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Abstract In analogy to the Kučera–Youla parametrization, we construct and para-
metrize all stabilizing controllers of a stabilizable linear periodic discrete-time
input/output system, the plant. We establish a necessary and sufficient algebraic con-
dition for the existence of controllers among these for which the output of the plant
tracks a given reference signal in spite of disturbance signals on the input and the output
of the plant. With a minor additional assumption, the tracking stabilizing controllers
are robust. As in the linear time-invariant (LTI) case, the reference and disturbance
signals are assumed to be generated by an autonomous system. Our results are the
analogs for periodic behaviors of the corresponding LTI results of Vidyasagar. A com-
pletely different approach to stabilization and control of discrete periodic systems was
developed by Bittanti and Colaneri. We derive a categorical duality between periodic
behaviors over the time-axis of natural numbers and finitely generated modules over
a suitable noncommutative ring of difference operators and use this for the proof of
the main stabilization and control results. Morita’s theory of equivalences between
module categories is employed as an essential algebraic tool. All results of the paper
are constructive.
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1 Introduction

In analogy to the Kučera–Youla parametrization, we construct and parametrize all
stabilizing controllers of a stabilizable linear N -periodic (N > 0) discrete-time
input/output (IO) system, the plant (Theorem 5.3). We establish a necessary and suf-
ficient algebraic condition for the existence of controllers among these for which the
output of the plant tracks a given reference signal in spite of disturbance signals on
the input and the output of the plant (Theorems 6.1, 6.2). With a minor additional
assumption the tracking stabilizing controllers are robust (Theorem 6.4). As in the
linear time-invariant (LTI) case the reference and disturbance signals are assumed
to be generated by an autonomous system. Our results are the analogs for periodic
behaviors of the corresponding LTI results of Vidyasagar [16, §§5.1, 5.2, 5.7, 7.5].
They solve open problems that were raised in [1, §7].

In contrast to [1,5,11] and in accordance with [2,9,16] (in the LTI case), we consider
N -periodic systems on the time-axis N � t of natural numbers and not on Z. A
periodic system is a linear time-varying (LTV) system whose coefficient functions
a are N -periodic, i.e., satisfy a(t + N ) = a(t) for t ∈ N. If F denotes any field
or, in Sects. 5 and 6, the field R or C of real or complex numbers, the coefficient
functions form the commutative algebra F

Z/ZN of functions from Z/ZN to F where
we pose a(t) := a(t + ZN ) for t ∈ N. The monoid N acts on a ∈ F

Z/ZN via algebra
isomorphisms by ( j ◦ a)(t + ZN ) := a( j + t + ZN ). This action gives rise to the
noncommutative skew-polynomial algebra of difference operators, cf. [5, (25)],

A := F
Z/ZN [q; ◦] = ⊕∞

j=0F
Z/ZNq j with q ja = ( j ◦ a)q j , j ∈ N, a ∈ F

Z/ZN .

(1)
The most general and standard signal space for one-dimensional discrete systems

theory is the space

W := F
N := {w = (w(t))t∈N : N → F, t �→ w(t)} (2)

of sequences or functions fromN toF. The components of the error signals in the stabi-
lization theory (F = R,C) are, however, much more special and indeed exponentially
stable and, in particular, belong to the Banach spaces

�∞ =
{
w ∈ F

N; sup
t∈N

|w(t)| < ∞
}

and �p :=
{

w ∈ F
N;
∑
t∈N

|w(t)|p < ∞
}

(3)
for p ∈ N, p > 0. The proper and stable transfer matrix of the constructed closed loop
behavior acts via convolution on vectors with entries in F

N. This transfer operator is
(�p, �p)-stable for p = 0, 1, . . . ,∞, i.e., maps vectors with components in �p onto
vectors with the same properties. This is well known from the LTI case.

The standard action

◦ : A ×W → W with (q ◦ w)(t) := w(t + 1), (a ◦ w)(t) := a(t)w(t), (4)
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for a ∈ F
Z/ZN , w ∈ W, t ∈ N makes W an injective A-left module, but not a cogene-

rator, cf. Theorem 3.4 and Remark 3.5. As usual this action is extended to one of the
matrices

R =
d∑
j=0

R jq
j ∈ Ar×k, R j ∈

(
F
Z/ZN

)r×k
on w = (w1, . . . , wk)

	 ∈ Wk

:= Wk×1 : (R ◦ w)(t) =
d∑
j=0

R j (t)w(t + j), B :=
{
w ∈ Wk; R ◦ w = 0

}
. (5)

The equation R ◦ w = 0 is a linear system of difference equations with N -periodic
coefficients. Its solution space B is the associated periodic or AF

N-behavior and the
principal object of study in this paper.

The center of A is the commutative polynomial algebra Z := F[�], � := qN ,

that acts on the signal space Ŵ := F
NN via left shift, i.e.,

(� ◦ ŵ)(τ ) := ŵ(τ + N ), ŵ ∈ Ŵ = F
NN , τ ∈ NN = {0, N , 2N , . . .} , (6)

and makes it an injective cogenerator with its ensuing categorical duality between LTI
ZŴ -behaviors and finitely generated (f.g.) Z-modules, cf. [5, (20)–(22)]. By means
of the isomorphism

W = F
N ∼= Ŵ N =

(
F
NN
)N

, w �→ ŵ := (w0, . . . wN−1)
	 with

w( j + τ) := w j (τ ), 0 ≤ j ≤ N − 1, τ ∈ NN , (7)

we derive a categorical equivalence between periodic behaviors, i.e., AW -behaviors,
and ZŴ -behaviors (Theorem 3.4), which is our formulation of the correspondence of
periodic behaviors and their lifted LTI form, cf. [5, Thm. 4.6]. It enables the transfer
of Vidyasagar’s LTI stabilization and control theory [16] to periodic behaviors and
the application of [3]. The algebra A is canonically a subalgebra of the matrix algebra
B := ZN×N . Since AW is not a cogenerator, periodic behaviors are not dual to
f.g. A-left modules, but to f.g. B-left modules (Theorem 3.14). This is shown by
means of the isomorphism (7) and by Morita’s theory of equivalent module categories
that also implies the precise structure of these modules. F.g. A-modules have a more
complicated structure and were studied in [9], but are not employed for the study of
periodic behaviors in this paper.

The main results of this paper described above are contained in Sects. 5 and 6.
Section 3 describes the module-behavior duality for periodic behaviors on the time-
axis N. For the time-axis Z, the theory is simpler and was treated with similar methods
in [5] where we also explained the relation with previous work [1,2,11]. In Sect.
4, we apply Morita theory to derive essential notions for and properties of periodic
behaviors and their dual f.g. B-left modules, for instance autonomy, controllability, the
existence and characterization of input/output (IO) structures and left and right coprime
factorizations. We show that in the Morita framework a periodic behavior and its lifted
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LTI behavior coincide via the isomorphism (7). This simplifies the considerations of
Sects. 5 and 6 considerably. In Sect. 5, we also discuss the characteristic variety or
set of poles of an autonomous behavior and define and characterize the stability of
autonomous and of input/output systems.

By means of the algorithms from [3] all results of this paper are constructive, but
have not yet been implemented in the periodic case.

History A completely different approach to stabilization and control of discrete
periodic systems given by state space equations is exposed by Bittanti and Colaneri
[2, pp. 353–404], see also [8,17] (continuous time). Commutative and noncommutative
rings of (partial) differential operators and their modules have been an important tool in
Algebraic Analysis since the seminal work of Ehrenpreis, Malgrange and Palamodov
for constant coefficients in the 1960s and later, for varying coefficients, in the work of
Kashiwara and many other researchers. In systems theory, already Kalman employed
polynomial modules, but from a different point of view, and Ylinen [18] already
used skew-polynomial rings of differential operators. In connection with Rosenbrock’s
polynomial and Willems’ behavioral approach, modules were introduced by Fliess and
the second author in 1990, also for multidimensional behaviors, and were also used
in [9]. The module theoretic reformulation of the fractional representation approach
(cf. the bibliographies of [14,16] for important contributors to the latter field) and its
application to stabilization problems is due to Quadrat, cf. [14], and was also applied
in [3]. In this approach, a commutative domain S of stable operators, often a Banach
algebra, with its quotient field K is given. A system is described by a transfer matrix
H ∈ Kr×k , hence hidden modes are removed and autonomous systems as in Sect. 6
cannot be used. A similar framework is used in [6]. Our ring B of difference operators
is neither commutative nor a domain, but the Morita theory enables the reduction of
the problems to the commutative operator domains F[s] and S, as used in [3,16].

2 Terminology and notations

We have to use various notions from algebra. We refer to the books [12,13,15] for
the basic algebraic language concerning rings, modules and categories. For the conve-
nience of the reader, we give here a list of notations with short explanations, essentially
in the order in which they appear in the paper:

1. Abbreviations f.d.= finite-dimensional, f.g. = finitely generated, IO = input/output,
LTI =linear time-invariant, LTV = linear time-varying, resp.= respectively, w.l.o.g.
= without loss of generality, w.r.t. = with respect to.

2. Xr×k := the abelian group of r × k-matrices with entries in the abelian group X ,
X1×k := rows, Xk := Xk×1 := columns.

3. F = a field, F = R,C in Sects. 5 and 6.
4. F

Z/ZN ( ⊂
identification

F
N): the commutative coefficient ring of periodic functions

a : N → F of period N with a(t) := a(t), t := t + ZN ∈ Z/ZN , t ∈ N

5. εi = ε2
i
, εi ( j) = δi, j , i, j ∈ Z/ZN : the standard F-basis of FZ/ZN consisting

of idempotents.

123



Math. Control Signals Syst. (2016) 28:18 Page 5 of 34 18

6. A := F
Z/ZN [q; ◦]: the noncommutative F-algebra of skew-polynomials in the

indeterminate q with coefficients in F
Z/ZN .

7. Z := center(A) := {z ∈ A; ∀a ∈ A : az = za} = F[�]: the center of A and
polynomial algebra in the indeterminate � := qN with coefficients in F.

8. W = F
N := the space of signal functions (sequences) w : N → F and A-left

module with the shift action (q ◦ w)(t) := w(t + 1) and (a ◦ w)(t) := a(t)w(t)
for a ∈ F

Z/ZN .
9. Ŵ := F

NN := the space of signals (sequences) ŵ : NN → F and Z-module
with the action (� ◦ ŵ)( j N ) = ŵ( j N + N ) = ŵ(( j + 1)N ), W ∼= Ŵ N .

10. AMod := the class or category of A-left modules.
11. HomA(M, N ): the Z-module of A-linear maps between A-left modules M, N .
12. Z :A Mod →Z Mod, M �→ ε0M : the exact left adjoint to A.
13. A :Z Mod →A Mod, P �→ PN : the exact right adjoint to Z .
14. B = ZN×N ⊃

identification
A: Z -algebra of N × N -matrices.

15. SZ := Z\{0}: multiplicative monoid of nonzero polynomials in Z = F[�].
16. K := ZSZ = F(�): quotient ring of Z w.r.t. SZ, quotient field of Z.
17. Q := BSZ = KN×N : quotient ring of B with denominators in SZ and matrix ring

over the field K.
18. F(�)pr ⊂ F(�): ring of proper rational functions in �.
19. In the following: F = R,C.
20. D ⊆ {λ ∈ C; |λ| < 1}: nonempty (open) subset of the open unit disc.
21. SD ⊂ SZ: saturated monoid of (D)-stable polynomials, i.e., with roots in D.
22. ZD := ZSD

: quotient ring of (D)-stable rational functions with denominators in
SD.

23. BD := BSD
, MD := MSD

: quotient ring and module.
24. WD, resp. ŴD: injective cogenerator quotient signal modules over BD, resp. ZD.
25. S := ZD ∩ F(�)pr: ring of proper and (D)-stable rational functions.
26. C := SN×N : matrix ring over S.
27. B ⊆ W p+m : input/output BW -behavior, B0: its autonomous part, BD ⊆ W p+m

D
:

its quotient.
28. B̂ ⊆ Ŵ �: autonomous ZŴ -behavior, char(B̂): its characteristic variety or set of

characteristic values or poles.

3 Module-behavior duality for periodic behaviors on N

We treat discrete periodic behaviors on the time-axis N in analogy to the case of
the lattice Zr [5, §4]. The main goal is the proof of Theorem 3.14 that describes the
equivalence between periodic behaviors and their lifted LTI forms and the duality of
these to their associated modules constructively. Morita equivalence plays a decisive
part.

Consider the cyclic group Z/ZN , N > 0, with the elements i := i +ZN , i ∈ Z,

a field F, the time-axis N and the signal space W := F
N. The algebra F

Z/ZN with
the componentwise multiplication is identified with the subalgebra of N -periodic
functions on N, i.e.,
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F
Z/ZN =

{
a ∈ F

N; ∀t ∈ N : a(t) = a(t + N )
}

, a(t) = a(t). (8)

It has the F-basis εi , i ∈ Z/ZN , of complete orthogonal idempotents defined by
εi (t) = δi,t . As in [5] the monoid N acts on Z/ZN , resp. on F

Z/ZN by i ◦ j = i + j ,

resp. by (i ◦ a)(t) = a(i + t) and then

F
Z/ZN = ⊕i∈Z/ZNFεi = ⊕N−1

i=0 Fεi , j ◦ εi = εi− j . (9)

As in [5, (23)–(25), (69)–(74)], we get the (noncommutative) skew-polynomial algebra
(cf. (1))

A := F
Z/ZN [q; ◦] = ⊕i∈Z/ZN , j∈NFεi q

j , q jεi = εi− j q
j

Z := center(A) = F[�], � := qN ,

A = ⊕N−1
i, j=0Zεi q

j , εiA = ⊕N−1
j=0 Zεi q

j , Aεi = ⊕N−1
j=0 Zεi− j q

j ,

ε0A = ⊕N−1
j=0 Zε0q

j , ε0Aε0 = Zε0

v :=
⎛
⎝ ε0· · ·

ε0q
N−1

⎞
⎠ ∈ (ε0A)N , ε0A = Z1×Nv.

(10)

The algebra A acts on the signal space W = F
N by means of (4) and makes

it an A-left module. A matrix R ∈ Ar×k gives rise to the equation module
U := A1×r R ⊆ A1×k , the system factor module M := A1×k/U and the behavior
B := {w ∈ Wk; R ◦ w = 0

}
. The following simple, but important F-linear isomor-

phism

HomA(M,W ) ∼=
Malgrange 1962

B, Φ �→ w = (w1, . . . , wk)
	,

W = F
N, Φ(ξ +U ) = ξw =

k∑
j=1

ξ j ◦ w j , ξ = (ξ1, . . . , ξk) ∈ A1×k, (11)

holds and shows that the ubiquitous Hom-spaces (see Theorem 3.4 below)

HomA(M,W ) ∼= HomZ(ε0M, Ŵ ), Ŵ = F
NN , (12)

and the results about them have a direct systems theoretic significance. For f.g. A-
left modules M with a given representation M = A1×k/U as in (11) the Malgrange
isomorphism is canonical (functorial) and hence we identify B = HomA(M,W ).

Since εi is idempotent Aεi is a projective direct summand of A, but in contrast
to the case of the time-axis Z [5], the Aεi are not isomorphic to Aε0 and the latter
is not a progenerator, i.e., a f.g. projective generator of AMod. The module ε0A is
a (Z, A)-bimodule and free of dimension N as Z-module with the Z-basis v. We
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identify Z1×N =
ident.

ε0A by z = (z0, . . . , zN−1) =
ident.

zv. If P is any Z-module, then

HomZ
(
ε0A, P

)
is a left A-module with the action

(aϕ)(ε0b) = ϕ(ε0ba), a, b ∈ A, ϕ ∈ HomZ
(
ε0A, P

)
. (13)

The map

HomZ
(
ε0A, P

) ∼= PN := PN×1, ϕ �→ ϕ(v) =: y = (y0, . . . , yN−1)
	,

y j = ϕ(ε0q
j ), (14)

is a Z-isomorphism. We identify HomZ
(
ε0A, P

) = PN , ϕ = ϕ(v). We turn PN into
an A-left module by transport of structure along the isomorphism of (14), hence

ay = aϕ(v) := ϕ(va)

ε j y = (0, . . . , 0,
j
y j , 0, . . . , 0)	, j = 0, . . . , N − 1

qy = (y1, . . . , yN−1, � ◦ y0)
	, � = qN ∈ Z.

(15)

Corollary 3.1 Consider the signal modules AF
N and ZF

NN . There is the Z-
isomorphism

F
N ∼= HomZ

(
ε0A,FNN

) ∼= (FNN
)N

, w �→ ŵ =
⎛
⎝w0
· · ·
wN−1

⎞
⎠ , with

wi (τ ) := w(i + τ), 0 ≤ i ≤ N − 1, τ ∈ NN . (16)

This isomorphism is even A-linear where
(
F
NN
)N ∼= HomZ(ε0A,FNN ) has the A-

structure from (15).

We define the two functors

Z : AMod → ZMod, M �→ Z(M) := ε0M, and

A : ZMod → AMod, P �→ A(P) := HomZ(ε0A, P) = PN . (17)

The functors are exact since Aε0, resp. ε0A are A-projective, resp. Z-free.

Corollary 3.2 ([9, Thm. 5]) The module Aε0 is f.g., projective as direct summand of
A, but not free.

Proof Assume

Aε0
∼=
A

A1×m �⇒ Zε0 = ε0Aε0
∼=
Z

(ε0A)1×m �⇒ 1 = dimZ

(
(ε0A)1×m

)
= mN .

(18)
This is a contradiction. ��
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Lemma 3.3 For M ∈ AMod and P ∈ ZMod there is the functorial isomorphism

HomZ
(
ε0M, P

) ∼= HomA(M, PN ), ϕ �→ Φ, where

Φ(x) =
(
ϕ(ε0x), . . . , ϕ(ε0q

N−1x)
)	

, ϕ(ε0x) = Φ(x)0. (19)

The isomorphism means that Z (A) is left (right) adjoint to A (Z) [15, §IV.9]

Proof The isomorphism follows from ϕ(ε0q
j x) = Φ(q j x)0 = (q jΦ(x)

)
0 = Φ(x) j .

��
We recall that an A-module AW is called injective if the contravariant functor

HomA(−,W ) : AMod → ZMod, M �→ HomA(M,W ), (20)

preserves the exactness of sequences or, equivalently, maps monomorphisms to epi-
morphisms. If AW is injective, it is also a cogenerator if and only if HomA(M,W ) = 0
implies M = 0.

Theorem 3.4 The isomorphisms (16) and (19) imply the functorial isomorphism

B̂ := HomZ

(
ε0M,FNN

) ∼= B := HomA(M,FN), ϕ ↔ Φ, where

Φ(x)( j + τ) = ϕ(ε0q
j x)(τ ), x ∈ M, j = 0, . . . , N − 1, τ ∈ NN . (21)

Since Z : M �→ ε0M is exact and since ZF
NN is the standard LTI injective cogener-

ator, the signal module AF
N is injective too and

ε0M = 0 ⇐⇒ HomA(M,FN) = 0. (22)

Hence, any (periodic) AF
N-behavior B is canonically an LTI ZF

NN -behavior B̂.

Since M �→ ε0M and M �→ HomA(M,FN) are exact, the full subcategory

C :=
{
C ∈ AMod; ε0C = 0 or HomA(C,FN) = 0

}
(23)

is a Serre subcategory, i.e., closed under isomorphisms, submodules, factor modules,
extensions and direct sums.

Remark 3.5 The category C contains nonzero modules, and hence AF
N is not a cogen-

erator.

The largest submodule of M in C is called its (C)-radical and denoted by

Ra(M) = {x ∈ M; ε0Ax = 0
}
. (24)
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The representation ε0A = ⊕N−1
j=0 Zε0q

j and a simple computation imply

Ra(A) = {a ∈ A; ε0Aa = 0
}

=
{
a ∈ A; ∀ j = 0, . . . , N − 1 : ε0q

ja = 0
}
= 0. (25)

As usual, the adjointness implies the functorial morphisms [15, Prop. 9.3]

ζ : ZA → idZMod, η : idAMod → AZ
ζP : ε0P

N → P, ε0(y0, . . . , yN−1)
	 = (y0, 0, . . . , 0)	 �→ y0

ηM : M → ε0M
N , x �→ (ε0q

0x, . . . , ε0q
N−1x)	.

(26)

The morphism ζ is obviously an isomorphism. Like all adjointness morphisms, these
satisfy the relations

A ηA−→ AZA Aζ−→ A, A(ζP )ηA(P) = idA(P)

Z Zη−→ ZAZ ζZ−→ Z, ζZ(M)Z(ηM ) = idZ(M) .

(27)

Corollary 3.6 For every P, the map ηA(P) : A(P) → AZA(P) is an isomorphism.

Proof This follows from A(ζP )ηA(P) = idA(P) and the isomorphy of ζP . ��
An A-module M is called closed if ηM is an isomorphism. Let (A,ε0)Mod denote

the full subcategory of AMod of all closed A-modules. The adjointness of (19) and
Corollary 3.6 imply

Corollary 3.7 (cf. [15, Prop. XI.8.7]) The adjoint functorsZ andA imply the inverse
categorical equivalences

Z : (A,ε0)Mod
∼=−→ ZMod, M �→ ZM = ε0M,

A : ZMod
∼=−→ (A,ε0)Mod, P �→ AP = PN .

(28)

Since Z and A : ZMod → AMod are exact, the subcategory (A,ε0)Mod of closed
modules is closed under isomorphisms, kernels, cokernels and extensions and, in
particular, abelian.

In slightly superficial terms, a categorical equivalence between categories is a one–
one correspondence between the classes of objects with natural (functorial) properties.

Corollary 3.8 For all M ∈ AMod and C ∈ (A,ε0)
Mod, the isomorphism

HomA(AZM,C) ∼= HomA(M,C), Φ �→ ΦηM , (29)

holds. This means that the exact functor M �→ AZM = ε0M
N is left adjoint to the

inclusion (A,ε0)Mod ⊂ AMod.
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Proof This follows from the commutative diagram

M
ηM−→ AZM = ε0M

N

↓ ϕ ↓ AZϕ

C
ηC ∼=−−−→ AZC

�⇒ ϕ =
(
η−1
C AZϕ

)
ηM . (30)

��
Theorem 3.9 According to Corollary 3.1, ηFN is an isomorphism. Hence, AF

N is
closed and indeed an injective cogenerator in the category (A,ε0)Mod of closed A-
modules. For all M ∈ AMod, the map

HomA(AZM,FN) ∼= HomA(M,FN), Φ �→ ΦηM , (31)

is an isomorphism according to (29). Thus, every AF
N-behavior is described by a

unique closed module. The functor

(A,ε0)Modfg →
{

AF
N-behaviors

}
, M �→ HomA(M,FN), (32)

thus establishes a categorical duality between the category of f.g. closedA-leftmodules
and that of (periodic) AF

N-behaviors.

Lemma 3.10 For all M, the kernel and cokernel of ηM belong to C, more precisely

ker(ηM ) = Ra(M), ε0 ker(ηM ) = 0 and ε0 cok(ηM ) = 0. (33)

Proof (i) We apply the exact functor Z : M �→ ε0M to the exact sequence

0 → ker(ηM )
inj−→ M

ηM−→ AZM
can−→ cok(ηM ) → 0 �⇒

hence the sequence

0 → Z ker(ηM )
Z inj−→ ZM

ZηM−→ ZAZM
Z can−→ Z cok(ZηM ) → 0 (34)

is also exact. But ζZ(M)Z(ηM ) = idZ(M) by (27) and ζ is an isomorphism, hence
alsoZηM = ζ−1

Z(M)
is an isomorphism. This impliesZ ker(ηM ) = ε0 ker(ηM ) = 0

and likewise Z cok(ηM ) = ε0 cok(ηM ) = 0.

(ii) The equation ε0 ker(ηM ) = 0 implies ker(ηM ) ⊆ Ra(M). Conversely,
ε0 Ra(M) = 0 implies the commutative exact diagram

0 → Ra(M))
inj−→ M

can−→ M/ Ra(M) → 0
↓ ηRa(M) ↓ ηM ↓ ηM/ Ra(M)

0 → 0
AZ inj−→ AZ(M)

AZ can−→ AZ(M/ Ra(M)) → 0

�⇒ ηM (Ra(M)) = 0 �⇒ Ra(M) ⊆ ker(ηM ). (35)

��
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The closed modules can also be described by Morita equivalence, cf. [15, §IV.10,
§XI.8]. The (Z,A)-bimodule ε0A has the Z-basis v := (ε0, . . . , ε0q

N−1)	. If R is
any ring Rop denotes the opposite ring of R, i.e., R = Rop as abelian group and
r1 ·op r2 = r2r1. Then

HomZ(ε0A, ε0A)op ∼= B := ZN×N , α �→ b, α(v) = bv, (36)

is an algebra isomorphism and induces the category equivalence

ModHomZ(ε0A,ε0A)
∼= BMod, M �→ M, bx = xα, α(v) = bv, x ∈ M, (37)

between HomZ(ε0A, ε0A)-right and B-left modules. Since ε0A is a free generator of
ZMod, the Morita theorem [12, §18] yields the category equivalence

ZMod
A∼= ModHomZ(ε0A,ε0A)

∼=
(37)

BMod,

P �→ HomZ(ε0A, P) �→
(14)

PN = PN×1.
(38)

The structure of PN as B-left module is given by the matrix multiplication

(b, y) �→ by, b ∈ B = ZN×N , y = (y0, . . . , yN−1)
	 ∈ PN . (39)

The structure of ε0A as A-right module induces the algebra homomorphisms

A → HomZ(ε0A, ε0A)op ∼= ZN×N (40)

a �→ (
ε0b �→ ε0ba

) �→ ρ(a) where

va = ρ(a)v, ρ(εi ) = diag(0, . . . , 0,
i
1, 0, . . . , 0), ρ(q) =

⎛
⎜⎜⎜⎜⎝

0 1 0 · · · 0
0 0 1 · · · 0
· · · · · · · · · · · · · · ·
0 0 0 · · · 1
qN 0 0 · · · 0

⎞
⎟⎟⎟⎟⎠ .

Corollary 3.11 ([9, Prop. 1])

ρ(εkq
l)i j =

⎧⎪⎨
⎪⎩

1 if i = k, j = k + l, k + l ≤ N − 1

qN if i = k, j = k + l − n, k + l ≥ N

0 otherwise

(41)

With the standard basis Ek,l , 0 ≤ k, l ≤ N − 1, of ZN×N , this signifies

ρ(εkq
l) =

{
Ek,k+l if k + l ≤ N − 1

qN Ek,k+l−N if k + l ≥ N
. (42)
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Example 3.12 Let N = 2. Then

ρ(ε0zq
0) = E0,0 =

(
1 0
0 0

)
, ρ(ε0q

1) = E0,1 =
(

0 1
0 0

)
,

ρ(ε1q
0) = E1,0 =

(
0 0
1 0

)
, ρ(ε1q

1) = q2E0,0 = q2
(

1 0
0 0

)
(43)

Corollary 3.13 Consider the maps

A
ηA−→ AZA = (ε0A)N ∼= B = ZN×N

a �→ ηA(a) =
⎛
⎝ ε0q

0a
· · ·
ε0q

N−1a

⎞
⎠ = va = ρ(a)v �→ ρ(a)

. (44)

Since ker(ηA) = Ra(A) = 0, the maps ηA and thus also ρ are injective, and hence
A is a subalgebra of B via the explicitly given ρ from Corollary 3.11. This corollary
also implies that ηA and ρ are not surjective and that hence A is not a closed A-left
module.

Via ρ every B-module is also an A-left module. If P is any Z-module then the
A-structure of PN induced from ρ is that of (15). Since A : P �→ PN is a category
equivalence from ZMod both onto (A,ε0)

Mod and onto BMod we conclude

Theorem 3.14 (i) The exact functors Z and A induce the category equivalence

Z : (A,ε0)
Mod = BMod ∼= ZMod : A, M �→ ε0M, PN ← P. (45)

In particular, every closed A-module M is a B-module where the A- and the
B-structures of M are related by ρ.

(ii)

(
BModfg

)op ∼=
(

ZModfg
)op ∼=

{
AF

N-behaviors
} ∼= {ZF

NN -behaviors
}

M ↔ P ↔ B ↔ B̂
P = ε0M, M = PN ,

B = HomA(M,FN) = HomB(M,FN) ∼= B̂ = HomZ(P,FNN ).

(46)

So the algebraic counter-part of the category of periodic behaviors, i.e., of AF
N-

behaviors, is the category of f.g. left B-modules and not that of f.g. A-modules.

According to Theorem 3.14, the study of AF
N-behaviors requires that of f.g. B-

modules whereas f.g. A-modules are not needed. Properties of the latter are more
complicated and were discussed in [9].
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4 System theory via Morita equivalence

In this section, we apply Theorem 3.14 and indeed discuss a slightly more general
situation. Let Z be a commutative principal ideal domain and Z1×N its standard pro-

generator with the standard basis v ∈ (Z1×N
)N

. We use the antiisomorphism (36)

B := ZN×N ∼= HomZ(Z1×N , Z1×N )op, b ↔ α, α(v) = bv (47)

and the Morita equivalence

A : ZMod ∼= BMod : Z, P → PN , ε0M ← M, ε0 := diag(1, 0, . . . , 0). (48)

In particular, a B-left module is B-f.g. if and only if it is Z-f.g.
We also assume an injective cogenerator signal module ZŴ and BW := Ŵ N that by
equivalence is an injective cogenerator signal left B-module.

Remark 4.1 The main, but not the only (see below) example for the preceding data is
that from Theorem 3.14, i.e., Z = F[�] and B = ZN×N . We identify

Z1×N = ε0A = ⊕N−1
j=0 Zε0q

j , v = (ε0q
0, . . . , ε0q

N−1)	,

A =
Cor. 3.13

ρ(A) ⊂ B, a = ρ(a),

εi = ρ(εi ) = diag(0, . . . , 0,
i
1, 0, . . . , 0), q = ρ(q) =

⎛
⎜⎜⎜⎜⎝

0 1 0 · · · 0
0 0 1 · · · 0
· · · · · · · · · · · · · · ·
0 0 0 · · · 1
qN 0 0 · · · 0

⎞
⎟⎟⎟⎟⎠ .

(49)

In this case, the basis vectors and the rows and columns of matrices in ZN×N are
numbered from 0 to N − 1 and we keep this numbering also in the more general
situation of this section. The signal modules are

Ŵ = F
NN and W = F

N =
ident.

(
F
NN
)N � w,

w = (w0, . . . , wN−1)
	, w(i + τ) = wi (τ ), i = 0, . . . , N − 1, τ ∈ NN . (50)

The Morita functor A : P �→ PN maps

Z1×N to
(

Z1×N
)N =

ident.
ZN×N = B, (51)

where the left B-structure of the left side is that from (39) and of B the canonical one.
The Morita equivalence A preserves projectivity. In particular, for a f.g. Z-module P
and M = PN one gets the equivalences

P is Z-torsionfree, i.e., Z-free ⇐⇒ M is Z-free ⇐⇒ M is B-projective . (52)
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If (52) is satisfied, the corresponding behavior HomB(M,W ) ∼= HomZ(P, Ŵ ) is
called controllable. Further, the module ZN = AZ is the unique indecomposable
projective left B-module, but not free. Every f.g. submodule of Z1×Nk is free of
dimension ≤ Nk and, therefore, every submodule of B1×k is projective and the direct
sum of at most Nk summands ZN , but not free in general.

Lemma 4.2 (i) A f.g. projective B-module M is free if and only if N 2 divides
dimZ(M).

(ii) If B1×k = U1 ⊕ U2, then U1 is free if and only if U2 is free and then k =
dimB(U1) + dimB(U2).

Proof Since ε0B = Z1×N and dimZ(Z1×N ) = N , a f.g. projective B-module M is
free if and only if N divides dimZ(ε0M) or N 2 divides dimZ(M) = N dimZ(ε0M).
(ii) Due to dimZ(B) = N 2 (ii) follows directly from (i). ��

The functor A maps a free Z-module of dimension divisible by N onto a free
B-module, especially

A : Z1×Nk = (Z1×N )1×k = Z1×(N×k) �→
(
(Z1×N )1×k

)N =
(

ZN×N
)1×k

. (53)

Notice that the identification Z1×Nk = (Z1×N )1×k requires to divide the numbers
1, . . . , Nk into k blocks of length N . Such a division is either adapted to the context
or chosen arbitrarily. For two such modules, there is the isomorphism

HomZ

(
(Z1×N )1×r , (Z1×N )1×k

) ∼= Br×k, ϕ = ◦R ↔ R, ϕ(η) = ηR =: ξ,

where R = (R(i, j))i, j ∈ Br×k, R(i, j) ∈ B,

η = (η(1), . . . , η(r)), η(i) ∈ Z1×N , ξ = (ξ(1), . . . , ξ(k)), ξ( j) ∈ Z1×N

ξ = ϕ(η) = ηR, ξ( j) =
r∑

i=1

η(i)R(i, j). (54)

This isomorphism preserves products, i.e., transforms the product of composable maps
into the matrix product. The isomorphism

HomB(B1×r , B1×k) ∼= Br×k, Φ = ◦R ↔ R, Φ(Y ) = Y R =: X,

Y = (Y (1), . . . ,Y (r)), X = (X (1), . . . , X (k)), X = Y R,

X ( j) =
r∑

i=1

Y (i)R(i, j), (55)

is the natural one. The equivalence functor A maps the Z-linear map ◦R onto the
B-linear map ◦R, more precisely

A
(
◦R : (Z1×N )1×r → (Z1×N )1×k

)
=
(
◦R : (Z1×N )1×r → (Z1×N )1×k

)N
= ◦R : B1×r → B1×k . (56)
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In the sequel we, therefore, identify

Br×k = HomB(B1×r , B1×k) = HomZ

(
(Z1×N )1×r , (Z1×N )1×k

)
,

in particular Bk×k = ZNk×Nk ⊃ Glk(B) = GlNk(Z)

=
{
R ∈ ZNk×Nk; det(R) ∈ U(Z)

}

A(Z1×Nr R) = (Z1×Nr R)N = B1×r R ⊆ B1×k

dimZ(B1×r R) = N dimZ(Z1×Nr R) = N rankZ(R).

(57)

Here, U(Z) is the group of units or invertible elements of Z.

Remark 4.3 The preceding identification (57) implies in particular that the Smith form
of matrices in ZNr×Nk can be applied to R ∈ Br×k and that R is equivalent to a block

matrix
(
D 0
0 0

)
, where D is a diagonal matrix of Z-rank l = rankZ(R). If l = mN +

n, m, n ∈ N, n < N , one can assume, moreover, that D = diag(d1, . . . , dm, dm+1)

where the dμ are diagonal in B = ZN×N and of full Z-rank N or regular (nonzero-
divisors) in B for μ ≤ m. The row module B1×r R ⊂ B1×k is always projective, but
B-free only if the Z-rank l = mN +n is divisible by N or n = 0 and hence dm+1 = 0.
Then R is row-equivalent to a matrix R′ ∈ Bm×k whose rows are a B-basis of the row
module B1×r R = B1×m R′.

For b ∈ B = ZN×N and w = (w0, . . . , wN−1)
	 ∈ W = Ŵ N , the action of b on

w from (39) is defined by

b ◦ w =
(
N−1∑
ν=0

bμν ◦ wν

)

0≤μ≤N−1

. (58)

More generally, we get

Wk = (Ŵ N )k = Ŵ Nk � w = (w1, . . . , wk)
	,

w j = (w j,0, . . . , w j,N−1) ∈ W = Ŵ N . (59)

The matrix R ∈ Br×k from (54) induces the Z-linear system map

◦ R : Wk = Ŵ Nk → Wr = Ŵ Nr , w �→ R ◦ w, (R ◦ w)i =
k∑
j=1

R(i, j) ◦ w j ,

(R ◦ w)i,μ =
k∑
j=1

N−1∑
ν=0

R(i, j)μν ◦ w j,ν . (60)
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The associated behavior is

B =
{
w ∈ Wk = Ŵ Nk; R ◦ w = 0

} ∼=
Malgrange

HomB

(
B1×k/B1×r R,W

) ∼=
Morita

HomZ

(
Z1×Nk/Z1×Nr R, Ŵ

)
. (61)

The behavior B is thus a BW - and a ZŴ -behavior. Interpreted as the latter it is an
LTI behavior and the standard LTI systems theory for the injective cogenerator signal
module ZŴ , for instance for F[�]FNN , can be applied to it. The system factor modules
of the behavior B appear in the exact sequences

B1×r ◦R−→ B1×k can−→ M → 0

(Z1×N )1×r ◦R−→ (Z1×N )1×k can−→ ε0M → 0

where M := B1×k/B1×r R = (ε0M)N , ε0M = Z1×Nk/Z1×Nr R

(62)

and where can denotes the canonical map onto the factor module.
It is obvious that the preceding considerations can be applied to all matrices R ∈

Br×k and, therefore, to all BW -behaviors and especially to all periodic AF
N-behaviors,

but not to all ZŴ -behaviors because the number of rows and columns of R as a matrix
with entries in Z were assumed to be multiples of N .

The quotient field

K := ZSZ =
{
s−1a; s ∈ SZ, a ∈ Z

}
, SZ := Z\{0} ⊂ Z (63)

plays an important part in the LTI theory and thus here too. For Z = F[�] it is the
field F(�) of rational functions. It gives rise to the quotient ring

Q := BSZ = K ⊗Z B =
{
s−1b; s ∈ SZ, b ∈ B

}
= KN×N (64)

that is a simple Artinian K-algebra. By the standard LTI theory, the ZŴ -behavior
B from (61) is autonomous if and only if ε0M is a torsion module or, equivalently,
ε0MSZ = 0. The BW -behavior B is called autonomous if and only it is such as LTI
behavior, cf. [5, §4.3]. According to (62), this means that M is a Z-torsion module or
MSZ = 0. For Z = F[�] autonomy is also equivalent to the F-finite dimensionality
of M and ε0M . For the signal module BF

N it also means that the trajectories in B are
determined by initial conditions in the following sense: there is a number d ∈ N such
that the initial projection

B → (FN)dk, w �→ (w(0), . . . , w(d − 1))	, (65)

is injective.
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Input/output (IO) structures of the BW -behaviorB are defined in the following fashion:
let δ j , j = 1, . . . , k, be the standard basis of B1×k and

w := (δ1 + B1×r R, . . . , δk + B1×r R)	 ∈ Mk (66)

the canonical set of B-generators of M . An IO-structure of M is given by a subfamily
u = (u1, . . . , um)	 ∈ Mm of w such that the ui are B-linearly independent and
M/B1×mu is a Z-torsion module. After the usual permutation of the w j we assume
that

w =
(

y
u

)
∈ Mp+m, y = (y1, . . . , yp)

	, p + m = k. (67)

Correspondingly, the matrices R and B are decomposed as

R = (Dl ,−Nl) ∈ Br×(p+m) and B =
{(

y
u

)
∈ W p+m; Dl ◦ y = Nl ◦ u

}
.

(68)

The IO-property of

(
y
u

)
can be alternatively characterized as follows.

Lemma 4.4 For

(
y
u

)
∈ Mp+m as above and M0 := B1×p/B1×r Dl , the following

properties are equivalent:

(i) The decomposition w =
(

y
u

)
is an IO-decomposition.

(ii) The sequence

0 → B1×m (◦(0,idm ))ind−−−−−−−→ M

(
◦
(

idp

0

))

ind−−−−−−−−→ M0 → 0

η �→ ηu, (ξ, η)

(
y
u

)
�→ ξ + B1×r Dl

(69)

is exact and M0 is a Z-torsion module.

(iii) The projection B → Wm, w =
(
y
u

)
�→ u, is surjective and the BW-behavior

B0 := {y ∈ W p; Dl ◦ y = 0} is autonomous.
(iv) The induced map Q1×m = B1×m

SZ
→ MSZ , δi �→ ui

1 , is a Q-isomorphism.

(v) The submodule B1×r (Dl ,−Nl) is free of dimension p and Dl has a left inverse
in Qp×r .

(vi) rankZ(Dl) = rankZ(R) = pN, i.e., (Dl ,−Nl) ∈ Br×(p+m) = ZNr×N (p+m)

defines an IO-decomposition of the ZŴ -behavior B.
Since B1×r R = B1×r (Dl ,−Nl) is free of dimension p, we may always assume
r = p w.l.o.g.. In this case, Dl ∈ Glp(Q) = GlNp(K) and the matrix

G = D−1
l Nl ∈ Qp×m = KNp×Nm (70)
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is the transfer matrix of the IO-behavior B. It is characterized by the equation
Q1×r R = Q1×p(idp,−G).

Proof (i) ⇐⇒ (ii): the exactness of (69) without the 0 on the left is standard and
the remaining properties in (ii) are precisely the conditions of (i).

(ii) ⇐⇒ (iii): by duality since BW is an injective cogenerator.
(iii) ⇐⇒ (iv): this follows from the exactness of M �→ MSZ and the fact that M0

is Z-torsion if and only if M0
SZ

= 0.
(iv) �⇒ (v): (a) The isomorphism from (iv) implies

Q1×m ∼= MSZ
∼= Q ⊗B M ∼= Q1×k/Q1×r R

�⇒ dimZ(B1×r R) = dimK(Q1×r R) = dimK(Q1×k) − dimK(Q1×m)

= (k − m)N 2 = pN 2 �⇒ B1×r R free , dimB(B1×r R) = p.

(b) The torsion property of M0 implies

0 = M0
SZ

∼= Q ⊗B M0 ∼= Q1×p/Q1×r Dl .

This is equivalent to the existence of a left inverse of Dl in Qp×r .
(v) �⇒ (iv): as in (iv)�⇒ (v) we conclude that M0 is Z-torsion. This implies that

Q1×m → MSZ
∼= Q1×k/Q1×r R (71)

is surjective. Dimension count furnishes

dimK

(
Q1×k/Q1×r R

)
= dimK

(
Q1×k

)
− dimK

(
Q1×r R

)

= N 2k − N 2 p = N 2m = dimK

(
Q1×m

)
.

The dimension equality over the field K implies that the surjection (71) is
bijective.

(iv) ⇐⇒ (vi): by standard LTI theory the IO-property of the ZŴ -behavior B is
equivalent to the isomorphy

(◦(0, idNm))ind : K1×Nm ∼= K1×Nk/K1×Nr (Dl ,−Nl).

By Morita equivalence this isomorphism is equivalent to the isomorphism from
(iv).

��
Corollary and Definition 4.5 Assume w.l.o.g. that r = p in Lemma 4.4. Then the
standard sequence

0 → B1×p ◦(Dl ,−Nl )−−−−−−→ B1×(p+m) can−→ M → 0 (72)

is exact and the following properties are equivalent:
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(i) (Dl ,−Nl) has a right inverse.
(ii) M is Z-free and then indeed B-free of dimension m.

The representation G = D−1
l Nl is then called a left coprime factorization of G.

Proof By Morita equivalence, Z-freeness and B-projectivity of M coincide. Equa-
tion (72) implies that (i) is equivalent to the existence of a direct decomposition
B1×(p+m) ∼= B1×p ×M or the projectivity of M . Lemma 4.2 implies that M is B-free
with dimB(M) = m. ��

Recall that the behavior B ∼= HomZ(ε0M, Ŵ ) ∼= HomB(M,W ) is controllable as
LTI, resp. as periodic behavior if and only if M is Z-free, resp. B-projective.

Remark 4.6 Lemma 4.4 shows that an IO-decomposition of the BW -behavior is also
one of the ZŴ -behavior B, but there are many more IO-decompositions of B as ZŴ -
behavior than as BW -behavior. Whereas an arbitrary LTI behavior admits at least one
IO-decomposition, this is not true for periodic behaviors since already the necessary
condition that the projective module B1×r R be free need not be satisfied. But even if
B1×r R is free of dimension p and r = p w.l.o.g. there need not be a decomposition
R = (Dl ,−Nl) ∈ Bp×(p+m) (after a suitable column permutation) with Dl ∈ Glp(Q),
for instance in

N = 2 and R =
((

1 2
0 0

)
,

(
0 0
1 3

))
=
(

1 2 0 0
0 0 1 3

)
∈ B1×2 = Z2×4.

So the IO-decomposition of a periodic behavior is an essential additional structure.
In [1, Def. 53], the authors define an IO-decomposition ofB as one of the LTI behaviors,
but for the time-axis Z instead of N here. For the further considerations in the present
paper this notion is too weak.

Lemma 4.7 Assume that R = (D0
l ,−N 0

l ) ∈ Bp×(p+m) with D0
l ∈ Glp(Q) and

free M := B1×(p+m)/B1×p(D0
l ,−N 0

l ). In other words, R = (D0
l ,−N 0

l ) is an IO-
decomposition and G := (D0

l )
−1N 0

l is a left coprime factorization. Then there are
matrices D0

r , N
0
r , R0

l , S
0
l , R0

r , S
0
r ∈ B•×• of suitable sizes with the following proper-

ties:

(i) The following two sequences are exact,

0 → B1×p ◦(D0
l ,−N0

l )−−−−−−→ B1×(p+m)

◦
(
N 0
r

D0
r

)
−−−−−→ B1×m → 0

0 ← B1×p

◦
(
S0
r

−R0
r

)
←−−−−−− B1×(p+m)

◦(R0
l ,S0

l )←−−−−− B1×m ← 0, (73)

in particular D0
l G = N 0

l and GD0
r = N 0

r .

(ii) B1×p(D0
l ,−N 0

l ) = ker
(
◦
(G

idm

) : B1×(p+m) → Q1×m
)
. This shows that the

left coprime factorization G = (D0
l )

−1N 0
l is unique up to row equivalence of

(D0
l ,−N 0

l ).

123



18 Page 20 of 34 Math. Control Signals Syst. (2016) 28:18

(iii) The following matrix equations hold:

(D0
l ,−N 0

l )
( S0

r
−R0

r

)
= idp, (R0

l , S
0
l )

(
N 0
r

D0
r

)
= idm, D0

r ∈ Glm(Q)

(
D0
l −N 0

l
R0
l S0

l

)(
S0
r N 0

r
−R0

r D0
r

)
=
(

idp 0
0 idm

)
= idp+m,

(
D0
l −N 0

l
R0
l S0

l

)−1

=
(

S0
r N 0

r
−R0

r D0
r

)
. (74)

Then G = N 0
r (D0

r )
−1 is called a right coprime factorization of G that is also

unique up to column equivalence of
( N 0

r
D0
r

)
.

(iv) All other quadruples Sl , Rl , Rr , Sr ∈ B•×• with the properties from (i) and (iii)
(without the index 0) are obtained with arbitrary X ∈ Bm×p by

(
Sr
−Rr

)
=
(
S0
r

−R0
r

)
−
(
N 0
r

D0
r

)
X, (Rl , Sl) = (R0

l , S
0
l ) + X (D0

l ,−N 0
l ). (75)

This is a variant of the famous Kučera–Youla parametrization.
(v) Generically (in the Zariski topology of Bm×p = ZNm×Np) or for almost all X

the additional inclusions Sl ∈ Glm(Q) and Sr ∈ Glp(Q) hold. This means that
(Rl , Sl) is also an IO-decomposition.

Proof Since M is free of dimensionm Eq. (72) and replacement of M by B1×m furnish
the first exact sequence in (73). The remaining assertions are elementary algebra [16,
Ch. 4], [3, Lemmas 2.3, 3.10]. The proof of D0

r ∈ Glm(Q) follows from idm = Rl N 0
r +

Sl D0
r = (RlG + Sl) D0

r . The first exact sequence in (73) and
( N 0

r
D0
r

)
=
(G

idm

)
D0
r

imply (ii). ��

Lemma 4.8 An arbitrary matrix G ∈ Qp×m admits a left coprime factorization G =
(D0

l )
−1N 0

l as in Corollary 4.5 that, in turn, gives rise to all data of Lemma 4.7, in
particular to the right coprime factorization G = N 0

r (D0
r )

−1.

Proof Item (ii) of Lemma 4.7 suggests to define

U := ker

(
◦
(
G
idm

)
: B1×(p+m) → Q1×m

)

�⇒ M := B1×(p+m)/U =
ident.

B1×(p+m)

(
G
idm

)
⊆ Q1×m .
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All f.g. B-submodules of the K-space Q1×m are Z-torsion free and B-projective.
Hence, M is B-projective and

MSZ = Q1×(p+m)

(
G
idm

)
= Q1×m

�⇒ dimZ(M) = dimK
(
MSZ

) = dimK

(
Q1×m

)
= N 2m.

We infer that M is B-free of dimension m and induces a direct decomposition
B1×(p+m) ∼= U×M . This and Lemma 4.2, in turn, imply thatU is B-free of dimension
p and thus of the form

U = B1×p(D0
l ,−N 0

l ) with dimB(U ) = p,

D0
l G = N 0

l and (D0
l ,−N 0

l ) = D0
l (idp,−G)

�⇒ Np = rankZ(D0
l ,−N 0

l ) = rankZ(D0
l ).

With Lemma 4.4(vi), we conclude that (D0
l ,−N 0

l ) is an IO-decomposition and with
Corollary 4.5(ii), that G = (D0

l )
−1N 0

l is the left coprime factorization, unique up to
row equivalence. ��

5 Stabilizing controllers

In this section, we construct and parametrize all stabilizing controllers of an IO-

F[�]N×NF
N-behavior by reduction to the LTI case.

The assumptions and notations of Sect. 4 remain in force with the specialization to
the data from Sect. 3. In addition, we assume the base fieldF := R,Cof real or complex
numbers, the polynomial algebra Z = F[�] and the subalgebra F(�)pr ⊂ K = F(�)

of proper rational functions [16, Ch. 2]. The relevant signal spaces are F[�]Ŵ := F
NN

and BW = Ŵ N = F
N, cf. Theorem 3.14, with the action (� ◦ ŵ)(τ ) = ŵ(τ + N ) for

ŵ ∈ Ŵ and τ ∈ NN .
For stabilization, we choose a nonempty subset D of the open unit disc

{λ ∈ C; |λ| < 1} and, for F = R in addition, that D is stable under conjugation
and contains at least one real number, cf. [3, p. 970, (5)]. The saturated sub-
monoid SD of all D-stable or just stable polynomials consists of the polynomials
in Z = F[�] whose roots lie in D. The quotient rings ZD := F[�]SD ⊂ F(�), resp.
S := SD := ZD

⋂
F(�)pr [16, p. 14] are the rings of stable, resp. of stable and

proper rational functions. All these rings are principal ideal domains. If � − α ∈ SD

then ZD is the quotient ring of SD with powers of (� − α)−1 as denominators, i.e.,
ZD = S(�−α)−1 [3, (5)]. Algorithms for S use the fact that this ring is Euclidean [16,
§2.1] or are reduced to standard polynomial algorithms over F[(� − α)−1] [3, §7].

A Z-module P gives rise to its ZD-quotient module

PD := PSD :=
{
s−1x; x ∈ P, s ∈ SD

}
. (76)
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In particular, the module ŴD is an injective cogenerator over ZD [3, §2]. This was
an essential tool in [3] for the construction of compensators and will below be used
for periodic systems. All commutative rings above give rise to their N × N -matrix
extensions

Z = F[�] ⊂ ZD = ZSD
⊂ K = F(�)⋂ ⋂ ⋂

B = ZN×N ⊂ BD := BSD
= ZN×N

D
⊂ Q = KN×N

and F[(� − α)−1] ⊂ S = SD ⊂ ZD, C := SN×N ⊂ BD = ZN×N
D

(77)

to which the theory of Sect. 4 is applicable. Notice that only constant polynomials in
Z = F[�] are proper and contained in SD. By Morita equivalence, the signal module
WD := WSD

= F
N

D
is an injective cogenerator over BD.

We assume an IO-behavior with the following data:

(Dl ,−Nl) ∈ Bp×(p+m) = ZNp×N (p+m), Dl ∈ Glp(Q) = GlNp(K),

U = B1×p(Dl ,−Nl) ⊆ B1×(p+m) = Z1×N (p+m), M := B1×(p+m)/U

M0 := B1×p/B1×pDl , G := D−1
l Nl ∈ Qp×m = KNp×Nm,

B :=
{(

y
u

)
∈ W p+m = Ŵ N (p+m); Dl ◦ y = Nl ◦ u

}
∼= HomB(M,W )

B0 :=
{
y ∈ W p = Ŵ Np; Dl ◦ y = 0

} ∼= HomB(M0,W )

BD :=
{(

y
u

)
∈ W p+m

D
= Ŵ N (p+m)

D
; Dl ◦ y = Nl ◦ u

}
∼= HomBD

(MD,WD)

B0
D
:=
{
y ∈ W p

D
= Ŵ Np

D
; Dl ◦ y = 0

} ∼= HomBD
(M0

D
,WD)

(78)

where by (61) B can be interpreted as a (periodic) BW -behavior or as an LTI ZŴ -
behavior. In its latter form, it admits the standard LTI stabilization theory [3,4,7,16].
It turns out that all LTI results forB can be translated to results concerning the periodic
behavior. We are going to do this below. By definition, the IO-behavior is (D)-stable
if its autonomous part B0 := {y ∈ W p = Ŵ Np; Dl ◦ y = 0

}
has this property.

Stability is characterized in the following lemma and requires the characteristic
variety and polynomial–exponential signals that we recall for the base field C and the
signal module C[�]CNN . Its torsion module admits the primary or modal decomposi-
tion

torC[�](CNN ) = ⊕λ∈CCNN (λ), C
NN (λ) =

{
C[τ/N ](λτ/N )τ∈NN if λ �= 0

C
(NN ) if λ = 0

C
NN (λ) = ⊕∞

k=0Ceλ,k, eλ,k(τ ) : =
{(

τ/N
k

)
λ(τ/N )−k if λ �= 0

δτ/N ,k if λ = 0

(� − λ)l ◦ eλ,k =
{
eλ,k−l if k ≥ l

0 if k < l.
(79)
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Here, C(NN ) ⊂ C
NN consists of the sequences ŵ = (ŵ(τ ))τ∈NN with finite support

{τ ∈ NN ; ŵ(τ ) �= 0}. The quotients τ/N come, of course, from the fact that NN
contains multiples of N only and C[τ/N ] consists of polynomial functions of τ/N . If

B̂ =
{
ŵ ∈

(
C
NN
)� ; R̂ ◦ ŵ = 0

}
, R̂ ∈ C[�]k×�, rank(R̂) = �, (80)

is any autonomous behavior, its characteristic variety or set of poles is the finite set

char(B̂) := {λ ∈ C; rankC(R̂(λ)) < rank(R̂) = �
}

=
{
λ ∈ C; B̂

⋂
C
NN (λ)� �= 0

}
=
{
λ ∈ C; B̂

⋂
C

�eλ,0 �= 0
}

and then

B̂ = ⊕λ∈char(B̂)

(
B̂
⋂

C
NN (λ)�

)
(modal decomposition). (81)

Hence, all trajectories ŵ of B̂ are exponentially and asymptotically stable or satisfy
limτ→∞ ŵ(τ ) = 0 if and only if char(B̂) is contained in the open unit disc. Slightly
different statements hold for F = R. The preceding considerations are applicable to
B0 from (78).

Lemma 5.1 ([3, Thm. 3.2]) For the IO-behavior from (78) the following properties
are equivalent:

(i) B is (D)-stable, i.e., by definition, B0
D
= 0 or M0

D
= 0.

(ii) The characteristic variety of B0 is contained in D, i.e.,

char(B0) = {λ ∈ C; rankC(Dl(λ)) < rankZ(Dl) = Np} ⊂ D. (82)

(iii) Dl ∈ Glp(BD) = GlNp(ZD).

(iv) (a) G = D−1
l Nl ∈ Bp×m

D
= ZNp×Nm

D
.

(b) MD is ZD-free.
According toCorollary 4.5, condition (b) implies that MD isBD-free of dimension
m, (Dl ,−Nl) has a right inverse in B(p+m)×p

D
= ZN (p+m)×Np

D
and that G =

D−1
l Nl is the left coprime factorization of G over BD.

SinceD is assumed to be a subset of the open unit disc all trajectories of the (D)-stable
behaviorB0 are asymptotically stable and this is the decisive consequence of stability.

Notice that Lemma 5.1 uses the fact that BD
WD is an injective cogenerator.

A D-stabilizing output feedback controller C′ of B is a behavior that is interconnected
to B in the usual way such that the interconnected behavior D′ is a D-stable IO-
behavior, i.e., satisfies D′0

D
= 0; cf. Algorithm 5.2 for the details. This latter condition

involves the localized signal space WD only and, therefore, it suffices to consider
BD

WD-behaviors only. We do this in the sequel. Conversely, every such behavior is the
localization of a BW -behavior. Following Vidyasagar [16], we construct only D′ with
proper transfer matrix and call the controllers C′ properly D-stabilizing. This requires
to use the rings S and C = SN×N and their modules instead of ZD and BD.
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The LTI behavior B is D-stabilizable, i.e., admits a D-stabilizing compensator, if
and only if it satisfies condition (iv),(b), of Lemma 5.1. This means that G = D−1

l Nl

is the left coprime factorization over BD.

Algorithm 5.2 We assume that the given BW -IO-behavior B is D-stabilizable or, in
other words, that G = D−1

l Nl is the left coprime factorization over BD. According to
[16, Ch. 5, Thm. 5.2.1], [4], [3, Thm. 3.12] all properly D-stabilizing controllers CD
of BD and their interconnected behaviors DD are obtained with the following steps:
we apply Lemmas 4.7 and 4.8 to the rings S ⊂ K = quot(S) and C = SN×N ⊂ Q =
KN×N and the transfer matrix G = D−1

l Nl and construct the matrices

D0
l , N

0
l , D0

r , N
0
r , S0

l , R0
l , S

0
r , R0

r ∈ C•×• = SN•×N• (83)

such that (i), (ii), (iii) of Lemma 4.7 hold. In particular, G = (D0
l )

−1N 0
l = N 0

r (D0
r )

−1

are the left, resp. right coprime factorizations over S and over C. All other quadruples
Sl , Rl , Sr , Rr with the same properties are obtained by the choice of an arbitrary matrix
X ∈ Cm×p = SNm×Np and

(
Sr
−Rr

)
=
(
S0
r

−R0
r

)
−
(
N 0
r

D0
r

)
X, (Rl , Sl) = (R0

l , S
0
l ) + X (D0

l ,−N 0
l ). (84)

They satisfy

(
D0
l −N 0

l
Rl Sl

)
∈ Glp+m(C) = GlN (p+m)(S),

(
D0
l −N 0

l
Rl Sl

)−1

=
(

Sr N 0
r

−Rr D0
r

)
.

(85)
For almost all X the matrices Sl and Sr satisfy detS(Sl) �= 0 and detS(Sr ) �= 0 or,
equivalently, Sl ∈ Glm(Q) = GlNm(K) and Sr ∈ Glp(Q) = GlNp(K). The left
coprime factorization G = (D0

l )
−1N 0

l over S and C is also such over ZD ⊃ S and
BD ⊃ C. According to Lemma 4.7, it is unique up to row equivalence and, therefore,

G = D−1
l Nl = (D0

l )
−1N 0

l , B1×p
D

(Dl ,−Nl) = B1×p
D

(D0
l ,−N 0

l ) �⇒
BD =

{(
y1
u1

)
∈ W p+m

D
; Dl ◦ y1 = Nl ◦ u1

}

=
{(

y1
u1

)
∈ W p+m

D
; D0

l ◦ y1 = N 0
l ◦ u1

}
. (86)

The controller CD of BD as BD
WD-behavior is given by the equations

CD :=
{(

u2
y2

)
∈ W p+m

D
; Rl ◦ u2 + Sl ◦ y2 = 0

}
. (87)
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Fig. 1 The interconnected
behavior DD (D′)

u1 u1 + y2

+ BD(B)
y1

u2y1 + u2

+
CD (C )

y2

If Sl ∈ Glm(Q), the controller is also an IO-behavior with input u2 and output y2. The
output feedback BD

WD-behavior DD is defined by (see Fig. 1)

u :=
(
u2
u1

)
, y :=

(
y1
y2

)
∈ W p+m

D

DD :=
{(

y
u

)
∈ W (p+m)+(p+m)

D
;
(
y1
u1 + y2

)
∈ BD,

(
y2
u2 + y1

)
∈ CD

}

=
{(

y
u

)
∈ W (p+m)+(p+m)

D
;
{
D0
l ◦ y1 = N 0

l ◦ (u1 + y2)

Rl ◦ (u2 + y1) + Sl ◦ y2 = 0

}

=
{(

y
u

)
∈ W (p+m)+(p+m)

D
; D ◦ y = N ◦ u

}

where D :=
(
D0
l −N 0

l

Rl Sl

)
∈ Glp+m(C), N :=

(
0 N 0

l

−Rl 0

)
∈ C(p+m)×(p+m).

(88)

The numbering u =
(
u2
u1

)
of the components of u is chosen such that both u

and y belong to W p+m
D

. Equation 85 implies that DD is a BD
WD IO-behavior with

input u and output y and is D-stable, cf. Lemmas 4.4 and 5.1. Its transfer matrix in
C(p+m)×(p+m) is

H =
(
Hy1,u2 Hy1,u1

Hy2,u2 Hy2,u1

)
:= D−1N =

(
Sr N 0

r

−Rr D0
r

)(
0 N 0

l

−Rl 0

)

=
(85)

(−N 0
r Rl Sr N 0

l

−D0
r Rl −Rr N 0

l

)
. (89)

The unique controllable BW -compensator C′ of B with localization CD = C′
D

is
obtained as follows: define the f.g. projective modules

V := B1×m
D

(Rl , Sl) ⊆ B1×(p+m)

D
, V ′ := B1×(p+m)

⋂
V ⊆ B1×(p+m)

�⇒ B1×(p+m)/V ′ ⊆ B1×(p+m)

D
/V, V ′

D
= V,

�⇒ dimZ(V ′) = dimZD
(V ′

D
) = dimZD

(V ) = N 2 dimBD
(V ) = N 2m. (90)

Moreover, since B1×(p+m)

D
/V is Z-free so is its Z-submodule B1×(p+m)/V ′ and thus

the latter is B-projective. Again by Lemma 4.2, we infer that V ′, resp. B1×(p+m)/V ′
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are B-free of dimensionsm, resp. p. In particular, V = B1×m(R′
l , S

′
l ), where (R′

l , S
′
l ) ∈

Bm×(p+m) has B-linearly independent rows. Define

C′ := V ′⊥ :=
{(

u2
y2

)
∈ W p+m; R′

l ◦ u2 + S′l ◦ y2 = 0

}
.

V ′
D
= B1×m

D
(R′

l , S
′
l ) = V = B1×m

D
(Rl , Sl)

�⇒ C′
D
=
(
V ′⊥)

D

= V⊥ = CD. (91)

Therefore, CD is the localization of C′. Since B1×(p+m)/V ′ is B-free, the compensator
C′ is controllable. The algorithmic computation of V ′ and C′ is explained in [3, §7].
The behavior C′ is the unique controllable one with C′

D
= CD. There are less useful

noncontrollable behaviors C′′ with C′′
D
= CD.

The interconnection of the given behavior B with C′ is given by

D′ =
{(

y
u

)
∈ W (p+m)+(p+m); D′ ◦ y = N ′ ◦ u

}
where

D′ :=
(
Dl −Nl

R′
l S′l

)
∈ B(p+m)×(p+m)

⋂
Glp+m(Q)

N ′ :=
(

0 Nl

−R′
l 0

)
∈ B(p+m)×(p+m).

(92)

Since BD is the localization of B and CD that of C′ we infer (cf. [3, Cor. 3.8])

B1×(p+m)

D
(D′,−N ′) = B1×(p+m)

D
(D,−N )

�⇒ D′
D
= DD, D′0

D = D0
D
= 0, H = D′−1N ′ = D−1N .

(93)

Summing up we obtain

Theorem 5.3 Let B be a D-stabilizable periodic IO-behavior, i.e., (Dl ,−Nl) has
a right inverse in B(p+m)×p

D
. The behaviors C′,D′, constructed above, are BW-

behaviors, i.e., periodic behaviors. The feedback interconnection D′ is a D-stable
IO-behavior with proper transfer matrix H ∈ C(p+m)×(p+m), C = SN×N , from (89).
Thus, the compensator C′ is properlyD-stabilizing and, moreover, controllable and all
such compensators are obtained in the described fashion. For almost all X ∈ Cm×p

from (84), the matrices Sl and S′l belong to Glm(Q) and both CD and C′ are IO-
behaviors with input u2 and output y2.

Remark 5.4 (Properness of the controller) Consider the data of Algorithm 5.2 and
Theorem 5.3. By construction, the interconnected IO-behaviors D′ and DD have
a proper transfer matrix H whereas properness of the plant transfer matrix G =
D−1
l Nl = (D0

l )
−1N 0

l is not assumed. Recall that almost all constructed controllers
are IO-behaviors and thus have a transfer matrix GC , in detail
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Fig. 2 The tracking behavior T ′
u1 u1 + y2

+ B
y1 + u2 u2

ry1 + u2 − r

−
C

y2

C′ =
{(

u2
y2

)
∈ W p+m; S′l ◦ y2 = −R′

l ◦ u2

}
,

C′
D
= CD =

{(
u2
y2

)
∈ W p+m

D
; Sl ◦ y2 = −Rl ◦ u2

}

S′l ∈ Bm×m
⋂

Glm(Q), Sl ∈ Cm×m
⋂

Glm(Q), R′
l ∈ Bm×p, Rl ∈ Cm×p,

GC = −(S′l )−1R′
l = −S−1

l Rl ∈ Qm×p = F(�)Nm×Np. (94)

Properness of GC , i.e., GC ∈ F(�)
Nm×Np
pr , is necessary and sufficient that C′ can

be implemented with elementary building blocks. In [3, Thm. 3.27], it was shown
that almost all controllers from Theorem 5.3 are IO-behaviors with a proper transfer
matrix GC . Moreover, if the transfer matrix G of the plant is strictly proper then all
controllers C′ from Theorem 5.3 are IO-behaviors with proper transfer matrix, cf. [16,
Cor. 5.2.20]. Symmetrically, if the controller is an IO-behavior with strictly proper
transfer matrix then the plant transfer matrix G is proper.

6 Tracking and disturbance rejection

We assume a D-stabilizable plant as in Theorem 5.3 and consider the properly D-
stabilizing controllers C′ and C′

D
= CD of this theorem. The input signals u1, resp. u2

of D′ are interpreted as disturbances of the input, resp. of the output of B. In addition,
we assume a reference signal r ∈ W p. We assume that a nonzero ψ ∈ F[�] is given
such that

ψ ◦ r = 0, ψ ◦ u1 = 0, ψ ◦ u2 = 0, (95)

i.e., that the signals u1, u2, r are generated by an autonomous system. We consider
the interconnected tracking system (see Fig. 2)

T ′ :=
⎧⎨
⎩
⎛
⎝ y
u
r

⎞
⎠ ∈ W (p+m)+(p+m)+p; (∗)

⎫⎬
⎭ where

(∗) Dl ◦ y1 = Nl ◦ (u1 + y2), S′l ◦ y2 + R′
l ◦ (u2 + y1 − r) = 0

ψ ◦ u1 = 0, ψ ◦ u2 = 0, ψ ◦ r = 0. (96)

So the input signal of the controller is the error signal e := y1 + u2 − r that is the
difference between the disturbed output y1 + u2 of the plant and the reference signal
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r . The aim is to construct controllers with D-stable e for all u1, u2, r satisfying (95).
The error behavior is the behavior of all error signals, i.e.,

E ′ := im

⎛
⎝T ′ → W p,

⎛
⎝ y
u
r

⎞
⎠ �→ e = y1 + u2 − r

⎞
⎠

=
⎧⎨
⎩y1 + u2 − r ∈ W p;

⎛
⎝ y
u
r

⎞
⎠ ∈ T ′

⎫⎬
⎭ . (97)

The controller C′ is said to track the reference signal r and to reject disturbances u1
and u2 that satisfy (95) if E ′

D
= 0. If this is the case, all error signals are asymptotically

stable, cf. (79)–(81) and Lemma 5.1.

Theorem 6.1 (i) The D-stabilizing controller C′ from Theorem 5.3 tracks the refer-
ence signal r and rejects the disturbances u1 and u2 satisfying (95) if and only
if

Z := ψ−1Sr ∈ Bp×p
D

. (98)

(ii) There is such a controller if and only if the inhomogeneous linear matrix equation

S0
r = N 0

r X + ψZ (99)

has a solution X ∈ Cm×p = SNm×Np and Z ∈ Bp×(p+m)

D
.

The computation of the solution (X, Z) is described in [3, §7].

Proof (i) Since the functor (−)D is exact and hence

E ′
D
:= im

⎛
⎝T ′

D
→ W p

D
,

⎛
⎝ y
u
r

⎞
⎠ �→ e = y1 + u2 − r

⎞
⎠

the condition E ′
D
= 0 holds if and only if the following implication holds:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

⎛
⎜⎝

y

u

r

⎞
⎟⎠ ∈ W (p+m)+(p+m)+p

D

Dl ◦ y1 = Nl ◦ (u1 + y2), S′l ◦ y2 + R′
l ◦ (u2 + y1 − r) = 0 �⇒ e = 0

ψ ◦ u1 = 0, ψ ◦ u2 = 0, ψ ◦ r = 0
(100)

Since

B1×p
D

(Dl ,−Nl) = B1×p
D

(D0
l ,−N 0

l ), B1×m
D

(R′
l , S

′
l ) = B1×m

D
(Rl , Sl) (101)
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the implication (100) is equivalent to the implication

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

⎛
⎜⎝

y

u

r

⎞
⎟⎠ ∈ W (p+m)+(p+m)+p

D
, y =

(
y1

y2

)
, u =

(
u2

u1

)
,

D0
l ◦ y1 = N 0

l ◦ (u1 + y2), Sl ◦ y2 + Rl ◦ (u2 + y1 − r) = 0 �⇒ e = 0

ψ ◦ u1 = 0, ψ ◦ u2 = 0, ψ ◦ r = 0
(102)

or, in shorter notation with (88), to

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

D ◦
(
y1

y2

)
= N ◦

(
u2 − r

u1

)
or y = H ◦

(
u2 − r

u1

)

ψ ◦
(
u

r

)
= 0

�⇒ e = 0. (103)

With H =
(−N 0

r Rl Sr N 0
l

−D0
r Rl −Rr N 0

l

)
we get the equivalent implication

ψ ◦
(
u
r

)
= 0 �⇒ e = y1 + u2 − r = (idp −N 0

r Rl) ◦ (u2 − r) + Sr N
0
l ◦ u1

=
(105)

Sr D
0
l ◦ (u2 − r) + Sr N

0
l ◦ u1 = (Sr D

0
l , Sr N

0
l ,−Sr D

0
l ) ◦

(
u
r

)
= 0.

(104)

Here,we used (85), i.e.,

(
Sr N 0

r

−Rr D0
r

)(
D0
l −N 0

l

Rl Sl

)
=
(

idp 0

0 idm

)
�⇒ idp −N 0

r Rl = Sr D
0
l . (105)

We finally derive the equivalent implication

∀
⎛
⎝ u2
u1
r

⎞
⎠ ∈ W p+m+p

D
: ψ◦

⎛
⎝ u2
u1
r

⎞
⎠ = 0 �⇒ (Sr D

0
l , Sr N

0
l ,−Sr D

0
l )◦
⎛
⎝ u2
u1
r

⎞
⎠ = 0.

(106)
Since BD

WD is an injective cogenerator this is equivalent to

(Sr D
0
l , Sr N

0
l ,−Sr D

0
l ) ∈ Bp×(p+m+p)

D
ψ

⇐⇒ ψ−1Sr (D
0
l ,−N 0

l ) ∈ Bp×(p+m)

D

⇐⇒ Z := ψ−1Sr = ψ−1Sr (D
0
l ,−N 0

l )

(
Sr
−Rr

)
∈ Bp×p

D
. (107)
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(ii) Recall from (84) that

(
Sr
−Rr

)
=
(
S0
r

−R0
r

)
−
(
N 0
r

D0
r

)
X. (108)

Inserting this into (98) furnishes the inhomogeneous Eq. (99)

S0
r = N 0

r X + ψZ .

So (99) follows from the properties of the controller C′. If, conversely, (99) has a
solution (X, Z) one uses Algorithm 5.2 to define the controller CD and then C′ with
this X . Then (99) implies (98) and, therefore, the controller C′ tracks r and rejects u1
and u2. ��

A more general tracking interconnection T ′ than in (96) assumes an additional
D-stable IO-behavior B2 with proper (and D-stable) transfer matrix Tl ∈ Cm×p (cf.
Lemma 5.1) that transforms the reference signal r of dimension p into its output r2 of
dimension m:

B2 :=
{(

r2
r

)
∈ Wm+p; D2

l ◦ r2 = N 2
l ◦ r

}
,

(D2
l ,−N 2

l ) ∈ Bm×(m+p), D2
l ∈ Glm(Q), Tl := (D2

l )
−1N 2

l ∈ Cp+m . (109)

Notice that B2 can be implemented since Tl is proper. From Lemma 5.1 we know
that D2

l ∈ Glm(BD) and that Tl = (D2
l )

−1N 2
l is a left coprime factorization over BD.

For a given controller C′, according to Theorem 5.3, the generalized interconnected
tracking behavior T ′ is defined by the equations

Dl ◦ y1 = Nl ◦ (u1 + y2), S′l ◦ y2 + R′
l ◦ (y1 + u2) = r2, D2

l ◦ r2 = N 2
l ◦ r

ψ ◦ r = 0, ψ ◦ u1 = 0, ψ ◦ u2 = 0. (110)

The error signal is e := y1+u2−r again. By definition, the matrices (R′
l , S

′
l , Tl) form

an (R, S, T )-controller if all error signals e of T ′ areD-stable, i.e., if the (autonomous)
error behavior E of all error signals is D-stable or satisfies ED = 0.

Theorem 6.2 Consider the D-stable IO-behavior B2 with proper transfer matrix Tl
from (109) and a stabilizing controller C′ according to Theorem 5.3with its associated
data. The matrices (R′

l , S
′
l , Tl) form an (R, S, T )-controller if and only if

ψ−1Sr , ψ
−1N 0

r (Tl − Rl) ∈ Bp×p
D

. (111)

Proof For signals with components in WD, Eq. (110) is equivalent to

D0
l ◦ y1 = N 0

l ◦ (u1 + y2), Sl ◦ y2 + Rl ◦ (y1 + u2) = r2, D2
l ◦ r2 = N 2

l ◦ r,
ψ ◦ r = 0, ψ ◦ u1 = 0, ψ ◦ u2 = 0, y, u, r, r2 ∈ W •

D
. (112)
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Due to

(
D0
l −N 0

l
Rl Sl

)−1

=
(

Sr N 0
r

−Rr D0
r

)
∈ Glp+m(C), D2

l ∈ Glm(BD), Tl ∈ Cm×p,

r2 = Tl ◦ r, idp = Sr D
0
l + N 0

r Rl , H =
(−N 0

r Rl Sr N 0
l

−D0
r Rl −Rr N 0

l

)
(113)

Eq. (112) is equivalent to

y = H ◦ u +
(

Sr N 0
r

−Rr D0
r

)(
0
Tl

)
◦ r, ψ ◦ r = 0, ψ ◦ u1 = 0, ψ ◦ u2 = 0 (114)

that implies

y1 = −N 0
r Rl ◦ u2 + Sr N

0
l ◦ u1 + N 0

r Tl ◦ r,
e = y1 + u2 − r = (Sr D

0
l , Sr N

0
l , N 0

r Tl − idp) ◦ (u2, u1, r)
	,

N 0
r Tl − idp = N 0

r (Tl − Rl) − Sr D
0
l .

(115)

By definition, the matrices (R′
l , S

′
l , Tl) define an (R, S, T )-controller if and only if Eq.

(112) implies e = 0. By means of (115) this is equivalent to the implication

ψ ◦ (u2, u1, r)
	 = 0 �⇒ (Sr D

0
l , Sr N

0
l , N 0

r Tl − idp) ◦ (u2, u1, r)
	 = 0. (116)

By the same argument as in the proof of Theorem 6.1, Eqs. (116) and (112) are
equivalent and this completes the proof. ��

Remark 6.3 In Theorem 6.1, assume that Sr = ψS′r , S′r ∈ Bp×p
D

. Then condition
(98) is trivially satisfied and, moreover,

idp = D0
l Sr + N 0

l Rr = (ψD0
l )S

′
r + N 0

l Rr . (117)

This implies that (ψD0
l ,−N 0

l ) is right invertible over BD. Notice that in (98) and (99)
ψ can be multiplied with a unit in ZD = S(�−α)−1 and hence we may assume that
ψ ∈ S.

In the sequel, we assume that ψ ∈ S and that (ψD0
l ,−N 0

l ) has a right inverse(
S′r
−R0

r

)
even in C(p+m)×p, i.e.,

idp = (ψD0
l )S

′
r+N 0

l R
0
r = D0

l (ψS′r )+N 0
l R

0
r = D0

l S
0
r +N 0

l R
0
r , S0

r = ψS′r . (118)
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Thus,

(
S0
r

−R0
r

)
is a right inverse of (D0

l ,−N 0
l ) in C(p+m)×p and this can be completed

with the matrices from (83), (84), (85) satisfying

(
Sr
−Rr

)
=
(
S0
r

−R0
r

)
−
(
N 0
r

D0
r

)
X, (Rl , Sl) = (R0

l , S
0
l )+ X (D0

l ,−N 0
l ), X ∈ Cm×p

(119)
and

(
D0
l −N 0

l

Rl Sl

)
∈ Glp+m(C) = GlN (p+m)(S),

(
D0
l −N 0

l

Rl Sl

)−1

=
(

Sr N 0
r

−Rr D0
r

)
,

S0
r = ψS′r . (120)

For the robustness assertion of the next Theorem 6.4, we employ the data and results of
[16, §2.2] and assume that the stability regionD is open. Then ‖d‖ := maxz∈C\D |d(z)|
is a norm on S and induces maximum norms on Sk×� and Gl�(S). The product of matri-
ces is continuous and Gl�(S) is an open topological subgroup of S�×�. A stabilizing
tracking controller with matrices (Rl , Sl) from Theorem 6.1 is called robust if it is a
controller with the same properties for all nearby plants in the just defined norm.

Theorem 6.4 Assume w.l.o.g. that ψ ∈ S and that (ψD0
l ,−N 0

l ) has a right inverse
in C(p+m)×p = SN (p+m)×Np.

(i) Consider the matrices from (118) and complete them to those of (83). Choose
a matrix X ∈ Cm×p and define the matrices from (119). Then the controller
defined by the matrices (Rl , Sl , Rr , Sr ) from (119) satisfies the necessary and
sufficient condition for tracking and disturbance rejection from Theorem 6.1, i.e.,
ψ−1Sr ∈ Bp×p

D
, if and only if N 0

r X ∈ Bp×p
D

ψ , for instance if X ∈ Cm×pψ .
(ii) Each controller from (i) is robust.

Proof (i) Since S0
r = ψS′r ∈ Cp×pψ ⊂ Bp×p

D
ψ the assertion follows from Sr =

S0
r − N 0

r X .

(ii) Consider a controller according to (i) and especially the matrices

(
D0
l −N 0

l
Rl Sl

)(
Sr N 0

r

−Rr D0
r

)
=
(

idp 0
0 idm

)
, Sr ∈ Bp×p

D
ψ, ψ ∈ S. (121)

Now consider a plant (D̃0
l ,−Ñ 0

l ) sufficiently near to (D0
l ,−N 0

l ). Then

U := (D̃0
l ,−Ñ 0

l )

(
Sr
−Rr

)
near (D0

l ,−N 0
l )

(
Sr
−Rr

)
= idp

�⇒ U ∈ GlNp(S) = Glp(C),

(
S̃r
−R̃r

)
:=
(
Sr
−Rr

)
U−1 ∈ C(p+m)×p,

�⇒ idp = (D̃0
l ,−Ñ 0

l )

(
S̃r
−R̃r

)
, S̃r ∈ Bp×p

D
ψ.
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Moreover,

(Rl , Sl)

(
S̃r
−R̃r

)
= (Rl , Sl)

(
Sr
−Rr

)
U−1 = 0.

Then there is a unique column
( Ñr

D̃r

) ∈ C(p+m)×m such that

(
D̃0
l −Ñ 0

l
Rl Sl

)(
S̃r Ñr

−R̃r D̃r

)
=
(

idp 0
0 idm

)
, S̃r = SrU

−1 ∈ Bp×p
D

ψ, ψ ∈ S.

(122)

According to Theorem 6.1, the last equation says that the controller with the
equation Rl ◦ u2 + Sl ◦ y2 = 0 is a properly D-stabilizing controller of the plant
with the equation D̃0

l ◦ y1 = Ñ 0
l ◦ u1 and that this controller tracks signals r and

rejects signals u1 and u2 satisfying (95). So the controller (Rl , Sl) stabilizes a
whole family of plants (D̃0

l ,−Ñ 0
l ) around the plant (D0

l ,−N 0
l ) and this is the

defining property of robustness. ��
Lemma 6.5 For the left and right coprime factorizations G = (D0

l )
−1N 0

l =
N 0
r (D0

r )
−1 over C = SN×N and ψ ∈ S, the following properties are equivalent:

1. (ψ idp, N 0
l ) is right invertible.

2. (ψ idp, N 0
r ) is right invertible. .

3. (ψD0
l ,−N 0

l ) is right invertible.

Proof We assume w.l.o.g. that ψ is not a unit. This implies p ≤ m.
3. �⇒ 1.: obvious.
1. �⇒ 3.: consider all primes σ of S and their residue fields k(σ ) := S/Sσ � f :=
f + Sσ, f ∈ S. Recall that a matrix R ∈ SNp×� is right invertible if and only if
rankk(σ )(R) = Np for all primes σ of S. If 1. is satisfied we conclude

∀ primes σ ∈ S : Np = rankk(σ )(D0
l ,−N 0

l ) = rankk(σ )(ψ idNp, N 0
l )

�⇒ ∃
(
A
B

)
∈ k(σ )N (p+m)×Np : D0

l A + N 0
l B = idNp

�⇒
{

if ψ = 0 : rankk(σ )(ψD0
l ,−N 0

l ) = rankk(σ )(ψ idNp, N 0
l ) = Np

if ψ �= 0 : ψD0
l ((ψ)−1A)+N 0

l B= idNp �⇒ rankk(σ )(ψD0
L ,−N 0

l )=Np

�⇒ ∀ primes σ ∈ S : rankk(q)(ψD0
L ,−N 0

l ) = Np �⇒ 3.

1. ⇐⇒ 2.: N 0
l and N 0

r are equivalent. The equivalence of 1. and 2. is then shown as
that of 1. and 3. ��

According to [16, Thm. 2 on p. 296], the condition 2. of Lemma 6.5 characterizes
the existence of robust compensators in the LTI case and condition 3. is precisely the
assumption of Theorem 6.4.
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Corollary 6.6 Assume a controller according to Theorem 6.4 (i), and additionally
the D-stable periodic IO-behavior B2 from (109) with the proper transfer matrix
Tl ∈ Cm×p. Ifψ−1(Tl−Rl) ∈ Bm×p

D
, thematrices (R′

l , S
′
l , Tl) forma robust (R, S, T )-

controller, cf. [4, (6.38)].
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