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Abstract
This paper addresses the robust stability of a boundary controlled system coupling
two partial differential equations (PDEs), namely beam and string equations, in the
presence of boundary and in-domain disturbances under the framework of input-to-
state stability (ISS) theory. Well-posedness assessment is first carried out to determine
the regularity of the disturbances required for guaranteeing the unique existence of
the solution to the considered problem. Then, the method of Lyapunov functionals is
applied in stability analysis, which results in the establishment of some ISS properties
with respect to disturbances. As the analysis is based on the a priori estimates of the
solution to the PDEs, it allows avoiding the invocation of unbounded operators while
obtaining the ISS gains in their original expression without involving the derivatives
of boundary disturbances.
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1 Introduction

This paper addresses the robust stabilization problem of a boundary controlled system
described by a pair of coupled partial differential equations (PDEs) in the presence of
boundary and in-domain disturbances. The considered system is a model describing
the dynamics in bending and twisting displacement, respectively, for a flexible aircraft
wing [22]. This model is a linear version of the system presented in [3]. A very similar
model of a flapping wing UAV is studied in [33] and [9]. The robust stability analysis
presented in this work is carried out in the framework of input-to-state stability (ISS),
which was first introduced by Sontag (see [35,36]) and has become one of the central
concepts in the study of robust stability of control systems.

During the last two decades, a complete theory of ISS for nonlinear finite dimen-
sional systems has been established and has been successfully applied to a very wide
range of problems in nonlinear systems analysis and control (see, e.g., [13]). In recent
years, a considerable effort has been devoted to extending the ISS theory to infinite
dimensional systems governed by partial differential equations, including the char-
acterization of ISS and iISS (integral input-to-state stability, which is a variant of
ISS [37]) [6,11,12,25–32] and the establishment of ISS properties for different PDE
systems [1,2,5,7,10,14–19,23,24,34,38–42].

In the formulation of PDEs, disturbances can be distributed over the domain and/or
appear at isolated points in the domain or on the boundaries. Usually, pointwise dis-
turbances will lead to a formulation involving unbounded operators [10,15,16,27],
which is considered to be more challenging than the case of distributed disturbances
[15]. To avoid dealing with unbounded operators, it is proposed in [1] to transform
the boundary disturbance to a distributed one, which allows for the application of the
tools established for the latter case, in particular the method of Lyapunov functionals.
However, it is pointed out in [15,16] that such a method will end up establishing the
ISS property with respect to boundary disturbance and some of its time derivatives,
which is not strictly in the original form of ISS formulation. For this reason, the authors
of [15,16] proposed a finite-difference scheme and eigenfunction expansion method
with which the ISS in L2-norm and in weighted L∞-norm is derived directly from the
estimates of the solution to the considered PDEs associated with a Sturm–Liouville
operator. Although the aforementioned transformation of the disturbance from the
boundary to the domain is still used, it is only for the purpose of well-posedness
assessment, while the ISS property is expressed solely in terms of disturbances as
expected. Nevertheless, the method employed in [15,16] may involve a very heavy
computation when dealing with higher-order, coupled PDEs with complex boundary
conditions including disturbances, as the one considered in the present work.

A monotonicity-based method has been introduced in [32] for studying the ISS of
nonlinear parabolic equations with boundary disturbances. It has been shown that with
themonotonicity the ISS of the original nonlinear parabolic PDEwith constant bound-
ary disturbances is equivalent to the ISS of a closely related nonlinear parabolic PDE
with constant distributed disturbances and zero boundary conditions. As an applica-
tion of this method, the ISS properties in L p-norm (∀p > 2) for some linear parabolic
systems have been established.
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It has been shown in [40] and [41] that the classical method of Lyapunov functionals
is still effective in obtaining ISS properties w.r.t. boundary disturbances for certain
semilinear parabolic PDEs with Dirichlet, and Neumann (or Robin) boundary condi-
tions, respectively. In [40], the technique of DeGiorgi iteration is usedwhen Lyapunov
method is involved in the establishment of ISS for PDEs with Dirichlet boundary dis-
turbances. ISS in L2-norm forBurgers’ equations, and ISS in L∞-norm for some linear
PDEs, have been established in [40]. In [41], some technical inequalities have been
developed, which allows dealing directly with the boundary disturbances in proceed-
ing on ISS in L2-norm for certain semilinear PDEswithNeumann (orRobin) boundary
conditions via Lyapunov method. In [38], the ISS w.r.t. boundary disturbances in H1-
norm has also been established for linear hyperbolic PDEs using Lyapunov method.

It should be noticed that it is shown in [10] by means of admissibility that for
a class of linear PDEs with boundary disturbances, ISS is equivalent to iISS if the
corresponding semigroup is exponentially stable. Nevertheless, this is a quite strong
condition and there may be difficulties to apply this assertion to systems for which
the associated operators are not a priori dissipative, as dissipativity is a non-trivial
property depending closely on, among other factors, the boundary conditions and the
regularity of the disturbances.

The method adopted in the present work is also the application of Lyapunov theory
in the establishment of the ISS and iISS properties of the considered system with
respect to boundary and in-domain disturbances. However, greatly inspired by the
methodology proposed in [15,16,41], stability analysis is based on the a priori esti-
mates of the solution to the original PDEs, which allows avoiding the invocation of
unbounded operators while obtaining the ISS and iISS properties expressed only in
terms of the disturbances. The development of the solution consists in two steps. In
the first step, we perform a well-posedness analysis to determine the regularity of the
disturbances required for ensuring the existence of the solutions to the PDEs. Simi-
lar to [1,15,16], the technique of lifting is used in well-posedness analysis to avoid
involving unbounded operators. In the second step, the ISS and iISS properties are
established via the estimates of the solution to the original system. Instead of deal-
ing with certain energy functional directly, the Lyapunov functional candidate for the
system is actually derived from the regularity analysis of the solutions. In general, a
Lyapunov functional candidate may be chosen according to the norms of the solution
and their derivatives arising in the computation of a priori estimates of the solutions.

Note that the result presented in this work demonstrates that the appearance of the
derivatives of boundary disturbances in ISS or iISS gains is not necessarily inherent
to the Lyapunov method and may be avoided for certain settings. Therefore, we can
expect that the well-established method of Lyapunov functionals can be applied to
the establishment of ISS properties with respect to boundary disturbances for a wide
range of PDEs. This constitutes the main contribution of the present work.

In the remainder of the paper, Sect. 2 introduces the dynamic model of the coupled
beam-string system and presents the well-posedness assessment. Section 3 is devoted
to the analysis of ISS and iISS properties of the considered system. Numerical simula-
tion results for the considered system are presented in Sect. 4, followed by concluding
remarks given in Sect. 5.

123



21 Page 4 of 25 Mathematics of Control, Signals, and Systems (2018) 30 :21

2 Problem formulation and well-posedness analysis

2.1 Notation

LetR = (−∞,+∞),R+ = (0,+∞), andR≥0 = {0}∪R+.We define some function
spaces for functions with one variable. For a, b ∈ [−∞,+∞] and p ∈ [1,+∞),
L p(a, b) is the space of all measurable functions f whose absolute value raised to the
pth-power has a finite integral. The norm ‖ · ‖ on L p(a, b) is defined by ‖ f ‖L p(a,b) =(∫ b

a | f (x)|pdx
) 1

p
. L∞(a, b) is the space all measurable functions f whose absolute

value is essential bounded. The norm ‖ · ‖ on L∞(a, b) is defined by ‖ f ‖L∞(a,b) =
ess supa<x<b | f (x)|. For a positive integer m, Hm(a, b) = Hm((a, b);R) = { f :
(a, b) → R| f ∈ L2(a, b)with each s-th order weak derivative Ds f ∈ L2(a, b), s =
1, 2, . . . ,m}. For a nonnegative integer m, Cm(R≥0) = Cm(R≥0;R) = { f : R≥0 →
R| ds fdxs (s = 0, 1, 2, . . . ,m) exist and are continuous on R≥0}.

We define some function spaces for functions with two variables. For t ∈ R≥0, l ∈
R≥0 and 1 ≤ p < +∞, the space L∞(0, t; L p(0, l)) consists of all strongly measur-
able functions f : [0, t] → L p(0, l) with the norm

‖ f ‖L∞(0,t;L p(0,l)) = ess sup
0<s<t

‖ f (·, s)‖L p(0,l) < +∞.

The space L∞(0, t; L∞(0, l)) consists of all strongly measurable functions f :
[0, t] → L∞(0, l) with the norm

‖ f ‖L∞(0,t;L∞(0,l)) = ess sup
0<s<t

‖ f (·, s)‖L∞(0,l) < +∞.

For a nonnegative integer m and a vector space H , Cm(R≥0; H) = { f : R≥0 →
H | ∂s f

∂t s (·, t) ∈ H , and ∂s f
∂t s (·, t) is continuous on R≥0, s = 0, 1, 2, . . . ,m}.

Some well-known function classes commonly used in Lyapunov-based stability
analysis are specified below:

K = {γ : R≥0 → R≥0| γ (0) = 0, γ is continuous, strictly increasing};
K∞ = {θ ∈ K| lim

s→∞ θ(s) = ∞};
L = {γ : R≥0 → R≥0| γ is continuous, strictly decreasing, lim

s→∞ γ (s) = 0};
KL = {β : R≥0 × R≥0 → R≥0| β(·, t) ∈ K,∀t ∈ R≥0, and β(s, ·) ∈ L,∀s ∈
R+}.

2.2 System setting

Let l ∈ R≥0 be the length of the wing. Denote by w(y, t) : [0, l] × R≥0 → R and
φ(y, t) : [0, l] × R≥0 → R the bending and twisting displacements, respectively,
at the location y ∈ [0, l] along the wing span and at time t ≥ 0. In the present
work, we consider the dynamics of a flexible aircraft wing expressed by the following
initial-boundary value problem (IBVP) representing a coupled beam-string system
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with boundary control [22]:

wt t + (a1wyy + b1wt yy)yy = c1φ + p1φt + q1wt + d1, (1a)

φt t − (a2φy + b2φt y)y = c2φ + p2φt + q2wt + d2, (1b)

w(0, t) = wy(0, t) = φ(0, t) = 0,

(a1wyy + b1wt yy)y(l, t) = d3(t), (a2φy + b2φt y)(l, t) = d4(t), (1c)

w(y, 0) = w0, wt (y, 0) = w0
1, φ(y, 0) = φ0, φt (y, 0) = φ0

1 , (1d)

where (1a) and (1b) are defined in (0, l)×R≥0, ai > 0, bi > 0, ci ≥ 0 (i = 1, 2), p1 ≥
0, p2 ≤ 0, q1 ≤ 0 and q2 ≥ 0 are constants depending on structural and aerodynamic
parameters, w0, w0

1 ∈ H2(0, l), φ0, φ0
1 ∈ H1(0, l), d1, d2 ∈ C1(R≥0; L2(0, l)),

and d3, d4 ∈ C2(R≥0;R). Functions d1(y, t) and d2(y, t) represent disturbances
distributed over the domain, while functions d3(t) and d4(t) represent disturbances
at the boundary y = l. In general, d1 and d2 can represent modeling errors and
aerodynamic load perturbations, and d3 and d4 can represent actuation and sensing
errors.

Remark 1 (1) is a model of flexible aircraft wing with Kelvin–Voigt damping, in
which the constants b1

a1
in (1a) and b2

a2
in (1b) represent the coefficients of bending

Kelvin–Voigt damping and torsional Kelvin–Voigt damping, respectively (see [22]
for instance).

2.3 Well-posedness analysis

In this section, we prove the well-posedness of System (1). To this end, consider the
Hilbert space

H :=
{
( f , g, h, z) ∈ H2(0, l) × L2(0, l) × H1(0, l) × L2(0, l) :

f (0) = fy(0) = h(0) = 0, f , fy, h ∈ AC[0, l]
}
,

endowed with the inner product

〈( f1, g1, h1, z1), ( f2, g2, h2, z2)〉H =
∫ l

0
(a1 f1yy f2yy + g1g2 + a2h1yh2y + z1z2)dy.

Introducing the state vector X = ( f , g, h, z), the norm ‖ · ‖H on H induced by the
inner product can be expressed as:

‖X‖2H =‖√a1 fyy‖2L2(0,l) + ‖g‖2L2(0,l) + ‖√a2hy‖2L2(0,l) + ‖z‖2L2(0,l).

In order to reformulate System (1) in an abstract form evolving in the space H,
we define the following operators. First, we introduce the unbounded operator A1,d :
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D(A1,d) ⊂ H → H defined by

A1,d X := (
g,−(a1 fyy + b1gyy)yy, z, (a2hy + b2zy)y

)
(2)

on the following domain:

D(A1,d) :=
{
( f , g, h, z) ∈ H : g ∈ H2(0, l), z ∈ H1(0, l),

(a1 fyy + b1gyy) ∈ H2(0, l), (a2hy + b2zy) ∈ H1(0, l),

f (0) = fy(0) = 0, g(0) = gy(0) = 0,

h(0) = 0, z(0) = 0, (a1 fyy + b1gyy)(l) = 0,

f , fy, g, gy, h, z, (a1 fyy + b1gyy) ∈ AC[0, l],
(a1 fyy + b1gyy)y, (a2hy + b2zy) ∈ AC[0, l]

}
,

where AC[0, l] denotes the set of all absolutely continuous functions on [0, l]. The
contribution of other terms are embedded into the bounded operator A2 ∈ L(H)

defined as
A2X := (0, c1h + p1z + q1g, 0, c2h + p2z + q2g), (3)

with domain D(A2) = H (the bounded property is a direct consequence of the
Poincaré’s inequality). Finally, we consider the boundary operator B : D(B) =
D(A1,d) → H defined as

BX := ((a1 fyy + b1gyy)y(l), (a2hy + b2zy)(l)). (4)

Thus, System (1) can be represented in the following abstract system:

⎧⎪⎨
⎪⎩

Ẋ = [
A1,d + A2

]
X + (0, d1, 0, d2)

BX = U

X0 ∈ D(A1,d), s.t. BX0 = U (0)

(5)

where U � (d3, d4).
In order to assess the well-posedness of (5), we introduce the unbounded

disturbance-free operator A1 = D(A1) ⊂ H → H defined on the domain
D(A1) = D(A1,d) ∩ ker(B) by A1 = A1,d

∣∣
D(A1)

. We also consider the lifting

operator T ∈ L(R2,H) defined by

T (d3, d4) :=
(
y → − d3

6a1
y2(3l − y), 0, y → d4

a2
y, 0

)
. (6)

with‖T ‖ = √
l × max(1/a2, l2/(3a1))whenR2 is endowedwith the usual l2-norm.A

direct computation shows that R(T ) ⊂ D(A1,d), A1,dT = 0L(R2,H) and BT = IR2 ,
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where R(T ) is the range of the operator T . Thus, we can define a system in the
following abstract form:

{
V̇ = [A1 + A2] V + A2T U − T U̇ + (0, d1, 0, d2)

V0 ∈ D(A1)
(7)

By [4,Th3.3.3],wehave the following relationship between the solutions of abstract
systems (5) and (7).

Lemma 1 Let X0 ∈ D(A1,d), d1, d2 ∈ C1(R≥0; L2(0, l)), and d3, d4 ∈ C2(R≥0;R)

such that BX0 = (d3(0), d4(0)). Then X ∈ C0(R≥0; D(A1,d)) ∩ C1(R≥0;H) with
X(0) = X0 is a solution of (5) if and only if V = X − T U ∈ C0(R≥0; D(A1)) ∩
C1(R≥0;H) is a solution of (7) for the initial condition V0 = X0 − T U (0).

We can now use Lemma 1 to assess the well-posedness of the original abstract
problem (5).

Theorem 1 For any d1, d2 ∈ C1(R≥0; L2(0, l)), and d3, d4 ∈ C2(R≥0;R), the
abstract problem (5) admits a unique solution X ∈ C0(R≥0; D(A1,d))∩ C1(R≥0;H)

for any given X0 ∈ D(A1,d) such that BX0 = (d3(0), d4(0)).

Proof Let X0 ∈ D(A1,d) such that BX0 = U (0). It is known that A1 generates a
C0-semigroup on H [22]. As A2 ∈ L(H), A1 + A2 generates a C0-semigroup on
H (see [4, Th 3.2.1]). Furthermore, A2T U − T U̇ + (0, d1, 0, d2) ∈ C1(R≥0;H)

due to T ∈ L(R2,H) and A2 ∈ L(H). Then, from [4, Th 3.1.3], (7) admits a unique
solution V ∈ C0(R≥0; D(A1)) ∩ C1(R≥0;H) for the initial condition V (0) =
V0 = X0 −T U (0). We deduce then from Lemma 1 that there exists a unique solution
X ∈ C0(R≥0; D(A1,d)) ∩ C1(R≥0;H) to (5) associated to the initial condition
X(0) = X0. ��

3 Stability assessment

In this section we establish the stability property of System (1). Let D(A1,d), H
and the norm ‖ · ‖H be defined as in Sect. 2.3. Let (w, φ) be the unique solution
of System (1) satisfying (w,wt , φ, φt ) ∈ C0(R≥0; D(A1,d)) ∩ C1(R≥0;H). For
simplicity, throughout this section, we express the state variable and its initial value
as X = (w,wt , φ, φt ) and X0 = (w0, w0

1, φ
0, φ0

1). Define the energy function

E(t) = 1

2

∫ l

0

(|wt |2 + a1|wyy |2 + |φt |2 + a2|φy |2
)
dy. (8)

Then ‖X(·, t)‖2H = 2E(t) for all t ≥ 0.

Definition 1 System (1) is said to be input-to-state stable (ISS) with respect to distur-
bances d1, d2 ∈ C1(R≥0; L2(0, l)) and d3, d4 ∈ C2(R≥0) ∩ L∞(R≥0), if there exist
functions γ1, γ2, γ3, γ4 ∈ K and β ∈ KL such that the solution of System (1) satisfies
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‖X(·, t)‖H ≤ β(‖X0‖H, t) + γ1(‖d1‖L∞(0,t;L2(0,l))) + γ2(‖d2‖L∞(0,t;L2(0,l)))

+ γ3(‖d3‖L∞(0,t)) + γ4(‖d4‖L∞(0,t)), ∀t ≥ 0. (9)

Moreover, System (1) is said to be exponential input-to-state stable (EISS)with respect
to disturbances d1, d2, d3, and d4 if there exist β ′ ∈ K∞ and a constant λ > 0 such
that (9) holds with β(‖X0‖H, t) = β ′(‖X0‖H)e−λt .

Definition 2 System (1) is said to be integral input-to-state stable (iISS) with respect
to disturbances d1, d2 ∈ C1(R≥0; L2(0, l)) and d3, d4 ∈ C2(R≥0) ∩ L∞(R≥0), if
there exist functions β ∈ KL, θ1, θ2, θ3, θ4 ∈ K∞ and γ1, γ2, γ3, γ4 ∈ K, such that
the solution of System (1) satisfies

‖X(·, t)‖H ≤ β(‖X0‖H, t) + θ1

(∫ t

0
γ1(‖d1(·, s)‖L2(0,l))ds

)

+ θ2

(∫ t

0
γ2(‖d2(·, s)‖L2(0,l))ds

)

+ θ3

(∫ t

0
γ3(|d3(s)|)ds

)
+ θ4

(∫ t

0
γ4(|d4(s)|)ds

)
, ∀t ≥ 0.

(10)

Moreover, System (1) is said to be exponential integral input-to-state stable (EiISS)
with respect to disturbances d1, d2, d3, and d4 if there exist β ′ ∈ K∞ and a constant
λ > 0 such that (10) holds with β(‖X0‖H, t) = β ′(‖X0‖H)e−λt .

In order to obtain the stability of the solutions, we make the following assumptions:

l2
√
2l‖d3‖L∞(R≥0) < 2a1, (11a)√

2l(1 + l
√
l)(1 + Km)(1 + c1 + c2−p2 + q2 + ‖d4‖L∞(R≥0)) < a2, (11b)

l2
√
2l(1 + l3)(c1 + p1−q1 + q2 + ‖d3‖L∞(R≥0)) < 2b1, (11c)√

2l(1 + l3)(1 + p1 + c2−p2 + q2 + ‖d4‖L∞(R≥0)) < b2, (11d)

where Km = max
{

1√
a1

, 1√
a2

, l2

2
√
a2

, l4

4
√
a1

}
.

For notational simplicity, we denote hereafter ‖ · ‖L2(0,l) by ‖ · ‖.
Theorem 2 Assume that

(i) d1, d2 ∈ C1(R≥0; L2(0, l));
(ii) d3, d4 ∈ C2(R≥0) ∩ L∞(R≥0);
(iii) all conditions in (11) are satisfied.

Then System (1) is EISS and EiISS, having the following estimates:

‖X(·, t)‖H ≤Ce− μm
4 t‖X0‖H + C

(
‖d1‖L∞(0,t;L2(0,l)) + ‖d2‖L∞(0,t;L2(0,l))

+‖d3‖
1
2
L∞(0,t) + ‖d4‖

1
2
L∞(0,t)

)
, (12)

123



Mathematics of Control, Signals, and Systems (2018) 30 :21 Page 9 of 25 21

and

‖X(·, t)‖H ≤Ce− μm
4 t‖X0‖H + C

( ∫ t

0
‖d1(·, s)‖2ds

) 1
2 + C

( ∫ t

0
‖d2(·, s)‖2ds

) 1
2

+ C

(∫ t

0

(|d3(s)|ds
) 1

2 + C

( ∫ t

0
|d4(s)|ds

) 1
2

. (13)

where C > 0 and μm > 0 are some constants independent of t .

Proof We introduce first the following notations:

f1(φ, φt , wt , d1) = c1φ + p1φt + q1wt + d1,

f2(φ, φt , wt , d2) = c2φ + p2φt + q2wt + d2.

In order to find an appropriate Lyapunov functional candidate, multiplying (1a) by
wt and considering the fact that w ∈ C1(R≥0; H2(0, l)) ∩ C2(R≥0; L2(0, l)) with
(a1wyy + b1wt yy)(·, t) ∈ H2(0, 1), we get

∫ l

0
f1(φ, φt , wt , d1)wtdy =

∫ l

0
(wt t + (a1wyy + b1wt yy)yy)wtdy

=
∫ l

0
wt twtdy + a1

∫ l

0
wyywt yydy

+ b1

∫ l

0
w2
t yydy + d3(t)wt (l, t)

=1

2

d

dt

(‖wt‖2 + a1‖wyy‖2
) + b1‖wt yy‖2 + d3(t)wt (l, t),

which gives

1

2

d

dt

(‖wt‖2 + a1‖wyy‖2
)

= − b1‖wt yy‖2 − d3(t)wt (l, t) +
∫ l

0
f1(φ, φt , wt , d1)wtdy. (14)

Multiplying (1a) by φt and since φ ∈ C1(R≥0; H1(0, l)) ∩ C2(R≥0; L2(0, l)) with
(a2φy + b2φt y)(·, t) ∈ H1(0, l), we get

∫ l

0
f2(φ, φt , wt , d2)φtdy =

∫ l

0
(φt t − (a2φy + b2φt y)y)φtdy

= 1

2

d

dt

(‖φt‖2 + a2‖φy‖2
) + b2‖φt y‖2 − d4(t)φt (l, t),
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which gives

1

2

d

dt

(‖φt‖2 + a2‖φy‖2
) = −b2‖φt y‖2 + d4(t)φt (l, t) +

∫ l

0
f2(φ, φt , wt , d2)φtdy.

(15)

In order to deal with the items containing ‖wyy‖2 and ‖φy‖2, multiplying (1a) and
(1b) by w and φ, respectively, yields

∫ l

0
wt twdy = − a1‖wyy‖2 − d3(t)w(l, t) −

∫ l

0
wyywt yydy

+
∫ l

0
f1(φ, φt , wt , d1)wdy,

∫ l

0
φt tφdy = − a2‖φy‖2 + d4(t)φ(l, t) −

∫ l

0
φyφt ydy +

∫ l

0
f2(φ, φt , wt , d2)φdy.

Note that for any η ∈ C2(R≥0; L2(0, l)), there holds d
dt

∫ l
0 ηηtdy = ∫ l

0 η2t dy +∫ l
0 ηηt tdy. Then we have

d

dt

∫ l

0
wwtdy = − a1‖wyy‖2 − d3(t)w(l, t) −

∫ l

0
wyywt yydy

+
∫ l

0
w2
t dy +

∫ l

0
f1(φ, φt , wt , d1)wdy, (16)

d

dt

∫ l

0
φφtdy = − a2‖φy‖2 + d4(t)φ(l, t) −

∫ l

0
φyφt ydy

+
∫ l

0
φ2
t dy +

∫ l

0
f2(φ, φt , wt , d2)φdy. (17)

We define the augmented energy

E(t) = E(t) + ε1

∫ l

0
φφtdy + ε2

∫ l

0
wwtdy, (18)

where 0 < ε1 < 1 and 0 < ε2 < 1 are constants to be chosen later.
Note that (see [22])

∣∣∣∣
∫ l

0
wwtdy

∣∣∣∣ ≤ max{1, l4/2}√
a1

E(t),

and

∣∣∣∣
∫ l

0
φφtdy

∣∣∣∣ ≤ max{1, l2/2}√
a2

E(t).

123



Mathematics of Control, Signals, and Systems (2018) 30 :21 Page 11 of 25 21

Choosing 0 < ε1, ε2 < 1
Km

, we have

1

1 + Kmεm
E(t) ≤ E(t) ≤ 1

1 − Kmεm
E(t), (19)

where εm = max{ε1, ε2}.
Based on (14) to (18) and “Appendix A”, we get

d

dt
E(t) = d

dt
E(t) + ε1

d

dt

∫ l

0
φφtdy + ε2

d

dt

∫ l

0
wwtdy

= − b1‖wt yy‖2 − d3(t)wt (l, t) +
∫ l

0
f1(φ, φt , wt , d1)wtdy − b2‖φt y‖2

+ d4(t)φt (l, t) +
∫ l

0
f2(φ, φt , wt , d2)φtdy + ε1

(
− a2‖φy‖2 + d4(t)φ(l, t)

−
∫ l

0
φyφt ydy +

∫ l

0
φ2
t dy +

∫ l

0
f2(φ, φt , wt , d2)φdy

)
+ ε2

(
− a1‖wyy‖2

− d3(t)w(l, t) −
∫ l

0
wyywt yydy +

∫ l

0
w2
t dy +

∫ l

0
f1(φ, φt , wt , d1)wdy

)

= − b1‖wt yy‖2 − ε2a1‖wyy‖2 + ε2‖wt‖2 − b2‖φt y‖2

− ε1a2‖φy‖2 + ε1‖φt‖2 − ε1

∫ l

0
φyφt ydy − ε2

∫ l

0
wyywt yydy

+
∫ l

0
f1(φ, φt , wt , d1)(wt + ε2w)dy +

∫ l

0
f2(φ, φt , wt , d2)(φt + ε1φ)dy

− (
wt (l, t) + ε2w(l, t)

)
d3(t) + (

φt (l, t) + ε1φ(l, t)
)
d4(t)

≤ (ε2 + Λ1)‖wt‖2 + (Λ2 − ε2a1)‖wyy‖2 + (ε1 + Λ3)‖φt‖2
+ (Λ4 − ε1a2)‖φy‖2 + (Λ5 − b2)‖φt y‖2 + (Λ6 − b1)‖wt yy‖2 + Λ7

≤ (ε2 + Λ1)‖wt‖2 + (Λ2 − ε2a1)‖wyy‖2 + (ε1 + Λ3)‖φt‖2

+ (Λ4 − ε1a2)‖φy‖2 + 2

l2
(Λ5 − b2)‖φt‖2 + 4

l4
(Λ6 − b1)‖wt‖2 + Λ7

≤
(

ε2 + Λ1 + 4

l4
(Λ6 − b1)

)
‖wt‖2 + (Λ2 − ε2a1)‖wyy‖2

+
(

ε1 + Λ3 + 2

l2
(Λ5 − b2)

)
‖φt‖2 + (Λ4 − ε1a2)‖φy‖2 + Λ7, (20)

with the coefficients satisfying

Λ5 − b2 < Λ′
5 − b2 < 0, (21a)

Λ6 − b1 < Λ′
6 − b1 < 0, (21b)

ε2 + Λ1 + 4

l4
(Λ6 − b1) < ε2 + Λ1 + 4

l4
(Λ′

6 − b1) < 0, (21c)

Λ2 − ε2a1 < Λ′
2 − ε2a1 < 0, (21d)
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ε1 + Λ3 + 2

l2
(Λ5 − b2) < ε1 + Λ3 + 2

l2
(Λ′

5 − b2) < 0, (21e)

Λ4 − ε1a2 < Λ′
4 − ε1a2 < 0, (21f)

where Λ1,Λ2, ..., Λ7 and Λ′
2,Λ

′
4, ..., Λ

′
7 are defined in (30) in “Appendix A”. The

proof of the above inequalities is given in “Appendix B”.
Setting μm = min

{ − ε2 − Λ1 − 4
l4

(Λ′
6 − b1),−Λ′

2 + ε2a1,−ε1 − Λ3 − 2
l2

(Λ′
5 −

b2),−Λ′
4 + ε1a2

}
> 0, which is independent of t , we obtain from (19) and (20):

d

dt
E(t) ≤ − μmE(t) + Λ7

≤ − μm

1 + Kmεm
E(t) + Λ7

≤ − μm

2
E(t) + Λ7

= − μm

2
E(t) + ‖d1(·, t)‖2

2

(
1

r7
+ ε2

r8

)
+ ‖d2(·, t)‖2

2

(
1

r9
+ ε1

r10

)

+ 2
√
2l

(|d3(t)| + |d4(t)
)

≤ − μm

2
E(t) + C1

(
‖d1(·, t)‖2 + ‖d2(·, t)‖2 + |d3(t)| + |d4(t)|

)
, (22)

≤ − μm

2
E(t) + C1

(
‖d1‖2L∞(0,t;L2(0,l)) + ‖d2‖2L∞(0,t;L2(0,l))

+ ‖d3‖L∞(0,t) + ‖d4‖L∞(0,t)

)
, (23)

where C1 > 0 is a constant independent of t .
We infer from Comparison Lemma (see, [20, Lemma 3.4]) and (23) that

E(t) ≤ E(0)e− μm
2 t + 2C1

μm

(
‖d1‖2L∞(0,t;L2(0,l)) + ‖d2‖2L∞(0,t;L2(0,l))

+ ‖d3‖L∞(0,t) + ‖d4‖L∞(0,t)

)
(1 − e− μm

2 t )

≤ E(0)e− μm
2 t + 2C1

μm

(
‖d1‖2L∞(0,t;L2(0,l)) + ‖d2‖2L∞(0,t;L2(0,l))

+ ‖d3‖L∞(0,t) + ‖d4‖L∞(0,t)

)

≤ E(0)e− μm
2 t + C2

(
‖d1‖2L∞(0,t;L2(0,l)) + ‖d2‖2L∞(0,t;L2(0,l))

+ ‖d3‖L∞(0,t) + ‖d4‖L∞(0,t)

)
,

where C2 > 0 is a constant independent of t . We conclude by (19) and εm < 1
Km

that

0 ≤ E(t) ≤ 1

1 − Kmεm
E(t)
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≤ 1

1 − Kmεm
E(0)e− μm

2 t + C2

1 − Kmεm

(
‖d3‖L∞(0,t) + ‖d4‖L∞(0,t)

+ ‖d1‖2L∞(0,t;L2(0,l)) + ‖d2‖2L∞(0,t;L2(0,l))

)

≤1 + Kmεm

1 − Kmεm
E(0)e− μm

2 t + C2

1 − Kmεm

(
‖d3‖L∞(0,t) + ‖d4‖L∞(0,t)

+ ‖d1‖2L∞(0,t;L2(0,l)) + ‖d2‖2L∞(0,t;L2(0,l))

)

≤C3E(0)e− μm
2 t + C3

(
‖d3‖L∞(0,t) + ‖d4‖L∞(0,t)

+ ‖d1‖2L∞(0,t;L2(0,l)) + ‖d2‖2L∞(0,t;L2(0,l))

)
,

where C3 > 0 is a constant independent of t . Noting that since ‖X(·, t)‖2H = 2E(t)

for all t ≥ 0, and (a + b)
1
2 ≤ a

1
2 + b

1
2 for all a ≥ 0, b ≥ 0, the claimed result (12)

follows immediately.
Similarly, we get by (22) and Comparison Lemma

E(t) ≤ E(0)e− μm
2 t + C4

∫ t

0

(|d3(s)| + |d4(s)|
)
ds

+ C4

∫ t

0

(‖d1(·, s)‖2 + ‖d2(·, s)‖2
)
ds,

where C4 > 0 is a constant independent of t . Hence, it follows from (19) that

E(t) ≤ C5E(0)e− μm
2 t + C5

∫ t

0

(|d3(s)| + |d4(s)|
)
ds

+ C5

∫ t

0

(‖d1(·, s)‖2 + ‖d2(·, s)‖2
)
ds,

where C5 > 0 is a constant independent of t . Finally, we conclude (13) as above.

Note that

‖φ(·, t)‖2L∞(0,l) ≤ 2l‖φy‖2 ≤ 4l

a2
E(t),

‖wy(·, t)‖2L∞(0,l) ≤ l2

2
‖wyy‖2 ≤ l2

a1
E(t),

‖w(·, t)‖2L∞(0,l) ≤ 2l‖wy‖2 ≤ l3‖wyy‖2 ≤ 2l3

a1
E(t).

We have the following boundedness estimates for the solution of System (1).

Corollary 1 Under the same assumptions as in Theorem 2, the following estimates
hold true:

‖w(·, t)‖2L∞(0,l) + ‖wy(·, t)‖2L∞(0,l) + ‖φ(·, t)‖2L∞(0,l)
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≤ CE(0)e− μm
2 t + C

(
‖d1‖2L∞(0,t;L2(0,l)) + ‖d2‖2L∞(0,t;L2(0,l))

)

+ C
(
‖d3‖L∞(0,t) + ‖d4‖L∞(0,t)

)
,

and

‖w(·, t)‖2L∞(0,l) + ‖wy(·, t)‖2L∞(0,l) + ‖φ(·, t)‖2L∞(0,l)

≤ CE(0)e− μm
2 t + C

∫ t

0

(
‖d1(·, s)‖2L2(0,l) + ‖d2(·, s)‖2L2(0,l)

)
ds

+ C
∫ t

0

(|d3(s)| + |d4(s)|
)
ds,

where C > 0 and μm > 0 are some constants independent of t .

Note that the boundedness assumption on d3 and d4 can be relaxed and the structural
conditions in (11) can be simplified. Indeed, we estimate I4 and I5 in “Appendix A”
as follows:

I4 := −(wt (l, t) + ε2w(l, t))d3(t)

≤ 1

2r13
d23 (t) + r13

2
(w2

t (l, t) + ε22w
2(l, t))

≤ 1

2r13
d23 (t) + lr13(‖wt y‖2 + ε22‖wy‖2)

≤ 1

2r13
d23 (t) + l3r13

2
(‖wt yy‖2 + ε22‖wyy‖2), ∀r13 > 0,

and

I5 := (φt (l, t) + ε1φ(l, t))d4(t)

≤ 1

2r14
d24 (t) + l3r14(‖φt y‖2 + ε21‖φy‖2), ∀r14 > 0.

Then the parameters Λ2,Λ4,Λ5,Λ6,Λ7 in “Appendix A” become (other parameters
retain unchanged)

Λ2 = ε2

2r12
+ λ2 + ε22l

3r13
2

,

Λ4 = ε1

2r11
+ λ4 + λ8 + lr14ε

2
1,

Λ5 = ε1

2
r11 + lr14,

Λ6 = ε2

2
r12 + l3r13

2
,

Λ7 = λ5 + λ9 + 1

2r13
d23 (t) + 1

2r14
d24 (t).
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If we replace the conditions (11) by

ε2 + Λ1 + 4

l4
(Λ6 − b1) < 0, (24a)

Λ2 − ε2a1 < 0, (24b)

ε1 + Λ3 + 2

l2
(Λ5 − b2) < 0, (24c)

Λ4 − ε1a2 < 0, (24d)

for some r1, r2, ..., r14, ε1, ε2, and relax the boundedness of d3 and d4, then we have:

Theorem 3 Under the assumptions given in (24) and assuming that d1, d2 ∈
C1(R≥0; L2(0, l)) and d3, d4 ∈ C2(R≥0), System (1) is EISS and EiISS, having the
following estimates:

‖X(·, t)‖H ≤ Ce− μm
4 t‖X0‖H + C

(
‖d1‖L∞(0,t;L2(0,l)) + ‖d2‖L∞(0,t;L2(0,l))

)

+ C
(
‖d3‖L∞(0,t) + ‖d4‖L∞(0,t)

)
,

and

‖X(·, t)‖H ≤ Ce− μm
4 t‖X0‖H + C

(∫ t

0
‖d1(·, s)‖2L2(0,l)ds

) 1
2

+ C

( ∫ t

0
‖d2(·, s)‖2L2(0,l)ds

) 1
2 + C

( ∫ t

0
d23 (s)ds

) 1
2

+ C

( ∫ t

0
d24 (s)ds

) 1
2

,

where C > 0 and μm > 0 are constants independent of t .

Remark 2 If d3(t) = k1(wt (l, t) + ε2w(l, t)) and d4(t) = −k2(φt (l, t) + ε1φ(l, t))
appear as the feedback controls with constants k1 ≥ 0 and k2 ≥ 0, and (w, φ) is the
solution of System (1), then the following estimates hold:

E(t) ≤ CE(0)e− μm
2 t + C

(
‖d1‖2L∞(0,t;L2(0,l)) + ‖d2‖2L∞(0,t;L2(0,l))

)
,

and

E(t) ≤ CE(0)e− μm
2 t + C

∫ t

0

(
‖d1(·, s)‖2L2(0,l) + ‖d2(·, s)‖2L2(0,l)

)
ds,

where C > 0 and μm > 0 are some constants independent of t , d1, and d2.
Indeed, in this case, I4 and I5 given in (28) and (29) in “Appendix A” become

I4 = −(wt (l, t)+ε2w(l, t))(a1wyy+b1wt yy)y(l, t) = −k1(wt (l, t)+ε2w(l, t))2 ≤ 0
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and I5 = (φt (l, t) + ε1φ(l, t))(a2φy + b2φt y)(l, t) = −k2(φt (l, t) + ε1φ(l, t))2 ≤ 0.
Then taking in (30) M1 = M2 = 0 and proceeding as the proof of Theorem 2, one
may get the desired results.

Note that, under the above assumptions, a disturbance-free setting (i.e., d1 = d2 = 0
in (1a) and (1b)) was considered in [22], and the exponential stability was obtained.

Remark 3 A more generic setting is to replace the boundary conditions given in (1c)
by (a1wyy +b1wt yy)y(l, t) = d3(t)+k1(wt (l, t)+ε2w(l, t)) and (a2φy +b2φt y)(l, t)
= d4(t) − k2(φt (l, t) + ε1φ(l, t)), where d3(t), d4(t) are disturbances, k1 ≥ 0 and
k2 ≥ 0. Under the same assumptions on d1, d2, d3, and d4 as in Theorem 2 or
Theorem 3, if (w, φ) is the solution of System (1) with the above boundary conditions,
then it can verify that the ISS and iISS properties given in Theorem 2 or Theorem 3
hold.

Remark 4 As pointed out in [16,41], the assumptions on the continuities of the dis-
turbances are required for assessing the well-posedness of the considered system.
However, they are only sufficient conditions and can be weakened if solutions in a
weak sense are considered.Moreover, as shown in the proof of Theorem 2, the assump-
tions on the continuities of disturbances can eventually be relaxed for the establishment
of ISS estimates.

4 Simulation results

The ISS properties of System (1) are illustrated in this section. Numerical simulations
are performed based on the Galerkin method. The numerical values of the parameters
are set to a1 = 3, b1 = 0.3, c1 = 0.06, p1 = q1 = 0.04, a2 = 5, b2 = 0.5, c2 = 0.08,
p2 = q2 = 0.06, and l = 1. The four perturbation signals are selected as follows:

d1(y, t) = 2(1 + e−0.3t )(1 + sin(0.5π t) + 3 sin(5π t))y,

d2(y, t) = −0.2(1 + e−0.3t )(1 + sin(0.5π t) + 3 sin(5π t))y,

d3(t) = (1 + 2e−0.2t ) cos(0.2π t) sin(3π t),

d4(t) = 0.5(1 + e−0.2t ) sin(0.2π t) cos(3π t),

while the initial conditions are set to w0 = 0.15y2(y − 3l)/(6l2)m and φ0(y) =
8y2/l2 deg. The system response is depicted in Fig. 1 for the flexible displacements
over the time and spatial domains. The behavior at the tip, exhibiting the displacements
with maximal amplitude, is depicted in Fig. 2. It can be seen that the nonzero initial
condition vanishes due to the exponential stability of the underlying C0-semigroup.
Furthermore, the amplitude of the flexible displacements under bounded in-domain
and boundary perturbations remains bounded, which confirms the theoretical analysis.
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Fig. 1 Bending and twisting
displacements simulation
results. a Bending displacement
ω(y, t), b twisting displacement
φ(y, t)

(a)

(b)

Fig. 2 Bending and twisting
displacements at the tip
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5 Concluding remarks

The present work established the exponential input-to-state stability (EISS) and expo-
nential integral input-to-state stability (EiISS) of a system of boundary controlled
partial differential equations (PDEs) with respect to boundary and in-domain distur-
bances. Compared to the ISS property with respect to in-domain disturbances, the
case of boundary disturbances is more challenging due to essentially regularity issues.
This difficulty has been overcome by using a priori estimates of the solution to the
original PDEs, which leads to ISS gains in the expected form. It should be noted that
the Lyapunov functional candidate used in this work is greatly inspired by the results
reported [22]. As a further direction of research, it may be interesting to introduce
and develop tools allowing the establishment of the ISS property for a wider range of
problems in a more systematic manner, such as the attempt presented in [41].

Acknowledgements Funding was provided by Natural Sciences and Engineering Research Council of
Canada (Grant No. RGPIN-312116-13 and RGPIN-2014-03942).

A Proof of (20)

By Young’s inequality (see, e.g., [8, Appendix B.2.d]) and Poincaré inequality (see,
e.g., [21, Chap. 2, Remark 2.2]), we have

∫ l

0
φ2dy ≤4l2

π

∫ l

0
φ2
ydy ≤ l2

2

∫ l

0
φ2
ydy,

∫ l

0
φwtdy ≤ 1

2r1

∫ l

0
φ2dy + r1

2

∫ l

0
w2
t dy ≤ l2

4r1

∫ l

0
φ2
ydy + r1

2

∫ l

0
w2
t dy,

∫ l

0
φtwtdy ≤ 1

2r2

∫ l

0
φ2
t dy + r2

2

∫ l

0
w2
t dy,

∫ l

0
φwdy ≤ 1

2r3

∫ l

0
φ2dy + r3

2

∫ l

0
w2dy ≤ l2

4r3

∫ l

0
φ2
ydy + r3l4

8

∫ l

0
w2

yydy,

∫ l

0
φtwdy ≤ 1

2r4

∫ l

0
φ2
t dy + r4

2

∫ l

0
w2dy ≤ 1

2r4

∫ l

0
φ2
t dy + r4l4

8

∫ l

0
w2

yydy,

∫ l

0
wwtdy ≤ 1

2r5

∫ l

0
w2dy + r5

2

∫ l

0
w2
t dy ≤ l4

8r5

∫ l

0
w2

yydy + r5
2

∫ l

0
w2
t dy,

∫ l

0
φφtdy ≤ 1

2r6

∫ l

0
φ2dy + r6

2

∫ l

0
φ2
t dy ≤ l2

4r6

∫ l

0
φ2
ydy + r6

2

∫ l

0
φ2
t dy,

∫ l

0
d1wtdy ≤‖d1(·, t)‖2

2r7
+ r7

2

∫ l

0
w2
t dy,

∫ l

0
d1wdy ≤‖d1(·, t)‖2

2r8
+ r8

2

∫ l

0
w2dy ≤ ‖d1(·, t)‖2

2r8
+ r8l4

8

∫ l

0
w2

yydy,

∫ l

0
d2φtdy ≤‖d2(·, t)‖2

2r9
+ r9

2

∫ l

0
φ2
t dy,
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∫ l

0
d2φdy ≤‖d2(·, t)‖2

2r10
+ r10

2

∫ l

0
φ2dy ≤ ‖d2(·, t)‖2

2r10
+ r10l2

4

∫ l

0
φ2
ydy,

∫ l

0
φyφt ydy ≤ 1

2r11

∫ l

0
φ2
ydy + r11

2

∫ l

0
φ2
t ydy,

∫ l

0
wyywt yydy ≤ 1

2r12

∫ l

0
w2

yydy + r12
2

∫ l

0
w2
t yydy.

Then we get

I1 :=
∫ l

0
f1(φ, φt , wt , d1)(wt + ε2w)dy

=
∫ l

0
(c1φ + p1φt + q1wt + d1)(wt + ε2w)dy

≤1

2
(c1r1 + p1r2 + 2−q1 + r7 + ε2−q1r5) ‖wt‖2

+ ε2l4

8

(
c1r3 + p1r4 − q1

r5
+ r8

)
‖wyy‖2

+ p1
2

(
1

r2
+ ε2

r4

)
‖φt‖2 + c1l2

4

(
1

r1
+ ε2

r3

)
‖φy‖2 + ‖d1(·, t)‖2

2

(
1

r7
+ ε2

r8

)

:= λ1‖wt‖2 + λ2‖wyy‖2 + λ3‖φt‖2 + λ4‖φy‖2 + λ5, (25)

I2 :=
∫ l

0
f2(φ, φt , wt , d2)(φt + ε1φ)dy

=
∫ l

0
(c2φ + p2φt + q2wt + d2)(φt + ε1φ)dy

≤ q2
2

(r2 + ε1r1) ‖wt‖2 + 1

2

(
c2r6 − 2p2 + q2

r2
+ r9 − ε1 p2r6

)
‖φt‖2

+ l2

4

(
c2
r6

+ 2ε1c2 − ε1 p2
r6

+ ε1q2
r1

+ ε1r10

)
‖φy‖2 + ‖d2(·, t)‖2

2

(
1

r9
+ ε1

r10

)

:= λ6‖wt‖2 + λ7‖φt‖2 + λ8‖φy‖2 + λ9, (26)

I3 := ε1

∫ l

0
φyφt ydy + ε2

∫ l

0
wyywt yydy

≤ ε1

2

(
1

r11
‖φy‖2 + r11‖φt y‖2

)
+ ε2

2

(
1

r12
‖wyy‖2 + r12‖wt yy‖2

)
. (27)

We shall estimate (wt (l, t)+ ε2w(l, t))d3(t) and (φt (l, t)+ ε1φ(l, t))d4(t). Note that
for any f ∈ H1([0, l]) with f (0) = 0 there holds f 2(l) ≤ 2l‖ fy‖2. We compute

I4 := −(wt (l, t) + ε2w(l, t))d3(t)

≤ |d3(t)||wt (l, t) + ε2w(l, t)|
≤ |d3(t)|(

√
2l‖wt y‖ + ε2

√
2l‖wy‖)
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≤ √
2l|d3(t)|(2 + ‖wt y‖2 + ε2‖wy‖2)

≤ √
2l|d3(t)|

(
2 + l2

2
‖wt yy‖2 + ε2l2

2
‖wyy‖2

)
. (28)

Similarly, we get

I5 := (φt (l, t) + ε1φ(l, t))d4(t) ≤ √
2l|d4(t)|

(
2 + ‖φt y‖2 + ε1‖φy‖2

)
. (29)

Finally, we have

I1 + I2 + I3 + I4 + I5

≤ Λ1‖wt‖2 + Λ2‖wyy‖2 + Λ3‖φt‖2 + Λ4‖φy‖2+Λ5‖φt y‖2+Λ6‖wt yy‖2+Λ7,

where

Λ1 = λ1 + λ6, (30a)

Λ2 = ε2

2r12
+ λ2 + ε2l2

2

√
2l|d3(t)| ≤ ε2

2r12
+ λ2 + ε2l2

2

√
2lM1 := Λ′

2, (30b)

Λ3 = λ3 + λ7, (30c)

Λ4 = ε1

2r11
+ λ4 + λ8 + ε1

√
2l|d4(t)| ≤ ε1

2r11
+ λ4 + λ8 + ε1

√
2lM2 := Λ′

4,

(30d)

Λ5 = ε1

2
r11 + √

2l|d4(t)| ≤ ε1

2
r11 + √

2lM2 := Λ′
5, (30e)

Λ6 = ε2

2
r12 + l2

2

√
2l|d3(t)| ≤ ε2

2
r12 + l2

2

√
2lM1 := Λ′

6, (30f)

Λ7 = λ5 + λ9 + 2
√
2l(|d3(t)| + |d4(t)|) ≤ λ5 + λ9 + 2

√
2l(M1 + M2) := Λ′

7,

(30g)

M1 = ‖d3‖L∞R≥0 , (30h)

M2 = ‖d4‖L∞R≥0 . (30i)

B Proof of (21)

First, note that

ε2 + Λ1 + 4

l4
(Λ′

6 − b1) < 0

⇔ ε2 + 1

2
(c1r1 + p1r2 − 2q1 + r7 − ε2q1r5)

+ q2
2

(r2 + ε1r1) + 4

l4

(
ε2

2
r12 + l2

√
2l

2
M1 − b1

)
< 0, (31a)
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Λ′
2 − ε2a1 < 0

⇔ 1

2r12
+ l4

8

(
c1r3 + p1r4 − q1

r5
+ r8

)
+ l2

√
2l

2
M1 − a1 < 0, (31b)

ε1 + Λ3 + 2

l2
(Λ5 − b2) < 0

⇔ ε1 + 1

2

(
c2r6 − 2p2 + q2

r2
+ r9 − ε1 p2r6

)

+ p1
2

(
1

r2
+ ε2

r4

)
+ 2

l2

(
ε1

2
r11 + √

2lM2 − b2

)
< 0, (31c)

Λ′
4 − ε1a2 < 0

⇔ ε1

2r11
+ c1l2

4

(
1

r1
+ ε2

r3

)
+ ε1

√
2lM2 − ε1a2

+ l2

4

(
c2
r6

+ 2ε1c2 − ε1 p2
r6

+ ε1q2
r1

+ ε1r10

)
< 0, (31d)

(21c) ⇒ (21b) and (21e) ⇒ (21a). (31e)

It suffices to prove the right-hand side of (31a)–(31d).
Indeed, we get from (11b)

c1 + c2
2

(l2Km + √
l) + √

2lM2 + l

2
+ l2

2
(c2−p2 + q2)

≤ c1 + c2
2

(Km + 1)(l2 + √
l) + √

2lM2 + l

2
+ l2

2
(c2−p2 + q2)

≤ (Km + 1)(l2 + √
l)

(
c1 + c2

2
+ √

2M2 + 1

2
+ c2−p2 + q2

2

)

≤ √
l(1 + l

√
l)(Km + 1)(1 + c1 + q2 + c2−p2 + √

2M2)

≤ √
2l(1 + l

√
l)(Km + 1)(1 + c1 + q2 + c2−p2 + M2)

< a2,

which implies

c1 + c2
2

√
l + √

2lM2 + l

2
+ l2

2
(c2−p2 + q2) < a2, (32)

and

c1 + c2
2

l2Km + √
2lM2 + l

2
+ l2

2
(c2−p2 + q2) < a2. (33)
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Let

ε0 =
(c1 + c2)l2

2

a2 − √
2lM2 − l

2
− l2

2
(c2−p2 + q2)

.

By (32) and (33), we have (c1+c2)l2

2a2
< ε0 < min

{
1
Km

, l
√
l
}
.

We get from (11c)

(c1 + p1−4q1 + q2)l
4 + q2l

4ε0 + 8l2
√
2lM1 < 16b1. (34)

Indeed, we can compute

(c1 + p1−4q1 + q2)l
4 + q2l

4ε0 + 8l2
√
2lM1

≤ (c1 + p1−4q1 + q2)l
4 + q2l

4l
√
l + 8l2

√
2lM1

= l2
√
l

(
l
√
l(c1 + p1−4q1 + q2) + l3q2 + 8

√
2M1

)

≤ l2
√
l(1 + l3)(c1 + p1−4q1 + q2 + 8

√
2M1)

≤ 8l2
√
l(1 + l3)(c1 + p1−q1 + q2 + √

2M1)

≤ 8l2
√
2l(1 + l3)(c1 + p1−q1 + q2 + M1)

< 16b1.

We get from (11d)

l2
(
p1 + c2

4
−p2 + q2

)
+ l2

(
1 − p2

4
+ 1

l3

)
ε0 + 2

√
2lM2 < 2b2. (35)

Indeed, we can compute

l2
(
p1 + c2

4
−p2 + q2

)
+ l2

(
1 − p2

4
+ 1

l3

)
ε0 + 2

√
2lM2

≤ l2
(
p1 + c2

4
−p2 + q2

)
+ l2

(
1 − p2

4
+ 1

l3

)
l
√
l + 2

√
2lM2

≤ l2
(
p1 + c2

4
−p2 + q2

)
+ √

l

((
1 − p2

4

)
l3 + 1

)
+ 2

√
2lM2

≤ l2
(
p1 + c2

4
−p2 + q2

)
+ √

l(l3 + 1)

(
1 − p2

4

)
+ 2

√
2lM2

≤ √
l(l3 + 1)

(
p1 + c2

4
−p2 + q2 + 1 − p2

4
+ 2

√
2M2

)

≤ 2
√
2l(l3 + 1)

(
1 + p1 + c2−p2 + q2 + M2

)
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< 2b2.

Setting r11 = 1
l , we have

(c1 + c2)l2

2
+

(
(c2−p2 + q2)

l2

2
+ 1

2r11
+ √

2lM2 − a2

)
ε0 = 0, (36)

with (c2−p2 + q2)
l2
2 + 1

2r11
+ √

2lM2 − a2 < 0 due to (32) or (33).

Regarding (34), (35) and (36), we may choose ε1 ∈ (
ε0,min{ 1

Km
, l

√
l}) such that

1

4
(c1 + p1−4q1 + q2)l

4 + 1

4
q2l

4ε1 + 2l2
√
2lM1 < 4b1, (37)

l2(p1 + c2
4

−p2 + q2) + l2
(
1 − p2

4
+ 1

l3

)
ε1 + 2

√
2lM2 < 2b2, (38)

(c1 + c2)l2

2
+

(
(c2−p2 + q2)

l2

2
+ 1

2r11
+ √

2lM2 − a2

)
ε1 < 0. (39)

Note that by (11a), (31b) holdswith r3, r4, r8 small enough and r5, r12 large enough.
Setting r1 = r6 = 1

2 , we get by (39),

ε1

2r11
+ c1l2

4

1

r1
+ l2

4

(
c2
r6

+ 2ε1c2 − ε1 p2
r6

+ ε1q2
r1

)
+ ε1

√
lM2 − ε1a2 < 0. (40)

For the above r3, one may choose ε2 < 1
Km

small enough such that ε2
r3

small enough.
Then by (40), (31d) holds with small r10 and

ε2
r3
.

Similarly, by (38), (31c) holds with r2 = 1
2 and r9,

ε2
r4

small enough. By (37), (31a)

holds with r2 = 1
2 and ε2r12, ε2r5, r7 small enough.
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