0, x0, u), u(· + t0))

one has ‖ϕ(t, x0, u)‖ ≤ 2ε. Consequently,S is of weak asymptotic gain 0, as desired.
��

2.3 Input-to-state stability concepts

With the stability and attractivity properties recalled above, we can now define the cen-
tral concepts of this paper, namely weak, strong, and uniform input-to-state stability.

Definition 2.6 A dynamical systemS = (X ,U , ϕ)with inputs is calledweakly input-
to-state stable, or strongly input-to-state stable, or uniformly input-to-state stable,
respectively, iff it is uniformly globally stable and of weak, or strong, or uniform
asymptotic gain, respectively.

Instead of uniform input-to-state stability, one often simply speaks of input-to-state
stability in the literature [4,6,9,11,14,18–20,31,35,36].
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3 Characterization of weak input-to-state stability

We begin with a characterization of weak input-to-state stability which is parallel to
the recently established characterizations of strong and uniform input-to-state stability
from [18]. It should be pointed out that the equivalence of items (i) and (ii) below is
already stated in [18] (Remark 5), yet without proof.

Theorem 3.1 Suppose S = (X ,U , ϕ) is a dynamical system with inputs. Then, each
of the following items is equivalent:

(i) S is uniformly globally stable and has the weak limit property
(ii) S is weakly input-to-state stable
(iii) there exist σ, γ ∈ K and β : X ×U ×R

+
0 → R

+
0 with β(x0, u, ·) ∈ L for x0 �= 0

such that for all (x0, u) ∈ X × U one has:

‖ϕ(t, x0, u)‖ ≤ β(x0, u, t) + γ (‖u‖U ) (t ∈ R
+
0 ) (3.1)

and

β(x0, u, t) ≤ σ(‖x0‖) (t ∈ R
+
0 ). (3.2)

Proof We first show the implication from (i) to (ii). So assume that (i) is satisfied and
let σ , γ ∈ K and γ ∈ K, τ(ε, x0, u) be chosen as in the definitions of uniform global
stability and of the weak limit property, respectively. We define the function γ by

γ (r) := σ(2γ (r)) + γ (r) (r ∈ R
+
0 ) (3.3)

which obviously belongs to K. Choose and fix now ε > 0 and (x0, u) ∈ X × U and
set

τ(ε, x0, u) := τ(δ(ε), x0, u) with δ(ε) := 1

2
σ−1(ε). (3.4)

Let t ≥ τ(ε, x0, u). It then follows by the assumed weak limit property that there
exists a t0 ∈ [0, τ (ε, x0, u)] such that

‖ϕ(t0, x0, u)‖ ≤ δ(ε) + γ (‖u‖U ). (3.5)

It further follows by the cocycle property of ϕ and the assumed uniform global stability
that

‖ϕ(t, x0, u)‖ = ‖ϕ(t − t0, ϕ(t0, x0, u), u(· + t0))‖
≤ σ(‖ϕ(t0, x0, u)‖) + γ (‖u(· + t0)‖). (3.6)

Combining now (3.5) and (3.6), we see for every t ≥ τ(ε, x0, u) that

‖ϕ(t, x0, u)‖ ≤ σ(δ(ε) + γ (‖u‖U )) + γ (‖u‖U ) ≤ ε + γ (‖u‖U ), (3.7)
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as desired. In the first inequality of (3.7), we used that ‖u(· + t0)‖ ≤ ‖u‖U and in the
second inequality we used the elementary fact that by the monotonicity of σ

σ(a + b) ≤ σ(2max{a, b}) = max{σ(2a), σ (2b)} ≤ σ(2a) + σ(2b)

for all a, b ∈ R
+
0 .

We now show the implication from (ii) to (iii). So assume that (ii) is satisfied and
let σ , γ ∈ K and γ ∈ K be chosen as in the definitions of uniform global stability and
of the weak asymptotic gain property, respectively. We define the functions σ, γ by

σ(r) := 2σ(r) and γ (r) := max{γ (r), γ (r)} (3.8)

which obviously belong to K. What we have to do now is to define for each given
(x0, u) ∈ X ×U a function β(x0, u, ·) : R

+
0 → R

+
0 in such a way that β(x0, u, ·) ∈ L

for x0 �= 0 and that (3.1) and (3.2) are satisfied. So let (x0, u) ∈ X × U be fixed for
the rest of the proof (of the implication from (ii) to (iii)) and assume without loss of
generality that

x0 �= 0. (3.9)

(If x0 = 0, then σ(‖x0‖) = 0 and thus by the assumed uniform global stability the
desired estimates (3.1) and (3.2) hold true with the choice β(x0, u, ·) := 0.) In order
to construct β(x0, u, ·), we distinguish two cases, namely whether or not ‖ϕ(·, x0, u)‖
eventually lies below γ (‖u‖U ), that is, whether or not there exists a t0 ∈ R

+
0 such that

‖ϕ(t, x0, u)‖ ≤ γ (‖u‖U ) (t ≥ t0). (3.10)

Suppose first that we are in the case where ‖ϕ(·, x0, u)‖ eventually lies below
γ (‖u‖U ). In this case, set

β0(x0, u, t) := σ(‖x0‖) χ[τ0(x0,u),τ∞(x0,u))(t) (t ∈ R
+
0 ), (3.11)

where

τ0(x0, u) := 0 and τ∞(x0, u) := max{supM∞(x0, u), 0}
M∞(x0, u) := {

t ∈ R
+
0 : ‖ϕ(t, x0, u)‖ > γ (‖u‖U )

}
.

In other words, τ∞(x0, u) is the smallest time t0 for which (3.10) holds true. In par-
ticular, we have

0 ≤ τ∞(x0, u) < ∞. (3.12)

It follows that β0(x0, u, ·) is a monotonically decreasing step function satisfying

β0(x0, u, t) −→ 0 (t → ∞) (3.13)
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as well as

‖ϕ(t, x0, u)‖ ≤ β0(x0, u, t) + γ (‖u‖U ) and β0(x0, u, t) ≤ σ(‖x0‖) (3.14)

for all t ∈ R
+
0 . (In order to see (3.14.a) for t < τ∞(x0, u) use the assumed uni-

form global stability, and for t ≥ τ∞(x0, u) use the definition of τ∞(x0, u) and the
continuity of ϕ(·, x0, u).) In view of (3.13) and (3.14), we are almost done—except
that β0(x0, u, ·) is not strictly decreasing and not continuous. We therefore choose
β(x0, u, ·) ∈ L such that

β0(x0, u, t) ≤ β(x0, u, t) ≤ 2σ(‖x0‖) (t ∈ R
+
0 ). (3.15)

(Simply interpolate linearly between thepoints (0, 2σ (‖x0‖)) and (τ∞(x0, u), σ (‖x0‖))
and exponentially between the points (τ∞(x0, u), σ (‖x0‖)) and (∞, 0).) Combin-
ing (3.14) and (3.15), we finally obtain (3.1) and (3.2), which concludes the proof of
the implication from (ii) to (iii) in the case where ‖ϕ(·, x0, u)‖ eventually lies below
γ (‖u‖U ).

Suppose now that we are in the case where ‖ϕ(·, x0, u)‖ does not eventually lie
below γ (‖u‖U ). In this case, supt∈R+

0
‖ϕ(t, x0, u)‖ > γ (‖u‖U ) and, by the assumed

uniform global stability, supt∈R+
0

‖ϕ(t, x0, u)‖ ≤ σ(‖x0‖) + γ (‖u‖U ). And therefore
there exists a unique k(x0, u) ∈ N such that

σ(‖x0‖)
k(x0, u) + 1

+ γ (‖u‖U ) < sup
t∈R+

0

‖ϕ(t, x0, u)‖ ≤ σ(‖x0‖)
k(x0, u)

+ γ (‖u‖U ). (3.16)

(Just notice that the intervals (σ (‖x0‖)/(k+1)+γ (‖u‖U ), ‖x0‖)/k+γ (‖u‖U )]with
k ∈ N disjointly cover the interval (γ (‖u‖U ), σ (‖x0‖) + γ (‖u‖U )].) Set now

β0(x0, u, t) :=
∞∑

n=0

σ(‖x0‖)
k(x0, u) + n

χ[τn(x0,u),τn+1(x0,u))(t) (t ∈ R
+
0 ), (3.17)

where

τ0(x0, u) := 0 and τn(x0, u) := supMn(x0, u)

Mn(x0, u) :=
{
t ∈ R

+
0 : ‖ϕ(t, x0, u)‖ >

σ(‖x0‖)
k(x0,u)+n + γ (‖u‖U )

}

for n ∈ N. We then have

0 < τn(x0, u) < ∞ (n ∈ N) (3.18)

‖ϕ(t, x0, u)‖ ≤ σ(‖x0‖)
k(x0, u) + n

+ γ (‖u‖U ) (t ≥ τn(x0, u) and n ∈ N0)

(3.19)

τn(x0, u) < τn+1(x0, u) (n ∈ N0) and τn(x0, u) −→ ∞ (n → ∞).

(3.20)
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(In order to see (3.18), notice that Mn(x0, u) is bounded by the assumed weak asymp-
totic gain property and that ∅ �= Mn(x0, u) �= {0} by (3.16) and by the continuity
of ϕ(·, x0, u). In order to see (3.19) for n = 0, just use (3.16)—and to see it for
n ∈ N use the definition of τn(x0, u) and the continuity of ϕ(·, x0, u). In order to
see (3.20.a) for n = 0, just recall (3.18)—and to see it for n ∈ N notice first that
Mn(x0, u) ⊂ Mn+1(x0, u) and second that

‖ϕ(t, x0, u)‖
∣∣∣
t=τn(x0,u)

= σ(‖x0‖)
k(x0, u) + n

+ γ (‖u‖U ) (3.21)

by virtue of (3.19) and the continuity of ϕ(·, x0, u). Consequently, τn(x0, u) ≤
τn+1(x0, u) and τn(x0, u) �= τn+1(x0, u) because otherwise (3.21) would imply
that σ(‖x0‖) = 0. Contradiction to (3.9)! And finally to see (3.20.b), recall that
‖ϕ(·, x0, u)‖ does not eventually lie below γ (‖u‖U ). So, for every t0 there exists a
t ≥ t0 such that ‖ϕ(t, x0, u)‖ > γ (‖u‖U ) and therefore there also exists an n0 ∈ N

such that

‖ϕ(t, x0, u)‖ >
σ(‖x0‖)

k(x0, u) + n0
+ γ (‖u‖U ).

It thus follows that τn(x0, u) ≥ τn0(x0, u) ≥ t ≥ t0 for all n ≥ n0, which proves the
claimed convergence (3.20.b) because t0 was arbitrary. With the help of (3.18), (3.19),
and (3.20), it follows that β0(x0, u, ·) is a monotonically decreasing step function
satisfying

β0(x0, u, t) −→ 0 (t → ∞) (3.22)

as well as

‖ϕ(t, x0, u)‖ ≤ β0(x0, u, t) + γ (‖u‖U ) and β0(x0, u, t) ≤ σ(‖x0‖) (3.23)

for all t ∈ R
+
0 . Indeed, for every t ∈ R

+
0 there exists by (3.20) a unique n ∈ N0 such

that t ∈ [τn(x0, u), τn+1(x0, u)) and therefore

β0(x0, u, t) = σ(‖x0‖)
k(x0, u) + n

.

So, (3.22) follows by virtue of (3.20.b), while (3.23.a) follows by virtue of (3.19).)
We can now choose β(x0, u, ·) ∈ L such that

β0(x0, u, t) ≤ β(x0, u, t) ≤ 2σ(‖x0‖) (t ∈ R
+
0 ). (3.24)

(Simply interpolate linearly between the points (0, 2σ(‖x0‖)), (τ1(x0, u), σ (‖x0‖)/
k(x0, u)), (τ2(x0, u), σ (‖x0‖)/(k(x0, u) + 1)), . . .) Combining (3.23) and (3.24), we
finally obtain (3.1) and (3.2), which concludes the proof of the implication from (ii)
to (iii) in the case where ‖ϕ(·, x0, u)‖ does not eventually lie below γ (‖u‖U ).
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We finally show the implication from (iii) to (i). So assume that (iii) is satisfied and
let σ, γ ∈ K and β be as in (iii). Combining (3.1) and (3.2), we immediately see that
S is uniformly globally stable and it remains to show that it also has the weak limit
property. Set γ := γ ∈ K and let ε > 0 and (x0, u) ∈ X ×U be given. Choose a time
τ(ε, x0, u) ∈ R

+
0 so large that

β(x0, u, t) ≤ ε (t ≥ τ(ε, x0, u)). (3.25)

(Such a time τ(ε, x0, u) exists, for if x0 �= 0 then β(x0, u, ·) ∈ L by assumption and
if x0 = 0 then β(x0, u, ·) = 0 by (3.2).) It then follows by (3.1) that

‖ϕ(t, x0, u)‖ ≤ ε + γ (‖u‖U ) (3.26)

for all t ≥ τ(ε, x0, u). Consequently,S has the weak limit (and also the weak asymp-
totic gain) property, as desired. ��

4 Weak input-to-state stability and its relation to strong
input-to-state stability

4.1 A counterexample

With the following example, we show that weak input-to-state stability is, in general,
strictly weaker than strong input-to-state stability. We use modulated linear systems
with suitable input spaces U � L p(R+

0 , R) to show this. Such modulated linear
systems correspond to evolution equations of the form (1.6).

Example 4.1 Choose and fix a p ∈ [1,∞) ∪ {∞} and a function α : R → R
+
0 with

α(0) = 0 such that the set

U :=
{
u ∈ L p(R+

0 , R) : α ◦ u is locally integrable

but
∫ ∞
0 α(u(s)) ds = ∞

}

(4.1)

is non-empty and endow U with the norm ‖·‖U := ‖·‖p. (Simple choices for such
a function are, for instance, α(r) := |r | in case p �= 1 and α(r) := |r |1/2 in case
p = 1.) Also, let A be the generator of a strongly stable semigroup on a Banach space
X and define

ϕ(t, x0, u) := eA(
∫ t
0 α(u(s)) ds)x0 ((t, x0, u) ∈ R

+
0 × X × U). (4.2)

We now show that S := (X ,U , ϕ) is a weakly but not strongly input-to-state stable
system. In particular, we see that the implications stated as open questions in the very
last paragraph of [18] do not hold true in general. It is elementary to check that U
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is invariant under shifts to the left and under concatenations. It is also elementary to
check that ϕ(·, x0, u) is continuous for every (x0, u) ∈ X × U and that ϕ is cocyclic
and causal. So, in other words, S is a dynamical system with inputs. Since eA· is
strongly stable, it follows that

M := sup
v∈R+

0

∥∥∥eAv
∥∥∥ < ∞ (4.3)

by the uniform boundedness principle, and therefore S is uniformly globally stable
with σ(r) := Mr and γ ∈ K arbitrary. Since eA· is strongly stable and since

∫ t

0
α(u(s)) ds −→ ∞ (t → ∞) (4.4)

for every u ∈ U , it further follows that S is of weak asymptotic gain 0. So, we see
that S is weakly input-to-state stable and it remains to show that it is not of strong
asymptotic gain. Seeking a contradiction, assume thatS is of strong asymptotic gain
γ with corresponding times τ(ε, x0). Choose now an arbitrary u0 ∈ U (non-empty!),
let ε := 1, and choose x0 ∈ X such that

‖x0‖ > ε + γ (‖u0‖U ). (4.5)

Also, define τ := τ(ε, x0) and u := 0&τ u0. Clearly, u ∈ U and

‖u‖U = ‖u0‖U and u|[0,τ ] = 0. (4.6)

So, by the assumed asymptotic strong gain property combined with (4.5), (4.6) and
α(0) = 0, we get that

ε + γ (‖u‖U ) < ‖x0‖ =
∥∥∥eA(

∫ τ
0 α(u(s)) ds)x0

∥∥∥ = ‖ϕ(τ , x0, u)‖
≤ ε + γ (‖u‖U ). (4.7)

Contradiction! �

4.2 Some positive results

While weak and strong input-to-state stabilities are inequivalent for modulated linear
systems with general input spaces U , they coincide for modulated linear systems with
input space U = L p(R+

0 ,U ).

Proposition 4.2 Suppose X is a Banach space and U := L p(R+
0 , R) for some p ∈

[1,∞)∪{∞}. Suppose further that A is a semigroup generator on X and α : R → R
+
0

is a continuous function such that α ◦ u is locally integrable for every u ∈ U (for
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example α(r) := |r |). Then, S := (X ,U , ϕ) with

ϕ(t, x0, u) := eA(
∫ t
0 α(u(s)) ds)x0 ((t, x0, u) ∈ R

+
0 × X × U)

is a dynamical system with inputs and S is weakly input-to-state stable if and only if
it is strongly input-to-state stable.

Proof It is easily verified that S is a dynamical system with inputs. Also, one of the
claimed implications is trivial. So, suppose thatS is weakly input-to-state stable. We
have to show thatS is also of strong asymptotic gain and thus strongly input-to-state
stable.

As a first step, we show that α(0) > 0 in case p < ∞ and that α(r) > 0 for every
r ∈ R in case p = ∞. Seeking a contradiction, we assume that there is a constant
function ur ≡ r ∈ L p(R+

0 , R) = U such that α(r) = 0. We then have

ϕ(t, x0, ur ) = eA(
∫ t
0 α(ur (s)) ds)x0 = x0 (t ≥ 0) (4.8)

for every x0 ∈ X . Since S is of weak asymptotic gain γ , say, we also have that

‖ϕ(t, x0, ur )‖ ≤ ε + γ (‖ur‖U ) (t ≥ τ(ε, x0, ur )) (4.9)

for every ε > 0 and every x0 ∈ X . Choosing now x0 ∈ X such that ‖x0‖ /2 >

γ (‖ur‖U ) and letting ε := ‖x0‖ /2, we obtain a contradiction by combining (4.8)
and (4.9).

As a second step, we observe that the semigroup eA· is strongly stable. Indeed,
since S is of weak asymptotic gain, we see by choosing u := 0 ∈ U that

eA(α(0)t)x0 = ϕ(t, x0, 0) −→ 0 (t → ∞) (4.10)

for every x0 ∈ X . Since α(0) > 0 by the first step, the claimed strong stability follows.
As a third step, we show that for every v, r ∈ R

+
0 there exists a time τ = τv,r ∈ R

+
0

such that

∫ τ

0
α(u(s)) ds ≥ v (u ∈ U with ‖u‖U ≤ r). (4.11)

So let v, r ∈ R
+
0 be given and fixed. In case p < ∞, we know by the first step and the

continuity of α that

cδ := inf|r |≤δ
α(r) > 0

for some δ > 0. Setting τ = τ v,r := v/cδ + r p/δ p and writing

Ju>δ := {s ∈ [0, τ ] : |u(s)| > δ} and Ju≤δ := {s ∈ [0, τ ] : |u(s)| ≤ δ}
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for u ∈ U , we see for every u ∈ U with ‖u‖U ≤ r that

λ(Ju>δ) ≤ 1/δ p
∫ τ

0
|u(s)|p ds ≤ r p/δ p

and therefore

∫ τ

0
α(u(s)) ds ≥

∫

Ju≤δ

α(u(s)) ds ≥ cδλ(Ju≤δ) = cδ

(
τ − λ(Ju>δ)

)

≥ cδ

(
τ − r p/δ p

) = v,

which proves (4.11) in the case p < ∞. (In the last two relations, λ denotes the
Lebesgue measure of the real line, of course.) In case p = ∞, we know by the first
step and the continuity of α that

cr := inf|r |≤r
α(r) > 0.

Setting τ = τv,r := v/cr , we see for every u ∈ U with ‖u‖U ≤ r that

∫ τ

0
α(u(s)) ds ≥ crτ = v,

which proves (4.11) in the case p = ∞.
As a fourth and last step, we finally show thatS is of strong asymptotic gain. Since

eA· is strongly stable by the second step, we have that

M := sup
v∈R+

0

∥∥∥eAv
∥∥∥ < ∞ (4.12)

by the uniform boundedness principle and, moreover, we have that for every ε > 0
and x0 ∈ X there is a v(ε, x0) ∈ R

+
0 such that

∥∥∥eAvx0
∥∥∥ ≤ ε (v ≥ v(ε, x0)). (4.13)

Set now γ (r) := Mr for r ∈ R
+
0 , let ε > 0 and x0 ∈ X be given and fixed, and define

τ(ε, x0) := τv(ε,x0),‖x0‖, (4.14)

where τv,r is chosen as in the third step. It then follows by (4.11), (4.13), and (4.14)
that for every u ∈ U with ‖u‖U ≤ ‖x0‖

‖ϕ(t, x0, u)‖ =
∥∥∥eA(

∫ t
0 α(u(s)) ds)x0

∥∥∥ ≤ ε ≤ ε + γ (‖u‖U ) (4.15)
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for all t ≥ τ(ε, x0). It also follows by (4.12) that for every u ∈ U with ‖u‖U > ‖x0‖

‖ϕ(t, x0, u)‖ =
∥∥∥eA(

∫ t
0 α(u(s)) ds)x0

∥∥∥ ≤ M ‖u‖U ≤ ε + γ (‖u‖U ) (4.16)

for all t ≥ 0. So, taking (4.15) and (4.16) together we see thatS is of strong asymptotic
gain γ , as desired. ��

Similarly, weak and strong input-to-state stabilities coincide for linear systems with
input space U = L p(R+

0 ,U ). See [7,33] or [9], for instance, for the definition of the
extrapolation space X−1 and the extrapolation of semigroups.

Proposition 4.3 Suppose X, U are Banach spaces and U := L p(R+
0 ,U ) for some

p ∈ [1,∞) ∪ {∞}. Suppose further that A is a semigroup generator on X and that
B ∈ L(U , X−1) is a U-admissible control operator for A, that is,

�t (u) :=
∫ t

0
eA−1(t−s)Bu(s) ds ∈ X (t ∈ R

+
0 and u ∈ U), (4.17)

where A−1 is the generator of the extrapolation of the semigroup eA· to the extrapo-
lation space X−1 of A. In case p = ∞ additionally assume that t 
→ �t (u) ∈ X is
continuous for every u ∈ U . Then, S := (X ,U , ϕ) with

ϕ(t, x0, u) := eAt x0 +
∫ t

0
eA−1(t−s)Bu(s) ds ((t, x0, u) ∈ R

+
0 × X × U)

is a dynamical system with inputs and S is weakly input-to-state stable if and only if
it is strongly input-to-state stable.

Proof Since B isU-admissible for A, it follows thatϕ(·, x0, u) is a continuous function
from R

+
0 to X by virtue of Proposition 2.3 of [34]. (It should be noted here that

because of (4.17) the linear operator �t : U → X is closed and thus bounded,
whence the aforementioned proposition from [34] is applicable.) Also, it is clear that
ϕ is cocyclic and causal. So, S is a dynamical system with inputs. It remains to
show that ifS is weakly input-to-state stable, then it is of strong asymptotic gain and
hence strongly input-to-state stable (the other implication being trivial). So, let S be
uniformly globally stable (with corresponding functions σ , γ ) and of weak asymptotic
gain γ (with corresponding times τ(ε, x0, u)). Also, let ε > 0 and x0 ∈ X . We then
have for every t ≥ τ(ε, x0, 0) and every u ∈ U that

‖ϕ(t, x0, u)‖ ≤
∥∥∥eAt x0

∥∥∥ + ‖�t (u)‖ = ‖ϕ(t, x0, 0)‖ + ‖ϕ(t, 0, u)‖
≤ ε + γ (0) + σ(0) + γ (‖u‖U ) = ε + γ (‖u‖U ).

In particular, S is of strong asymptotic gain γ , as desired. ��
Clearly, every bounded control operator B ∈ L(U , X) is U-admissible for A. Suffi-

cient conditions for unbounded control operators B ∈ L(U , X−1) to be U-admissible
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for A can be found in [8,33], for instance. A sufficient condition for the continuity
of t 
→ �t (u) ∈ X in the case p = ∞ is that X be a Hilbert space, U be finite-
dimensional and that A generates an exponentially stable analytic semigroup on X
that is similar to a contraction semigroup (Theorem 1 of [10]).

4.3 Weak input-to-state stability for semilinear systems

While for linear systems weak and strong input-to-state stabilities are equivalent, this
is open for semilinear systems. With the next example, we show at least, however,
that for such semilinear systems weak input-to-state stability is strictly weaker than
uniform input-to-state stability.

Example 4.4 Suppose X ,U are Hilbert spaces and U := L2(R+
0 ,U ). Suppose further

that A is a contraction semigroup generator on X and B ∈ L(U , X) \ {0} is such that
A − BB∗ generates a strongly but not exponentially stable semigroup, and let

f (x) := −Bg(B∗x) (x ∈ X),

where g : U → U is Lipschitz continuous on bounded subsets and

g(v) = v (‖v‖ ≤ 1) and 〈v, g(v)〉 ≥ c (‖v‖ > 1) (4.18)

for some positive constant c > 0. (Simple choices for such operators are given by
self-adjoint operators A with σ(A) ⊂ (−∞, 0] and with 0 belonging to the essential
but not to the point spectrum of A and by compact operators B ∈ L(U , X) such that
BB∗ commutes with A. Another possible choice of operators A and B as above is
given by Example 3.2 of [26]. A simple choice for a nonlinearity as above is given by
the saturation nonlinearity g defined by g(v) := v for ‖v‖ ≤ 1 and g(v) := v/ ‖v‖
for ‖v‖ > 1. See [3,29] for such nonlinearities.) It then follows from [27] (similarly
to [3]) that for every (x0, u) ∈ X × U the initial value problem

ẋ(t) = Ax(t) + f (x(t)) + Bu(t) and x(0) = x0

has a unique global mild solution ϕ(·, x0, u) ∈ C(R+
0 , X) and that for (x0, u) ∈

D(A)×C1
c (R

+
0 ,U ) thismild solution is even a classical solution. See, for instance, [23]

(Definition 6.1.1) for the standard definition of mild solutions. It also follows similarly
to [3] that S := (X ,U , ϕ) is a weakly input-to-state stable dynamical system with
inputs. We now show that the systemS is not uniformly input-to-state stable. Assume
the contrary and set r := σ−1(1/ ‖B‖). We then have for every x0 ∈ D(A) with
‖x0‖ ≤ r that ‖B∗ϕ(t, x0, 0)‖ ≤ 1 for all t ∈ R

+
0 by the uniform global stability of

S and therefore

ϕ(t, x0, 0) = e(A−BB∗)t x0 (t ∈ R
+
0 ) (4.19)
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by (4.18) and the classical solution property of ϕ(·, x0, 0). Since nowS is of uniform
asymptotic gain by our assumption, it follows that

r
∥∥∥e(A−BB∗)t

∥∥∥ = sup
{ ‖ϕ(t, x0, 0)‖ : x0 ∈ D(A) with ‖x0‖ ≤ r

} −→ 0 (4.20)

as t → ∞. In particular, the spectral radius of the operators e(A−BB∗)t is strictly less
than 1 for large enough t and therefore the semigroup e(A−BB∗)· is exponentially stable
(by Proposition IV.2.2 of [7] or Remark 2.2.16 of [33]). Contradiction (to our choice
of A and B)! �

5 Weak input-to-state stability and its relation to zero-input uniform
global stability

5.1 A counterexample

With the following example, we show that weak input-to-state stability is, in general,
strictly stronger than the combination of zero-input uniform global stability and the
weak asymptotic gain property. We use linear systems with a suitable input space
U � L∞(R+

0 , R) to show this.

Example 5.1 Set X := L2(R+
0 , R) and

U := {
u ∈ L∞(R+

0 , R) : u is eventually exponentially decaying to 0
}

(5.1)

and endow U with the norm ‖·‖U := ‖·‖∞. (What we mean by a function u that
eventually exponentially decays to 0 is that there exists a time τu ∈ R

+
0 and constants

Cu, αu > 0 such that |u(s)| ≤ Cue−αus for all s ≥ τu .) Also, let A be the generator
of the left-translation group on X , that is,

eAt f = f (· + t) ( f ∈ X and t ∈ R
+
0 ),

and let B ∈ L(R, X) be given by Bv := v b for v ∈ R, where b ∈ X is chosen such
that

b(ζ ) ≥ 0 (ζ ∈ R
+
0 ) and b /∈ L1(R+

0 , R) (5.2)

(for example, b(ζ ) = 1/ζ χ[1,∞)(ζ )). We now show that S := (X ,U , ϕ) with

ϕ(t, x0, u) := eAt x0 +
∫ t

0
eA(t−s)Bu(s) ds ((t, x0, u) ∈ R

+
0 × X × U) (5.3)

is a system (with bounded reachability sets and with continuity at the equilibrium
point 0) which is zero-input uniformly globally stable and of weak asymptotic gain
0 but not uniformly locally stable. In particular, S is not weakly input-to-state stable
and, moreover, we see that the second question-marked implication in Figure 2 of [18]
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does not hold true in general. It is elementary to check that U is invariant under shifts
to the left and under concatenations. Also, it is clear that ϕ(·, x0, u) is continuous for
every (x0, u) ∈ X × U and that ϕ is cocyclic and causal. So, in other words, S is a
dynamical system with inputs. Since eA· is a contraction semigroup, it follows thatS
is zero-input uniformly globally stable. It also follows thatS has bounded reachability
sets and is continuous at the equilibrium point 0 (Definitions 3 and 4 of [18]). Since
eA· is strongly stable and every u ∈ U is eventually exponentially decaying to 0, it
further follows that

ϕ(t, x0, u) −→ 0 (t → ∞)

for every (x0, u) ∈ X × U or, in other words, that S is of weak asymptotic gain 0.
So, what remains to be shown is that S is not uniformly locally stable. Assume, on
the contrary, thatS is uniformly locally stable with corresponding functions σ , γ and
radius r . Since b ∈ X satisfies (5.2), we see with the help of Fatou’s lemma that

lim inf
t→∞

∥∥∥∥

∫ t

0
b(· + s) ds

∥∥∥∥

2

= lim inf
t→∞

∫ ∞

0

( ∫ t

0
b(ζ + s) ds

)2

dζ

≥
∫ ∞

0

(∫ ∞

0
b(ζ + s) ds

)2

dζ = ∞.

In particular, there exists a time τ ∈ R
+
0 such that

r ·
∥∥∥∥

∫ τ

0
b(· + s) ds

∥∥∥∥ > γ (r). (5.4)

Choose now a u ∈ U such that

u|[0,τ ] ≡ r and ‖u‖U = r . (5.5)

It then follows by (5.4) and (5.5) that (0, u) ∈ B
X
r (0) × B

U
r (0) but

‖ϕ(τ , 0, u)‖ =
∥∥∥∥

∫ τ

0
u(s) · eA(τ−s)b ds

∥∥∥∥

= r ·
∥∥∥∥

∫ τ

0
b(· + s) ds

∥∥∥∥ > γ (r) = σ(0) + γ (r).

Contradiction (to our uniform local stability assumption)! �

5.2 A positive result

While weak input-to-state stability and the combination of zero-input uniform global
stability and the weak asymptotic gain property are inequivalent for linear systems
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with general input spaces U , they coincide for linear systems with input space U =
L p(R+

0 ,U ).

Proposition 5.2 SupposeS := (X ,U , ϕ) is as in Proposition 4.3. Then,S is a dynam-
ical systemwith inputs andS isweakly input-to-state stable if and only if it is zero-input
uniformly locally stable and of weak asymptotic gain.

Proof We already know that S is a dynamical system with inputs, and one of the
claimed implications is trivial. So, let S be zero-input uniformly locally stable (with
corresponding function σ and radius r ) and of weak asymptotic gain γ (with corre-
sponding times τ(ε, x0, u)). We then have

∥∥eAt x0
∥∥ = ‖ϕ(t, x0, 0)‖ ≤ σ(‖x0‖) (x0 ∈ B

X
r (0) and t ≥ 0)

‖�t (u)‖ = ‖ϕ(t, 0, u)‖ ≤ 1 + γ (‖u‖U ) (u ∈ B
U
r (0) and t ≥ τ(1, 0, u)).

So, by linearity and the continuity of [0, τ (1, 0, u)] � t 
→ �t (u) for u ∈ U , we see
that R

+
0 � t 
→ eAt x0 ∈ X and R

+
0 � t 
→ �t (u) ∈ X are bounded functions for all

x0 ∈ X and u ∈ U and therefore

M1 := sup
t∈R+

0

∥∥∥eAt
∥∥∥ < ∞ and M2 := sup

t∈R+
0

‖�t‖ < ∞ (5.6)

by the uniform boundedness principle. Consequently,

‖ϕ(t, x0, u)‖ ≤ M1 ‖x0‖ + M2 ‖u‖U (t ≥ 0)

for every (x0, u) ∈ X × U . In particular, S is uniformly globally stable and hence
weakly input-to-state stable, as desired. ��

6 Conclusion

We established a characterization of weak input-to-state stability similar to the charac-
terizations of strong anduniform input-to-state stability from [18].Wealso investigated
the relation of weak input-to-state stability to other common and natural stability con-
cepts, thereby advancing the theoretical understanding of the various input-to-state
stability concepts from the literature. In particular, we showed that for linear systems
weak input-to-state stability is equivalent to strong input-to-state stability and that for
modulated linear systems, by contrast, weak input-to-state stability is strictly weaker
than strong input-to-state stability. We also showed that for semilinear systems weak
input-to-state stability is at least strictly weaker than uniform input-to-state stability.
It would be desirable to prove (or disprove) that for such semilinear systems—and in
particular, for the semilinear systems considered in [3,25]—weak input-to-state sta-
bility is also strictly weaker than strong input-to-state stability.We leave that for future
research.
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