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Abstract Using recent characterisations of topologies of spaces of vector fields for
general regularity classes—e.g., Lipschitz, finitely differentiable, smooth, and real
analytic—characterisations are provided of geometric control systems that utilise these
topologies. These characterisations can be expressed as joint regularity properties of
the system as a function of state and control. It is shown that the common characteri-
sations of control systems in terms of their joint dependence on state and control are,
in fact, representations of the fact that the natural mapping from the control set to the
space of vector fields is continuous. The classes of control systems defined are new,
even in the smooth category. However, in the real analytic category, the class of systems
defined is new and deep. What are called “real analytic control systems” in this article
incorporate the real analytic topology in a way that has hitherto been unexplored. Using
this structure, it is proved, for example, that the trajectories of a real analytic control
system corresponding to a fixed open-loop control depend on initial condition in a real
analytic manner. It is also proved that control-affine systems always have the appropri-
ate joint dependence on state and control. This shows, for example, that the trajectories
of a control-affine system corresponding to a fixed open-loop control depend on initial
condition in the manner prescribed by the regularity of the vector fields.
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1 Introduction

In nonlinear control theory, one considers systems of the form

ξ ′(t) = F(ξ(t), μ(t)), (1)

where t �→ μ(t) is a curve taking values in a control set C and t �→ ξ(t) is the
corresponding trajectory, taking values in a differentiable manifold M. In this paper,
we are concerned with two related questions: (1) what is the most natural structure to
assume for the control set C ? and (2) what is the proper way to account for regular
dependence of the system on state? Before we carefully answer these questions, in
this introduction, we develop their control theoretic backdrop, as they do arise quite
naturally, but are presently not answered in any sort of general or systematic manner.

1.1 Structures for control sets

Let us first consider the matter of what structure one should assume for the control
set. The control set is often taken to be a subset of some Euclidean space R

m ; this is
especially meaningful for control-affine systems, where

F(x, u) = f0(x) +
m∑

a=1

ua fa(x) (2)

for vector fields f0, f1, . . . , fm . However, there are certainly instances where one
requires the control to take values in something more general than a finite-dimensional
Euclidean space. This is pointed out by Sontag [59, Definition 2.6.1] as being useful in
allowing finite control sets, for example. Moreover, in this definition of Sontag, the time
dependence for nonautonomous systems is supposed to come through the dependence
of the dynamics on another parameter, again metric space-valued (the space S in
Sontag’s definition), to allow for a sufficiently general theory of linearisation. The
theory of Sussmann [63] on the coordinate-free Maximum Principle is developed in
the context of controls taking values in a Fréchet space. The idea here is that the
system vector fields themselves are the controls, and prescribing an open-loop control
is then a prescription of a time-varying vector field. (This idea is also the genesis
of the chronological calculus of Agrachev and Gamkrelidze [2]; see also [3].) In the
“bundle” view of control systems, first espoused by Brockett [12] and Willems [69] and
then developed in subsequent work [4,13,19,41], control sets are banished, at least in
their usual sense, and then thinking of the controls as being vector fields becomes quite
natural. Finally, although it may be true in practice that controls quite often take values
in some subset of Euclidean space, it seems unnatural to include all of the structure
of Euclidean space for a control set, and then never use it. For example, is the vector
space structure of Euclidean space useful, especially for control sets that are compact?
is the particular nature of the topology for Euclidean space useful? is it necessary that
controls take values in a space where derivatives can be defined? If one looks at the
development of the theory, one sees that all of this structure is, in fact, superfluous
and, like anything that is superfluous, serves only to ultimately obfuscate the essential
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elements of the theory. This is, in fact, well understood by many researchers in control
theory, and the supposition that the control set be some sort of metric space (typically
separable, sometimes compact) is a common one; its appearance in the book of Sontag
[59] is just one of the many places where such a development can be found. In this
work, we will in fact consider control sets that are general topological spaces. This
certainly, then, subsumes all existing assumptions on control sets. Moreover, the fact
that we can develop a coherent theory with this degree of generality suggests that this
generality is actually quite natural, and that additional assumptions are superfluous.

1.2 Lipschitz, finitely differentiable, and smooth control systems

Next let us turn to the development of regularity of control systems. Before we begin
with specifics, let us point out that the primary issue one must confront here is that
one must develop joint conditions on state and control; it is not sufficient to simply
say that the regularity of a control system is the regularity of the dependence on state,
for each fixed control value (this would be separate regularity). The reason for this is
that, in existence and uniqueness theorems for ordinary differential equations, there
are joint conditions required on state and time, e.g., the time dependence should be
locally integrable, and bounded by a locally integrable function locally uniformly in
state, e.g., [15, Theorem 2.2.1]. Since time enters a control system by way of the
control, the way in which one ensures the correct joint conditions on time and state is
to specify appropriate joint conditions on control and state. We shall see this issue of
joint regularity conditions come up repeatedly in our ensuing discussion. One way to
view the contribution of the paper is that it provides a unified way of specifying these
joint conditions across a broad range of regularity conditions. Moreover, in cases that
are understood in the literature, our joint conditions agree with the commonly accepted
ones. But they also apply in cases that are not understood in the existing literature. We
also mention here that in [35] the problem of joint conditions for time and state are
studied. In the present work, these are translated into joint conditions on control and
state, but these translations are by no means immediate or a priori clear.

Let us do this by first considering the very weakest sort of regularity one might
consider for a control system of the form (1). This would be that regularity required
to give a theory for existence and uniqueness of solutions, as well as continuous
dependence on initial conditions. The idea here is that one demands this sort of theory
upon substitution of any open-loop control. This idea is quite common in the literature,
and is developed nicely in [11, §3.2] and [59, Appendix C.2]. The most natural minimal
condition one can impose is that the function F in (1) be locally Lipschitz in the state
variable x , and that the local Lipschitz constant be locally bounded as a function of
control. We point out that this is a joint condition on state and control. Moreover,
this sort of condition abounds in the control theory literature, as for example in [11,
Page 38] and [59, Page 43]1 (although here Lipschitz is replaced by the slightly stronger
condition of being C1). This natural and commonly made assumption is exactly that

1 The condition on page 35 of this text is not sufficient to ensure uniqueness of trajectories.
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giving rise to the class of system we would call a “Clip-control system” in our general
Definition 13. This assertion is proved as Proposition 3.

Let us ramp up the regularity requirements of our system beyond those required
for mere existence, uniqueness, and continuous dependence. In any control theory
requiring linearisation, as for example the Maximum Principle of optimal control,
one needs, of course, enough regularity to differentiate. However, it is not enough to
simply append to the condition of the preceding paragraph the additional condition
that the state dependence be C1 for each fixed control value. Indeed, what one needs is
a condition that ensures that trajectories depend continuously differentiably on initial
condition. This will happen when the function F is differentiable and the derivatives
are continuous as functions of both state and control. Again, we point out that this is
a joint condition on state and control. The fact that this is actually the right condition
to ensure continuously differentiable dependence on initial conditions is not always
proved, but proofs can be found in [59, §2.8, §2.9] and [49, §12]. We also point out
here that this condition comes out naturally in our development, and is exactly that
giving rise to what we call a “C1-control system” in Definition 13. That this is so is
proved in Proposition 3.

It is not difficult now to see the direction in which this is heading. For more dif-
ferentiable dependence of trajectories on initial conditions, such as are required for
higher-order necessary conditions in optimal control theory [40] or for higher-order
controllability [6,37], one wants dependence on initial conditions to be of class Cm

for some m ∈ Z≥0. Beyond the case m = 1 discussed above, this sort of regularity
is almost never discussed carefully in the control theory literature. One place where
it is discussed carefully is in [64]. Here, it is pointed out that the proper condition, a
natural extension of the case m = 1, is that the function F in (1) be m-times differen-
tiable in state, with the first m derivatives being continuous as functions of state and
control. Again, these are joint conditions. Moreover, they are also the conditions for
what we refer to as a “Cm-control system” in Definition 13, a fact that is proved in
Proposition 3.

Of course, in the geometric theory of control, it is assumed that systems are at
least smooth, and often real analytic. The manner in which smoothness is dealt with,
analogously to how finite differentiability is dealt with above, is quite natural, and
is considered in [64]. Indeed, the definition we give of a “C∞-control system” in
Definition 13 is, by Proposition 2, precisely the condition that the function F in (1)
possess all derivatives with respect to state, and that the dependence of each of the
derivatives on state and control be continuous.

1.3 What is a real analytic control system?

The importance of real analyticity in geometric control theory is well understood,
given its importance in the Frobenius Theorem for distributions [47], the theory of
accessibility [65], and the Orbit Theorem [60]. Additional virtues of real analyticity in
control theory are extolled in [61,62]. It is then natural to ask, “What is a real analytic
control system?” Beyond control-affine systems, there is in the existing literature no
understanding of the answer to this question. Moreover, it is difficult to see how the
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conditions developed above for Lipschitz, finitely differentiable, and smooth systems
can be usefully adapted to real analytic systems. For example, Sussmann [64], having
properly made definitions in all of these other cases, gives a completely orthogonal
characterisation of what he wishes to be a real analytic control system; the definition
given is simply not related to the other notions in any way at all. This is not intended
as a criticism of this work, but more as an illustration that the question we are asking
in this section, while natural, is not so easy to answer.

What we do here is provide a definition of what is meant by “real analytic con-
trol system,” and our definition is a natural adaptation of the notions in the preceding
section in the Lipschitz, finitely differentiable, and smooth cases. What is different
in the real analytic case is that there is no pithy one line description of the required
condition, like there is in the other cases. Indeed, the analogue of Propositions 2
and 3 in the real analytic case is Proposition 5, which is somewhat more compli-
cated to state. However, the basic fact is this: the three results, Propositions 2, 3,
and 5, are reformulations of the requirement that the map u �→ F(·, u) is continuous
in a suitable topology; it is just that the topology in the real analytic case is more
complicated.

Given that our unifying framework relies in an essential way on topologies for
spaces of vector fields, and that this topology appears to be quite difficult in the real
analytic case, one may balk and consider other approaches for defining what is meant
by a real analytic control system. Let us examine some of these possible approaches.

One might declare that one is only interested in control-affine systems, where F
is given by (2). Then one can just say that the vector fields f0, f1, . . . , fm are real
analytic and be done with it. This is true, and this is what is always done. But let us
point out a few facts. First of all, a control-affine system is real analytic in this simple
sense if and only if it is a Cω-control system as per our general Definition 13; see
Sect. 5.3. Thus our very general definition reduces to the simple one for control-affine
systems (in fact, this is true for all sorts of regularity, not just real analyticity). Thus
there is nothing gained (except simplicity) by the simple definition. However, there
is something lost. For example, part of our approach is to develop classes of control
systems with the property that, upon substitution of an open-loop control, they give
rise to time-varying vector fields whose flows depend on initial condition in a manner
compatible with the system regularity; this is the content of Corollaries 1 and 2. This
applies, for example, to real analytic control-affine systems, and the real analytic
dependence of real analytic systems, even control-affine systems, on initial conditions
is a result that is not present in the existing literature. Thus, even for control-affine
systems, our approach gives new and deep results.

Another way of dealing with the definition of real analyticity might be to take the
control set to be an open subset ofRm , and ask that the function F in (1) be real analytic
as a function of control and state. Indeed, this can be done for all sorts of regularity,
and is done, for example, in [42, Page 31] and [8, Page 37] in the C1 case, in [18] in
the smooth setting, and in [58] in the real analytic setting. Control theoretically, this
is not a good approach, since many interesting attributes of control systems are lost
when the control set is open in this way. For example, in optimal control theory, one
may loose the existence of optimal arcs. One might relax this openness requirement
by asking that, while the control set not be an open subset of Rm , the function F be the
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restriction to the control set of a mapping defined on an open set. This, for example,
is certainly tacit when dealing with control-affine systems with non-open control sets.
However, outside the control-affine setting, this approach has the form of a desperate
kludge, and certainly we know of nowhere in the literature where this is done.

To summarise: the constructions in this paper give a very general definition of what
is meant by “real analytic control system,” and the definition is “correct” in that (1) it
adapts the existing definitions for Lipschitz, finitely differentiable, and smooth control
systems, and (2) it has nontrivial attributes such as giving rise to open-loop systems
whose flows depend in a real analytic manner on initial condition. That is to say, it is
both natural and useful.

1.4 A summary of our approach

With the preceding paragraphs setting the stage for our approach, in this section we give
a brief summary of this approach, touching a little more carefully on some points of the
discussion above. Based on Sect. 1.1, we consider the control set to be a topological
space C . As per (1), we then have the mapping

M × C � (x, u) �→ F(x, u) ∈ TxM

that describes the dynamics of the system. We shall denote the regularity of the system
by ν. In the paper, we consider ν = m ∈ Z≥0 (finitely differentiable), ν = m + lip
for m ∈ Z≥0 (finitely differentiable with Lipschitz top derivative), ν = ∞ (smooth),
ν = ω (real analytic), and ν = hol (holomorphic). As is made clear in Sect. 1.2,
one needs to prescribe joint conditions on x and u to ensure that, if one substitutes a
sufficiently nice control t �→ μ(t), the resulting differential equation has an existence
and uniqueness theory, as well as Cν-dependence on initial conditions. The crucial
observation in the paper is that there is an alternative way of prescribing these joint
conditions. To describe this alternative characterisation, let us denote Fu(x) = F(x, u)

for u ∈ C ; thus Fu is a Cν-vector field. In this paper, we describe the appropriate joint
regularity conditions by phrasing them in terms of continuity of the map u �→ Fu .
Of course, continuity of this map requires topologies for both C and the set of vector
fields. Therefore, a crucial ingredient in this approach is the prescription of appropriate
topologies for spaces of vector fields. Such topologies are well known in the smooth
and finitely differentiable categories [3,31,46]. Recent work of Jafarpour and Lewis
[35] has provided, for the first time, a useable characterisation of the natural topology
for the space of real analytic vector fields. Our definition of a “Cν-control system” is
simply one for which the mapping u �→ Fu is continuous. The main results in the
paper are then the following.

1. In Propositions 2, 3, and 5 we provide concrete characterisations of our topological
characterisation of Cν-control systems. As we shall see, and as we have discussed
above, in the Lipschitz, finitely differentiable, and smooth cases, these concrete
characterisations are the ones that are more or less well-known in the literature.
The extension to the real analytic case is novel and substantial, however.
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2. We prove in Corollaries 1 and 2 the result that, upon substitution of an open-
loop control, the resulting time-varying vector field has a flow depending on initial
conditions in a Cν manner. These results rely on the development of [35] on the role
of regularity in the theory of time-varying vector fields. The results are classical
when ν = lip, and are understood to be true (and occasionally proved) when ν = m
or ν = m + lip. When ν = ∞ this result is often assumed, but we are not aware
of a complete proof before that published in [35, Theorem 6.6]. The proof uses
classical techniques. However, the real analytic theory is only given for the first
time in [35, Theorem 6.26], and the proof uses methods developed in this work on
the real analytic topology. Note that our adaptation of the results of Jafarpour and
Lewis [35] to control systems is not simply immediate.

3. Our characterisation of real analytic control systems is shown to coincide with
the naïve “substitute the complex variable z for the real variable x” notion of
real analyticity, at least when the control set is locally compact. This is gratify-
ing, since the conditions that determine a “Chol-control system” are comparatively
simple (see Proposition 4) compared to those that determine a “Cω-control sys-
tem” (see Proposition 5). This result is proved in Theorem 3, and here we see
that ideas regarding locally convex spaces feature prominently and in nontrivial
ways, e.g., we show in Example 1 that lack of local compactness of the control set
may cause the conclusion to be false.

In closing this section, let us say a few words about the role in our theory of the
theory of locally convex spaces. First of all, while it is true that the theory of locally
convex spaces is not a part of the standard body of material learnt in control theory,
it is not completely unknown to the community. Some examples of where it plays a
role are the following.

1. The chronological calculus developed by Agrachev and Gamkrelidze [2], and
which forms the foundation of the presentation in [3], uses the theory in an essential
way. Indeed, the ideas in [35] have chronological calculus as their starting point
(but not their ending point). The adaptation of these ideas to control systems, as laid
out in this paper, is entirely new, however, e.g., it is not a branch of chronological
calculus or the extension of this in [35].

2. Even if one sticks to the perceived-to-be-easier world of Banach spaces, weak
topologies for Banach spaces are locally convex. In control theory, this fact features
prominently in optimal control, where weak compactness is often used to prove
the existence of optimal arcs [27, §8.1].

3. In the theory of distributions of Schwartz [56], locally convex topologies play an
essential role; indeed, the theory of distributions motivated much of the devel-
opment of the theory of locally convex spaces. In control theory, the theory of
distributions comes up in many places, e.g., in the basic theory of systems [28]
and in the theory of weak solutions in the control of partial differential equations
[44,66].

Thus, while the theory of locally convex spaces may not be a part of the standard
corpus of control theory, possibly it could be, and we believe that the formulation of
control systems here is a compelling argument for this to be the case.
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1.5 Outline of the paper

In Sect. 2, following [35], we review the topologies for the spaces of Lipschitz, finitely
differentiable, smooth, holomorphic, and real analytic vector fields. (While we are not,
per se, interested in holomorphic control systems, the treatment of real analytic systems
is often made easier by considerations of holomorphic systems.) The presentation we
give of these topologies is intended to be of the “user friendly” variety. That is to
say, we simply present the seminorms we use to describe these topologies. A reader
wishing to understand the topologies and their properties is encouraged to refer to
[35]. However, even a functional understanding of these topologies will require an
understanding of locally convex topologies, and for this we refer to [52] as a gentle
introduction and [17,29,33,36,55] as more advanced treatments (which are certainly
needed to understand the material in [35]).

One of the nice features of our characterisations of control systems is that, upon
substitution of an open-loop control, the resulting initial value problem has solutions
depending on initial conditions in a manner consistent with the regularity of the system
dependence on state. In Sect. 3 we review the material from [35] regarding vector fields
with measurable time dependence required to prove these results.

A control system, in a certain precise sense, is a parameterised family of vector
fields, the parameter being control. In Sect. 4 we discuss vector fields parameterised
by a parameter in a topological space. In particular, we are interested when the para-
meterised vector field depends continuously on control, where the topology on the
space of vector fields is one of the topologies from Sect. 2. We characterise this con-
tinuous dependence by pointwise conditions on state and control. The characterisation
in the real analytic case is novel, given that we are using the novel characterisation
of the real analytic topology of [35]. We also characterise the real analytic case using
holomorphic extensions, as this will likely be the easiest thing to do in practice.

Finally, in Sect. 5 we apply the results up to this point in the paper to control
systems. We provide definitions of such systems, and show that, as mentioned above,
the corresponding initial value problems have regular dependence on initial conditions.
In Sect. 5.3 we illustrate our definitions in a few special cases. As part of this, we
show that control-affine systems always have the continuous dependence on control
as prescribed in Sect. 4.

1.6 Notation

Let us review the notation we shall use in the paper. There is a lot of machinery used,
even with the fairly abbreviated treatment of the topologies for spaces of vector fields.
We shall try to give as precise references as possible in the text to facilitate the reader
acquiring the necessary background, if needed.

We shall use the slightly unconventional, but perfectly rational, notation of writing
A ⊆ B to denote set inclusion, and when we write A ⊂ B we mean that A ⊆ B and
A �= B. By idA we denote the identity map on a set A. For a product

∏
i∈I Xi of sets,

pr j :
∏

i∈I Xi → X j is the projection onto the j th component. For a subset A ⊆ X ,
we denote by χA the characteristic function of A, i.e.,
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χA(x) =
{

1, x ∈ A,

0, x /∈ A.

By Sk we denote the symmetric group on k symbols. By Z we denote the set of
integers, with Z≥0 denoting the set of nonnegative integers and Z>0 denoting the set
of positive integers. We denote by R and C the sets of real and complex numbers. By
R≥0 we denote the set of nonnegative real numbers and by R>0 the set of positive real
numbers.

Elements of Fn , F ∈ {R,C}, are typically denoted with a bold font, e.g., “x .”
We shall use constructions from algebra and multilinear algebra, referring to [34],

[9, Chapter III], and [10, §IV.5]. If F is a field (for us, typically F ∈ {R,C}) and if V
is an F-vector space, we denote by V∗ = HomF(V;F) the algebraic dual. The k-fold
tensor product of V with itself is denoted by Tk(V). Thus, if V is finite-dimensional,
we identify Tk(V∗) with the k-multilinear F-valued functions on Vk by

(α1 ⊗ · · · ⊗ αk)(v1, . . . , vk) = α1(v1) · · · αk(vk).

By Sk(V∗) we denote the symmetric tensor algebra of degree k, which we identify
with the symmetric k-multilinear F-valued functions on Vk , or polynomial functions
of homogeneous degree k on V.

For a topological space X and A ⊆ X , int(A) denotes the interior of A and cl(A)

denotes the closure of A. Neighbourhoods will always be open sets.
By λ we denote Lebesgue measure. If I ⊆ R is an interval and if A ⊆ R, by

L1(I ; A) we denote the set of Lebesgue integrable A-valued functions on I . By
L1

loc(I ; A) we denote the A-valued locally integrable functions on I , i.e., those func-
tions whose restrictions to compact subintervals are integrable. In like manner, we
denote by L∞(I ; A) and L∞

loc(I ; A) the essentially bounded A-valued functions and
the locally essentially bounded A-valued functions, respectively.

For an interval I and a topological space X , a curve γ : I → X is measurable
if γ −1(B) is Lebesgue measurable for every Borel set B ⊆ X . By L∞(I ;X )

we denote the measurable curves γ : I → X for which there exists a compact set
K ⊆ X with

λ({t ∈ I | γ (t) /∈ K }) = 0,

i.e., L∞(I ;X ) is the set of essentially bounded curves. By L∞
loc(I ;X ) we denote

the locally essentially bounded curves, meaning those measurable curves whose
restrictions to compact subintervals are essentially bounded.

Our differential geometric conventions mostly follow [1]. Whenever we write “man-
ifold,” we mean “second-countable Hausdorff manifold.” This implies, in particular,
that manifolds are assumed to be metrisable [1, Corollary 5.5.13]. If we use the letter
“n” without mentioning what it is, it is the dimension of the connected component of
the manifold M with which we are working at that time. The tangent bundle of a mani-
fold M is denoted by πTM : TM → M and the cotangent bundle by πT∗M : T∗M → M.
If I ⊆ R is an interval and if ξ : I → M is a curve that is differentiable at t ∈ I , we
denote the tangent vector field to the curve at t by ξ ′(t).
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If π : E → M is a vector bundle, we denote the fibre over x ∈ M by Ex and we
sometimes denote by 0x the zero vector in Ex . If S ⊆ M is a submanifold, we denote
by E|S the restriction of E to S which we regard as a vector bundle over S. If G is a
fibre metric on E, i.e., a smooth assignment of an inner product to each of the fibres
of E, then ‖·‖G denotes the norm associated with the inner product on fibres.

We will work in both the smooth and real analytic categories, with occasional
forays into the holomorphic category. We will also work with finitely differentiable
objects, i.e., objects of class Cr for r ∈ Z≥0. (We will also work with Lipschitz
objects, but will develop the notation for these in the text.) A good reference for basic
real analytic analysis is [39], but we will need ideas going beyond those from this
text, or any other text. Relatively recent work of e.g., [23,24,67] has shed a great
deal of light on real analytic analysis, and we shall take advantage of this work. An
analytic manifold or mapping will be said to be of class Cω. Let r ∈ Z≥0 ∪ {∞, ω}.
The set of sections of a vector bundle π : E → M of class Cr is denoted by Γ r (E).
Thus, in particular, Γ r (TM) denotes the set of vector fields of class Cr . We shall
think of Γ r (E) as a R-vector space with the natural pointwise addition and scalar
multiplication operations.

We also work with holomorphic, i.e., complex analytic, manifolds and associated
geometric constructions; real analytic geometry, at some level, seems to unavoidably
rely on holomorphic geometry. A nice overview of holomorphic geometry, and some
of its connections to real analytic geometry, is given in the book [14]. There are many
specialised texts on the subject of holomorphic geometry, including [20,26,30,32]. For
our purposes, we shall just say the following things. ByTMwe denote the holomorphic
tangent bundle of M. This is the object which, in complex differential geometry, is
commonly denoted byT1,0M. By Γ hol(E) we denote the space of holomorphic sections
of an holomorphic vector bundle π : E → M. We shall use both the natural C- and,
by restriction, R-vector space structures for Γ hol(E).

We shall make use of locally convex topological vector spaces, and refer to [17,
29,33,36,52,55] for details. In the proof of Theorem 3 we shall make use of the
contemporary research literature on locally convex spaces, and will indicate this when
required. We shall denote by L(U;V) the set of continuous linear maps from a locally
convex space U to a locally convex space V. We will break with the usual language
one sees in the theory of locally convex spaces and call what are commonly called
“inductive” limits, instead “direct” limits, in keeping with the rest of category theory.
(The notion of a direct limit only occurs in the proof of Theorem 3, so readers not
interested in understanding this proof can forgo the rather difficult notion of direct
limit topologies.)

2 Topologies for spaces of vector fields

In this section, we review the definitions of the topologies we use for spaces of Lip-
schitz, finitely differentiable, smooth, holomorphic, and real analytic vector fields. We
will not work explicitly with holomorphic systems, but it is often easiest to describe
real analytic attributes in terms of holomorphic extensions, particularly in practice,
where one simply “replaces x with z.”
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While our interest in this paper is solely in vector fields, it is notationally simpler,
and mathematically no more complicated, to work instead with general vector bundles
much of the time. Thus, throughout this section we shall consider a vector bundle
π : E → M that is either smooth, real analytic, or holomorphic, depending on our
needs. A reader may, if they wish, have in mind the tangent bundle at all times.

We comment that all topologies we define are locally convex topologies, of which
the normed topologies are a special case. That is, the topologies are defined using
seminorms, not norms. Moreover, few of the topologies we define, and none of the
interesting ones, are normable. So a reader who is not familiar with locally convex
topologies will have to do some reading; we recommend [52] as a nice introduction.

For a reader looking for the “punchline” of this section, we comment that the
principle constructions that we carry forward are the seminorms defined in Eqs. (4), (5),
(6), (7), and (8). Except for the last of these, the seminorms for the real analytic
topology, these seminorms are easy to understand, essentially being some form of “sup-
norm” for derivatives on compact sets. The complexity of the real analytic seminorms
seems unavoidable, although sometimes one can reduce to the holomorphic case, as
in Theorem 3.

2.1 Fibre norms for jet bundles

The classes of sections we consider are all characterised by their derivatives in some
manner. The appropriate device for considering derivatives of sections is the theory
of jet bundles, for which we refer to [54] and [38, §12]. By JmE we denote the vector
bundle of m-jets of sections of E, with πm : JmE → M denoting the projection. If
ξ is a smooth section of E, we denote by jmξ the corresponding smooth section of
JmE. The reader would do well to remember that, in local coordinates, points in JmE
simply represent a section and its first m derivatives. To arrive at a formulation that
is independent of coordinates, we perform some complicated decompositions with
these derivatives using connections. However, the basically simple idea that an m-jet
is comprised of the first m derivatives should not be lost.

In a local trivialisation of E, one has the local representatives of the derivatives
of sections, order-by-order. Such an order-by-order decomposition of derivatives is
not possible globally, however. Nonetheless, following [35, §2.1], we shall mimic this
order-by-order decomposition globally using a linear connection ∇0 onE and an affine
connection ∇ on M. First note that ∇ defines a connection on T∗M by duality. Also, ∇
and ∇0 together define a connection ∇m on Tm(T∗M) ⊗E by asking that the Leibniz
Rule be satisfied for tensor product. Then, for a smooth section ξ of E, we denote

∇(m)ξ = ∇m · · · ∇1∇0ξ,

which is a smooth section of Tm+1(T∗M ⊗ E). By convention we take ∇(−1)ξ = ξ .
We then have a map

Sm
∇,∇0 : JmE → ⊕m

j=0(S
j (T∗M) ⊗ E)

jmξ(x) �→ (ξ(x), Sym1 ⊗ idE(∇0ξ)(x), . . . , Symm ⊗ idE(∇(m−1)ξ )(x)),

(3)
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which can be verified to be an isomorphism of vector bundles [35, Lemma 2.1]. Here
Symm : Tm(V) → Sm(V) is defined by

Symm(v1 ⊗ · · · ⊗ vm) = 1

m!
∑

σ∈Sm

vσ(1) ⊗ · · · ⊗ vσ(m).

Now we note that inner products on the components of a tensor product induce
in a natural way inner products on the tensor product [35, Lemma 2.3]. Thus, if we
suppose that we have a fibre metric G0 on E and a Riemannian metric G on M, there
is induced a natural fibre metric Gm on Tm(T∗M) ⊗ E for each m ∈ Z≥0. We then
define a fibre metric Gm on JmE by

Gm( jmξ(x), jmη(x))

=
m∑

j=0

G j

( 1

j ! Sym j ⊗ idE(∇( j−1)ξ )(x),
1

j ! Sym j ⊗ idE(∇( j−1)η)(x)
)
.

(The factorials are required to make things work out with the real analytic topology.)
The corresponding fibre norm we denote by ‖·‖

Gm
.

2.2 Seminorms for spaces of smooth vector fields

Let π : E → M be a smooth vector bundle. Using the fibre norms from the preceding
section, it is a straightforward matter to define appropriate seminorms that define the
locally convex topology for Γ ∞(E). For K ⊆ M compact and for m ∈ Z

m≥0, define a
seminorm p∞

K ,m on Γ ∞(E) by

p∞
K ,m(ξ) = sup{‖ jmξ(x)‖

Gm
| x ∈ K }. (4)

The family of seminorms p∞
K ,m , K ⊆ M compact, m ∈ Z≥0, defines a locally convex

topology, called the C∞-topology.2 One can see, looking at these seminorms, that the
topology is just that of uniform convergence of all derivatives on compact sets. This
topology has the following properties:

1. it is Hausdorff, metrisable, and complete, i.e., it is a Fréchet topology;
2. it is separable;
3. it is characterised by the sequences converging to zero, which are the sequences

(ξ j ) j∈Z>0 such that, for each K ⊆ M and m ∈ Z≥0, the sequence ( jmξ j |K ) j∈Z>0

converges uniformly to zero.

In this paper we shall not make reference to other properties of the C∞-topology, but
we mention that there are other properties that play an important role in the results in

2 This is actually not a very good name. A better name, and the name used by Jafarpour and Lewis [35],
would be the “smooth compact-open topology.” However, we wish to keep things simple here, and also use
notation that is common between regularity classes.
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Sect. 3. For these details, and for references where the above properties are proved,
we refer to [35, §3.2].

2.3 Seminorms for spaces of finitely differentiable vector fields

We again take π : E → M to be a smooth vector bundle, and we fix m ∈ Z≥0. For the
space Γ m(E) of m-times continuously differentiable sections, we define seminorms
pm

K , K ⊆ M compact, for Γ m(E) by

pm
K (ξ) = sup{‖ jmξ(x)‖

Gm
| x ∈ K }. (5)

The locally convex topology defined by the family of seminorms pm
K , K ⊆ M compact,

we call the Cm-topology. Analogously to our interpretation above of the seminorms in
the smooth case, the seminorms clearly define the topology of uniform convergence of
the first m derivatives on compact sets. The Cm-topology has the following properties:

1. it is Hausdorff, metrisable, and complete, i.e., it is a Fréchet topology;
2. it is separable;
3. it is characterised by the sequences converging to zero, which are the sequences

(ξ j ) j∈Z>0 such that, for each K ⊆ M, the sequence ( jmξ j |K ) j∈Z>0 converges
uniformly to zero;

4. if M is compact, then pm
M is a norm that gives the Cm-topology.

As with the C∞-topology, we refer to [35, §3.4] for details.

2.4 Seminorms for spaces of Lipschitz vector fields

In this section, we again work with a smooth vector bundle π : E → M. In defining
the fibre metrics from Sect. 2.1, for the Lipschitz topologies the affine connection ∇
is required to be the Levi–Civita connection for the Riemannian metric G and the
linear connection ∇0 is required to be G0-orthogonal. While Lipschitz vector fields
are often used, spaces of Lipschitz vector fields are not. Nonetheless, one may define
seminorms for spaces of Lipschitz vector fields rather analogous to those defined
above in the smooth and finitely differentiable cases. Let m ∈ Z≥0. By Γ m+lip(E)

we denote the space of sections of E that are m-times continuously differentiable and
whose m-jet is locally Lipschitz. (One can think of this in coordinates, but Jafarpour
and Lewis [35] provide geometric definitions, if the reader is interested.) If a section ξ

is of class Cm+lip, then, by Rademacher’s Theorem [25, Theorem 3.1.6], its (m + 1)st
derivative exists almost everywhere. Thus, we define

dil jmξ(x) = inf
{

sup{‖∇[m]
vy

jmξ‖
Gm

| y ∈ cl(U ), ‖vy‖G = 1,

jmξ differentiable at y}| U is a relatively compact neighbourhood of x
}

,

which is the local sectional dilatation of ξ . Here ∇[m] is the connection in JmE defined
by the decomposition (3). Let K ⊆ M be compact and define
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λm
K (ξ) = sup{dil jmξ(x) | x ∈ K }

for ξ ∈ Γ m+lip(E). We can then define a seminorm pm+lip
K on Γ m+lip(E) by

pm+lip
K (ξ) = max{λm

K (ξ), pm
K (ξ)}. (6)

The family of seminorms pm+lip
K defines a locally convex topology for Γ m+lip(E),

which we call that Cm+lip-topology. One sees that the seminorms ensure that our
topology possesses the attribute of uniform convergence of the first m derivatives on
compact sets, as well as uniform control over the local Lipschitz constant of the top
derivative. The topology has the following attributes:

1. it is Hausdorff, metrisable, and complete, i.e., it is a Fréchet topology;
2. it is separable;
3. it is characterised by the sequences converging to zero, which are the sequences

(ξ j ) j∈Z>0 such that, for each K ⊆ M, the sequence ( jmξ j |K ) j∈Z>0 converges
uniformly to zero in both seminorms λm

K and pm
K ;

4. if M is compact, then pm+lip
M is a norm that gives the Cm+lip-topology.

We refer to [35, §3.5] for details.

2.5 Seminorms for spaces of holomorphic vector fields

Now we consider a holomorphic vector bundle π : E → M and denote by Γ hol(E) the
space of holomorphic sections of E. We let G be an Hermitian metric on the vector
bundle and denote by ‖·‖G the associated fibre norm. For K ⊆ M compact, denote by
phol

K the seminorm
phol

K (ξ) = sup{‖ξ(z)‖G | z ∈ K } (7)

on Γ hol(E). The family of seminorms phol
K , K ⊆ M compact, define a locally convex

topology for Γ hol(E) that we call the Chol-topology. The seminorms defines a very
simple topology, that of uniform convergence on compact sets. It is the miracle of the
Cauchy estimates (a global version of which we state as Proposition 1 below) that
ensures that this is adequate to ensure a topology consistent with the holomorphic
nature of the sections. This topology has the following properties:

1. it is Hausdorff, metrisable, and complete, i.e., it is a Fréchet topology;
2. it is separable;
3. it is characterised by the sequences converging to zero, which are the sequences

(ξ j ) j∈Z>0 such that, for each K ⊆ M, the sequence (ξ j |K ) j∈Z>0 converges uni-
formly to zero;

4. if M is compact, then phol
M is a norm that gives the Chol-topology.

We refer to [35, §4.2] and the references therein for details about the Chol-topology.
We shall also require a result related to the classical Cauchy estimates from complex

analysis. To state the result, denote by

Γ hol
bdd(E) = {ξ ∈ Γ hol(E) | sup{‖ξ(z)‖G | z ∈ M} < ∞}
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the subspace of bounded sections. This is a normed space with the norm

phol
M,∞(ξ) = sup{‖ξ(z)‖G | z ∈ M}.

We then have the following result.

Proposition 1 (Cauchy estimates for vector bundles) Let π : E → M be an holo-
morphic vector bundle, let K ⊆ M be compact, and let U be a relatively compact
neighbourhood of K . Then there exist C, r ∈ R>0 such that

p∞
K ,m(ξ) ≤ Cr−m phol

U ,∞(ξ)

for every m ∈ Z≥0 and ξ ∈ Γ hol
bdd(E|U ).

Proof We refer to [35, Proposition 4.2]. ��

2.6 Seminorms for spaces of real analytic vector fields

The topologies described above for spaces of smooth, finitely differentiable, Lipschitz,
and holomorphic sections of a vector bundle are quite simple to understand in terms of
their converging sequences. The topology one considers for real analytic sections does
not have this attribute. There is a bit of a history to the characterisation of real analytic
topologies, and we refer to [35, Chapter 5] for four equivalent characterisations of the
real analytic topology for the space of real analytic sections of a vector bundle. Here we
will give the most elementary of these definitions to state, although it is probably not
the most practical definition. In practice, it is probably best to somehow complexify
and use the holomorphic topology; we give an instance of this in Theorem 3 below.

In this section, we let π : E → M be a real analytic vector bundle and let Γ ω(E) be
the space of real analytic sections. One can show that there exist a real analytic linear
connection ∇0 on E, a real analytic affine connection ∇ on M, a real analytic fibre
metric on E, and a real analytic Riemannian metric on M [35, Lemma 2.4]. Thus we
can define real analytic fibre metrics Gm on the jet bundles JmE as in Sect. 2.1.

To define seminorms for Γ ω(E), let c0(Z≥0;R>0) denote the space of sequences
in R>0, indexed by Z≥0, and converging to zero. We shall denote a typical element of
c0(Z≥0;R>0) by a = (a j ) j∈Z≥0 . Now, for K ⊆ M and a ∈ c0(Z≥0;R>0), we define
a seminorm pω

K ,a for Γ ω(E) by

pω
K ,a(ξ) = sup{a0a1 · · · am‖ jmξ(x)‖

Gm
| x ∈ K , m ∈ Z≥0}. (8)

Unlike the seminorms for all of our regularity classes above, there is no “short form”
for describing these seminorms in the real analytic case. The reason for this is that,
while all real analytic functions can be extended to holomorphic functions, the size of
the domain on which this extension is valid depends on the function. This dependence
of the domain of extension on the function is the genesis of the complicated nature of
the above seminorms or the real analytic topology. This notwithstanding, the family
of seminorms pω

K ,a, K ⊆ M compact, a ∈ c0(Z≥0;R>0), defines a locally convex
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topology on Γ ω(E) that we call the Cω-topology. This topology has the following
attributes:

1. it is Hausdorff and complete;
2. it is not metrisable (and so it not a Fréchet topology);
3. it is separable.

We shall generally avoid dealing with the rather complicated structure of this topology,
and shall be able to do what we need by just working with the seminorms. However,
in the proof of the quite useful Theorem 3, we shall make reference to some of the
more complicated characterisations of the Cω-topology; we will make the appropriate
references required in the course of that proof.

2.7 Summary and notation

In the real case, the degrees of regularity are ordered according to

C0 ⊃ Clip ⊃ C1 ⊃ · · · ⊃ Cm ⊇ Cm+lip ⊃ Cm+1 ⊃ · · · ⊃ C∞ ⊃ Cω,

and in the complex case the ordering is the same, of course, but with an extra Chol on
the right. Sometimes it will be convenient to write ν + lip for ν ∈ {Z≥0,∞, ω}, and
in doing this we adopt the obvious convention that ∞ + lip = ∞ and ω + lip = ω.

Where possible, we will state definitions and results for all regularity classes at once.
To do this, we will let m ∈ Z≥0 and m′ ∈ {0, lip}, and consider the regularity classes
ν ∈ {m + m′,∞, ω}. In such cases we shall require that the underlying manifold be
of class “Cr , r ∈ {∞, ω}, as required.” This has the obvious meaning, namely that
we consider class Cω if ν = ω and class C∞ otherwise. Proofs will typically break
into the four cases ν = ∞, ν = m, ν = m + lip, and ν = ω. In some cases there is
a structural similarity in the way arguments are carried out; so we will sometimes do
all cases at once. In doing this, we will, for K ⊆ M be compact, for k ∈ Z≥0, and for
a ∈ c0(Z≥0;R>0), denote

pK =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

p∞
K ,k, ν = ∞,

pm
K , ν = m,

pm+lip
K , ν = m + lip,

pω
K ,a, ν = ω.

The convenience and brevity more than make up for the slight loss of preciseness in
this approach.

3 Time-varying vector fields

One of the principle contributions of this paper is that, for the control systems we
define in Sect. 5, if we substitute an open-loop control μ = μ∗ into a system

ξ ′(t) = F(ξ(t), μ(t))
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to obtain a time-varying dynamical system

ξ ′(t) = F(ξ(t), μ∗(t)),

then the flow of this dynamical system depends on initial condition in a manner
consistent with the regularity of F . We shall do this in Sect. 5 by showing that the
time-varying vector field t �→ F(x, μ∗(t)) falls into a class of vector fields having
the appropriate regular dependence on initial condition. The body of work which
characterises these classes of vector fields is, in and of itself, quite nontrivial, and we
refer to [35, Chapter 6] for details. Here we present the relevant definitions, and state
the results from [35] that we shall require.

The first four subsections below are, thus, dedicated to definitions, while the final
subsection is dedicated to a summary of the required results. As in the preceding
section, we give our definitions for sections of vector bundles rather than vector fields,
since this is simpler notationally, and costs nothing in terms of complication.

The reader will see that in all cases except the real analytic case, the conditions we
give for time-varying vector fields have a “theme” in their definition, and this theme is
deduced from the seminorms defining the topology for the respective degrees of regu-
larity. The basic idea here can be summarised as follows. For the finitely differentiable
case, one asks that the first finitely many derivatives are integrally bounded, locally
uniformly in state. The Lipschitz case is similar, but one also requires that the local
Lipschitz constant be integrally bounded, locally uniformly in state. For the smooth
case, one simply requires that what holds in the finitely differentiable case holds for
all derivatives. The real analytic case is not so easy to interpret. This, however, is not
really a crippling deficiency of the theory, because in Theorem 1 we see that in all
degrees of regularity, our definitions amount to the local integrability of a naturally
defined map into the topological space of vector fields. This explains the importance
of our locally convex topologies for time-varying vector fields.

3.1 Smooth time-varying vector fields

We will work with a smooth vector bundle π : E → M with a linear connection ∇0

on E, an affine connection ∇ on M, a fibre metric G0 on E, and a Riemannian metric
G on M. This defines the fibre norms ‖·‖

Gm
on JmE and seminorms p∞

K ,m , K ⊆ M
compact, m ∈ Z≥0, on Γ ∞(E) as in Sect. 2.2.

Definition 1 (Smooth Carathéodory section) Let π : E → M be a smooth vector
bundle and let T ⊆ R be an interval. A Carathéodory section of class C∞ of E is a
map ξ : T × M → E with the following properties:

(i) ξ(t, x) ∈ Ex for each (t, x) ∈ T × M;
(ii) for each t ∈ T, the map ξt : M → E defined by ξt (x) = ξ(t, x) is of class C∞;

(iii) for each x ∈ M, the map ξ x : T → E defined by ξ x (t) = ξ(t, x) is Lebesgue
measurable.

We shall call T the time-domain for the section. By CFΓ ∞(T;E) we denote the set
of Carathéodory sections of class C∞ of E. ◦
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Note that the curve t �→ ξ(t, x) is in the finite-dimensional vector space Ex , and
so Lebesgue measurability of this is unambiguously defined, e.g., by choosing a basis
and asking for Lebesgue measurability of the components with respect to this basis.

Now we put some conditions on the time dependence of the derivatives of the
section.

Definition 2 (Locally integrally C∞-bounded and locally essentially C∞-bounded
sections) Let π : E → M be a smooth vector bundle and let T ⊆ R be an interval. A
Carathéodory section ξ : T × M → E of class C∞ is

(i) locally integrally C∞-bounded if, for every compact set K ⊆ M and every
m ∈ Z≥0, there exists g ∈ L1

loc(T;R≥0) such that

‖ jmξt (x)‖
Gm

≤ g(t), (t, x) ∈ T × K ,

and is
(ii) locally essentially C∞-bounded if, for every compact set K ⊆ M and every

m ∈ Z≥0, there exists g ∈ L∞
loc(T;R≥0) such that

‖ jmξt (x)‖
Gm

≤ g(t), (t, x) ∈ T × K .

The set of locally integrally C∞-bounded sections ofE with time-domain T is denoted
by LIΓ ∞(T,E) and the set of locally essentially C∞-bounded sections ofEwith time-
domain T is denoted by LBΓ ∞(T;E). ◦

3.2 Finitely differentiable and Lipschitz time-varying vector fields

In this section, so as to be consistent with our definition of Lipschitz norms in Sect. 2.4,
we suppose that the affine connection ∇ on M is the Levi–Civita connection for the
Riemannian metric G and that the vector bundle connection ∇0 in E is G0-orthogonal.

Definition 3 (Finitely differentiable or Lipschitz Carathéodory section) Let π : E →
M be a smooth vector bundle and let T ⊆ R be an interval. Let m ∈ Z≥0 and let
m′ ∈ {0, lip}. A Carathéodory section of class Cm+m′

of E is a map ξ : T×M → E
with the following properties:

(i) ξ(t, x) ∈ Ex for each (t, x) ∈ T × M;
(ii) for each t ∈ T, the map ξt : M → E defined by ξt (x) = ξ(t, x) is of class Cm+m′

;
(iii) for each x ∈ M, the map ξ x : T → E defined by ξ x (t) = ξ(t, x) is Lebesgue

measurable.

We shall call T the time-domain for the section. By CFΓ m+m′
(T;E) we denote the

set of Carathéodory sections of class Cm+m′
of E. ◦

Now we put some conditions on the time dependence of the derivatives of the
section.
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Definition 4 (Locally integrally Cm+m′
-bounded and locally essentially Cm+m′

-
bounded sections) Let π : E → M be a smooth vector bundle and let T ⊆ R be an
interval. Let m ∈ Z≥0 and let m′ ∈ {0, lip}. A Carathéodory section ξ : T × M → E
of class Cm+m′

is

(i) locally integrally Cm+m′
-bounded if:

(a) m′ = 0: for every compact set K ⊆ M, there exists g ∈ L1
loc(T;R≥0) such

that

‖ jmξt (x)‖
Gm

≤ g(t), (t, x) ∈ T × K ;

(b) m′ = lip: for every compact set K ⊆ M, there exists g ∈ L1
loc(T;R≥0) such

that

dil jmξt (x), ‖ jmξt (x)‖
Gm

≤ g(t), (t, x) ∈ T × K ,

and is
(ii) locally essentially Cm+m′

-bounded if:
(a) m′ = 0: for every compact set K ⊆ M, there exists g ∈ L∞

loc(T;R≥0) such
that

‖ jmξt (x)‖
Gm

≤ g(t), (t, x) ∈ T × K ;

(b) m′ = lip: for every compact set K ⊆ M, there exists g ∈ L∞
loc(T;R≥0) such

that

dil jmξt (x), ‖ jmξt (x)‖
Gm

≤ g(t), (t, x) ∈ T × K .

The set of locally integrally Cm+m′
-bounded sections of E with time-domain T is

denoted by LIΓ m+m′
(T,E) and the set of locally essentially Cm+m′

-bounded sections
of E with time-domain T is denoted by LBΓ m+m′

(T;E). ◦

3.3 Holomorphic time-varying vector fields

We will consider an holomorphic vector bundle π : E → M with an Hermitian fibre
metric G. This defines the seminorms phol

K , K ⊆ M compact, describing the Chol-
topology for Γ hol(E) as in Sect. 2.5.

Let us get started with the definitions.

Definition 5 (Holomorphic Carathéodory section) Let π : E → Mbe an holomorphic
vector bundle and let T ⊆ R be an interval. A Carathéodory section of class Chol of
E is a map ξ : T × M → E with the following properties:

(i) ξ(t, z) ∈ Ez for each (t, z) ∈ T × M;
(ii) for each t ∈ T, the map ξt : M → E defined by ξt (z) is of class Chol;
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(iii) for each z ∈ M, the map ξ z : T → E defined by ξ z(t) = ξ(t, z) is Lebesgue
measurable.

We shall call T the time-domain for the section. By CFΓ hol(T;E) we denote the set
of Carathéodory sections of class Chol of E. ◦

The associated notions for time-dependent sections compatible with the Chol-
topology are as follows.

Definition 6 (Locally integrally Chol-bounded and locally essentially Chol-bounded
sections) Let π : E → M be an holomorphic vector bundle and let T ⊆ R be an
interval. A Carathéodory section ξ : T × M → E of class Chol is

(i) locally integrally Chol-bounded if, for every compact set K ⊆ M, there exists
g ∈ L1

loc(T;R≥0) such that

‖ξ(t, z)‖G ≤ g(t), (t, z) ∈ T × K

and is
(ii) locally essentially Chol-bounded if, for every compact set K ⊆ M, there exists

g ∈ L∞
loc(T;R≥0) such that

‖ξ(t, z)‖G ≤ g(t), (t, z) ∈ T × K .

The set of locally integrally Chol-bounded sections ofEwith time-domainT is denoted
by LIΓ hol(T,E) and the set of locally essentially Chol-bounded sections of E with
time-domain T is denoted by LBΓ hol(T;E). ◦

3.4 Real analytic time-varying vector fields

We will consider a real analytic vector bundle π : E → M with ∇0 a real analytic
linear connection on E, ∇ a real analytic affine connection on M, G0 a real analytic
fibre metric on E, and G a real analytic Riemannian metric on M. This defines the
seminorms pω

K ,a, K ⊆ M compact, a ∈ c0(Z≥0;R>0), describing the Cω-topology as
in Sect. 2.6.

Definition 7 (Real analytic Carathéodory section) Let π : E → M be a real analytic
vector bundle and let T ⊆ R be an interval. A Carathéodory section of class Cω of E
is a map ξ : T × M → E with the following properties:

(i) ξ(t, x) ∈ Ex for each (t, x) ∈ T × M;
(ii) for each t ∈ T, the map ξt : M → E defined by ξt (x) is of class Cω;

(iii) for each x ∈ M, the map ξ x : T → E defined by ξ x (t) = ξ(t, x) is Lebesgue
measurable.

We shall call T the time-domain for the section. By CFΓ ω(T;E) we denote the set
of Carathéodory sections of class Cω of E. ◦

Now we turn to placing restrictions on the time dependence to allow us to do useful
things.
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Definition 8 (Locally integrally Cω-bounded and locally essentially Cω-bounded sec-
tions) Let π : E → M be a real analytic vector bundle and let T ⊆ R be an interval. A
Carathéodory section ξ : T × M → E of class Cω is

(i) locally integrally Cω-bounded if, for every compact set K ⊆ M and every a ∈
c0(Z≥0;R>0), there exists g ∈ L1

loc(T;R≥0) such that

a0a1 · · · am‖ jmξt (x)‖
Gm

≤ g(t), (t, x) ∈ T × K , m ∈ Z≥0,

and is
(ii) locally essentially Cω-bounded if, for every compact set K ⊆ M and every

a ∈ c0(Z≥0;R>0), there exists g ∈ L∞
loc(T;R≥0) such that

a0a1 · · · am‖ jmξt (x)‖
Gm

≤ g(t), (t, x) ∈ T × K , m ∈ Z≥0.

The set of locally integrally Cω-bounded sections of E with time-domain T is
denoted by LIΓ ω(T,E) and the set of locally essentially Cω-bounded sections of E
with time-domain T is denoted by LBΓ ω(T;E). ◦

3.5 Topological characterisations and regularity of flows

In this section, we shall state two results, one giving topological characterisations
of the preceding definitions and one giving regular dependence of flows on initial
conditions. We shall state the results in such a way that all regularity cases are dealt
with at once, recalling our notation from Sect. 2.7. Both of these results are important.
The first is important because it shows that the myriad definitions from the first four
subsections above are unified by the use of the locally convex topologies; the four
definitions are really just one definition, and what varies is the topology. The second
result is important because it gives us a clue that our characterisations of time-varying
vector fields are “correct,” because they have this property of giving rise to flows with
the appropriate regularity.

The topological characterisations we give associated with the above definitions have
to do with measurability, integrability, and boundedness of the curve t �→ ξt in the
space of sections. In general, these notions require some care in their formulation for
arbitrary locally convex topological vector spaces. However, the locally convex spaces
we consider here are highly structured, and so many of the generally inequivalent
definitions for measurability and integrability agree for our spaces.

Let us give the definitions for measurability, integrability, and boundedness we shall
use for an arbitrary locally convex space V.

1. A curve γ : T → V is measurable if the preimage of every Borel set is Lebesgue
measurable.

2. The notion of integral we use is known as the Bochner integral. It permits a
construction highly reminiscent of that of the Lebesgue integral. This is well
understood for Banach spaces [22] and is often mentioned in an offhand manner
as being “the same” for locally convex spaces, e.g., [55, page 96]. A detailed
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textbook treatment does not appear to exist, but fortunately this has been worked
out in the note of [5], to which we shall refer for details as needed. One has a
notion of simple functions, meaning functions that are finite linear combinations,
with coefficients in V, of characteristic functions of measurable sets. The integral
of a simple function σ = ∑k

j=1 v jχA j is

∫

T

σ dμ =
k∑

j=1

μ(A j )v j ,

in the usual manner. A measurable curve γ is Bochner approximable if it can
be approximated with respect to any continuous seminorm by a net of simple
functions. A Bochner approximable function γ is Bochner integrable if there is a
net of simple functions approximating γ whose integrals converge inV to a unique
value, which is called the integral of γ . If V is separable and complete, as will
be the case for us in this paper, then a measurable curve γ : T → V is Bochner
integrable if and only if

∫

T

p ◦γ dμ < ∞

for every continuous seminorm p on V [5, Theorems 3.2 and 3.3]. The curve γ

is locally Bochner integrable if γ |T′ is Bochner integrable for every compact
subinterval T′ ⊆ T. If A ⊆ V, by L1(T; A) we denote the A-valued Bochner
integrable mappings and by L1

loc(T; A) we denote the A-valued locally Bochner
integrable mappings.

3. A subset B ⊆ V is von Neumann bounded if p|B is bounded for every con-
tinuous seminorm p for V. The curve γ : T → V is essentially von Neumann
bounded if there exists a bounded set B ⊆ V such that γ (t) ∈ B for almost every
t ∈ T, and is locally essentially von Neumann bounded if γ |T′ is essentially von
Neumann bounded for every compact subinterval T′ ⊆ T. We note that, if V is a
normed vector space, then von Neumann bounded is the same as norm bounded.3

With these definitions, we now have the following result.

Theorem 1 (Topological characterisations of time-varying vector fields) Let m ∈ Z≥0
and m′ ∈ {0, lip}, let ν ∈ {m + m′,∞, ω}, and let r ∈ {∞, ω}, as required. For a
Cr -vector bundle and for a map ξ : T × M → E satisfying ξ(t, x) ∈ Ex for each
(t, x) ∈ T × M, the following two statements are equivalent:

(i) ξ ∈ CFΓ ν(T;E);
(ii) the map T � t �→ ξt ∈ Γ ν(E) is measurable,

3 There is a potential confusion about “boundedness” in this paper. In Sect. 1.6 we have defined a notion of
“essentially bounded” that is different, in general, from the notion of “essentially von Neumann bounded”
that we use here. We will not quite encroach on areas where this confusion causes problems, but it is
something to bear in mind. Jafarpour and Lewis [35] are a little more careful about this, explicitly making
use of “bornologies.”

123



Math. Control Signals Syst. (2016) 28:29 Page 23 of 46 29

the following two statements are equivalent:

(i) ξ ∈ LIΓ ν(T;E);
(ii) the map T � t �→ ξt ∈ Γ ν(E) is measurable and locally Bochner integrable,

and the following two statements are equivalent:

(i) ξ ∈ LBΓ ν(T;E);
(ii) the mapT � t �→ ξt ∈ Γ ν(E) is measurable and locally essentially von Neumann

bounded.

Proof We refer to Theorems 6.3, 6.9, and 6.21 of [35]. ��
Next we state our result concerning regularity of flows of time-varying vector fields.

In the statement of the result, we use the notation

|a, b| =
{

[a, b], a ≤ b,

[b, a], b < a.

In the following result, we do not provide the comprehensive list of properties of the
flow, but only those required to make sense of its regularity with respect to initial
conditions.

Theorem 2 (Flows of time-varying vector fields) Let m ∈ Z≥0, let ν ∈ {m,∞, ω},
and let r ∈ {∞, ω}, as required. Let M be a Cr -manifold, let T be an interval, and
let X ∈ LIΓ ν+lip(T;TM). Then there exist a subset DX ⊆ T × T × M and a map
ΦX : DX → M with the following properties for each (t0, x0) ∈ T × M:

(i) the set

TX (t0, x0) = {t ∈ T | (t, t0, x0) ∈ DX }

is an interval;
(ii) there exists an absolutely continuous curve t �→ ξ(t) satisfying

ξ ′(t) = X (t, ξ(t)), ξ(t0) = x0,

for almost all t ∈ |t0, t1| if and only if t1 ∈ TX (t0, x0);
(iii) d

dt Φ
X (t, t0, x0) = X (t, ΦX (t, t0, x0)) for almost all t ∈ TX (t0, x0);

(iv) for each t ∈ T for which (t, t0, x0) ∈ DX , there exists a neighbourhood U of x0
such that the mapping x �→ ΦX (t, t0, x) is defined and of class Cν on U .

Proof We refer to Theorems 6.6, 6.11, and 6.26 of [35]. ��

4 Parameterised vector fields

One can think of a control system as a family of vector fields parameterised by control.
It is the exact nature of this dependence on the parameter that we discuss in this section.
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Specifically, we give pointwise characterisations that are equivalent to continuity of the
natural map from the parameter space into the space of sections, using the topologies
from Sect. 2.

As we have been doing thus far, we shall consider sections of general vector bundles
rather than vector fields to simplify the notation.

Our closing remarks at the beginning of Sect. 3 apply equally here; so let us repeat
them. In our definition of parameterised sections, there is a “theme” consistent through-
out, and very much related to the seminorms for that degree of regularity, and hence
very much related to the topology. For example, in the finitely differentiable case,
a parameterised section should have the property that the finitely many derivatives
in state (we never differentiable with respect to the control variable, and indeed one
should not do this in control theory) are continuous as functions of state and control. In
the Lipschitz case, the same idea holds, but as well one requires that the dilatation have
an appropriate continuity property in state and control. As always, the real analytic
case is more difficult to understand. However, just as for time-varying vector fields,
this is not problematic since, as is shown in Propositions 2, 3, 4, and 5, all of these
conditions are equivalent to the continuity of a naturally defined map from the control
set into the space of vector fields. Again, there is a single definition that describes what
is meant by a parameterised vector field, and what varies with regularity class is the
topology. It is this that explains the importance in our development of locally convex
topologies in describing control systems, just as Theorem 1 does for time-varying
vector fields.

4.1 The smooth case

We begin by discussing parameter dependent smooth sections. Throughout this section
we will work with a smooth vector bundle π : E → M with a linear connection ∇0 on
E, an affine connection ∇ on M, a fibre metric G0 on E, and a Riemannian metric G on
M. These define the fibre metrics ‖·‖

Gm
and the seminorms p∞

K ,m , K ⊆ M compact,
m ∈ Z≥0, on Γ ∞(E) as in Sects. 2.1 and 2.2.

Definition 9 (Sections of parameterised class C∞) Let π : E → M be a smooth
vector bundle and let P be a topological space. A map ξ : M × P → E such that
ξ(x, p) ∈ Ex for every (x, p) ∈ M × P

(i) is a separately parameterised section of class C∞ if
(a) for each x ∈ M, the map ξx : P → Edefined by ξx (p) = ξ(x, p) is continuous

and
(b) for each p ∈ P , the map ξ p : M → E defined by ξ p(x) = ξ(x, p) is of class

C∞,
and

(ii) is a jointly parameterised section of class C∞ if it is a separately parameterised
section of class C∞ and if the map (x, p) �→ jmξ p(x) is continuous for every
m ∈ Z≥0.
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By SPΓ ∞(P;E) we denote the set of separately parameterised sections of E of class
C∞ and by JPΓ ∞(P;E) we denote the set of jointly parameterised sections of E of
class C∞. ◦

It is possible to give purely topological characterisations of this class of sections.

Proposition 2 (Characterisation of jointly parameterised sections of class C∞) Let
π : E → M be a smooth vector bundle, let P be a topological space, and let ξ : M×
P → E satisfy ξ(x, p) ∈ Ex for every (x, p) ∈ M × P . Then ξ ∈ JPΓ ∞(P;E)

if and only if the map p �→ ξ p ∈ Γ ∞(E) is continuous, where Γ ∞(E) has the
C∞-topology.

Proof Given ξ : M × P → E, we let ξm : M × P → JmE be the map ξm(x, p) =
jmξ p(x). We also denote by σξ : P → Γ ∞(E) the map given by σξ (p) = ξ p.

First suppose that ξm is continuous for every m ∈ Z≥0. Let K ⊆ M be compact, let
m ∈ Z≥0, let ε ∈ R>0, and let p0 ∈ P . Let x ∈ K and let Wx be a neighbourhood of
ξm(x, p0) in JmE for which

Wx ⊆ { jmη(x ′) ∈ JmE | ‖ jmη(x ′) − ξm(x ′, p0)‖Gm
< ε}.

By continuity of ξm , there exist a neighbourhood Ux ⊆ M of x and a neighbourhood
Ox ⊆ P of p0 such that ξm(Ux × Ox ) ⊆ Wx . Now let x1, . . . , xk ∈ K be such that
K ⊆ ∪k

j=1Ux j and let O = ∩k
j=1Ox j . Then, if p ∈ O and x ∈ K , we have x ∈ Ux j

for some j ∈ {1, . . . , k}. Thus ξm(x, p) ∈ Wx j . Thus

‖ξm(x, p) − ξm(x, p0)‖Gm
< ε.

Therefore, taking supremums over x ∈ K , p∞
K ,m(σξ (p) − σξ (p0)) ≤ ε. As this can

be done for every compact K ⊆ M and every m ∈ Z≥0, we conclude that σξ is
continuous.

Next suppose that σξ is continuous and let m ∈ Z≥0. Let (x0, p0) ∈ M × P and
let W ⊆ JmE be a neighbourhood of ξm(x0, p0). Let U ⊆ M be a relatively compact
neighbourhood of x0 and let ε ∈ R>0 be such that

π−1
m (U ) ∩ { jmη(x) ∈ JmE | ‖ jmη(x) − ξm(x, p0)‖Gm

< ε} ⊆ W ,

where πm : JmE → M is the projection. By continuity of σξ , let O ⊆ P be a
neighbourhood of p0 such that p∞

cl(U ),m(σξ (p)− σξ (p0)) < ε for p ∈ O . Therefore,

‖ jmσξ (p)(x) − jmσξ (p0)(x)‖
Gm

< ε, (x, p) ∈ cl(U ) × O.

Therefore, if (x, p) ∈ U × O , then πm(ξm(x, p)) = x ∈ U and so ξm(x, p) ∈ W ,
showing that ξm is continuous at (x0, p0). ��
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4.2 The finitely differentiable or Lipschitz case

The preceding development in the smooth case is easily extended to the finitely differ-
entiable and Lipschitz cases, and we quickly give the results and definitions here. In
this section, when considering the Lipschitz case, we assume that ∇ is the Levi–Civita
connection associated to G and we assume that ∇0 is G0-orthogonal.

Definition 10 (Sections of parameterised class Cm+m′
) Let π : E → M be a smooth

vector bundle and let P be a topological space. A map ξ : M × P → E such that
ξ(x, p) ∈ Ex for every (x, p) ∈ M × P

(i) is a separately parameterised section of class Cm+m′
if

(a) for each x ∈ M, the map ξx : P → Edefined by ξx (p) = ξ(x, p) is continuous
and

(b) for each p ∈ P , the map ξ p : M → E defined by ξ p(x) = ξ(x, p) is of class
Cm+m′

,
and

(ii) is a jointly parameterised section of classCm+m′
if it is a separately parameterised

section of class Cm+m′
and

(i) m′ = 0: the map (x, p) �→ jmξ p(x) is continuous;
(ii) m′ = lip: the map (x, p) �→ jmξ p(x) is continuous and, for each (x0, p0) ∈

M × P and each ε ∈ R>0, there exist a neighbourhood U ⊆ M of x0 and a
neighbourhood O ⊆ P of p0 such that

jmξ(U × O) ⊆ { jmη(x) ∈ JmE | dil ( jmη − jmξ p0)(x) < ε},

where, of course, jmξ(x, p) = jmξ p(x).

By SPΓ m+m′
(P;E) we denote the set of separately parameterised sections of E

of class Cm+m′
and by JPΓ m+m′

(P;E) we denote the set of jointly parameterised
sections of E of class Cm+m′

. ◦
Let us give the purely topological characterisation of this class of sections.

Proposition 3 (Characterisation of jointly parameterised sections of class Cm+m′
) Let

π : E → M be a smooth vector bundle, let P be a topological space, and let ξ : M×
P → E satisfy ξ(x, p) ∈ Ex for every (x, p) ∈ M×P . Then ξ ∈ JPΓ m+m′

(P;E)

if and only if the map p �→ ξ p ∈ Γ m+m′
(E) is continuous, where Γ m+m′

(E) has the
Cm+m′

-topology.

Proof We will prove the result only in the case that m = 0 and m′ = lip, as the
general case follows by combining this case with the computations from the proof of
Proposition 2. We denote σξ (p) = ξ(x, p).

Suppose that (x, p) �→ ξ(x, p) is continuous and that, for every (x0, p0) ∈ M×P
and for every ε ∈ R>0, there exist a neighbourhoodU ⊆ M of x0 and a neighbourhood
O ⊆ P of p0 such that, if (x, p) ∈ U × O , then dil (ξ p − ξ p0)(x) < ε. Let K ⊆ M
be compact, let ε ∈ R>0, and let p0 ∈ P . Let x ∈ K . By hypothesis, there exist a
neighbourhood Ux ⊆ M of x and a neighbourhood Ox ⊆ P of p0 such that

ξ(Ux × Ox ) ⊆ {η(x ′) ∈ JmE | dil (η − ξ p0)(x ′) < ε}.
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Now let x1, . . . , xk ∈ K be such that K ⊆ ∪k
j=1Ux j and let O = ∩k

j=1Ox j . Then, if
p ∈ O and x ∈ K , we have x ∈ Ux j for some j ∈ {1, . . . , k}. Thus

dil (ξ(x, p) − ξ(x, p0))Gm
< ε.

Therefore, taking supremums over x ∈ K , we have λK (σξ (p) − σξ (p0)) ≤ ε.
By choosing O to be possibly smaller, the argument of Proposition 2 ensures that
p0

K (σξ (p) − σξ (p0)) ≤ ε, and so plip
K (σξ (p) − σξ (p0)) < ε for p ∈ O . As this can

be done for every compact K ⊆ M, we conclude that σξ is continuous.
Next suppose that σξ is continuous, let (x0, p0) ∈ M × P , and let ε ∈ R>0. Let

U be a relatively compact neighbourhood of x0. Since σξ is continuous, let O be a
neighbourhood of p0 such that

plip
cl(U )

(σξ (p) − σξ (p0)) < ε, p ∈ O.

Thus, for every (x, p) ∈ U × O , dil (ξ p − ξ p0)(x) < ε. Following the argument
of Proposition 2 one also shows that ξ is continuous at (x0, p0), which shows that
ξ ∈ JPΓ lip(P;E). ��

4.3 The holomorphic case

As with time-varying vector fields, we are not really interested, per se, in holomor-
phic control systems, and in fact we will not even define the notion. However, it is
possible, and possibly sometimes easier, to verify that a control system satisfies our
rather technical criterion of being a “real analytic control system” by verifying that
it possesses an holomorphic extension. Thus, in this section, we present the required
holomorphic definitions. We will consider an holomorphic vector bundle π : E → M
with an Hermitian fibre metric G. This defines the seminorms phol

K , K ⊆ M compact,
describing the Chol-topology for Γ hol(E) as in Sect. 2.5.

Definition 11 (Sections of parameterised class Chol) Let π : E → M be an holomor-
phic vector bundle and let P be a topological space. A map ξ : M × P → E such
that ξ(z, p) ∈ Ez for every (z, p) ∈ M × P

(i) is a separately parameterised section of class Chol if
(a) for each z ∈ M, the map ξz : P → E defined by ξz(p) = ξ(z, p) is continuous

and
(b) for each p ∈ P , the map ξ p : M → E defined by ξ p(z) = ξ(z, p) is of class

Chol,
and

(ii) is a jointly parameterised section of class Chol if it is a separately parameterised
section of class Chol and if the map (z, p) �→ ξ p(z) is continuous.

By SPΓ hol(P;E) we denote the set of separately parameterised sections of E of class
Chol and by JPΓ hol(P;E) we denote the set of jointly parameterised sections of E of
class Chol. ◦
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As in the smooth case, it is possible to give purely topological characterisations of
these classes of sections.

Proposition 4 (Characterisation of jointly parameterised sections of class Chol) Let
π : E → M be an holomorphic vector bundle, let P be a topological space, and
let ξ : M × P → E satisfy ξ(z, p) ∈ Ez for every (z, p) ∈ M × P . Then ξ ∈
JPΓ hol(P;E) if and only if the map p �→ ξ p ∈ Γ hol(E) is continuous, where
Γ hol(E) has the Chol-topology.

Proof We define σξ : P → Γ hol(E) by σξ (p) = ξ p.
First suppose that ξ is continuous. Let K ⊆ M be compact, let ε ∈ R>0, and let

p0 ∈ P . Let z ∈ K and let Wz ⊆ E be a neighbourhood of ξ(z, p0) for which

Wz ⊆ {η(z′) ∈ E | ‖η(z′) − ξ(z′, p0)‖G < ε}.

By continuity of ξ , there exist a neighbourhood Uz ⊆ M of z and a neighbourhood
Oz ⊆ P of p0 such that ξ(Uz × Oz) ⊆ Wz . Now let z1, . . . , zk ∈ K be such that
K ⊆ ∪k

j=1Uz j and let O = ∩k
j=1Oz j . Then, if p ∈ O and z ∈ K , we have z ∈ Uz j

for some j ∈ {1, . . . , k}. Thus ξ(z, p) ∈ Wz j . Thus ‖ξ(z, p) − ξ(z, p0)‖G < ε.
Therefore, taking supremums over z ∈ K , phol

K (σξ (p) − σξ (p0)) ≤ ε. As this can be
done for every compact K ⊆ M, we conclude that σξ is continuous.

Next suppose that σξ is continuous. Let (z0, p0) ∈ M × P and let W ⊆ E be a
neighbourhood of ξ(z0, p0). Let U ⊆ M be a relatively compact neighbourhood of
z0 and let ε ∈ R>0 be such that

π−1(U ) ∩ {η(z) ∈ E | ‖η(z) − ξ(z, p0)‖G < ε} ⊆ W .

By continuity of σξ , let O ⊆ P be a neighbourhood of p0 such that phol
cl(U )

(σξ (p) −
σξ (p0)) < ε for p ∈ O . Therefore,

‖σξ (p)(z) − σξ (p0)(z)‖G < ε, (z, p) ∈ cl(U ) × O.

Therefore, if (z, p) ∈ U ×O , we have ξ(z, p) ∈ W , showing that ξ is continuous at
(z0, p0). ��

4.4 The real analytic case

Now we repeat the procedure above for real analytic sections. We thus will consider
a real analytic vector bundle π : E → M with ∇0 a real analytic linear connection on
E, ∇ a real analytic affine connection on M, G0 a real analytic fibre metric on E, and
G a real analytic Riemannian metric on M. This defines the seminorms pω

K ,a, K ⊆ M
compact, a ∈ c0(Z≥0;R>0), describing the Cω-topology as in Sect. 2.6.

Definition 12 (Sections of parameterised class Cω) Let π : E → M be a real analytic
vector bundle and let P be a topological space. A map ξ : M × P → E such that
ξ(x, p) ∈ Ex for every (x, p) ∈ M × P
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(i) is a separately parameterised section of class Cω if
(a) for each x ∈ M, the map ξx : P → Edefined by ξx (p) = ξ(x, p) is continuous

and
(b) for each p ∈ P , the map ξ p : M → E defined by ξ p(x) = ξ(x, p) is of class

Cω,
and

(ii) is a jointly parameterised section of class Cω if it is a separately parameterised
section of class C∞ and if, for each (x0, p0) ∈ M×P , for each a ∈ c0(Z≥0,R>0),
and for each ε ∈ R>0, there exist a neighbourhood U ⊆ M of x0 and a neigh-
bourhood O ⊆ P of p0 such that

jmξ(U × O) ⊆ { jmη(x) ∈ JmE | a0a1 · · · am‖ jmη(x) − jmξ p0(x)‖
Gm

< ε}

for every m ∈ Z≥0, where, of course, jmξ(x, p) = jmξ p(x).

By SPΓ ω(P;E) we denote the set of separately parameterised sections of E of class
Cω and by JPΓ ω(P;E) we denote the set of jointly parameterised sections of E of
class Cω. ◦
Remark 1 (Jointly parameterised sections of class Cω) The condition that ξ ∈
JPΓ ∞(P;E) can be restated like this: for each (x0, p0) ∈ M×P , for each m ∈ Z≥0,
and for each ε ∈ R>0, there exist a neighbourhood U ⊆ M of x0 and a neighbourhood
O ⊆ P of p0 such that

jmξ(U × O) ⊆ { jmη(x) ∈ JmE | ‖ jmη(x) − jmξ p0(x)‖
Gm

< ε};

that this is so is, more or less, the idea of the proof of Proposition 2. Phrased this way,
one sees clearly the grammatical similarity between the smooth and real analytic def-
initions. Indeed, the grammatical transformation from the smooth to the real analytic
definition is, put a factor of a0a1 · · · am before the norm, precede the condition with
“for every a ∈ c0(Z≥0;R>0)”, and move the “for every m ∈ Z≥0” from before the
condition to after. This was also seen in the definitions of locally integrally bounded
and locally essentially bounded sections in Sect. 3. Indeed, the grammatical similarity
is often encountered when using our locally convex topologies, and contributes to the
unification of the analysis of the varying degrees of regularity. ◦

The following result records topological characterisations of jointly parameterised
sections in the real analytic case.

Proposition 5 (Characterisation of jointly parameterised sections of class Cω) Let
π : E → M be a real analytic vector bundle, let P be a topological space, and
let ξ : M × P → E satisfy ξ(x, p) ∈ Ex for every (x, p) ∈ M × P . Then ξ ∈
JPΓ ω(P;E) if and only if the map p �→ ξ p ∈ Γ ω(E) is continuous, where Γ ω(E)

has the Cω-topology.

Proof For a ∈ c0(Z≥0;R>0) and m ∈ Z≥0, given ξ : M × P → E satisfying
ξ p ∈ Γ ω(E), we let ξa,m : M × P → JmE be the map

ξa,m(x, p) = a0a1 · · · am jmξ p(x).
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We also denote by σξ : P → Γ ω(E) the map given by σξ (p) = ξ p.
Suppose that, for every (x0, p0) ∈ M × P , for every a ∈ c0(Z≥0;R>0), and for

every ε ∈ R>0, there exist a neighbourhood U ⊆ M of x0 and a neighbourhood
O ⊆ P of p0 such that, if (x, p) ∈ U × O , then

‖ξa,m(x, p) − ξa,m(x, p0)‖Gm
< ε, m ∈ Z≥0.

Let K ⊆ M be compact, let a ∈ c0(Z≥0;R>0), let ε ∈ R>0, and let p0 ∈ P . Let
x ∈ K . By hypothesis, there exist a neighbourhoodUx ⊆ M of x and a neighbourhood
Ox ⊆ P of p0 such that

ξa,m(Ux × Ox ) ⊆ { jmη(x ′) ∈ JmE | ‖a0a1 · · · am jmη(x ′) − ξa,m(x ′, p0)‖Gm
< ε},

for each m ∈ Z≥0. Now let x1, . . . , xk ∈ K be such that K ⊆ ∪k
j=1Ux j and let

O = ∩k
j=1Ox j . Then, if p ∈ O and x ∈ K , we have x ∈ Ux j for some j ∈ {1, . . . , k}.

Thus

‖ξa,m(x, p) − ξa,m(x, p0)‖Gm
< ε, m ∈ Z≥0.

Therefore, taking supremums over x ∈ K and m ∈ Z≥0, we have pω
K ,a(σξ (p) −

σξ (p0)) ≤ ε. As this can be done for every compact K ⊆ M and every a ∈
c0(Z≥0;R>0), we conclude that σξ is continuous.

Next suppose that σξ is continuous, let (x0, p0) ∈ M × P , let a ∈ c0(Z≥0;R>0),
and let ε ∈ R>0. Let U be a relatively compact neighbourhood of x0. Since σξ is
continuous, let O be a neighbourhood of p0 such that

pω
cl(U ),a(σξ (p) − σξ (p0)) < ε, p ∈ O.

Thus, for every (x, p) ∈ U × O ,

a0a1 · · · am‖ jmξ(x, p) − jmξ(x, p0)‖Gm
< ε, m ∈ Z≥0,

which shows that ξ ∈ JPΓ ω(P;E). ��
One can wonder about the relationship between sections of jointly parameterised

class Cω and sections that are real restrictions of sections of jointly parameterised
class Chol. We address this with a result and an example. First the result. The result
here is a nontrivial one, and is the only place in this paper where we call upon the
deeper properties of the real analytic topology. A reader wishing to comprehend all
of the details of the proof will probably need to consult [35, Chapter 5]. Despite the
complicated nature of the theorem statement—necessary due to the fact that the domain
of an holomorphic extension will depend on the system—it really just says (1) that
the restriction of an holomorphic control system is a real analytic control system
and (2) that a real analytic control system extends to an holomorphic one when the
control set is locally compact.
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Theorem 3 (Jointly parameterised real analytic sections as restrictions of jointly para-
meterised holomorphic sections) Let π : E → M be a real analytic vector bundle
with complexification4 π : E → M and let P be a topological space. For a map
ξ : M × P → E satisfying ξ(x, p) ∈ Ex for all (x, p) ∈ M × P , the following
statements hold:

(i) if ξ ∈ JPΓ ω(P;E) and if P is locally compact and Hausdorff, then, for each
(x0, p0) ∈ M×P , there exist a neighbourhood U ⊆ M of x0, a neighbourhood
O ⊆ P of p0, and ξ ∈ JPΓ hol(O;E|U ) such that ξ(x, p) = ξ(x, p) for all
(x, p) ∈ (M ∩ U ) × O;

(ii) if there exists a section ξ ∈ JPΓ hol(P;E) such that ξ(x, p) = ξ(x, p) for every
(x, p) ∈ M × P , then ξ ∈ JPΓ ω(P;E).

Proof (i) Let p0 ∈ P and let O be a relatively compact neighbourhood of p0, this
being possible since P is locally compact. Let x0 ∈ M, let U be a relatively compact
neighbourhood of x0, and let (U j ) j∈Z>0 be a sequence of neighbourhoods of cl(U )

in M with the properties that cl(U j ) ⊆ U j+1 and that ∩ j∈Z>0U j = cl(U ). Let

G hol,R
cl(U ),E

be the set of germs of those holomorphic sections of E about cl(O) that,

when restricted to M, are real. We recall from [35, §5.2.1] that G hol,R
cl(U ),E

is the direct

limit of the directed system (Γ hol,R(E|U j )) j∈Z>0 . For ξ ∈ Γ hol,R(E|U j ) for some
j ∈ Z>0, let [ξ ]cl(U ) be the germ of ξ . We note that

C0(cl(O);G hol,R
cl(U ),E

) � C0(cl(O)) q⊗εG
hol,R
cl(U ),E

and

C0(cl(O);Γ hol,R(E|U j )) � C0(cl(O)) q⊗εΓ
hol,R(E|U j ),

withq⊗ε denoting the completed injective tensor product; see [36, Chapter 16] for
the injective tensor product for locally convex spaces and [21, Theorem 1.1.10] for
the preceding isomorphisms for Banach spaces (the constructions apply more or less
verbatim to locally convex spaces [7, Proposition 5.4]). Note that since G hol,R

cl(U ),E
and

Γ hol,R(E|U j ), j ∈ Z>0, are nuclear, the injective tensor product can be swapped
with the projective tensor product in the above constructions [48, Proposition 5.4.2].

We claim that, with these identifications, C0(cl(O);G hol,R
cl(U ),E

) is the direct limit of

the directed system (C0(cl(O);Γ hol,R(E|U j ))) j∈Z>0 with the associated mappings
id ⊗̂πrcl(U ), j , j ∈ Z>0, where

rcl(O), j : Γ hol,R(E|U cl(O), j ) → G hol,R
cl(O),E

ξ �→ [ξ ]cl(O).

4 Such complexifications exist, as shown in [35, §5.1.1].
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We, moreover, claim that the direct limit topology is boundedly retractive, meaning
that bounded sets in the direct limit are contained in and bounded in a single component
of the directed system and, moreover, the topology on the bounded set induced by the
component is the same as that induced by the direct limit.

Results of this sort have been the subject of research in the area of locally convex
topologies, with the aim being to deduce conditions on the structure of the spaces com-
prising the directed system, and on the corresponding mappings (for us, the inclusion
mappings and their tensor products with the identity on C0(cl(O);R)), that ensure that
direct limits commute with tensor product, and that the associated direct limit topology
is boundedly retractive. We shall make principal use of the results given in [45]. To
state the arguments with at least a little context, let us reproduce two conditions used
by Mangino.

Condition (M) of Retakh [51] Let (V j ) j∈Z>0 be a directed system of locally
convex spaces with strict direct limit V. The direct limit topology of V satisfies con-
dition (M) if there exists a sequence (O j ) j∈Z>0 for which

1. O j is a balanced convex neighbourhood of 0 ∈ V j ,
2. O j ⊆ O j+1 for each j ∈ Z>0, and
3. for every j ∈ Z>0, there exists k ≥ j such that the topology induced on O j by its

inclusion in Vk and its inclusion in V agree. ◦
Condition (MO) of Mangino [45] Let (V j ) j∈Z>0 be a directed system of metris-
able locally convex spaces with strict direct limitV. Let i j,k : V j → Vk be the inclusion
for k ≥ j and let i j : V j → V be the induced map into the direct limit.

Suppose that, for each j ∈ Z>0, we have a sequence (p j,l)l∈Z>0 of seminorms
defining the topology of V j such that p j,l1 ≥ p j,l2 if l1 ≥ l2. Let

V j,l = V j/{v ∈ V j | p j,l(v) = 0}

and denote by p̂ j,l the norm onV j,l induced by p j,l [55, page 97]. Let π j,l : V j → V j,l

be the canonical projection. LetV j,l be the completion ofV j,l . The family (V j,l) j,l∈Z>0

is called a projective spectrum for V j . Denote

O j,l = {v ∈ V j | p j,l(v) ≤ 1}.

The direct limit topology of V satisfies condition (MO) if there exists a sequence
(O j ) j∈Z>0 and if, for every j ∈ Z>0, there exists a projective spectrum (V j,l) j,l∈Z>0

for V j for which

1. O j is a balanced convex neighbourhood of 0 ∈ V j ,
2. O j ⊆ O j+1 for each j ∈ Z>0, and
3. for every j ∈ Z>0, there exists k ≥ j such that, for every l ∈ Z>0, there exists

A ∈ L(V;Vk,l) satisfying

(πk,l ◦ i jk − A ◦ i j )(O j ) ⊆ cl(πk,l(Ok,l)),

the closure on the right being taken in the norm topology of Vk,l . ◦
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With these concepts, we have the following statements. We let (V j ) j∈Z>0 be a
directed system of metrisable locally convex spaces with strict direct limit V.

1. If the direct limit topology on V satisfies condition (MO), then, for any Banach
space U, U ⊗π V (⊗π is the uncompleted projective tensor product) is the direct
limit of the directed system (U ⊗π V j ) j∈Z>0 , and the direct limit topology on
U ⊗π V satisfies condition (M) [45, Theorem 1.3].

2. If the inclusion of V j in V j+1 is nuclear and if the direct limit topology on V is
regular, then the direct limit topology on V satisfies condition (MO) [45, Theo-
rem 1.3].

3. If the direct limit topology on V satisfies condition (M), then this direct limit
topology is boundedly retractive [68].

Using these arguments we make the following conclusions.

4. The direct limit topology on G hol,R
cl(U ),E

satisfies condition (MO) (by virtue of asser-

tion 2 above and by the properties of the direct limit topology enunciated in [35,
§5.3], specifically that the direct limit is a regular direct limit of nuclear Fréchet
spaces).

5. The space C0(cl(O);R) ⊗π G hol,R
cl(U ),E

is the direct limit of the directed sequence

(C0(cl(O);R) ⊗π Γ hol,R(E|U j )) j∈Z>0 (by virtue of assertion 1 above).

6. The direct limit topology on C0(cl(O);R)⊗π G hol,R
cl(U ),E

satisfies condition (M) (by

virtue of assertion 1 above).
7. The direct limit topology on C0(cl(O);R)⊗π G hol,R

cl(U ),E
is boundedly retractive (by

virtue of assertion 3 above).

We shall also need the following lemma.

Lemma 1 Let K ⊆ M be compact. If [ξ ]K ∈ C0(cl(O);G hol,R
K ,E ) then there exists a

sequence ([ξ k]K )k∈Z>0 in C0(cl(O);R) ⊗ G hol,R
K ,E converging to [ξ ]K in the topology

of C0(cl(O);G hol
K ,E

).

Proof Since C0(cl(O);G hol,R
K ,E

) is the completion of C0(cl(O);R) ⊗π G hol,R
K ,E

, there

exists a net ([ξ i ]K )i∈I converging to [ξ ], so the conclusion here is that we can actually
find a converging sequence. This can be proved, however, using the argument from
the proof of [21, Theorem 1.1.10] (see top of page 15 of that reference) ◦

The remainder of the proof is straightforward. Since ξ ∈ JPΓ ω(T;E), the map

cl(O) � p �→ ξ p ∈ Γ ω(E)

is an element of C0(cl(O);Γ ω(E)) by Theorem 1. Therefore, if [ξ ]cl(U ) is the image

of ξ under the natural mapping from Γ ω(E) to G hol,R
cl(U ),E

, the map

T
′ � t �→ [ξ(t)]cl(U ) ∈ G hol,R

cl(U ),E
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is an element of C0(cl(O);G hol,R
cl(U ),E

). Therefore, by the preceding lemma, there

exists a sequence ([ξ k]cl(U ))k∈Z>0 in C0(cl(O);R) ⊗ G hol,R
cl(U ),E

that converges to

[ξ ]cl(U ). By our conclusion 5 above, the topology in which this convergence takes
place is the completion of the direct limit topology associated to the directed system
(C0(cl(O);R) ⊗π Γ hol,R(E|U j )) j∈Z>0 . The sequence ([ξ k]cl(U ))k∈Z>0 is a Cauchy

sequence and so bounded. The direct limit topology on C0(cl(O);R) ⊗π G hol,R
cl(U ),E

is boundedly retractive by our conclusion 7 above. Thus, in particular, it is regular,
and so there exists j ∈ Z>0 such that the sections (ξ k)k∈Z>0 can be holomorphically
extended to U j . Bounded retractivity additionally implies that j can be chosen so
that the sequence (ξ k)k∈Z>0 is a Cauchy sequence in C0(cl(O);Γ hol,R(E|U j )) and
so converges to a limit η satisfying [η]cl(U ) = [ξ ]cl(U ). Thus ξ can be holomorphically
extended to U j . This completes this part of the proof.

(ii) Let (x0, p0) ∈ M × P , let a ∈ c0(Z≥0;R>0), and let ε ∈ R>0. Let U ⊆
M be a relatively compact neighbourhood of x0 and let U be a relatively compact
neighbourhood of cl(U ). By Proposition 1, there exist C, r ∈ R>0 such that

p∞
cl(U ),m(σξ (p) − σξ (p0)) ≤ Cr−m sup{‖ξ(z, p) − ξ(z, p0)‖G | z ∈ U }

for all m ∈ Z≥0 and p ∈ P . Now let N ∈ Z≥0 be such that aN+1 < r and let O be a
neighbourhood of p0 such that

‖ξ(z, p) − ξ(z, p0)‖G <
εrm

Ca0a1 · · · am
, m ∈ {0, 1, . . . , N },

for (z, p) ∈ U × O . Then, if m ∈ {0, 1, . . . , N }, we have

a0a1 · · · am‖ jmξ p(x) − jmξ p0(x)‖
Gm

≤ a0a1 · · · amCr−m sup{‖ξ(z, p) − ξ(z, p0)‖Gm
| z ∈ U } < ε,

for (x, p) ∈ U × O . If m > N we also have

a0a1 · · · am‖ jmξ p(x) − jmξ p0(x)‖
Gm

≤ a0a1 · · · aN r−N rm‖ jmξ p(x) − jmξ p0(x)‖
Gm

≤ a0a1 · · · aN r−N rmCr−m sup{‖ξ(z, p) − ξ(z, p0)‖Gm
| z ∈ U } < ε,

for (x, p) ∈ U × O , as desired. ��
The next example shows that the assumption of local compactness cannot be gen-

erally relaxed.

Example 1 (Jointly parameterised real analytic sections are not always restrictions
of jointly parameterised holomorphic sections) Let M = R, let P = Cω(R), and
define f : R × P → R by f (x, g) = g(x). Since g �→ f g is the identity map, we
conclude from Proposition 5 that f ∈ JPCω(P;M). Let x0 ∈ R. We claim that, for
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any neighbourhood U of x0 in C and any neighbourhood O of 0 ∈ P , there exists
g ∈ O such that g, and therefore f g , does not have an holomorphic extension toU . To
see this, let σ ∈ R>0 be such that the closed diskD(σ, x0) of radius σ centred at x0 inC
is contained in U . Let K1, . . . , Kr ⊆ R be compact, let a1, . . . , ar ∈ c0(Z≥0;R>0),
and let ε1, . . . , εr ∈ R>0 be such that

∩r
j=1{g ∈ P | pK j ,a j (g) ≤ ε j } ⊆ O.

Now define

g(x) = α

1 + ((x − x0)/σ )2 , x ∈ R,

with α ∈ R>0 chosen sufficiently small that pK j ,a j (g) < ε j , j ∈ {1, . . . , r}, and note

that g ∈ O does not have an holomorphic extension to U . Indeed, suppose that such
an holomorphic extension g exists. Then g(z) must be equal to ασ 2

σ 2+(z−x0)2 for z in the
open disk D(σ, x0) by uniqueness of holomorphic extensions [14, Lemma 5.40]. But
this immediately prohibits g from being holomorphic on any neighbourhood of the
closed disk D(σ, x0), giving our claim. ◦

4.5 Mixing regularity hypotheses

It is possible to consider parameterised sections with mixed regularity hypotheses.
Indeed, the conditions of Definitions 9, 10, and 12 are joint on state and parameter.
Thus we may consider the following situation. Let m ∈ Z≥0, m′ ∈ {0, lip}, r ∈
Z≥0 ∪ {∞, ω}, and r ′ ∈ {0, lip}. If r + r ′ ≥ m + m′ (with the obvious convention that
∞ + lip = ∞ and ω + lip = ω), we may then consider a parameterised section in

SPΓ r+r ′
(P;E) ∩ JPΓ m+m′

(P;E)

As with time-varying vector fields, there is nothing wrong with this—indeed this is
often done—as long as one remembers what is true and what is not in the case when
r + r ′ > m + m′.

5 Control systems

In this section, we introduce classes of control systems that integrate the properties of
the locally convex topologies from Sect. 2, noting that, of course, control systems are
merely parameterised vector fields as in Sect. 4. We show that, for the classes of control
systems we introduce, the regularity of the initial value problem one obtains upon
substitution of a control matches the regularity of the system in a satisfying manner. As
we have been doing all along so far, we consider the finitely differentiable, Lipschitz,
smooth, and real analytic cases. We see that the manner in which we have characterised
the topologies for spaces of vector fields allows for a unified way of treating control
systems, across all sorts of regularity, in our framework, cf. the notation of Sect. 2.7.
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Indeed, much of the hard work in the paper has already been done, and now we need
only collect together the equipment, assign names to things, and make some now fairly
obvious (but deep) conclusions. The new results here are Propositions 6 and 7 and
their Corollaries 1 and 2. As can be seen, these results are quite easy applications of
the results of Jafarpour and Lewis [35] summarised in Sect. 3 and of the new results
in Sect. 4. It is interesting to contrast this with the detailed technical arguments used
in [11,59] to prove results of substantially less generality and power. Thus, while the
background required to understand the results of Sects. 3 and 4 is certainly nontrivial,
once one has it at hand many other facets of the theory become routine.

5.1 Control systems with locally essentially bounded controls

With the notions of parameterised sections from the preceding section, we readily
define what we mean by a control system.

Definition 13 (Control system) Let m ∈ Z≥0 and m′ ∈ {0, lip}, let ν ∈ {m +
m′,∞, ω}, and let r ∈ {∞, ω}, as required. A Cν-control system is a triple
Σ = (M, F,C ), where

(i) M is a Cr -manifold whose elements are called states,
(ii) C is a topological space called the control set, and

(iii) F ∈ JPΓ ν(C ;TM). ◦
The governing equations for a control system are

ξ ′(t) = F(ξ(t), μ(t)),

for suitable functions t �→ μ(t) ∈ C and t �→ ξ(t) ∈ M. To ensure that these equations
make sense, the differential equation should be shown to have the properties needed
for existence and uniqueness of solutions, as well as appropriate dependence on initial
conditions. We do this by allowing the controls for the system to be as general as
reasonable.

Proposition 6 (Property of control system when the control is specified) Let m ∈ Z≥0
and m′ ∈ {0, lip}, let ν ∈ {m + m′,∞, ω}, and let r ∈ {∞, ω}, as required. Let
Σ = (M, F,C ) be a Cν-control system. If μ ∈ L∞

loc(T;C ) then Fμ ∈ LBΓ ν(T,TM),
where Fμ : T × M → TM is defined by Fμ(t, x) = F(x, μ(t)).

Proof Let us define F̂μ : T → Γ ν(TM) by F̂μ(t) = Fμ
t . By Propositions 2, 3,

and 5, the mapping u �→ Fu is continuous. Since F̂μ is thus the composition of the
measurable function μ and the continuous mapping u �→ Fu , it follows that F̂μ is
measurable. It follows from Theorem 1 that Fμ is a Carathéodory vector field of class
Cν .

Let T′ ⊆ T be compact. Since μ is locally essentially bounded, there exists a
compact set K ⊆ C such that

λ({t ∈ T
′ | μ(t) /∈ K }) = 0.
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Since the mapping u �→ Fu is continuous,

{Fμ
t | t ∈ T

′}

is contained in a compact subset of Γ ν(TM), i.e., Fμ is locally essentially bounded.
��

This then gives the following result, characterising the nature of flows associated
with open-loop control systems.

Corollary 1 (Regularity of flows of open-loop control systems) Let m ∈ Z≥0, let ν ∈
{m,∞, ω}, and let r ∈ {∞, ω}, as required. Let Σ = (M, F,C ) be a Cν+lip-control
system and let μ ∈ L∞

loc(T;C ), with Fμ ∈ LBΓ ν(T,TM) defined by Fμ(t, x) =
F(x, μ(t)). Then there exist a subset DΣ,μ ⊆ T×T×M and a map ΦX : DΣ,μ → M
with the following properties for each (t0, x0) ∈ T × M:

(i) the set

TΣ,μ(t0, x0) = {t ∈ T | (t, t0, x0) ∈ DΣ,μ}

is an interval;
(ii) there exists an absolutely continuous curve t �→ ξ(t) satisfying

ξ ′(t) = X (t, ξ(t)), ξ(t0) = x0,

for almost all t ∈ |t0, t1| if and only if t1 ∈ TΣ,μ(t0, x0);
(iii) d

dt Φ
X (t, t0, x0) = X (t, ΦX (t, t0, x0)) for almost all t ∈ TΣ,μ(t0, x0);

(iv) for each t ∈ T for which (t, t0, x0) ∈ DΣ,μ, there exists a neighbourhood U of
x0 such that the mapping x �→ ΦX (t, t0, x) is defined and of class Cν on U .

Proof This follows from Proposition 6 and Theorem 2. ��

5.2 Control systems with locally integrable controls

In this section, we specialise the discussion from the preceding section in one direction,
while generalising it in another. To be precise, we now consider the case where our
control set C is a subset of a locally convex topological vector space, and the system
structure is such that the notion of integrability is preserved (in a way that will be
made clear in Proposition 7 below).

Definition 14 (Sublinear control system) Let m ∈ Z≥0 and m′ ∈ {0, lip}, let ν ∈
{m + m′,∞, ω}, and let r ∈ {∞, ω}, as required. A Cν-sublinear control system is
a triple Σ = (M, F,C ), where

(i) M is a Cr -manifold whose elements are called states,
(ii) C is a subset of a locally convex topological vector space V, C being called the

control set, and
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(iii) F has the following property: for every continuous seminorm p for Γ ν(TM),
there exists a continuous seminorm q for V such that

p(Fu1 − Fu2) ≤ q(u1 − u2), u1, u2 ∈ C . ◦

Note that, by Propositions 2, 3, and 5, the sublinearity condition (iii) implies that a
Cν-sublinear control system is a Cν-control system.

One may want to regard the generalisation from the case where the control set
is a subset of Rk to being a subset of a locally convex topological vector space to
be mere fancy generalisation, but this is, actually, far from being the case. Indeed,
this observation is the foundation for a general, control parameterisation-independent
formulation for control theory [43]. We shall see an illustration of this in our list of
examples below.

We also have a version of Proposition 6 for sublinear control systems.

Proposition 7 (Property of sublinear control system when the control is specified)
Let m ∈ Z≥0 and m′ ∈ {0, lip}, let ν ∈ {m + m′,∞, ω}, and let r ∈ {∞, ω},
as required. Let Σ = (M, F,C ) be a Cν-sublinear control system for which C is
a subset of a locally convex topological vector space V. If μ ∈ L1

loc(T;C ), then
Fμ ∈ LIΓ ν(T;TM), where Fμ : T×M → TM is defined by Fμ(t, x) = F(x, μ(t)).

Proof The proof that Fμ is a Carathéodory vector field of class Cν goes exactly as in
Proposition 6.

To prove that Fμ ∈ LIΓ ν(T;TM), let K ⊆ M be compact, let k ∈ Z≥0, let
a ∈ c0(Z≥0;R>0), and denote

pK =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

p∞
K ,k, ν = ∞,

pm
K , ν = m,

pm+lip
K , ν = m + lip,

pω
K ,a, ν = ω.

Define g : T → R≥0 by g(t) = pK (Fμ
t ). We claim that g ∈ L∞

loc(T;R≥0). From the
first part of the proof of Proposition 6, t �→ Fμ

t (x) is measurable for every x ∈ M. By
Theorem 1, it follows that t �→ Fμ

t is measurable. Since pK is a continuous function
on Γ ν(TM), it follows that t �→ pK (Fμ

t ) is measurable, as claimed. We claim that
g ∈ L1

loc(T;R≥0). Note that X �→ pK (X) is a continuous seminorm on Γ ∞(TM). By
hypothesis, there exists a continuous seminorm q for the locally convex topology for
V such that

pK (Fu1 − Fu2) ≤ q(u1 − u2)

for every u1, u2 ∈ C . Therefore, if T′ ⊆ T is compact and if u0 ∈ C , we also have
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∫

T′
g(t) dt =

∫

T′
pK (Fμ

t )

≤
∫

T′
pK (Fμ

t − Fu0) dt +
∫

T′
pK (Fu0) dt

≤
∫

T′
q(μ(t)) dt + (q(u0) + pK (Fu0))λ(T′) < ∞,

the last inequality by the characterisation of Bochner integrability from [5, The-
orems 3.2 and 3.3]. Thus g is locally integrable. It follows from Theorem 1 that
Fμ ∈ LIΓ ν(T;TM), as desired. ��

One also has the associated result regarding the regularity of flows of open-loop
systems in this case.

Corollary 2 (Regularity of flows of open-loop sublinear control systems) Let m ∈
Z≥0, let ν ∈ {m,∞, ω}, and let r ∈ {∞, ω}, as required. Let Σ = (M, F,C ) be
a Cν+lip-sublinear control system and let μ ∈ L1

loc(T;C ), with Fμ ∈ LIΓ ν(T,TM)

defined by Fμ(t, x) = F(x, μ(t)). Then there exist a subset DΣ,μ ⊆ T×T×M and
a map ΦX : DΣ,μ → M with the following properties for each (t0, x0) ∈ T × M:

(i) the set

TΣ,μ(t0, x0) = {t ∈ T | (t, t0, x0) ∈ DΣ,μ}

is an interval;
(ii) there exists an absolutely continuous curve t �→ ξ(t) satisfying

ξ ′(t) = X (t, ξ(t)), ξ(t0) = x0,

for almost all t ∈ |t0, t1| if and only if t1 ∈ TΣ,μ(t0, x0);
(iii) d

dt Φ
X (t, t0, x0) = X (t, ΦX (t, t0, x0)) for almost all t ∈ TΣ,μ(t0, x0);

(iv) for each t ∈ T for which (t, t0, x0) ∈ DΣ,μ, there exists a neighbourhood U of
x0 such that the mapping x �→ ΦX (t, t0, x) is defined and of class Cν on U .

Proof This follows from Proposition 7 and Theorem 2. ��

5.3 Examples

As mentioned in the introduction of the paper, one of the ideas of the paper is to
produce a definition of a control system with a prescribed regularity that (1) agrees
with any “standard” existing definitions and (2) extends these definitions to new cases,
primarily a definition of what we mean by a “real analytic control system.” In this
section we give some illustrations of how our definitions work in practice, and as well
give some important special cases of systems that satisfy our definition of “control
system.”

Throughout this section, we let m ∈ Z≥0 and m′ ∈ {0, lip}, and let ν ∈ {m +
m′,∞, ω}. Throughout, M is a manifold of class Cr for r ∈ {∞, ω}, as required.
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Control-linear and control-affine systems We first illustrate how control-affine sys-
tems, whose drift and control vector fields are of class Cν , are Cν-control systems,
indeed Cν-sublinear control systems.

To do this, we actually first work with more generality. Let V be a locally convex
topological vector space and let C ⊆ V. We suppose that we have a continuous linear
map Λ ∈ L(V;Γ ν(TM)) and we correspondingly define FΛ : M × C → TM by
FΛ(x, u) = Λ(u)(x). Continuity of Λ immediately gives that the control system
(M, FΛ,C ) is sublinear, and we shall call a system such as this a Cν-control-linear
system.

Note that we can regard a control-affine system as a control-linear system as follows.
For a control-affine system with control set C ⊆ R

k and with

F(x, u) = f0(x) +
k∑

a=1

ua fa(x),

we let V = R
k+1 � R ⊕ R

k and take

C ′ = {(u0, u) ∈ R ⊕ R
k | u0 = 1, u ∈ C }, Λ(u0, u) =

k∑

a=0

ua fa .

Clearly we have F(x, u) = FΛ(x, (1, u)) for every u ∈ C . Since linear maps from
finite-dimensional locally convex spaces are continuous [33, Proposition 2.10.2], we
conclude that control-affine systems are control-linear systems. Thus they are also
control systems as per Definition 13.

Since control-affine systems are sublinear systems, for these systems it makes sense
to talk about controls that are locally integrable and not just locally essentially bounded,
and this is typically what one does for control-affine systems.

Systems where control does not appear linearly While many applications in control
theory have the structure of control-affine systems, it is nonetheless true that non-affine
systems arise. In this section we consider a general framework where control enters
“multiplicatively.” This would include, for example, systems for which control enters
through expressions like f (x)g(u), but would not include control entering through
expressions like sin( f (x)g(u)), for a function f of state x and a function g of control u.

To model this multiplicative dependence on control, we consider the control set
to be a general topological space C . We denote by C0(C ) the space of continuous
R-valued functions onC , equipped with the pointwise convergence topology. This is a
locally convex space defined by the family of seminorms pu , u ∈ C , given by pu( f ) =
| f (u)|. Let F⊗ ∈ Γ ν(TM) ⊗ε C0(C ), with ⊗ε denoting the not completed injective
tensor product, i.e., the tensor product with the injective tensor product topology [36,
Chapter 16]. Given (x, u) ∈ M × C , we define a linear map

ev(x,u) : Γ ν(TM) ⊗ε C0(C ) → TxM
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by asking that ev(x,u)(X ⊗ε f ) = f (u)X (x), and then extending by linearity. We then
define

F : M × C → TM

(x, u) �→ ev(x,u)(F⊗).

We claim that (M, F,C ) is a Cν-control system. One can imagine doing this by directly
verifying the conditions of Definitions 9, 10, and 12, possibly using Theorem 3 in the
real analytic case. However, according to Propositions 2, 3, and 5, we shall verify this
by showing that the map

F̂ : C → Γ ν(TM)

u �→ Fu

is continuous. Proceeding in this way has two benefits: (1) it allows us to treat all
regularity classes at once; (2) it provides an effective demonstration of how the theory
of locally convex spaces can be used in our setting to answer basic questions.

To prove the continuity of F̂ , first, for u ∈ C , denote by evu : C0(C ) → R the
evaluation map evu( f ) = f (u). Note that evu ∈ (C0(C ))

′
, the latter space being the

continuous dual. On (C0(C ))
′

we make use of the weak topology, i.e., the locally
convex topology defined by the family of seminorms p f , f ∈ C0(C ) given by
p f (α) = |α( f )|. Now define

ev : C → (C0(C ))
′

u �→ evu .

We claim that ev is continuous. Indeed, because a locally convex topology is the
initial topology defined by a family of seminorms prescribing the topology, to show
this we need to only show that p f ◦ ev is continuous for every f ∈ C0(C ). Since
p f ◦ ev(u) = | f (u)|, the continuity of ev simply follows from the continuity of f .
Now we note that we have an inclusion

Γ ν(TM) ⊗ε C0(C ) ⊆ L((C0(C ))
′;Γ ν(TM))

defined by the requirement that X ⊗ f (α) = α( f )X , cf. [53, Equation (3.4)]. There-
fore, we can think of F⊗ as being a continuous linear map from (C0(C ))

′
into Γ ν(TM).

Now we merely note that

F̂(u)(x) = F(x, u) = ev(x,u)(F⊗) = (F⊗ ◦ ev(u))(x),

from which we conclude that F̂ = F⊗ ◦ ev, and so F̂ is continuous, being a compo-
sition of continuous maps.

The preceding development can be extended from simple multiplicative dependence
by considering F⊗ to be in the completion Γ ν(TM) q⊗εC0(C ), but we shall not pursue
this here.
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Control systems with discrete control sets Discrete control sets are common in control
theory, as they represent situations where control actions are only selectable from a
finite set of possibilities. We consider this in a general setting by considering a control
set C equipped with the discrete topology. In this topology, every subset of C is open,
and so the map u �→ Fu is always continuous. Thus, when dealing with a discrete
control setC in this sense, every mapping F : M×C → TM for which F(x, u) ∈ TxM
is a Cν-control system.

Let us now consider what trajectories look like in this case. Note that, if C has the
discrete topology, its compact subsets are exactly the finite subsets. Therefore, for an
interval T ⊆ R,

L∞
loc(T;C ) = {μ : T → C | μ−1(u) is Lebesgue measurable for every u ∈ C

and image(μ|T′) is finite for every compact subinterval T′ ⊆ T}.

Now let μ ∈ L∞
loc(T;C ) and consider the time varying vector field

Fμ : T × M → TM

(t, x) �→ F(x, μ(t)).

Define F̂μ : T → Γ ν(TM) by F̂μ(t)(x) = Fμ(t, x). Then we see that F̂μ is exactly
characterised by the fact that, for every T

′ ⊆ T, F̂μ|T′ is a simple function, in the
sense of measure theory, i.e., F̂μ|T is a finite linear combination, with coefficients
in Γ ν(TM), of characteristic functions of measurable sets. In summary, trajectories
for Cν-control systems with a discrete control set are integral curves of time-varying
vector fields that are locally simple functions of time.

Control systems prescribed by families of vector fields The notion of a control system
being prescribed by a family of vector fields is common. Our framework of locally
convex topologies allows an important extension of how such control systems are
normally treated. Indeed, for “family of vector fields” models for control systems, one
typically considers trajectories that are concatenations of integral curves of the system
vector fields. This translates into controls being piecewise constant. In our framework,
this class of controls can be broadened.

We let F ⊆ Γ ν(TM) be an arbitrary family of vector fields on a Cr -manifold M.
We then define a Cν-control system ΣF = (M, FF ,F ) with control setF (equipped
with the relative topology) and with

FF (x, X) = X (x).

In this case, the induced map from the control setF to Γ ν(TM) is simply the inclusion
map, which is certainly continuous; thus ΣF is indeed a Cν-control system. Indeed, it
is an example of a control-linear system, as discussed above. Thus, for systems such as
this, one can work with controls that are locally integrable, with this meaning locally
Bochner integrable in this case.
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This rather abstract approach to a control system is used elegantly in optimal control
theory by Sussmann [63], and is also part of the approach to control theory in [43].

Systems defined by “control bundles” The work of Brockett [12] and Willems [69]
introduces the notion of a control system as being prescribed by a bundle over the state
manifold. Let us be clear about this. We have a fibre bundle π : C → M that prescribes
the space where controls take values. Precisely, a control is a mapping μ : T → C.
(The matter of what is the appropriate regularity, e.g., measurability, boundedness,
integrability, of this control is one of the difficulties of this control bundle formulation.)
The dynamics are prescribed by a Cν-bundle mapping F : C → TM over idM:

C
F

π

TM

πTM

M

Thus, a trajectory associated with a control μ : T → C is a curve ξ : T → M satisfying
ξ = π ◦μ and ξ ′(t) = F(μ(t)). This is encapsulated by the following commutative
diagram:

C
F

π

TM

πTM

T

μ

ξ
M

It is possible to include this formulation in our notion of a control system as follows.
Let us denote by Γ ν(C) the set of Cν-sections of π : C → M. (Here we run into a
possible problem, since we may have Γ ν(C) = ∅. This can be overcome by working
with local sections.) We then denote by

Γ ν
F (TM) = {F ◦σ | σ ∈ Γ ν(C)} ⊆ Γ ν(TM)

the set of Cν-vector fields arising, through F , from Cν-sections of π : C → M. This
then allows us to work with the family of Cν-vector fields Γ ν

F (TM), and so define
a control system as in our preceding example. With this formulation, the matter of
regularity of controls becomes unambiguous: we can work with locally (Bochner)
integrable controls.
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