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Abstract
While the original classical parameter adaptive controllers do not handle noise or
unmodelled dynamics well, redesigned versions have been proven to have some tol-
erance; however, exponential stabilization and a bounded gain on the noise are rarely
proven. Here we consider a classical pole placement adaptive controller using the
original projection algorithm rather than the commonly modified version; we impose
the assumption that the plant parameters lie in a convex, compact set, although some
progress has been made at weakening the convexity requirement. We demonstrate
that the closed-loop system exhibits a very desirable property: there are linear-like
convolution bounds on the closed-loop behaviour, which confers exponential stability
and a bounded noise gain, and which can be leveraged to prove tolerance to unmod-
elled dynamics and plant parameter variation. We emphasize that there is no persistent
excitation requirement of any sort; the improved performance arises from the vigilant
nature of the parameter estimator.

Keywords Adaptive control · Projection algorithm · Exponential stability · Bounded
gain

1 Introduction

Adaptive control is an approach used to deal with systems with uncertain or time-
varying parameters. The classical adaptive controller consists of a linear time-invariant
(LTI) compensator togetherwith a tuningmechanism to adjust the compensator param-
eters to match the plant. The first general proofs that adaptive controllers could work
came around 1980, e.g. see [1–5]. However, such controllers were typically not robust
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to unmodelled dynamics, did not tolerate time variations well, and did not handle
noise or disturbances well, e.g. see [6]. During the following two decades, a great
deal of effort was made to address these shortcomings. The most common approach
was to make small controller design changes, such as the use of signal normalization,
deadzones, and σ -modification, to ameliorate these issues, e.g. see [7–11]. Quite sur-
prisingly, it turns out that simply using projection (onto a convex set of admissible
parameters) has proved quite powerful, and the resulting controllers typically pro-
vide a bounded-noise bounded-state property, as well as tolerance of some degree of
unmodelled dynamics and/or time variations, e.g. see [12–17]. Of course, it is clearly
desirable that the closed-loop system exhibits LTI-like system properties, such as a
bounded gain on the noise1 and exponential stability. As far as the author is aware, in
the classical approach to adaptive control a bounded gain on the noise is proven only
in [12,13]; however, a crisp exponential bound on the effect of the initial condition
is not provided, and a minimum phase assumption is imposed. While it is possible to
prove a form of exponential stability if the reference input is sufficiently persistently
exciting, e.g. see [18], this places a stringent requirement on an exogenous input.

There are several non-classical approaches to adaptive control which provide LTI-
like system properties. First of all, in [19,20] a logic-based switching approach is
used to sequence through a predefined list of candidate controllers; while exponential
stability is proven, the transient behaviour can be quite poor and a bounded gain on
the noise is not proven. A more sophisticated logic-based approach, labelled supervi-
sory control, was proposed by Morse; here a supervisor switches in an efficient way
between candidate controllers—see [21–25]. In certain circumstances a bounded gain
on the noise can be proven—see [26,27], and the Concluding Remarks section of
[22]. A related approach, called localization-based switching adaptive control, uses a
falsification approach to prove exponential stability as well as a degree of tolerance
of disturbances, e.g. see [28].

Another non-classical approach, proposed by the first author, is based on periodic
probing, estimation, and control: rather than estimate the plant or controller parameters,
the goal is to estimate what the control signal would be if the plant parameters and
plant state were known and the ‘optimal controller’ were applied. Exponential stability
and a bounded gain on the noise are achieved, as well as near optimal performance,
e.g. see [29–31]; a degree of unmodelled dynamics and time variations can be allowed.
Roughly speaking, the idea is to estimate the ‘optimal control signal’ at every step; this
differs from the classical approach to adaptive control wherein the goal is to (at best)
obtain an asymptotic estimate of the ‘optimal control signal’. In order to carry out this
estimation, a sampled data approximation of a differentiator is used, with optimality
being achieved as the sampling period tends to zero. The drawback is that while a
bounded gain on the noise is always achieved, it tends to increase dramatically the
closer that one gets to optimality. Because of the nature of the approach, it only works
in the continuous-time domain.

In this paper we consider the discrete-time setting and we propose an alternative
approach to obtaining LTI-like system properties. We return to a common approach in

1 Since the closed-loop system is nonlinear, a bounded-noise bounded-state property does not automatically
imply a bounded gain on the noise.
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classical adaptive control—the use of the projection algorithm to carry out parameter
estimation together with the certainty equivalence principle. In the literature it is the
norm to use a modified version of the ideal projection algorithm in order to avoid divi-
sion by zero;2 in this paper we prove that an unexpected consequence of this minor
adjustment is that some inherent properties of the scheme have been destroyed. Here
we use the original version of the projection algorithm coupled with a pole placement
certainty equivalence-based controller. In the general casewe impose compactness and
convexity assumptions on the set of admissible parameters; however, some progress
has been made at weakening the convexity requirement. We obtain linear-like convo-
lution bounds on the closed-loop behaviour, which immediately confers exponential
stability and a bounded gain on the noise; such convolution bounds are, as far as the
authors are aware, a first in adaptive control, and it allows us to use a modular
approach to analyse robustness and tolerance to time-varying parameters, which
is a highly desirable feature. Indeed, this allows us to utilize all of the intuition that
we have developed for LTI systems in the adaptive setting, something which has not
been present using other techniques. To this end, the results will be presented in a very
pedagogically desirable fashion: we first deal with the ideal plant (with disturbances);
we then leverage that result to prove that a large degree of time variations is tolerated;
we then demonstrate that the approach tolerates a degree of unmodelled dynamics, in
a way familiar to those versed in the analysis of LTI systems.

In a recent short paper we consider the first-order case [32]. Here we consider the
general case, which requires much more sophisticated analysis and proofs. Further-
more, in comparison to [32], here we (i) present a more general estimation algorithm,
which alleviates the classical concern about dividing by zero, (ii) prove that the con-
troller achieves the objective in the presence of a more general class of time variations,
and (iii) prove robustness to unmodelled dynamics. An early version of this paper has
appeared in a conference [33].

Before proceeding, we present some mathematical preliminaries. Let Z denote the
set of integers,Z+ the set of non-negative integers,N the set of natural numbers,R the
set of real numbers, andR+ the set of non-negative real numbers.We letD0 denote the
open unit disc of the complex plane. We use the Euclidean 2-norm for vectors and the
corresponding induced norm for matrices, and denote the norm of a vector or matrix
by ‖ · ‖. We let l∞(Rn) denote the set of Rn-valued bounded sequences; we define the
norm of u ∈ l∞(Rn) by ‖u‖∞ := supk∈Z ‖u(k)‖. Occasionally, we will deal with a
map F : l∞(Rn) → l∞(Rn); the gain is given by supu �=0

‖Fu‖∞
‖u‖∞ and denoted by ‖F‖.

With T ∈ Z, the truncation operator PT : l∞(Rn) → l∞(Rn) is defined by

(PT x)(t) =
{
x(t) t ≤ T
0 t > T .

We say that the map F : l∞(Rn) → l∞(Rn) is causal if PT FPT = PT F for every
T ∈ Z.

2 An exception is the work of Ydstie [12,13], who considers the ideal Projection Algorithm as a special
case; however, a crisp bound on the effect of the initial condition is not proven and a minimum phase
assumption is imposed.
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If S ⊂ Rp is a convex and compact set, we define ‖S‖ := maxx∈S ‖x‖ and the
function πS : Rp → S denotes the projection onto S; it is well known that πS is well
defined.

2 The setup

In this paper we start with an nth-order linear time-invariant discrete-time plant given
by

y(t + 1) = −
n−1∑
i=0

ai+1y(t − i) +
n−1∑
i=0

bi+1u(t − i) + d(t)

= [
y(t) · · · y(t − n + 1) u(t) · · · u(t − n + 1)

]
︸ ︷︷ ︸

=:φ(t)T

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−a1
...

−an
b1
...

bn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
=:θ∗

+d(t),

φ(t0) = φ0, t ≥ t0, (1)

with y(t) ∈ R being the measured output, u(t) ∈ R the control input, φ(t) a vector
of input–output data, and d(t) ∈ R the disturbance (or noise) input. We assume that
θ∗ is unknown but belongs to a known set S ⊂ R2n . Associated with this plant model
are the polynomials

A(z−1) := 1 + a1z
−1 + · · · + anz

−n, B(z−1) := b1z
−1 + · · · + bnz

−n

and the transfer function B(z−1)

A(z−1)
.

Remark 1 It is straightforward to verify that if the system has a disturbance at both the
input and output, then it can be converted to a system of the above form.

We impose an assumption on the set of admissible plant parameters.
Assumption 1: S is convex and compact, and for each θ∗ ∈ S, the corresponding
pair of polynomials A(z−1) and B(z−1) are coprime.

The convexity part of the above assumption is common in a branch of the adaptive
control literature—it is used to facilitate constrained parameter estimation, e.g. see
[34], and it is a key assumption in arguably the simplest technique to ensuring that the
associated pole placement adaptive controller has tolerance to a degree of unmodelled
dynamics and to noise, e.g. see [12–17,35]. That being said, in Sect. 8 we will show
that it is possible to weaken this to assuming that θ∗ ∈ S1∪S2 with each Si convex and
compact, and for each θ∗ ∈ S1 ∪ S2, the corresponding pair of polynomials A(z−1)
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and B(z−1) are coprime; however, we will require that all closed-loop poles be placed
at zero, and a more complicated controller will be required. The boundedness part
of the assumption is less common, but it is quite reasonable in practical situations;
it is used here to ensure that we can prove uniform bounds and decay rates on the
closed-loop behaviour.

The main goal here is to prove a form of stability, with a secondary goal that of
asymptotic tracking of an exogenous reference signal y∗(t); since the plant may be
non-minimum phase, there are limits on howwell the plant can be made to track y∗(t).
To proceed, we use a parameter estimator together with an adaptive pole placement
control law. At this point, we discuss themost critical aspect—the parameter estimator.

2.1 Parameter estimation

We can write the plant as

y(t + 1) = φ(t)T θ∗ + d(t).

Given an estimate θ̂ (t) of θ∗ at time t , we define the prediction error by

e(t + 1) := y(t + 1) − φ(t)T θ̂ (t);

this is a measure of the error in θ̂ (t). The common way to obtain a new estimate is
from the solution of the optimization problem

argminθ {‖θ − θ̂ (t)‖ : y(t + 1) = φ(t)T θ},

yielding the ideal (projection) algorithm

θ̂ (t + 1) =
{

θ̂ (t) if φ(t) = 0
θ̂ (t) + φ(t)

φ(t)T φ(t)
e(t + 1) otherwise.

(2)

Of course, if φ(t) is close to zero, numerical problems can occur, so it is the norm in
the literature (e.g. [3,34]) to replace this by the following classical algorithm: with
0 < α < 2 and β > 0, define3

θ̂ (t + 1) = θ̂ (t) + αφ(t)

β + φ(t)Tφ(t)
e(t + 1). (3)

This latter algorithm is widely used and plays a role in many discrete-time adaptive
control algorithms; however, when this algorithm is used, all of the results are asymp-
totic, and exponential stability and a bounded gain on the noise are never proven. It
is not hard to guess why—a careful look at the estimator shows that the gain on the
update law is small if φ(t) is small. A more mathematically detailed argument is given
in the following example.

3 It is common to make this more general by letting α be time-varying.
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Remark 2 Consider the simple first-order plant

y(t + 1) = −a1y(t) + b1u(t) + d(t)

with a1 ∈ [−2,−1] and b1 ∈ [1, 2]. We use the estimator (3) with α ∈ (0, 2) and
β > 0, and, as in [12–17], we use projection to keep the parameters estimates inside
S so as to guarantee a bounded-input bounded-state property. Further suppose that
y∗ = d = 0, and that a classical pole placement adaptive controller places the closed-
loop pole at zero: u(t) = â1(t)

b̂1(t)
y(t) =: f̂ (t)y(t). Suppose that

y(0) = y0 = ε ∈ (0, 1), θ̂ (0) =
[−â1(0)

b̂1(0)

]
=
[
1
2

]
, θ∗ =

[
2
1

]

so that f̂ (0) = −0.5 and −a1 + b1 f̂ (0) = 1.5, i.e. the system is initially unstable.
An easy calculation verifies that f̂ (t) ∈ [−2,−0.5] and −a1 + b1 f̂ (t) ∈ [0, 1.5] for
t ≥ 0, which leads to a crude bound on the closed-loop behaviour: |y(t)| ≤ (1.5)tε
for t ≥ 0. With N (ε) := int[ 1

2 ln(1.5) ln(
1
ε
)], it follows that

|y(t)| ≤ ε1/2, t ∈ [0, N (ε)].

A careful examination of the parameter estimator shows that

‖θ̂ (t) − θ0‖ ≤ 20(2)1/2
ε

β
, t ∈ [0, N (ε)].

From the form of f̂ (t), it is easy to prove that if ε
β
is small enough,4 then we have

| − a + b1 f̂ (t)| ≥ 1.25 for t ∈ [0, N (ε)], in which case

|y(N (ε))| ≥ (1.25)N (ε)ε ⇒
∣∣∣∣ y(N (ε))

ε

∣∣∣∣ =
∣∣∣∣ y(N (ε))

y(0)

∣∣∣∣ ≥ (1.25)N (ε);

since N (ε) → ∞ as ε → 0, we see that exponential stability is not achieved. A similar
kind of analysis can be used to prove that a bounded gain on the noise is not achieved
either.

Now we return to the problem at hand—analysing the ideal algorithm (2). We will
be using the ideal algorithm with projection to ensure that the estimate remains in S
for all time. With an initial condition of θ̂ (t0) = θ0 ∈ S, for t ≥ t0 we set

θ̌ (t + 1) =
{

θ̂ (t) if φ(t) = 0
θ̂ (t) + φ(t)

φ(t)T φ(t)
e(t + 1) otherwise,

(4)

4 Here β > 0 is fixed, so this is equivalent to ε being small enough.

123



Mathematics of Control, Signals, and Systems (2018) 30 :19 Page 7 of 51 19

which we then project onto S:

θ̂ (t + 1) := πS(θ̌(t + 1)). (5)

Because of the closed and convex property ofS, the projection function iswell defined;
furthermore, it has the nice property that, for every θ ∈ R2n and every θ∗ ∈ S, we
have

‖πS(θ) − θ∗‖ ≤ ‖θ − θ∗‖,

i.e. projecting θ onto S never makes it further away from the quantity θ∗.

2.2 Revised parameter estimation

Some readers may be concerned that the original problem of dividing by a number
close to zero, whichmotivates the use of classical algorithm, remains. Of course, this is
balanced against the soon-to-be-proved benefit of using (4)–(5). We propose a middle
ground as follows. A straightforward analysis of e(t + 1) reveals that

e(t + 1) = −φ(t)T [θ̂ (t) − θ∗] + d(t),

which means that

|e(t + 1)| ≤ 2‖S‖ × ‖φ(t)‖ + |d(t)|.

Therefore, if

|e(t + 1)| > 2‖S‖ × ‖φ(t)‖,

then the update to θ̂ (t) will be greater than 2‖S‖, which means that there is little
information content in e(t + 1)—it is dominated by the disturbance. With this as
motivation, and with δ ∈ (0,∞], let us replace (4) with

θ̌ (t + 1) =
{

θ̂ (t) + φ(t)
φ(t)T φ(t)

e(t + 1) if |e(t + 1)| < (2‖S‖ + δ)‖φ(t)‖
θ̂ (t) otherwise;

(6)

in the case of δ = ∞, we will adopt the understanding that ∞ × 0 = 0, in which case
the above formula collapses into the original one (4). In the case that δ < ∞, we can
be assured that the update term is bounded above by 2‖S‖+ δ, which should alleviate
concerns about having infinite gain. We would now like to rewrite the update to make
it more concise. To this end, we now define ρδ : R2n × R → {0, 1} by

ρδ(φ(t), e(t + 1)) :=
{
1 if |e(t + 1)| < (2‖S‖ + δ)‖φ(t)‖
0 otherwise,
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yielding a more concise way to write the estimation algorithm update:

θ̌ (t + 1) = θ̂ (t) + ρδ(φ(t), e(t + 1))
φ(t)

φ(t)Tφ(t)
e(t + 1); (7)

once again, we project this onto S:

θ̂ (t + 1) := πS(θ̌(t + 1)). (8)

Remark 3 If the disturbance d(t) = 0, then the estimation algorithm (7)–(8) has a nice
scaling property. In this case, if φ(t) �= 0 then ρδ(φ(t), e(t + 1)) = 1, so (7) becomes

θ̌ (t + 1) = θ̂ (t) + φ(t)φ(t)T

φ(t)Tφ(t)
[θ∗ − θ̂ (t)];

so if φ(t) is replaced by γφ(t) with γ �= 0, then θ̌ (t + 1) (and θ̂ (t + 1)) remains the
same. Hence, scaling the pair (y(t), u(t)) makes no difference to the estimator, which
is clearly a desirable feature; notice that the classical algorithm (3) does not enjoy that
property. This is the first clue that this algorithm may provide closed-loop properties
not provided by the classical algorithm (3).

2.3 Properties of the estimation algorithm

Analysing the closed-loop system behaviour will require a careful examination of the
estimation algorithm. We define the parameter estimation error by

θ̃ (t) := θ̂ (t) − θ∗,

and the corresponding Lyapunov function associated with θ̃ (t), namely V (t) :=
θ̃ (t)T θ̃ (t). In the following result we list a property of V (t); it is a generalization
of what is well known for the classical algorithm (3).

Proposition 1 For every t0 ∈ Z,φ0 ∈ R2n, θ0 ∈ S, θ∗ ∈ S, d ∈ l∞, and δ ∈ (0,∞],
when the estimator (7) and (8) is applied to the plant (1), the following holds:

‖θ̂ (t + 1)−θ̂ (t)‖ ≤ ρδ(φ(t), e(t + 1))
|e(t + 1)|
‖φ(t)‖ , t ≥ t0, (9)

V (t) ≤ V (t0)+
t−1∑
j=t0

ρδ(φ( j), e( j + 1))[−1

2

[e( j + 1)]2
‖φ( j)‖2 +2

[d( j)]2
‖φ( j)‖2 ], t≥ t0+1.

Proof See Appendix. 
�
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2.4 The control law

The elements of θ̂ (t) are partitioned in a natural way as

θ̂ (t) =: [−â1(t) · · · −ân(t) b̂1(t) · · · b̂n(t)
]T

.

Associated with θ̂ (t) are the polynomials

Â(t, z−1) := 1 + â1(t)z
−1 + · · · + ân(t)z

−n,

B̂(t, z−1) := b̂1(t)z
−1 + · · · + b̂n(t)z

−n .

While we can use an (n − 1)th-order proper controller to carry out pole placement, it
will be convenient to use an nth-order strictly proper controller, such as in [15,16,36–
38]. In particular, we first choose a 2nth-order monic polynomial

A∗(z−1) = 1 + a∗
1 z

−1 + · · · + a∗
2nz

−2n

so that z2n A∗(z−1) has all of its zeros in Do. Next, we choose two polynomial

L̂(t, z−1) = 1 + l̂1(t)z
−1 + · · · + l̂n(t)z

−n

and P̂(t, z−1) = p̂1(t)z
−1 + · · · + p̂n(t)z

−n

which satisfy the equation

Â(t, z−1)L̂(t, z−1) + B̂(t, z−1)P̂(t, z−1) = A∗(z−1); (10)

given the assumption that the Â(t, z−1) and B̂(t, z−1) are coprime, it is well known
that there exist unique L̂(t, z−1) and P̂(t, z−1) which satisfy this equation. Indeed, it
is easy to prove that the coefficients of L̂(t, z−1) and P̂(t, z−1) are analytic functions
of θ̂ (t) ∈ S.

In our setup we have an exogenous signal y∗(t). At time t we choose u(t) so that

u(t) = −l̂1(t − 1)u(t − 1) − · · · − l̂n(t − 1)u(t − n)

− p̂1(t − 1)[y(t − 1) − y∗(t − 1)]
− · · · − p̂n(t − 1)[y(t − n) − y∗(t − n)]. (11)

So the overall controller consists of the estimator (7)–(8) together with (11).5

It turns out that we can write down a state-space model of our closed-loop system
with φ(t) ∈ R2n as the state. Proceeding as in Kreisselmeier [37], only two elements
of φ have a complicated description:

5 We also implicitly use a pole placement procedure to obtain the controller parameters from the plant
parameter estimates; this entails solving a linear equation.
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φ1(t + 1) = y(t + 1) = e(t + 1) + θ̂ (t)T φ(t),

φn+1(t + 1) = u(t + 1) = −
n∑

i=1

{
l̂i (t)u(t + 1 − i) + p̂i (t)[y(t + 1 − i) − y∗(t + 1 − i)]

}

= [−l̂1(t) · · · −l̂n(t) − p̂1(t) · · · − p̂n(t)
]
φ(t) +

n∑
i=1

p̂i (t)y
∗(t + 1 − i).

With ei ∈ R2n the i th normal vector, if we now define

Ā(t) :=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−â1(t) −â2(t) · · · −ân(t) b̂1(t) · · · · · · b̂n(t)
1 0 · · · 0 0 · · · · · · 0

. . .
...

... · · · · · · ...

1 0 0 · · · · · · 0
− p̂1(t) − p̂2(t) · · · − p̂n(t) −l̂1(t) −l̂2(t) · · · −l̂n(t)

0 · · · · · · 0 1 0 · · · 0
... · · · · · · ...

. . .
...

0 · · · · · · 0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

B1 := e1, B2 := en+1, r(t) :=
n∑

i=1

p̂i (t)y
∗(t + 1 − i), (12)

then the following key equation holds:

φ(t + 1) = Ā(t)φ(t) + B1e(t + 1) + B2r(t); (13)

notice that the characteristic equation of Ā(t) always equals z2n A∗(z−1). Before pro-
ceeding, define

ā := max{‖ Ā(θ̂)‖ : θ̂ ∈ S}.

Remark 4 While the proposed adaptive controller (7)–(8) together with (11) is non-
linear, when it is applied to the plant the closed-loop system enjoys the homogeneity
property. More precisely, fix the initial parameter estimate θ0 and starting time t0 ∈ Z;
suppose that an initial condition, reference signal, and disturbance signal combination
(φ0, r , d) yields a system response of φ, and with γ ∈ R suppose that an initial con-
dition, reference signal, and disturbance signal combination of (γ φ0, γ r , γ d) yields
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a system response of φγ . Using induction it is easy to prove that6

φγ (t) = γφ(t), t ≥ t0.

Hence, with minimal effort we see that the closed-loop behaviour enjoys one of the
two required properties of a linear system, namely that of homogeneity. While it does
not enjoy the other property needed for linearity, we will soon see that we are still able
to prove linear-like convolution bounds on the closed-loop behaviour.

3 Preliminary analysis

The closed-loop system given in (13) arises in classical adaptive control approaches in
slightly modified fashion, so we will borrow some tools from there. More specifically,
the following result was proven by Kreisselmeier [37], in the context of proving that
a slowly time-varying adaptive control system is stable (in a weak sense); we are
providing a special case of his technical lemma to minimize complexity.7

Proposition 2 [37] Consider the discrete-time system

x(t + 1) = [Anom(t) + �(t)]x(t)

with
(t, τ ) denoting the corresponding state transition matrix. Suppose that there
exist constants σ ∈ (0, 1), γ1 > 1, αi ≥ 0, and βi ≥ 0 so that

(i) for all t ≥ t0, we have ‖Anom(t)i‖ ≤ γ1σ
i , i ≥ 0;

(ii) for all t > τ we have

t−1∑
i=τ

‖Anom(i + 1) − Anom(i)‖ ≤ α0 + α1(t − τ)1/2 + α2(t − τ)

and
∑t−1

i=τ ‖�(i)‖ ≤ β0 + β1(t − τ)1/2 + β2(t − τ);

(iii) there exists a μ ∈ (σ, 1) and N ∈ N satisfying α2 + β2
N < 1

Nγ1
(

μ

γ
1/N
1

− σ).

Then there exists a constant γ2 so that the transition matrix satisfies

‖
(t, τ )‖ ≤ γ2μ
t−τ , t ≥ τ.

6 In addition, if we define θ̂ (t) and θ̂ γ (t) in the natural way, then it is easy to prove that for γ �= 0 we
have

θ̂ γ (t) = θ̂ (t), t ≥ t0.

7 Furthermore, in [37] it is assumed that αi and βi are strictly greater than zero, but it is trivial to extend
this to allow for zero as well.
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Remark 5 We apply the above proposition in the following way. Suppose that σ ∈
(0, 1), γ1 > 1, αi ≥ 0, βi ≥ 0 are such conditions (i) and (ii) hold. If μ ∈ (σ, 1), then
it follows that μ

γ
1/N
1

− σ > 0 for large enough N ∈ N, so condition (iii) will hold as

well as long as α2 and β2 are small enough.

In applying Proposition 2, the matrix Ā(t) will play the role of Anom(t). A key
requirement is that Condition (i) holds: the following provides relevant bounds. Before
proceeding, let

λ := max{|λ| : λ is a root of z2n A∗(z−1)}.

Lemma 1 For every δ ∈ (0,∞] and σ ∈ (λ, 1) there exists a constant γ ≥ 1 so
that for every t0 ∈ Z, θ0 ∈ S, θ∗ ∈ S, and y∗, d ∈ l∞, when the controller (7), (8)
and (11) is applied to the plant (1), the matrix Ā(t) satisfies, for every t ≥ t0:

‖ Ā(t)k‖ ≤ γ σ k, k ≥ 0,

and for every t > k ≥ t0:

t−1∑
j=k

‖ Ā( j + 1) − Ā( j)‖ ≤ γ [
t−1∑
j=k

ρδ(φ( j), e( j + 1))
e( j + 1)2

‖φ( j)‖2 ]1/2(t − k)1/2.

Proof See Appendix. 
�

4 Themain result

Theorem 1 For every δ ∈ (0,∞] and λ ∈ (λ, 1) there exists a c > 0 so that for
every t0 ∈ Z, θ0 ∈ S, θ∗ ∈ S, φ0 ∈ R2n, and y∗, d ∈ �∞, when the adaptive
controller (7), (8) and (11) is applied to the plant (1), the following bound holds:

‖φ(k)‖ ≤ cλk−t0‖φ0‖ +
k−1∑
j=t0

cλk−1− j (|r( j)| + |d( j)|), k ≥ t0. (14)

Remark 6 We see from (12) that r(t) is a weighted sum of {y∗(t), ..., y∗(t − n + 1)}.
Hence, there exists a constant c̄ so that the bound (14) can be rewritten as

‖φ(k)‖ ≤ cλk−t0‖φ0‖ +
k−1∑

j=t0−n+1

c̄λk−1− j |y∗( j)| +
k−1∑
j=t0

cλk−1− j |d( j)|, k ≥ t0.
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Remark 7 Theorem 1 implies that the system has a bounded gain (from d and r to y)
in every p−norm. More specifically, for p = ∞ we see immediately from (14) that

‖φ(k)‖ ≤ c‖φ0‖ + c

1 − λ
sup

τ∈[t0,k]
[|r(τ )| + |d(τ )|)], k ≥ t0.

Furthermore, for 1 ≤ p < ∞ it follows from Young’s Inequality applied to (14) that

⎡
⎣ k∑

j=t0

‖φ( j)‖p

⎤
⎦
1/p

≤ c

(1 − λp)1/p
‖φ0‖

+ c

1 − λ

⎧⎪⎨
⎪⎩
⎡
⎣ k∑

j=t0

‖r( j)‖p

⎤
⎦
1/p

+
⎡
⎣ k∑

j=t0

‖d( j)‖p

⎤
⎦
1/p
⎫⎪⎬
⎪⎭ , k ≥ t0.

Remark 8 Most pole placement adaptive controllers are proven to yield a weak form of
stability, such as boundedness (in the presence of a nonzero disturbance) or asymptotic
stability (in the case of a zero disturbance), whichmeans that details surrounding initial
conditions can be ignored. Here the goal is to prove a stronger, linear-like, convolution
bound, so it requires a more detailed and nuanced analysis. A key tool is Proposition 2,
which was introduced by Kreisselmeier [37] to analyse slowly time-varying adaptive
pole placement problems. It has been used in a number of places in the adaptive control
literature, including the work of [15,16,35], all of whom utilize the classical projection
algorithm (3). However, as pointed out in Remark 2, an adaptive controller based on
the classical projection algorithm (3) does not, in general, provide exponential stability
or a bounded gain on the noise, regardless of how small the parameter β > 0 is;
indeed, what is proven in [15,16] is that for every set of initial conditions and every
pair of exogenous disturbance and reference signal inputs, the state φ(t) is bounded,
i.e. the system enjoys the bounded-input bounded-state property. What is surprising
and unexpected is that for β = 0, the closed-loop system enjoysmuch nicer properties,
and clearly this does not follow in any obvious way by taking the limit as β → 0 of
what is proven in the classical setup of [15,16].

Remark 9 The approach taken in our proof is motivated by our earlier work on the
first-order one-step-ahead adaptive controller [32]; here we use Kreisselmeier’s result
on time-varying systems given in Proposition 2 in place of a lemma used in [32]
for time-varying first-order systems. While the layout of our proof has a superficial
similarity to that to [15,16], in that we both partition the timescale in terms of the size
of state (in the case of [15,16]) or the size of the disturbance scaled by the state (here),
on closer inspection it is clear that they differ significantly.

Remark 10 With Ĝ(t, z−1) = ∑2n
i=1 ĝi (t)z

−i := B̂(t, z−1)P̂(t, z−1) it is possible to
use arguments like those in [34] to prove, when the disturbance d is identically zero,
a weak tracking result of the form
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lim
t→∞

[
2n∑
i=0

a∗
i y(t − i) −

2n∑
i=1

ĝi (t)y
∗(t − i)

]
= 0.

Since the main goal of the paper is on stability issues, we omit the proof. However,
we do discuss step tracking in a later section.

Proof Fix δ ∈ (0,∞] and λ ∈ (λ, 1). Let t0 ∈ Z, θ0 ∈ S, θ∗ ∈ S, φ0 ∈ R2n , and
y∗, d ∈ l∞ be arbitrary. Define r via (12). Now choose λ1 ∈ (λ, λ).

We have to be careful in how to apply Proposition 2 to (13)—we need the �(t)
term to be something which we can bound using Proposition 1. So define

�(t) := ρδ(φ(t), e(t + 1))
e(t + 1)

‖φ(t)‖2 B1φ(t)T ; (15)

it is easy to check that

�(t)φ(t) = ρδ(φ(t), e(t + 1))B1e(t + 1)

and that

‖�(t)‖ = ρδ(φ(t), e(t + 1))
|e(t + 1)|
‖φ(t)‖ ,

which is a term which plays a key role in Proposition 1. We can now rewrite (13) as

φ(t + 1) = [ Ā(t) + �(t)]φ(t) + B1 [1 − ρδ(φ(t), e(t + 1))]e(t + 1)︸ ︷︷ ︸
=:η(t)

+B2r(t).

(16)

If ρδ(φ(t), e(t + 1)) = 1 then η(t) = 0, but if ρδ(φ(t), e(t + 1)) = 0 then

|e(t + 1)| ≥ (2‖S‖ + δ)‖φ(t)‖;

but we also know that

e(t + 1) = −θ̃ (t)φ(t) + d(t) ⇒ |e(t + 1)| ≤ 2‖S‖ × ‖φ(t)‖ + |d(t)|; (17)

combining these equations we have

(2‖S‖ + δ)‖φ(t)‖ ≤ 2‖S‖ × ‖φ(t)‖ + |d(t)|,

which implies that ‖φ(t)‖ ≤ 1
δ
|d(t)|; it is easy to check that this holds even when

δ = ∞. Using (17) we conclude that

|η(t)| ≤
(
2‖S‖

δ
+ 1

)
|d(t)|, t ≥ t0. (18)
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We now analyse (16). We let 
(t, τ ) denote the transition matrix associated with
Ā(t)+�(t); this matrix clearly implicitly depends on θ0, θ∗, d and r . From Lemma 1
there exists a constant γ1 so that

‖ Ā(t)i‖ ≤ γ1λ
i
1, i ≥ 0, t ≥ t0, (19)

and for every t > k ≥ t0, we have

t−1∑
j=k

‖ Ā( j + 1) − Ā( j)‖

≤ γ1

⎡
⎣ t−1∑

j=k

ρδ(φ( j), e( j + 1))
|e( j + 1)|2
‖φ( j)‖2

⎤
⎦
1/2

(t − k)1/2. (20)

Using the definition of � given in (15) and the Cauchy–Schwarz inequality, we also
have

t−1∑
j=k

‖�( j)‖

≤
⎡
⎣ t−1∑

j=k

ρδ(φ( j), e( j + 1))
|e( j + 1)|2
‖φ( j)‖2

⎤
⎦
1/2

(t − k)1/2, t > k ≥ t0. (21)

At this point we consider two cases: the easier case in which there is no noise, and the
harder case in which there is noise.
Case 1: d(t) = 0, t ≥ t0.

Using the bound on η(t) given in (18), in this case (16) becomes

φ(t + 1) = [ Ā(t) + �(t)]φ(t) + B2r(t), t ≥ t0. (22)

The bound on V (t) given by Proposition 1 simplifies to

V (t) ≤ V (t0) − 1

2

t−1∑
j=t0

ρδ(φ( j), e( j + 1))
[e( j + 1)]2
‖φ( j)‖2 , t ≥ t0 + 1.

Since V (·) ≥ 0 and V (t0) = ‖θ0 − θ∗‖2 ≤ 4‖S‖2, this means that

t−1∑
j=t0

ρδ(φ( j), e( j + 1))
[e( j + 1)]2
‖φ( j)‖2 ≤ 2V (t0) ≤ 8‖S‖2.
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Hence, from (20) and (21) we conclude that

t−1∑
j=k

‖ Ā( j + 1) − Ā( j)‖ ≤ 81/2γ1‖S‖(t − k)1/2,

t−1∑
j=k

‖�( j)‖ ≤ 81/2‖S‖(t − k)1/2, t > k ≥ t0.

Now we apply Proposition 2: we set

α0 = β0 = α2 = β2 = 0, α1 = 81/2γ1‖S‖, β1 = 81/2‖S‖, μ = λ.

Following Remark 3 it is now trivial to choose N ∈ N so that λ

γ
1/N
1

− λ1 > 0, namely

N = int

[
ln(γ1)

ln(λ) − ln(λ1)

]
+ 1, (23)

which means that

0 = α2 + β2

N
<

1

Nγ1

(
λ

γ
1/N
1

− λ1

)
.

From Proposition 2 we see that there exists a constant γ2 so that the state transition
matrix 
(t, τ ) corresponding to Ā(t) + �(t) satisfies

‖
(t, τ )‖ ≤ γ2λ
t−τ , t ≥ τ ≥ t0.

If we now apply this to (22), we end up with the desired bound:

‖φ(k)‖ ≤ γ2λ
k−t0‖φ(t0)‖ +

k−1∑
j=t0

γ2λ
k−1− j |r( j)|, k ≥ t0.

Case 2: d(t) �= 0 for some t ≥ t0.
This case is much more involved since noise can radically affect parameter esti-

mation. Indeed, even if the parameter estimate is quite accurate at a point in time,
the introduction of a large noise signal (large relative to the size of φ(t)) can create a
highly inaccurate parameter estimate. To proceed, we partition the timeline into two
parts: one in which the noise is small versus φ and one where it is not; the actual
choice of the line of division will become clear as the proof progresses. To this end,
with ε > 0 to be chosen shortly, partition { j ∈ Z : j ≥ t0} into two sets:

Sgood :=
{
j ≥ t0 : φ( j) �= 0 and

[d( j)]2
‖φ( j)‖2 < ε

}
,
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Sbad :=
{
j ≥ t0 : φ( j) = 0 or

[d( j)]2
‖φ( j)‖2 ≥ ε

}
;

clearly { j ∈ Z : j ≥ t0} = Sgood∪Sbad. Observe that this partition clearly depends on
θ0, θ∗, φ0, d and r/y∗. We will apply Proposition 2 to analyse the closed-loop system
behaviour on Sgood; on the other hand, we will easily obtain bounds on the system
behaviour on Sbad. Before doing so, we partition the time index { j ∈ Z : j ≥ t0} into
intervals which oscillate between Sgood and Sbad. To this end, it is easy to see that we
can define a (possibly infinite) sequence of intervals of the form [ki , ki+1) satisfying:

(i) k1 = t0, and
(ii) [ki , ki+1) either belongs to Sgood or Sbad, and
(iii) if ki+1 �= ∞ and [ki , ki+1) belongs to Sgood (respectively, Sbad), then the interval

[ki+1, ki+2) must belong to Sbad (respectively, Sgood).

Now we turn to analysing the behaviour during each interval.
Sub-Case 2.1: [ki , ki+1) lies in Sbad.

Let j ∈ [ki , ki+1) be arbitrary. In this case either φ( j) = 0 or [d( j)]2
‖φ( j)‖2 ≥ ε holds.

In either case we have

‖φ( j)‖ ≤ 1

ε1/2
|d( j)|, j ∈ [ki , ki+1). (24)

From (13) and (17) we see that

‖φ( j + 1)‖ ≤ ā‖φ( j)‖ + (2‖S‖ × ‖φ( j)‖ + |d( j)| + |r( j)|)
≤ [1 + (ā + 2‖S‖)︸ ︷︷ ︸

=:γ3

1

ε1/2
]|d( j)| + |r( j)|, j ∈ [ki , ki+1). (25)

If we combine this with (24), we conclude that

‖φ( j)‖ ≤
{ 1

ε1/2
|d( j)| j = ki

(1 + γ3
ε1/2

)|d( j − 1)| + |r( j − 1)| j = ki + 1, ..., ki+1.
(26)

Sub-Case 2.2: [ki , ki+1) lies in Sgood.
Let j ∈ [ki , ki+1) be arbitrary. In this case φ( j) �= 0 and

[d( j)]2
‖φ( j)‖2 < ε, j ∈ [ki , ki+1),

which implies that

ρδ(φ( j), e( j + 1))
d( j)2

‖φ( j)‖2 < ε, j ∈ [ki , ki+1). (27)
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From Proposition 1 we have that

V (k̄) ≤ V (k) +
k̄−1∑
j=k

ρδ(φ( j), e( j + 1))
− 1

2e( j + 1)2 + 2d( j)2

‖φ( j)‖2 , ki ≤ k < k̄ ≤ ki+1;

using (27) and the fact that 0 ≤ V (·) ≤ 4‖S‖2, we obtain

k̄−1∑
j=k

ρδ(φ( j), e( j + 1))
e( j + 1)2

‖φ( j)‖2 ≤ 2V (k) + 2
k̄−1∑
j=k

ρδ(φ( j), e( j + 1))
2d( j)2

‖φ( j)‖2

≤ 8‖S‖2 + 4ε(k̄ − k), ki ≤ k < k̄ ≤ ki+1.

Hence, using this in (20) and (21) yields

k̄−1∑
j=k

‖ Ā( j + 1) − Ā( j)‖ ≤ γ1[8‖S‖2 + 4ε(k̄ − k)]1/2(k̄ − k)1/2

≤ γ18
1/2‖S‖(k̄ − k)1/2 + 2γ1ε

1/2(k̄ − k), ki ≤ k < k̄ ≤ ki+1,

as well as

k̄−1∑
j=k

‖�( j)‖ ≤ [8‖S‖2 + 4ε(k̄ − k)]1/2(k̄ − k)1/2

≤ 81/2‖S‖(k̄ − k)1/2 + 2ε1/2(k̄ − k), ki ≤ k < k̄ ≤ ki+1.

Now we will apply Proposition 2: we set

α0 = β0 = 0, α1 = γ18
1/2‖S‖, β1 = 81/2‖S‖,

α2 = 2γ1ε
1/2, β2 = 2ε1/2, μ = λ.

With N chosen as in Case 1 via (23), we have that δ := λ

γ
1/N
1

− λ1 > 0; we need

α2 + β2

N
<

1

Nγ1
δ,

which will certainly be the case if we set ε := δ2

8γ 2
1 (γ1N+1)2

. From Proposition 2 we see

that there exists a constant γ4 so that the state transition matrix 
(t, τ ) corresponding
to Ā(t) + �(t) satisfies

‖
(t, τ )‖ ≤ γ4λ
t−τ , ki ≤ τ ≤ t ≤ ki+1.
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If we now apply this to (16) and use (18) to provide a bound on η(t), we end up with

‖φ(k)‖ ≤ γ4λ
k−ki ‖φ(ki )‖

+
(
2
‖S‖
δ

+ 1

) k−1∑
j=ki

γ4λ
k−1− j (|r( j)| + |d( j)|), ki ≤ k ≤ ki+1. (28)

This completes Sub-Case 2.2.
Now we combine Sub-Case 2.1 and Sub-Case 2.2 into a general bound on φ(t).

Define

γ5 := max

{
1, 1 + γ3

ε1/2
, γ4, γ4

(
2
‖S‖
δ

+ 2 + γ3

ε1/2

)}
.

It remains to prove

Claim The following bound holds:

‖φ(k)‖ ≤ γ5λ
k−t0‖φ0‖ +

k−1∑
j=t0

γ5λ
k−1− j (|r( j)| + |d( j)|), k ≥ t0. (29)

Proof of the Claim If [k1, k2) = [t0, k2) ⊂ Sgood, then (29) holds for k ∈ [t0, k2] by
(28). If [t0, k2) ⊂ Sbad, then from (26) we obtain

‖φ( j)‖ ≤
{ ‖φ(k1)‖ = ‖φ0‖ j = k1 = t0

(1 + γ3
ε1/2

)|d( j − 1)| + |r( j − 1)| j = k1 + 1, ..., k2,

which means that (29) holds for k ∈ [t0, k2] for this case as well.
We now use induction—suppose that (29) holds for k ∈ [k1, ki ]; we need to prove

that it holds for k ∈ (ki , ki+1] as well. If [ki , ki+1) ⊂ Sbad then from (26) we have

‖φ( j)‖ ≤
(
1 + γ3

ε1/2

)
|d( j − 1)| + |r( j − 1)|, j = ki + 1, ..., ki+1,

whichmeans that (29) holds for k ∈ (ki , ki+1]. On the other hand, if [ki , ki+1) ⊂ Sgood,
then ki − 1 ∈ Sbad; from (26) we have that

‖φ(ki )‖ ≤
(
1 + γ3

ε1/2

)
|d(ki − 1)| + |r(ki − 1)|.

Using (28) to analyse the behaviour on [ki , ki+1], we have

‖φ(k)‖ ≤ γ4λ
k−ki ‖φ(ki )‖ +

(
2
‖S‖
δ

+ 1

)
γ4

k−1∑
j=ki

λk−1− j (|r( j)| + |d( j)|)

≤ γ4λ
k−ki [(1 + γ3

ε1/2
)|d(ki − 1)| + |r(ki − 1)|] +
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+γ4

(
2
‖S‖
δ

+ 1

) k−1∑
j=ki

λk−1− j (|r( j)| + |d( j)|)

≤
[
γ4

(
1 + γ3

ε1/2

)
+ γ4(2

‖S‖
δ

+ 1)

] k−1∑
j=ki−1

λk−1− j (|r( j)| + |d( j)|)

≤ γ5

k−1∑
j=t0

λk−1− j (|d( j)| + |r( j)|), k = ki + 1, ..., ki+1,

as desired. 
�
This completes the proof. 
�

5 Tolerance to time variations

The linear-like bound proven in Theorem 1 can be leveraged to prove that the same
behaviour will result even in the presence of slow time variations with occasional
jumps. So suppose that the actual plant model is

y(t + 1) = φ(t)T θ∗(t) + d(t), φ(t0) = φ0, (30)

with θ∗(t) ∈ S for all t ∈ R. We adopt a common model of acceptable time variations
used in adaptive control: with c0 ≥ 0 and ε > 0, we let s(S, c0, ε) denote the subset
of l∞(R2n) whose elements θ∗ satisfy θ∗(t) ∈ S for every t ∈ Z as well as

t2−1∑
t=t1

‖θ∗(t + 1) − θ∗(t)‖ ≤ c0 + ε(t2 − t1), t2 > t1 (31)

for every t1 ∈ Z. We will now show that, for every c0 ≥ 0, the approach tolerates
time-varying parameters in s(S, c0, ε) if ε is small enough.

Theorem 2 For every δ ∈ (0,∞], λ1 ∈ (λ, 1) and c0 ≥ 0, there exists a c1 > 0 and
ε > 0 so that for every t0 ∈ Z, θ0 ∈ S, θ∗ ∈ s(S, c0, ε), φ0 ∈ R2n, and y∗, d ∈ �∞,
when the adaptive controller (7), (8) and (11) is applied to the time-varying plant
(30), the following holds:

‖φ(k)‖ ≤ c1λ
k−t0
1 ‖φ0‖ +

k−1∑
j=t0

c1λ
k−1− j
1 (|r( j)| + |d( j)|), k ≥ t0.

Proof Fix δ ∈ (0,∞], λ1 ∈ (λ, 1), λ ∈ (λ, λ1) and c0 > 0. Let t0 ∈ Z, θ0 ∈ S,
φ0 ∈ R2n , and y∗, d ∈ �∞ be arbitrary. With m ∈ N, we will consider φ(t) on
intervals of the form [t0 + im, t0 + (i + 1)m]; we will be analysing these intervals
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in groups of m (to be chosen shortly); we set ε = c0
m2 , and let θ∗ ∈ s(S, c0, ε) be

arbitrary.
First of all, for i ∈ Z+ we can rewrite the plant equation as

y(t + 1) = φ(t)T θ∗(t0 + im) + d(t) + φ(t)T [θ∗(t) − θ∗(t0 + im)]︸ ︷︷ ︸
=:ñ(t)

,

t ∈ [t0 + im, t0 + (i + 1)m]. (32)

Theorem 1 applied to (32) says that there exists a constant c > 0 so that

‖φ(t)‖ ≤ cλt−t0−im‖φ(t0 + im)‖ +
t−1∑

j=t0+im

cλt−1− j (|r( j)| + |d( j)| + |ñ( j)|),

t ∈ [t0 + im, t0 + (i + 1)m].

The above is a difference inequality associated with a first-order system; using this
observation together with the fact that c ≥ 1, we see that if we define

ψ(t + 1) = λψ(t) + |r(t)| + |d(t)| + |ñ(t)|, t ∈ [t0 + im, t0 + (i + 1)m − 1],

with ψ(t0 + im) = ‖φ(t0 + im)‖, then

‖φ(t)‖ ≤ cψ(t), t ∈ [t0 + im, t0 + (i + 1)m].

Now we analyse this equation for i = 0, 1, ...,m − 1.
Case 1: |ñ(t)| ≤ 1

2c (λ1 − λ)‖φ(t)‖ for all t ∈ [t0 + im, t0 + (i + 1)m].
In this case

ψ(t + 1) ≤ λψ(t) + |r(t)| + |d(t)| + |ñ(t)|
≤ λψ(t) + |r(t)| + |d(t)| + 1

2c
(λ1 − λ)cψ(t)

≤
(

λ + λ1

2

)
ψ(t) + |r(t)| + |d(t)|, t ∈ [t0 + im, t0 + (i + 1)m],

which means that

|ψ(t)| ≤
(

λ + λ1

2

)t−t0−im

|ψ(t0 + im)| +
t−1∑

j=t0+im

(
λ + λ1

2

)t−1− j

(|r( j)| + |d( j)|),

t = t0 + im, ..., t0 + (i + 1)m.
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This, in turn, implies that

‖φ(t0 + (i + 1)m)‖ ≤ c

(
λ + λ1

2

)m

‖φ(t0 + im)‖

+
t0+(i+1)m−1∑

j=t0+im

c

(
λ + λ1

2

)t0+(i+1)m−1− j

(|r( j)| + |d( j)|).

(33)

Case 2: |ñ(t)| > 1
2c (λ1 − λ)‖φ(t)‖ for some t ∈ [t0 + im, t0 + (i + 1)m].

Since θ∗(t) ∈ S for t ≥ t0, we see

|ñ(t)| ≤ 2‖S‖ × ‖φ(t)‖, t ∈ [t0 + im, t0 + (i + 1)m].
This means that

ψ(t + 1) ≤ λψ(t) + |r(t)| + |d(t)| + |ñ(t)|
≤ λψ(t) + |r(t)| + |d(t)| + 2‖S‖cψ(t)

≤ (1 + 2c‖S‖)︸ ︷︷ ︸
=:γ1

ψ(t) + |r(t)| + |d(t)|, t ∈ [t0 + im, t0 + (i + 1)m],

which means that

|ψ(t)| ≤ γ
t−t0−im
1 ‖ψ(t0 + im)‖

+
t−1∑

j=t0+im

γ
t− j−1
1 (|r( j)| + |d( j)|), t = t0 + im, ..., t0 + (i + 1)m.

This, in turn, implies that

‖φ(t0 + (i + 1)m)‖ ≤ cγm
1 ‖φ(t0 + im)‖

+c
t0+(i+1)m−1∑

j=t0+im

(γ1)
t0+(i+1)m− j−1(|r( j)| + |d( j)|)

≤ cγm
1 ‖φ(t0 + im)‖

+c

(
2γ1

λ + λ1

)m t0+(i+1)m−1∑
j=t0+im(

λ + λ1

2

)t0+(i+1)m− j−1

(|r( j)| + |d( j)|). (34)

On the interval [t0, t0 + m2] there are m subintervals of length m; furthermore,
because of the choice of ε we have that

t0+m2−1∑
j=t0

‖θ∗( j + 1) − θ∗( j)‖ ≤ c0 + εm2 ≤ 2c0.
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A simple calculation reveals that there are at most N1 := 4c0c
λ1−λ

subintervals which
fall into the category of Case 2, with the remaining number falling into the category
of Case 1. Henceforth, we assume that m > N1. If we use (33) and (34) to analyse
the behaviour of the closed-loop system on the interval [t0, t0 + m2], we end up with
a crude bound of

‖φ(t0 + m2)‖ ≤ cmγ
N1m
1

(
λ1 + λ

2

)m(m−N1)

‖φ(t0)‖

+ (
2γ1

λ+λ1
)m(cγm

1 )m
(

2

λ+λ1

)m2 t0+m2−1∑
j=t0

(
λ1+λ

2

)t0+m2− j−1

(|r( j)| + |d( j)|).

(35)

At this point we would like to choose m so that

cmγ
N1m
1

(
λ1 + λ

2

)m2−mN1

≤ λm
2

1 ⇔ cmγ
N1m
1

(
2

λ + λ1

)mN1

≤
(

2λ1
λ1 + λ

)m2

;

notice that 2λ1
λ1+λ

> 1, so if we take the log of both sides, we see that we need

m ln(c) + N1m ln(γ1) + N1m ln

(
2

λ + λ1

)
≤ m2 ln

(
2λ1

λ1 + λ

)
,

which will clearly be the case for large enough m, so at this point we choose such an
m. It follows from (35) that there exists a constant γ2 so that

‖φ(t0 + m2)‖ ≤ λm
2

1 ‖φ(t0)‖ + γ2

t0+m2−1∑
j=t0

λ
t0+m2− j−1
1 (|r( j)| + |d( j)|).

Indeed, the same bound holds regardless of the interval of analysis:

‖φ(t̄ + m2)‖ ≤ λm
2

1 ‖φ(t̄)‖ + γ2

t̄+m2−1∑
j=t̄

λ
t̄+m2− j−1
1 (|r( j)| + |d( j)|), t̄ ≥ t0.

Solving iteratively yields

‖φ(t0 + im2)‖

≤ λim
2

1 ‖φ(t0)‖ + γ2

t0+im2−1∑
j=t0

λ
t0+im2− j−1
1 (|r( j)| + |d( j)|), i ≥ 0. (36)
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We now combine this bound with the bounds which hold on the good intervals (33)
and the bad intervals (34) and conclude that there exists a constant γ3 so that

‖φ(t)‖ ≤ γ3λ
t−t0
1 ‖φ(t0)‖ + γ3

t−1∑
j=t0

λ
t− j−1
1 (|r( j)| + |d( j)|), t ≥ t0,

as desired. 
�

6 Tolerance to unmodelled dynamics

Due to the linear-like bounds proven in Theorems 1 and 2, we can use the Small Gain
Theorem to good effect to prove the tolerance of the closed-loop system to unmodelled
dynamics. However, since the controller, and therefore the closed-loop system, is
nonlinear, handling initial conditions is more subtle: in the linear time-invariant case
we can separate out the effect of initial conditions from that of the forcing functions
(r/y∗ and d), but in our situation they are intertwined. We proceed by looking at two
cases—with and without initial conditions. In all of the cases we consider the time-
varying plant (30) with d�(t) added to represent the effect of unmodelled dynamics:

y(t + 1) = φ(t)T θ∗(t) + d(t) + d�(t), φ(t0) = φ0. (37)

To proceed, fix δ ∈ (0,∞], λ1 ∈ (λ, 1) and c0 ≥ 0; from Theorem 2 there exists
a c1 > 0 and ε > 0 so that for every t0 ∈ Z, φ0 ∈ R2n , θ0 ∈ S, y∗, d ∈ �∞,
and θ∗ ∈ s(S, c0, ε), when the adaptive controller (7), (8) and (11) is applied to the
time-varying plant (37), the following bound holds:

‖φ(k)‖ ≤ c1λ
k−t0
1 ‖φ0‖ +

k−1∑
j=t0

c1λ
k−1− j
1 (|r( j)| + |d( j)| + |d�( j)|), k ≥ t0. (38)

6.1 Zero initial conditions

In this case we assume that φ(t) = 0 for t ≤ t0; we derive a bound on the closed-
loop system behaviour in the presence of unmodelled dynamics. Suppose that the
unmodelled dynamics is of the form d�(t) = (�φ)(t) with � : l∞(R2n) → l∞(R2n)

a (possibly nonlinear time-varying) causal map with a finite gain of ‖�‖. It is easy to
prove that if ‖�‖ < 1−λ1

c1
, then

‖φ(k)‖ ≤ c1
1 − λ1 − c1‖�‖ (sup

t≥t0
‖r(t)‖ + sup

t≥t0
‖d(t)‖), k ≥ t0,

i.e. a form of closed-loop stability is attained. Following the approach of Remark 7,
we could also analyse the closed-loop system using l p-norms with 1 ≤ p < ∞.
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6.2 Nonzero initial conditions

Now we consider the case of unmodelled LTI dynamics when the plant has nonzero
initial conditions, and we develop convolution-like bounds on the closed-loop system.
To this end suppose that the unmodelled dynamics are of the form

d�(t) :=
∞∑
j=0

� jφ(t − j), (39)

with � j ∈ R1×2n ; the corresponding transfer function is �(z−1) := ∑∞
j=0 � j z− j . It

is easy to see that thismodel subsumes the classical additive uncertainty, multiplicative
uncertainty, and uncertainty in a coprime factorization, which is common in the robust
control literature, e.g. see [39], with the only constraint being that the perturbations
correspond to strictly causal terms. In order to obtain linear-like bounds on the closed-
loop behaviour, we need to impose more constraints on �(z) than in the previous
subsection: after all, if �(z−1) = �pz−p, it is clear that ‖�‖ = ‖�p‖ for all p,
but the effect on the closed-loop system varies greatly—a large value of p allows the
behaviour in the far past to affect the present. To this end, with μ > 0 and β ∈ (0, 1),
we shall restrict �(z−1) to a set of the form

B(μ, β) :=
⎧⎨
⎩

∞∑
j=0

� j z
− j : � j ∈ R1×2n and ‖� j‖ ≤ μβ j , j ≥ 0

⎫⎬
⎭ .

It is easy to see that every transfer function in B(μ, β) is analytic in {z ∈ C : |z| > β},
so it has no poles in that region.

Now we fix μ > 0 and β ∈ (0, 1) and let �(z−1) belong to B(μ, β); the goal is
to analyse the closed-loop behaviour of (37) for t ≥ t0 when d� is given by (39). We
first partition d�(t) into two parts—that which depends on φ(t) for t ≥ t0 and that
which depends on φ(t) for t < t0:

d�(t) =
∞∑
j=0

� jφ(t − j) =
t∑

j=−∞
�t− jφ( j) =

t0−1∑
j=−∞

�t− jφ( j)

︸ ︷︷ ︸
=:d−

�(t)

+
t∑

j=t0

�t− jφ( j)

︸ ︷︷ ︸
=:d+

�(t)

.

It is clear that

‖d+
�(t)‖ ≤

t∑
j=t0

μβ t− j‖φ( j)‖,

‖d−
�(t)‖ ≤

t0−1∑
j=−∞

μβ t− j‖φ( j)‖ = μβ t−t0
∞∑
j=1

β j‖φ(t0 − j)‖, t ≥ t0.
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If φ(t) is bounded on {t ∈ Z : t < t0} then∑∞
j=1 β j‖φ(t0− j)‖ is finite, in which case

we see that d−
�(t) goes to zero exponentially fast; henceforth, we make the reasonable

assumption that this is the case. It turns out that we can easily bound d�(t) with a
difference equation. To this end, consider

m(t + 1) = βm(t) + β‖φ(t)‖, t ≥ t0, (40)

with m(t0) = m0 := ∑∞
j=1 β j‖φ(t0 − j)‖; it is straightforward to prove that

|d�(t)| ≤ |d+
�(t)| + |d−

�(t)| ≤ μm(t) + μ‖φ(t)‖, t ≥ t0. (41)

This model of unmodelled dynamics is similar to that used in the adaptive control
literature, e.g. see [10].

Theorem 3 For every β ∈ (0, 1) and λ2 ∈ (max{λ1, β}, 1), there exist μ̄ > 0
and c2 > 0 so that for every t0 ∈ Z, φ0 ∈ R2n, m0 ∈ R, θ0 ∈ S, y∗, d ∈ l∞,
θ∗ ∈ s(S, c0, ε) and μ ∈ (0, μ̄), when the adaptive controller (7), (8) and (11) is
applied to the time-varying plant (37) with d� satisfying (40) and (41), the following
bound holds:

‖φ(k)‖ ≤ c2λ
k−t0
2 (‖φ0‖ + |m0|) +

k−1∑
j=t0

c2λ
k−1− j
2 (|d( j)| + |r( j)|), k ≥ t0.

Proof Fix β ∈ (0, 1) and λ2 ∈ (max{λ1, β}, 1). The first step is to convert difference
inequalities to difference equations. To this end, consider the difference equation

φ̃(t + 1) = λ1φ̃(t) + c1|r(t)| + c1|d(t)|
+c1μm̃(t) + c1μφ̃(t), φ̃(t0) = c1‖φ(t0)‖, (42)

together with the difference equation based on (40):

m̃(t + 1) = βm̃(t) + βφ̃(t), m̃(t0) = |m0|. (43)

It is easy to use induction together with (38), (40), and (41) to prove that

‖φ(t)‖ ≤ φ̃(t), |m(t)| ≤ m̃(t), t ≥ t0. (44)

If we combine the difference equations (42) with (43), we end up with

[
φ̃(t + 1)
m̃(t + 1)

]
=
[

λ1 + c1μ c1μ
β β

]
︸ ︷︷ ︸

Acl (μ)

[
φ̃(t)
m̃(t)

]
+
[
c1
0

]
(|d(t)| + |r(t)|), t ≥ t0. (45)
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Now we see that Acl(μ) →
[

λ1 0
β β

]
as μ → 0, and this matrix has eigenvalues of

{λ1, β}. Now choose μ̄ > 0 so that all eigenvalues are less than ( λ2
2 + 1

2 max{λ1, β})
in magnitude for μ ∈ (0, μ̄], and define ε := λ2

2 − 1
2 max{λ1, β}. Using the proof

technique of Desoer in [40], we can conclude that for μ ∈ (0, μ̄], we have

‖Acl(μ)k‖ ≤
(
3 + 2β + 2c1μ̄

ε2

)
︸ ︷︷ ︸

=:γ1

λk2, k ≥ 0;

if we use this in (45) and then apply the bounds in (44), it follows that

‖φ(k)‖ ≤ c1γ1λ
k−t0
2 (‖φ0‖ + |m0|) +

k−1∑
j=t0

c1γ1λ
k−1− j
2 (|d( j)| + |r( j)|), k ≥ t0,

as desired. 
�

7 Step tracking

If the plant is non-minimum phase, it is not possible to track an arbitrary bounded
reference signal using a bounded control signal. However, as long as the plant does
not have a zero at z = 1, it is possible to modify the controller design procedure
to achieve asymptotic step tracking if there is no noise/disturbance. So at this point
assume that the corresponding plant polynomial B(z−1) has no zero at z = 1 for any
plant model θ∗ ∈ S. To proceed, we use the standard trick from the literature, e.g. see
[34]: we still estimate A(z−1) and B(z−1) as before, but we now design the control
law slightly differently. To this end, we first define

Ã(t, z−1) := (1 − z−1) Â(t, z−1),

and then let A∗(z−1) be a 2(n+1)th monic polynomial (rather than a 2nth one) of the
form

A∗(z−1) = 1 + a∗
1 z

−1 + · · · + a∗
2n+2z

−2n−2

so that z2(n+1)A∗(z−1) has all of its zeros in Do. Next, we choose two polynomial

L̃(t, z−1) = 1 + l̃1(t)z
−1 + · · · + l̃n+1(t)z

−n−1

and P̂(t, z−1) = p̂1(t)z
−1 + · · · + p̂n+1(t)z

−n−1

which satisfy the equation

Ã(t, z−1)L̃(t, z−1) + B̂(t, z−1)P̂(t, z−1) = A∗(z−1); (46)
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since Ã(t, z−1) and B̂(t, z−1) are coprime, there exist unique L̃(t, z−1) and P̂(t, z−1)

which satisfy this equation. We now define

L̂(t, z−1) = 1 + l̂1(t)z
−1 + · · · + l̂n+2(t)z

−n−2 := (1 − z−1)L̃(t, z−1);

at time t we choose u(t) so that

u(t) = −l̂1(t − 1)u(t − 1) − · · · − l̂n+2(t − 1)u(t − n − 2)

− p̂1(t − 1)[y(t − 1) − y∗(t − 1)]
− · · · − p̂n+1(t − 1)[y(t − n − 1) − y∗(t − n − 1)].

We can use a modified version of the argument used in the proof of Theorem 1 to
conclude that a similar type of result holds here; we can also prove that asymptotic
step tracking will be attained if the noise is zero and the reference signal y∗ is constant.
The details are omitted.

8 Relaxing the convexity requirement

The convexity and coprimeness assumptions on the set of admissible plant parameters
play a crucial role in obtaining the nice closed-loop properties provided inTheorems 1–
3. Here we will show that it is possible to weaken the convexity requirement if the
goal is to place all closed-loop poles at zero, although it is at the expense of using
a more complicated controller. Our proposed approach is modelled on the first-order
one-step-ahead control setup (see [32,41]) which is deadbeat in nature; of course, here
the plant may not be first order, which increases the complexity. While we would like
to remove the convexity requirement completely, at present we are only able to weaken
it. So in this section we replace Assumption 1 with

Assumption 2: S ⊂ S1 ∪ S2 with S1 and S2 convex and compact, and for each
θ ∈ S1∪S2, the corresponding pair of polynomials A(z−1) and B(z−1) are coprime.

The idea is to use an estimator for each of S1 and S2, and at each point in time we
choose which one to use in the control law. Before proceeding, define

s̄ := max{‖S1‖, ‖S2‖}.

8.1 Parameter estimation

For each Si and θ̂i (t0) ∈ Si , we construct an estimator which generates an estimate
θ̂i (t) ∈ Si at each t > t0. Motivated by (4) and (5), the associated prediction error is
defined as

ei (t + 1) = y(t + 1) − φ(t)T θ̂i (t), (47)
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and the parameter update law is given by

θ̌i (t + 1) =
{

θ̂i (t) + φ(t)
‖φ(t)‖2 ei (t + 1) if φ(t) �= 0

θ̂i (t) if φ(t) = 0,
(48)

θ̂i (t + 1) = πSi (θ̌i (t + 1)). (49)

(For ease of exposition, we do not use the more general version of the estimator
equation in (7) and (8).) Associated with this estimator is the parameter estimation
error θ̃i (t) := θ̂i (t) − θ∗ as well as the corresponding Lyapunov function Vi (t) :=
θ̃i (t)T θ̃i (t).

8.2 The switching control law

The elements of θ̂i (t) are partitioned as

θ̂i (t) =: [−âi,1(t) · · · − âi,n(t) b̂i,1(t) · · · b̂i,n(t)]T ;

associated with these estimates are the polynomials

Âi (t, z
−1) = 1 + âi,1(t)z

−1 + âi,2(t)z
−2 · · · + âi,n(t)z

−n,

B̂i (t, z
−1) = b̂i,1(t)z

−1 + b̂i,2(t)z
−2 · · · + b̂i,n(t)z

−n .

Next, we choose the following polynomials

L̂i (t, z
−1) = 1 + l̂i,1(t)z

−1 + l̂i,2(t)z
−2 + · · · + l̂i,n(t)z

−n,

P̂i (t, z
−1) = p̂i,1(t)z

−1 + p̂i,2(t)z
−2 + · · · + p̂i,n(t)z

−n

to place all closed-loop poles at zero, so we need

Âi (t, z
−1)L̂i (t, z

−1) + B̂i (t, z
−1)P̂i (t, z

−1) = 1.

Given the assumption that the Âi (t, z−1) and B̂i (t, z−1) are coprime, we know that
there exist unique L̂i (t, z−1) and P̂i (t, z−1)which satisfy this equation; it is also easy
to prove that the coefficients of L̂i (t, z−1) and P̂i (t, z−1) are analytic functions of
θ̂i (t) ∈ Si .

We can now discuss the candidate control law to be used. Define the controller gain
by

K̂i (t) := [− p̂i,1(t) · · · − p̂i,n(t) − l̂i,1(t) · · · − l̂i,n(t)]T
and a switching signal σ : Z �→ {1, 2} that decides which gain to use at any given
point in time. A natural choice for a control law is

u(t) = K̂σ(t−1)(t − 1)Tφ(t − 1) +
n∑
j=1

p̂σ(t−1), j (t − 1)y∗(t − j); (50)
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the above control law is similar to that given in (11) but with the controller gains
chosen between the two choices at each point in time.

The most obvious choice of σ(t) is to define it by

argmin{|e1(t)|, |e2(t)|}.

While this works in every simulation that we have tried, the proof remains elusive.
Hence, we try another approach, which is based on our earlier work in the first-

order one-step-ahead setting [41], and exploits the deadbeat nature of the problem.
Using the natural notation of Āσ(t)(t) to represent the Ā(t) matrix of (12) as well as
r̂(t) := ∑n

j=1 p̂σ(t), j (t)y∗(t − j + 1), the closed-loop behaviour is captured by

φ(t + 1) = Āσ(t)(t)φ(t) + B1eσ(t)(t + 1) + B2r̂(t). (51)

While Āσ(t)(t) is a deadbeat matrix for every t , the product

Āσ(t)(t) × Āσ(t−1)(t − 1) × · · · × Āσ(t0)(t0), t ≥ t0

will not usually have all eigenvalues at zero. Hence, the method of analysis used in
[41] will not work for the proposed control law (50). A natural attempt to alleviate
the problem is to hold σ(t) constant in (50) for 2n steps at a time; the difficulty now
is that Āσ(t)(t) is still changing since θ̂i (t) still changes. A natural solution to this
problem is to update the estimators every 2n steps as well; the difficulty here is that
we end up with no information about ei (t+1) between the updates, so the closed-loop
system is not amenable to analysis. So our proposed solution procedure will need to
be different: we are going to change σ(t) every N ≥ 2n steps; we keep the estimators
running, but adjust the control parameters every N ≥ 2n steps as well. The effect of
this will become clear in the proof of the main result of this section. To this end, we
define a sequence of switching times as follows: we initialize t̂0 := t0 and then define

t̂� := t0 + �N , � ∈ N.

So now define the associated controller parameters by

Ki (t) := [− p̂i,1(t̂�) · · · − p̂i,n(t̂�) − l̂i,1(t̂�) · · · − l̂i,n(t̂�)]T , t ∈ [t̂�, t̂�+1), � ∈ Z+,

(52)
the switching signal by

σ(t) = σ(t̂�), t ∈ [t̂�, t̂�+1), � ∈ Z+, (53)

and the suitably revised definition of r(·):

r(t) :=
n∑
j=1

p̂σ(t̂�), j (t̂�)y
∗(t − j + 1), t ∈ [t̂�, t̂�+1), � ∈ Z+.
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We now define the control law as

u(t) = Kσ(t−1)(t − 1)Tφ(t − 1) + r(t − 1), t ≥ t0. (54)

What remains to be defined is the choice of switching signal σ(t̂�). To this end, we
define a performance signal Ji : {t̂0, t̂1, . . .} �→ R for estimator i , which produces a
measure of “accuracy” of estimation; for � ∈ Z+, we define

Ji (t̂�) :=
{

0 if φ( j) = 0 for all j ∈ [t̂�, t̂�+1),

max
j∈[t̂�,t̂�+1),φ(·) �=0

|ei ( j+1)|
‖φ( j)‖ otherwise. (55)

Before proceeding, assume that θ∗ ∈ S, so there exists one or more j ∈ {1, 2} so that
θ∗ ∈ S j ; throughout the remainder of this section, let i∗ denote the smallest such
j . With σ(t̂0) = σ0, we use the following switching rule:

σ(t̂�+1) = argmin
i∈{1,2}

Ji (t̂�), � ∈ Z+; (56)

for the case when J1(t̂�) = J2(t̂�), we (somewhat arbitrarily) select σ(t̂�+1) to be 1.
Before presenting the main result of this section, we first show that the logic in (56)
yields a desirable closed-loop property.

Lemma 2 Consider the plant (1) subject to Assumption 2 and suppose that the
controller consisting of the estimator (48) and (49), the control law (54), the per-
formance signal (55) and the switching rule (56) is applied. Then for every t0 ∈ Z,
φ0 ∈ R2n, σ0 ∈ {1, 2}, N ≥ 1, θ∗ ∈ S, θ̂i (t0) ∈ Si (i = 1, 2) and y∗, d ∈ �∞, we
have that, for any � ≥ 0, either

(a) Jσ(t̂�)(t̂�) ≤ Ji∗(t̂�), or
(b) Jσ(t̂�+1)

(t̂�+1) ≤ Ji∗(t̂�+1).

Proof Fix t0 ∈ Z, φ0 ∈ R2n , σ0 ∈ {1, 2}, N ≥ 1, θ∗ ∈ S, θ̂i (t0) ∈ Si (i = 1, 2), and
y∗, d ∈ �∞; let � ≥ 0 be arbitrary. We know that θ∗ ∈ Si∗ . Assume that (a) does not
hold, i.e. Jσ(t̂�)(t̂�) > Ji∗(t̂�); then according to (56), this means that σ(t̂�+1) = i∗,
i.e. (b) will hold. 
�

In the above we do not make any claim that θ∗ ∈ Sσ(t) at any time; it only makes
a statement about the size of the prediction error. It turns out that this is enough to
ensure that closed-loop stability is attained. Next, we present the main result of this
section.
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8.3 The result

Theorem 4 Consider the plant (1) subject to Assumption 2 and suppose that the
controller consisting of the estimator (48), (49), the control law (54), the perfor-
mance signal (55) and the switching rule (56) is applied to the plant. For every
λ ∈ (0, 1) and N ≥ 2n, there exists a constant γ > 0 such that for every t0 ∈ Z,
φ0 ∈ R2n, σ0 ∈ {1, 2}, θ∗ ∈ S, θ̂i (t0) ∈ Si (i = 1, 2), and y∗, d ∈ �∞, the follow-
ing bound holds:

‖φ(t)‖ ≤ γ λt−t0‖φ0‖ + γ

t−1∑
j=t0

λt−1− j (|d( j)| + |r( j)|), t ≥ t0. (57)

Proof See Appendix. 
�
Remark 11 The approach taken in this proof differs a fair bit from that of Theorem 1
and does not make use of Kreisselmeier’s result given in Proposition 2. Indeed, we
spend the first half of the proof converting the closed-loop system into a first-order
difference inequality which describes the closed-loop system every 2N steps, and the
remainder of the proof consists of a modification of the arguments from our earlier
work on the first-order one-step-ahead controller [32] to fit this new setting.

Remark 12 It turns out that the controller presented in this section enjoys the same
tolerance to slowly time-varying parameters and to unmodelled dynamics as the one
designed for the case of S convex. First of all, the proof for the case of unmodelled
dynamics is identical to that of Theorem 3. Second of all, the proof for the case of
time-varying parameters given in Theorem 2 just requires a small adjustment: simply
choose the free parameterm > N1 to be an integer multiple of N . Here we have made
use of one of the most desirable features of the approach, namely that of modularity.

Remark 13 It is natural to ask if the proposed approach would work if S ⊂ ⋃p
i=1 Si

with each Si compact and convex sets and for which the corresponding pair of poly-
nomials A(z−1) and B(z−1) are coprime. (After all, if S is simply compact we can use
the Heine–Borel Theorem to prove the existence of such Si ’s.) While the proposed
controller (48), (49), (54), (55) and (56) is well defined in this case, we have been
unable to prove that it will work; a potential problem is that the switching algorithm
could oscillate between two bad choices and never (or rarely) choose the correct one.
We are presently working on a more complicated switching algorithm which does not
have that problem.

9 Some simulation examples

Here we start with an example which satisfies Assumption 1; in Sect. 9.1 we focus on
stability and in Sect. 9.2 we expand this to step tracking. We then move to an example
which satisfies Assumption 2 and illustrate the switching controller of Sect. 8.
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Fig. 1 A comparison of the ideal algorithm (solid) and the classical algorithm (dashed) with a nonzero
initial condition and no noise (top plot) and a zero initial condition and noise (bottom plot)

9.1 Stability

Herewe provide an example to illustrate the benefit of the proposed adaptive controller.
To this end, consider the second-order plant

y(t + 1) = −a1(t)y(t) − a2(t)y(t − 1) + b1(t)u(t) + b2(t)u(t − 1) + d(t)

with a1(t) ∈ [0, 2], a2(t) ∈ [1, 3], b1(t) ∈ [0, 1], and b2(t) ∈ [−5,−2]. If the
parameters were fixed, then every admissible model is unstable and non-minimum
phase, which makes this a challenging plant to control; indeed, it has two complex
unstable poles together with a zero that can lie anywhere in [2,∞). Last of all, for
simplicity set δ = ∞.

In this subsection we consider the problem of stability only—we set y∗ = 0. First,
we compare the ideal algorithm (4)–(5) (with projection onto S) with the classical one
(3) (suitablymodified to have projection ontoS); in both cases we couple the estimator
with the adaptive pole placement controller (11) where we place all closed-loop poles
at zero. In the case of the classical estimator (3), we arbitrarily set α = β = 1.
Suppose that the plant parameters are constant: (a1, a2, b1, b2) = (2, 3, 1,−2), but
the initial estimate is set to the midpoint of the interval. In the first simulation we set
y(0) = y(−1) = 0.01 and u(−1) = 0 and set the noise d(t) to zero—see the top plot
of Fig. 1. In the second simulation we set y(0) = y(−1) = u(−1) = 0 and the noise
to d(t) = 0.01 ∗ sin(5t)—see the bottom plot of Fig. 1. In both cases the controller
based on the ideal algorithm (4)–(5) is clearly superior to the one based on the classical
algorithm (3).

Now we compare the two adaptive controllers when applied to a time-varying
version of the plant with unmodelled dynamics, a zero initial condition, and a nonzero
noise. More specifically, we set

a1(t) = 1 + sin(.001t), a2(t) = 2 + cos(.001t), b1(t) = 0.5 + 0.5 sin(.005t),
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Fig. 2 The system behaviour with time-varying parameters and unmodelled dynamics; the parameters are
dashed and the estimates are solid. The ideal algorithm is used in the left-most plots, while the classical
algorithm is used in the right-most plots

b2(t) = −3.5 + 1.5 sin(.005t), d(t) = 0.01 sin(5t).

For the unmodelled part of the plant, we use a term of the form discussed in Sect. 6.2:

m(t + 1) = 0.75m(t) + 0.75‖φ(t)‖, m(0) = 0,

d�(t) =
{
0 t = 0, 1, ..., 4999
0.025m(t) + 0.025‖φ(t)‖ t ≥ 5000.

We plot the result in Fig. 2. We see that the controller based on the ideal algorithm
is clearly superior to the one based on the classical algorithm, in the sense that the
average size of the output y(t) is smaller (by a factor of about three), and the parameter
estimates are more accurate; the latter property stems from the fact that the classical
estimator tends to have a lowgainwhen the signals are small, unlike the ideal estimator.

9.2 Step tracking

The plant in the previous subsection has a large amount of uncertainty, as well as a
wide range of unstable poles and non-minimum phase zeros, which means that there
are limits on the quality of the transient behaviour even if the parameters were fixed
and known. Hence, to illustrate the tracking ability we look at a subclass of systems:
one with a1 and b1 as before, namely a1(t) ∈ [0, 2] and b1(t) ∈ [0, 1], but now
with a2 = 1 and b2 = −3.5. With fixed parameters the corresponding system is still
unstable and non-minimum phase.
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Fig. 3 The pole placement tracking controller with time-varying parameters and small noise; the parameters
are dashed and the estimates are solid

We simulate the closed-loop pole placement step tracking controller of Sect. 7 with
a zero initial condition, initial parameter estimates at the midpoints of the admissible
intervals, and with time-varying parameters:

a1(t) = 1 + sin(.002t), b1(t) = 0.5 + 0.5 cos(.005t),

with a nonzero disturbance:

d(t) =
{
0.01 sin(5t) t = 0, 1, ..., 2499
0.05 sin(5t) t = 2500, ..., 4999,

and a square wave reference signal of y∗(t) = sgn[sin(0.01t)]. We plot the result in
Fig. 3; we see that the parameter estimates crudely follows the system parameters,
with less accuracy than in the previous subsection, partly due to the fact that the
constant setpoint dominates the estimation process and leads to higher inaccuracy. As
a result, y(t) does a good job of following y∗ on average, but with the occasional
flurry of activity when the parameter estimates are highly inaccurate. When the noise
is increased fivefold at k = 2500, the behaviour degrades only slightly.

9.3 Removing convexity assumption

Next we illustrate the case when the set of admissible plant parameters satisfies
Assumption 2 but not Assumption 1; we will consider a second-order plant with
θ∗ belonging to S ⊂ S1 ∪ S2, with S1 equal to the set S of the previous example and
S2 equal to S1 but with a sign added on the bi parameters:

S1 : =
{[ a1

a2
b1
b2

]
∈ R4 : a1 ∈ [0, 2], a2 ∈ [1, 3], b1 ∈ [0, 1], b2 ∈ [−5,−2]

}
,

S2 : =
{[ a1

a2
b1
b2

]
∈ R4 : a1 ∈ [0, 2], a2 ∈ [1, 3], b1 ∈ [−1, 0], b2 ∈ [2, 5]

}
;
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notice that convex hull of S1 ∪ S2 includes the case of having b1 = b2 = 0, which
means that the corresponding system is not stabilizable. We will apply the proposed
controller of Sect. 8 to the time-varying plant with a zero initial condition and reference
signal, and a nonzero noise. Specifically, we set a1(t) and a2(t) as in Sect. 9.1:

a1(t) = 1 + sin(.001t), a2(t) = 2 + cos(.001t),

but now we set b1(t) and b2(t) to be

b1(t) =
{−0.5 − 0.5 sin(.005t) 1500 ≤ t < 8000
0.5 + 0.5 sin(.005t) otherwise,

b2(t) =
{
3.5 − 1.5 sin(.005t) 1500 ≤ t < 8000
−3.5 + 1.5 sin(.005t) otherwise.

We apply the proposed switching controller consisting of the estimator (48), (49), the
control law (54), the performance signal (55) and the switching rule (56); we choose
N = 2n = 4. Here we also set y∗ = 0, y(0) = y(−1) = u(−1) = 0 and the noise to
d(t) = 0.01 sin(5t). Initial parameter estimates θ̂i (0) are set to the midpoints of each
respective interval, and we set σ0 = 2.

The result for this case is plotted inFig. 4;we see that the controller does a reasonable
job, even though the switching algorithm often chooses the wrong model. Larger
transients (than in the simulation of Sect. 9.1) occasionally ensue, but on average
the adaptive controller provides good performance. Furthermore, the estimator does a
fairly good job of tracking the time-varying parameter.

10 Summary and conclusions

Here we show that if the original, ideal, projection algorithm is used in the estimation
process (subject to the assumption that the plant parameters lie in a convex, compact
set), then the corresponding pole placement adaptive controller guarantees linear-like
convolution bounds on the closed-loop behaviour, which confers exponential stability
and a bounded noise gain (in every p-norm with 1 ≤ p ≤ ∞), unlike almost all
other parameter adaptive controllers. This can be leveraged to prove tolerance to
unmodelled dynamics and plant parameter variation. We emphasize that there is no
persistent excitation requirement of any sort; the improved performance arises from
the vigilant nature of the ideal parameter estimation algorithm.

As far as the author is aware, the linear-like convolution bound proven here is
a first in parameter adaptive control. It allows a modular approach to be used in
analysing time-varying parameters and unmodelled dynamics. This approach avoids
all of the fixes invented in the 1980s, such as signal normalization and deadzones,
used to deal with the lack of robustness to unmodelled dynamics and time-varying
parameters.

In the present paper the standard assumption is that the set of plant parameters
lies in a compact and convex set. In Sect. 8 we relaxed the convexity requirement a
bit: there the goal is to place all poles at the origin, and the convexity requirement is
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Fig. 4 The upper plot shows the system output. The next four plots show the parameter estimates θ̂σ (t̂�)
(t̂�)

(dashed) and actual plant parameters (solid). The bottom plot shows the switching signal σ(t̂�) (dashed)
and the correct index (solid)

weakened to requiring that the set of admissible parameters lie in the union of two
convex sets; two parameter estimators are used together with a switching algorithm
to choose which estimator to use at each point in time. We are working at removing
the convexity requirement altogether: the idea is to utilize the Heine–Borel theorem to
prove that the compact set of admissible parameters lies in a finite union of convex set
(for which the corresponding numerator and denominator polynomials are coprime),
use a parameter estimator for each, and then design a switching algorithm to switch
between them.While the (natural extension of) the switching algorithm for the case of
two convex sets does not appear to work in the general case, we are presently analysing
a more complicated algorithm.

We are presently working on extending the approach to the model reference adap-
tive control setting; the analysis is turning out to be more complicated than here, in
large part due to the facts that the controller is not strictly causal (as it is here) and that
a system delay (or the relative degree of the plant transfer function) creates additional
complexity. Extending the approach to the continuous-time setting may prove chal-
lenging, since a direct application would yield a non-Lipschitz continuous estimator,
which brings with it mathematical solvability issues.
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11 Appendix

Proof of Proposition 1: Since projection does not make the parameter estimate worse,
it follows from (7) that

‖θ̂ (t + 1) − θ̂ (t)‖ ≤ ‖θ̌ (t + 1) − θ̂ (t)‖ ≤ ‖ρδ(φ(t), e(t + 1))
φ(t)

φ(t)Tφ(t)
e(t + 1)‖

≤ ρδ(φ(t), e(t + 1))
|e(t + 1)|
‖φ(t)‖ , t ≥ t0.

so the first inequality holds.

We now turn to energy analysis. We first define ˜̌
θ(t) := θ̌ (t) − θ∗ and V̌ (t) :=

˜̌
θ(T )T

˜̌
θ(t). Next, we subtract θ∗ from each side of (7), yielding

˜̌
θ(t + 1) = θ̃ (t) + ρδ(φ(t), e(t + 1))

φ(t)

φ(t)T φ(t)
[−φ(t)T θ̃ (t) + d(t)]

=

⎡
⎢⎢⎢⎢⎣I − ρδ(φ(t), e(t + 1))

φ(t)φ(t)T

φ(t)T φ(t)︸ ︷︷ ︸
=:W1(t)

⎤
⎥⎥⎥⎥⎦ θ̃ (t) + ρδ(φ(t), e(t + 1))

φ(t)

φ(t)T φ(t)︸ ︷︷ ︸
=:W2(t)

d(t).

Then

V̌ (t + 1) = [(I − W1(t))θ̃(t) + W2(t)d(t)]T × [(I − W1(t))θ̃(t) + W2(t)d(t)]
= θ̃ (t)T [I − W1(t)][I − W1(t)]θ̃ (t)

+2θ̃ (t)T [I − W1(t)]W2(t)d(t) + W2(t)
T W2(t)d(t)2.

Now let us analyse the three terms on the RHS: the fact that W1(t)2 = W1(t) allows
us to simplify the first term; the fact that W1(t)W2(t) = W2(t) means that the second
term is zero; W2(t)T W2(t) = ρδ(φ(t), e(t + 1)) 1

φ(t)T φ(t)
, which simplifies the third

term. We end up with

V̌ (t + 1) = θ̃ (t)T [I − W1(t)]θ̃ (t) + ρδ(φ(t), e(t + 1))
d(t)2

φ(t)Tφ(t)

= V (t) − ρδ(φ(t), e(t + 1))
[θ̃ (t)Tφ(t)]2
φ(t)Tφ(t)

+ ρδ(φ(t), e(t + 1))
d(t)2

φ(t)Tφ(t)

= V (t) + ρδ(φ(t), e(t + 1))
d(t)2 − [d(t) − e(t + 1)]2

φ(t)Tφ(t)

≤ V (t) + ρδ(φ(t), e(t + 1))
− 1

2e(t + 1)2 + 2d(t)2

φ(t)Tφ(t)
.
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Since projection never makes the estimate worse, it follows that

V (t + 1) ≤ V (t) + ρδ(φ(t), e(t + 1))
− 1

2e(t + 1)2 + 2d(t)2

φ(t)Tφ(t)
.


�

Proof of Lemma 1: Fix δ ∈ (0,∞] and σ ∈ (λ, 1). First of all, it is well known that the
characteristic polynomial of Ā(t) is exactly z2n A∗(z−1) for every t ≥ t0. Furthermore,
it is well known that the coefficients of L̂(t, z−1) and P̂(t, z−1) are the solution
of a linear equation, and are analytic functions of θ̂ (t) ∈ S. Hence, there exists a
constant γ1 so that, for every set of initial conditions, y∗ ∈ l∞ and d ∈ l∞, we have
supt≥t0 ‖ Ā(t)‖ ≤ γ1.

To prove the first bound, we now invoke the argument used in [40], who considered
a more general time-varying situation but with more restrictions on σ . By making
a slight adjustment to the first part of the proof given there, we can prove that with

γ2 := σ
(σ+γ1)

2n−1

(σ−λ)2n
, then for every t ≥ t0 we have ‖ Ā(t)k‖ ≤ γ2σ

k, k ≥ 0, as desired.
Now we turn to the second bound. From Proposition 1 and the Cauchy–Schwarz

inequality, we obtain

t−1∑
j=k

‖θ̂ ( j + 1) − θ̂ ( j)‖ ≤
t−1∑
j=k

ρδ(φ( j), e( j + 1))
|e( j + 1)|
‖φ( j)‖

≤
⎡
⎣ t−1∑

j=k

ρδ(φ( j), e( j + 1))
e( j + 1)2

‖φ( j)‖2

⎤
⎦
1/2

(t − k)1/2.

Now notice that

‖ Ā(t + 1) − Ā(t)‖ ≤ ‖θ̂ (t + 1) − θ̂ (t)‖
+

n∑
i=1

(|l̂i (t + 1) − l̂i (t)| + | p̂i (t + 1) − p̂i (t)|).

The fact that the coefficients of L̂(t, z−1) and P̂(t, z−1) are analytic functions of
θ̂ (t) ∈ S means that there exists a constant γ3 ≥ 1 so that

t−1∑
j=k

‖ Ā( j + 1) − Ā( j)‖ ≤ γ3

t−1∑
j=k

‖θ̂ ( j + 1) − θ̂ ( j)‖,

so we conclude that the second bound holds as well. �
In order to prove Theorem 4, we need some preliminary results. The first

step is to extend Proposition 1 to the case when θ∗ may not lie in Si .
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Proposition 3 For every t0 ∈ Z, t2 ≥ t1 ≥ t0, φ0 ∈ R2n, θ∗ ∈ S, θ̂i (t0) ∈ Si , and
d ∈ �∞, when the estimator (48) and (49) is applied to the plant (1),

‖θ̂i (t2) − θ̂i (t1)‖ ≤
t2−1∑

j=t1,φ( j) �=0

|ei ( j + 1)|
‖φ( j)‖ , i = 1, 2. (58)

Proof Since projection does not make the parameter estimate worse, it follows from
(48) and (49) that when φ(t) �= 0,

‖θ̂i (t + 1) − θ̂i (t)‖ ≤ ‖θ̌i (t + 1) − θ̂i (t)‖ ≤
∥∥∥∥φ(t)ei (t + 1)

‖φ(t)‖2
∥∥∥∥ ≤ |ei (t + 1)|

‖φ(t)‖ ,(59)

and when φ(t) = 0,

‖θ̂i (t + 1) − θ̂i (t)‖ = 0.

The result follows by iteration. 
�
The next result produces a crude bound on the closed-loop behaviour.

Proposition 4 Consider the plant (1) and suppose that the controller consisting
of the estimator (48), (49) and the control law (54) is applied.8 Then for every
p ≥ 0, there exists a constant c̄ ≥ 1 such that for every t0 ∈ Z, t ≥ t0, φ0 ∈ R2n,
θ∗ ∈ S , θ̂i (t0) ∈ Si (i = 1, 2) and y∗, d ∈ �∞:

‖φ(t + p)‖ ≤ c̄‖φ(t)‖ + c̄
p−1∑
j=0

(|d(t + j)| + |r(t + j)|). (60)

Proof Fix p ≥ 0. Let t0 ∈ Z, t ≥ t0, φ0 ∈ R2n , θ∗ ∈ S, θ̂i (t0) ∈ Si (i = 1, 2) and
y∗, d ∈ �∞ be arbitrary. From (1) we see that

|y(t + 1)| ≤ ‖S‖‖φ(t)‖ + |d(t)|.

From (54) and Assumption 2, we have that there exists a constant γ so that

|u(t + 1)| ≤ γ ‖φ(t)‖ + |r(t)|.

From the definition of ‖φ(t + 1)‖, we have that

‖φ(t + 1)‖ ≤ ‖φ(t)‖ + |y(t + 1)| + |u(t + 1)|.
8 The choice of N and the value of the switching signal σ(t) play no role.
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Combining these three bounds, we end up with

‖φ(t + 1)‖ ≤ (1 + ‖S‖ + γ )︸ ︷︷ ︸
=:ā

‖φ(t)‖ + |r(t)| + |d(t)|.

Solving iteratively, we have

‖φ(t + p)‖ ≤ ā p‖φ(t)‖ +
p−1∑
j=0

ā p− j−1(|d(t + j)| + |r(t + j)|)

≤ ā p‖φ(t)‖ + ā p−1
p−1∑
j=0

(|d(t + j)| + |r(t + j)|).

Put c̄ := ā p to conclude the proof. 
�
We now state a technical result which we used in [32] to analyse the first-order

one-step-ahead adaptive control problem.

Lemma 3 [32] (i) With n ∈ N ∪ {∞}, suppose that a j ∈ R and c > 0 satisfy
n∑
j=0

a2j ≤ c.

Then for every λ ∈ (0, 1), if we define γ := c
c+1
2 ( 1

λ
)

c
λ2

+1, then the following holds:

∣∣∣∣
∏ j−1

l=0
al

∣∣∣∣ ≤ γ λ j j = 0, 1, . . . , n.

(ii) With n < p ≤ ∞, suppose that a j ∈ R and c1 > 0 satisfy
j+n∑
l= j

a2l ≤ c1 j = 0, 1, . . . , p − n.

Then for every λ ∈ (0, 1), if c1, λ and n satisfy

n ≥
c1+1
2 ln (c1) + (4 c1

λ2
+ 1)(ln (2) − ln (λ))

ln (2)

and γ1 := c
c1+1
2

1 ( 2
λ
)
4c1
λ2

+1, then

∣∣∣∣
∏ j−1

l=0
al

∣∣∣∣ ≤ γ1λ
j j = 0, 1, . . . , p.

Proof of Theorem 4: Fix λ ∈ (0, 1) and N ≥ 2n. Let t0 ∈ Z, φ0 ∈ R2n , σ0 ∈ {1, 2},
θ∗ ∈ S , θ̂i (t0) ∈ Si (i = 1, 2), and y∗, d ∈ �∞ be arbitrary; as usual, we let i∗ denote
the smallest j ∈ {1, 2} which satisfies θ∗ ∈ S j .
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As mentioned at the beginning of Sect. 8, the proposed controller is based on
the first-order one-step-ahead control setup [41], although it is more complicated.
The proof also uses similar ideas as those used in [41], but as our system is more
complicated, it should not be surprising that the proof is significantly different and
much more complicated. Hence, before proceeding we provide a proof outline: using
the definition of t̂� given in Sect. 8.2:

1. first, we define a state-space equation describing φ(t) which holds on intervals of
the form [t̂�, t̂�+1);

2. second, we analyse this equation, getting a bound on ‖φ(t̂�+1)‖ in terms of ‖φ(t̂�)‖
and the exogenous inputs;

3. we apply Lemma 2 and Proposition 4 to obtain a bound on ‖φ(t̂�+2)‖ in terms of
‖φ(t̂�)‖; i.e. we analyse two intervals at a time;

4. fourth, we then analyse the associated difference inequality (relating ‖φ(t̂�+2)‖ in
terms of ‖φ(t̂�)‖) in a way similar (though not identical) to that used in [41].

Step 1: Obtain a state-space model describing φ(t) for t ∈ [t̂�, t̂�+1).

By definition of the prediction error (47) and by the property of the switching signal
(53) being constant on [t̂�, t̂�+1), we have

y(t + 1) = φ(t)T θ̂σ (t)(t) + eσ(t)(t + 1)

= φ(t)T θ̂σ (t̂�)(t) + eσ(t̂�)(t + 1) + φ(t)T θ̂σ (t̂�)(t̂�) − φ(t)T θ̂σ (t̂�)(t̂�)

= θ̂σ (t̂�)(t̂�)
Tφ(t) +

[
θ̂σ (t̂�)(t) − θ̂σ (t̂�)(t̂�)

]T
φ(t)

+eσ(t̂�)(t + 1), t ∈ [t̂�, t̂�+1). (61)

From the control law (54) and the control gains (52), we have

u(t + 1) = Kσ(t)(t)
Tφ(t) + r(t)

= Kσ(t̂�)(t̂�)
Tφ(t) + r(t), t ∈ [t̂�, t̂�+1). (62)

We now derive a state-space equation for φ(t) in much the same way as (13) was
derived; we first define

Āσ( j)( j)

:=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−âσ( j),1( j) −âσ( j),2( j) · · · −âσ( j),n( j) b̂σ( j),1( j) · · · · · · b̂σ( j),n( j)
1 0 · · · 0 0 · · · · · · 0

. . .
.
.
.

.

.

. · · · · · ·
.
.
.

1 0 0 · · · · · · 0
− p̂σ( j),1( j) − p̂σ( j),2( j) · · · − p̂σ( j),n( j) −l̂σ( j),1( j) −l̂σ( j),2( j) · · · −l̂σ( j),n( j)

0 · · · · · · 0 1 0 · · · 0
.
.
. · · · · · ·

.

.

.
. . .

.

.

.

0 · · · · · · 0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

;
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then, in light of (61) and (62), the following holds:

φ(t + 1) = Āσ(t̂�)(t̂�)φ(t)

+B1

([
θ̂σ (t̂�)(t) − θ̂σ (t̂�)(t̂�)

]T
φ(t) + eσ(t̂�)(t + 1)

)
+ B2r(t),

t ∈ [t̂�, t̂�+1), � ∈ Z+; (63)

notice the additional term
[
θ̂σ (t̂�)(t) − θ̂σ (t̂�)(t̂�)

]
on the right-hand side which (13)

does not have.

Step 2: Obtain a bound on ‖φ(t̂�+1)‖ in terms of ‖φ(t̂�)‖.
In (63) we have Āσ(t̂�)(t̂�) ∈ R2n×2n to be a constant matrix with all eigenvalues

equal to zero; since N ≥ 2n, clearly

[
Āσ(t̂�)(t̂�)

]t̂�+1−t̂� = [
Āσ(t̂�)(t̂�)

]N = 0.

So, solving (63) for φ(t̂�+1) yields

φ(t̂�+1)

=
t̂�+1−1∑
j=t̂�

[
Āσ(t̂�)(t̂�)

]t̂�+1− j−1
(
B1

([
θ̂σ (t̂�)( j) − θ̂σ (t̂�)(t̂�)

]T
φ( j) + eσ(t̂�)( j + 1)

)

+B2r( j)

)
. (64)

It follows from the compactness of S and the Si ’s that
∥∥∥[ Āσ(t̂�)(t̂�)

] j∥∥∥ , j =
0, 1 . . . , N − 1, is bounded above by a constant which we label c1. Using this fact
together with Proposition 3 which provides a bound on the difference between param-
eter estimates at two different points in time, we obtain

‖φ(t̂�+1)‖ ≤ c1

t̂�+1−1∑
j=t̂�

(∥∥∥θ̂σ (t̂�)
( j) − θ̂σ (t̂�)

(t̂�)
∥∥∥ ‖φ( j)‖ + |eσ(t̂�)

( j + 1)| + |r( j)|
)

≤ c1

t̂�+1−1∑
j=t̂�

⎛
⎝
⎡
⎣ j−1∑
q=t̂�,φ(q) �=0

|eσ(t̂�)
(q + 1)|

‖φ(q)‖

⎤
⎦ ‖φ( j)‖ + |eσ(t̂�)

( j + 1)| + |r( j)|
⎞
⎠ .

By definition of the prediction error, if φ( j) = 0 then

|ei ( j + 1)| = |d( j)|,

and if φ( j) �= 0, then

|ei ( j + 1)| = |ei ( j + 1)|
‖φ( j)‖ ‖φ( j)‖.

123



19 Page 44 of 51 Mathematics of Control, Signals, and Systems (2018) 30 :19

Incorporating this into the above inequality yields

‖φ(t̂�+1)‖ ≤ c1

t̂�+1−1∑
j=t̂�

⎛
⎝
⎡
⎣ j∑
q=t̂�,φ(q) �=0

|eσ(t̂�)
(q + 1)|

‖φ(q)‖

⎤
⎦ ‖φ( j)‖ + |d( j)| + |r( j)|

⎞
⎠

≤ c1

t̂�+1−1∑
j=t̂�

⎛
⎝
⎡
⎣ t̂�+1−1∑
q=t̂�,φ(q) �=0

|eσ(t̂�)
(q + 1)|

‖φ(q)‖

⎤
⎦ ‖φ( j)‖ + |d( j)| + |r( j)|

⎞
⎠

= c1

⎡
⎣ t̂�+1−1∑
q=t̂�,φ(q) �=0

|eσ(t̂�)
(q + 1)|

‖φ(q)‖

⎤
⎦ t̂�+1−1∑

j=t̂�

‖φ( j)‖ + c1

t̂�+1−1∑
j=t̂�

(|d( j)| + |r( j)|)

≤ c1(t̂�+1 − t̂�)

[
max

j∈[t̂�,t̂�+1),φ( j) �=0

|eσ(t̂�)
( j + 1)|

‖φ( j)‖

] t̂�+1−1∑
j=t̂�

‖φ( j)‖

+c1

t̂�+1−1∑
j=t̂�

(|d( j)| + |r( j)|). (65)

Since t̂�+1 − t̂� = N , it follows from Proposition 4 that there exists a constant c2 so
that the following holds:

t̂�+1−1∑
j=t̂�

‖φ( j)‖ ≤ c2‖φ(t̂�)‖ + c2

t̂�+1−2∑
j=t̂�

(|d( j)| + |r( j)|); (66)

so, substituting (66) into (65) and using the definition of the performance signal
Jσ(t̂�)(·) given in (55) it follows that there exists a constant c3 so that

‖φ(t̂�+1)‖ ≤ c1N Jσ(t̂�)

⎛
⎝c2‖φ(t̂�)‖ + c2

t̂�+1−2∑
j=t̂�

(|d( j)| + |r( j)|)
⎞
⎠

+c1

t̂�+1−1∑
j=t̂�

(|d( j)| + |r( j)|)

≤ c3 Jσ(t̂�)(t̂�)‖φ(t̂�)‖ + c3
(
1 + Jσ(t̂�)(t̂�)

) t̂�+1−1∑
j=t̂�

(|d( j)| + |r( j)|).

(67)

Step 3:Apply Lemma 2 and Proposition 4 to obtain a bound on ‖φ(t̂�+2)‖ in terms of
‖φ(t̂�)‖.

From Lemma 2 either
Jσ(t̂�)(t̂�) ≤ Ji∗(t̂�) (68)
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or
Jσ(t̂�+1)

(t̂�+1) ≤ Ji∗(t̂�+1). (69)

If (68) is true, then we can substitute this into (67) to obtain a bound on ‖φ(t̂�+1)‖ in
terms of Ji∗(t̂�) and then apply Proposition 4 to get a bound on ‖φ(t̂�+2)‖ in terms of
‖φ(t̂�+1)‖ and the exogenous inputs; it follows that there exists a constant c4 so that

‖φ(t̂�+2)‖ ≤ c3c4 Ji∗(t̂�)‖φ(t̂�)‖

+c3c4
(
1 + Ji∗(t̂�)

) t̂�+1−1∑
j=t̂�

(|d( j)| + |r( j)|) + c4

t̂�+2−1∑
j=t̂�+1

(|d( j)| + |r( j)|). (70)

On the other hand, if (69) is true, we can use (67) to get a bound on ‖φ(t̂�+2)‖ in
terms of Ji∗(t̂�+1), and then apply Proposition 4 to get a bound on ‖φ(t̂�+1)‖ in terms
of ‖φ(t̂�)‖; it follows that there exists a constant c5 so that

‖φ(t̂�+2)‖ ≤ c3c5 Ji∗(t̂�+1)‖φ(t̂�)‖ + c3c5 Ji∗(t̂�+1)

t̂�+1−1∑
j=t̂�

(|d( j)| + |r( j)|)

+ c3
(
1 + Ji∗(t̂�+1)

) t̂�+2−1∑
j=t̂�+1

(|d( j)| + |r( j)|).

(71)

If we define α(t̂�) := max{Ji∗(t̂�), Ji∗(t̂�+1)}, then there exists a constant c6 so that
(70) and (71) can be combined to yield

‖φ(t̂�+2)‖ ≤ c6α(t̂�)‖φ(t̂�)‖ + c6
(
1 + α(t̂�)

) t̂�+2−1∑
j=t̂�

(|d( j)| + |r( j)|), � ∈ Z+.

(72)
Step 4: Analyse the first-order difference inequality (72).

First, we change notation in (72) to facilitate analysis:

‖φ(t̂2 j+2)‖ ≤ c6α(t̂2 j )‖φ(t̂2 j )‖+c6
(
1 + α(t̂2 j )

) t̂2 j+2−1∑
q=t̂2 j

(|d(q)|+|r(q)|), j ∈ Z+.

(73)
Next, we will analyse (73) to obtain a bound on the closed-loop behaviour; we

consider two cases—one with noise and one without.

Case 1: d(t) = 0 for all t ≥ t0.
From Proposition 1 and the definition of α(·), we have
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j−1∑
q=0

α(t̂2q)
2 ≤

t0+ j N−1∑
p=t0,φ(p) �=0

|ei∗(p + 1)|2
‖φ(p)‖2

≤ 2[V (t0) − V (t0 + j N )] ≤ 2V (t0) ≤ 8‖Si∗‖2
≤ 8s̄2 =: c7, j ≥ 1. (74)

If we use this bound in the second occurrence of α(t̂2 j ) in (73), we obtain

‖φ(t̂2 j+2)‖ ≤ c6α(t̂2 j )‖φ(t̂2 j )‖ + c6(1 + √
c7)︸ ︷︷ ︸

=:c8

t̂2 j+2−1∑
q=t̂2 j

|r(q)|
︸ ︷︷ ︸

=:r̄( j)

, j ∈ Z+. (75)

Since λ ∈ (0, 1) and c6 ≥ 1, then it follows that λ1 := λ2N

c6
∈ (0, 1). By Lemma 3(i)

if we define c9 := c
c7+1
2

7 ( 1
λ1

)

c7
λ21

+1
and use the fact that α(t̂2 j ) ≥ 0, we see that

∏ j−1

q=0
α(t̂2q) ≤ c9λ

j
1 j ∈ Z+, (76)

which, in turn, implies that

∏ j−1

q=0
[c6α(t̂2q)] ≤ c9λ

2 j N , j ∈ Z+. (77)

Solving (75) iteratively and using this bound, we obtain

‖φ(t̂2 j )‖ ≤ c9λ
2 j N‖φ(t̂0)‖ +

j−1∑
q=0

c9c8
(
λ2N

) j−1−q
r̄(q), j ∈ Z+. (78)

Using Proposition 4 to obtain a bound on φ(t) between t̂2 j and t̂2 j+2, we conclude
that there exists a constant c10 so that

‖φ(t)‖ ≤ c10λ
t−t0‖φ(t0)‖ +

t−1∑
j=t0

c10λ
t− j−1|r( j)|, t ≥ t0. (79)

Case 2: d(t) �= 0 for some t ≥ t0.
We now analyse the case when there is noise entering the system. Here the analysis

will use a similar (but not identical) approach to that ofCase2 in theproof ofTheorem1.
Motivated by Case 1, in the following we will be applying Lemma 3(ii) with a larger

bound than in (74); define c11 := 8(1 + N )s̄2. We also define λ1 = λ2N

c6
and ν :=⎡

⎢⎢⎢⎢

c11+1
2 ln (c11)+(4

c11
λ21

+1)(ln (2)−ln (λ1))

ln (2)

⎤
⎥⎥⎥⎥

.
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We now partition the timeline into two parts: one in which the noise is small versus
φ and one where it is not. With ν defined above, we define

Sgood =
{
j ≥ t0 : φ( j) �= 0 and |d( j)|2

‖φ( j)‖2 < s̄2
ν

}
,

Sbad =
{
j ≥ t0 : φ( j) = 0 or |d( j)|2

‖φ( j)‖2 ≥ s̄2
ν

}
;

clearly { j ∈ Z : j ≥ t0} = Sgood ∪ Sbad. We can clearly define a (possibly infinite)
sequence of intervals of the form [kl , kl+1) which satisfy:

(i) k0 = t0 serves as the initial instant of the first interval;
(ii) [kl , kl+1) either belongs to Sgood or Sbad; and
(iii) if kl+1 �= ∞ and [kl , kl+1) belongs to Sgood then [kl+1, kl+2) belongs to Sbad and

vice versa.

Now we analyse the behaviour during each interval.

Sub-Case 2.1: [kl , kl+1) lies in Sbad.
Let j ∈ [kl , kl+1) be arbitrary. In this case

|d( j)|2
‖φ( j)‖2 ≥ s̄2

ν
or ‖φ( j)‖ = 0;

in either case

‖φ( j)‖ ≤ ν
1
2

s̄︸︷︷︸
=:c12

|d( j)|.

Also, applying Proposition 4 for one step, there exists constant c13 so that

‖φ( j)‖ ≤ c13(|d( j − 1)| + |r( j − 1)|).

Then for j ∈ [kl , kl+1), we have

‖φ( j)‖ ≤
{
c12|d( j)| j = kl
c13(|d( j − 1)| + |r( j − 1)|) j = kl + 1, kl + 2, . . . , kl+1.

(80)

Sub-Case 2.2: [kl , kl+1) lies in Sgood.
Let j ∈ [kl , kl+1) be arbitrary. First, suppose that kl+1 − kl ≤ 4N . From Proposi-

tion 4 it can be easily proven that there exists a constant c14 so that

‖φ(t)‖ ≤ c14λ
t−kl‖φ(kl)‖ + c14

t−1∑
j=kl

λt− j−1(|d( j)| + |r( j)|), t ∈ [kl , kl+1].
(81)
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Now suppose that kl+1−kl > 4N . Thismeans, in particular, that there exist j1 < j2
so that

kl ≤ t̂2 j1 ≤ t̂2 j2 ≤ kl+1.

To proceed, observe that ‖φ( j)‖ �= 0 and

|d( j)|2
‖φ( j)‖2 <

s̄2

ν
, j ∈ [kl , kl+1). (82)

With 0 ≤ j1 < j2, it follows from Proposition 1 and the definition of α(·) that
j2−1∑
q= j1

α(t̂2q)
2 ≤

t0+2 j2N−1∑
p=t0+2 j1N ,φ(p) �=0

|ei∗(p + 1)|2
‖φ(p)‖2

≤ 2V (t̂2 j1) + 4

t̂2 j2−1∑
p=t̂2 j1 ,φ(p) �=0

|d(p)|2
‖φ(p)‖2 ; (83)

using the bound given in (82) which holds on [kl , kl+1), this becomes

j2−1∑
q= j1

α(t̂2q)
2

≤ 8s̄2 + 8N ( j2 − j1)
s̄2

ν
, for all j1, j2 ∈ Z+ s.t. kl ≤ t̂2 j1 < t̂2 j2 ≤ kl+1. (84)

If j2 − j1 ≤ ν then

j2−1∑
q= j1

α(t̂2q)
2 ≤ 8s̄2 + 8Nν

s̄2

ν
= (8 + 8N )s̄2 = c11; (85)

so by Lemma 3(i), with λ1 defined above, if we define c15 := c
c11+1

2
11 ( 2

λ1
)

4c11
λ21

+1
, then

∏ j2−1

q= j1
[c6α(t̂2q)] ≤ c15λ

2N ( j2− j1), for all j1, j2 ∈ Z+ s.t. kl ≤ t̂2 j1 < t̂2 j2 ≤ kl+1.

(86)
If j2 − j1 > ν, then by Lemma 3(ii) and our choice of ν we have that

∏ j2−1

q= j1
[c6α(t̂2q)] ≤ c15λ

2N ( j2− j1), for all j1, j2 ∈ Z+ s.t. kl ≤ t̂2 j1 < t̂2 j2 ≤ kl+1,

(87)
as well.
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Now we can proceed to solve (73). The first step is to use (85) to bound the second
occurrence of α(t̂2 j ) in (73), yielding

‖φ(t̂2 j+2)‖ ≤ c6α(t̂2 j )‖φ(t̂2 j )‖ + c6(1 + √
c11)︸ ︷︷ ︸

=:c16

t̂2 j+2−1∑
q=t̂2 j

(|r(q)| + |d(q)|)
︸ ︷︷ ︸

=:w̄( j)

. (88)

If we solve this iteratively and use the bounds in (86) and (87), we see that

‖φ(t̂2 j2)‖ ≤ c15λ
2N ( j2− j1)‖φ(t̂2 j1)‖ +

j2−1∑
q= j1

c16c15
(
λ2N

) j2−1−q
w̄(q),

for all j1, j2 ∈ Z+ s.t. kl ≤ t̂2 j1 < t̂2 j2 ≤ kl+1. (89)

We can now use Proposition 4:

• to provide a bound on ‖φ(t)‖ between consecutive t̂2 j ’s;
• to provide a bound on ‖φ(t)‖ on the beginning part of the interval [kl , kl+1) (until
we get to the first admissible t̂2 j );

• to provide a bound on ‖φ(t)‖ on the last part of the interval [kl , kl+1) (after the
last admissible t̂2 j ).

We conclude that there exist a constant c17 ≥ c14 so that

‖φ(t)‖ ≤ c17λ
t−kl‖φ(kl)‖ + c17

t−1∑
j=kl

λt− j−1(|d( j)| + |r( j)|), t ∈ [kl , kl+1].
(90)

Now we combine Sub-Case 2.1 and Sub-Case 2.2 into a general bound on φ. The
following analysis is almost identical to the one at the end of the proof of Theorem 1.
Define c18 := max{c17, c13, c13c17}.
Claim The following bound holds:

‖φ(t)‖ ≤ c18λ
t−t0‖φ(t0)‖ +

t−1∑
j=t0

c18λ
t− j−1(|d( j)| + |r( j)|), t ≥ t0. (91)

Proof of the Claim If [k0, k1) = [t0, k1) ⊂ Sgood, then (91) is true for t ∈ [k0, k1] by
(90). If [k0, k1) ⊂ Sbad, then from (80) we obtain

‖φ( j)‖ ≤
{ ‖φ(k0)‖ = ‖φ0‖ j = k0 = t0
c13(|d( j − 1)| + |r( j − 1)|) j = k0 + 1, k0 + 2, . . . , k1,

which means that (91) holds on [k0, k1] for this case as well.
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We now use induction: suppose that (91) is true for t ∈ [k0, kl ]; we need to prove
it holds for t ∈ (kl , kl+1] as well. If k ∈ [kl , kl+1) ⊂ Sbad, then from (80) we see that

‖φ( j)‖ ≤ c13(|d( j − 1)| + |r( j − 1)|), j = kl + 1, kl + 2, . . . , kl+1,

which means (91) holds on (kl , kl+1]. On the other hand, if [kl , kl+1) ⊂ Sgood, then
kl − 1 ∈ Sbad; from (80) we have that

|φ(kl)| ≤ c13(|d(kl − 1)| + |r(kl − 1)|).

Using (90) to analyse the behaviour on [kl , kl+1], we have

‖φ(k)‖ ≤ c15λ
k−kl [c13(|d(kl − 1)|+|r(kl − 1)|)]+

k−1∑
j=kl

c17λ
k− j−1(|d( j)|+|r( j)|),

≤ c18

k−1∑
j=kl−1

λk− j−1(|d( j)| + |r( j)|), k ∈ [kl , kl+1], (92)

which implies that (91) holds. 
�
This concludes the proof. 
�
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