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Abstract This paper proposes a new tool for quantized nonlinear control design of
dynamic systems transformable into the dynamically perturbed strict-feedback form.
To address the technical challenges arising from measurement and actuator quantiza-
tion, a new approach based on set-valued maps is developed to transform the closed-
loop quantized system into a large-scale system composed of input-to-state stable
(ISS) subsystems. For each ISS subsystem, the inputs consist of quantization errors
and interacting states, and moreover, the ISS gains can be assigned arbitrarily. Then, the
recently developed cyclic-small-gain theorem is employed to guarantee input-to-state
stability with respect to quantization errors and to construct an ISS-Lyapunov func-
tion for the closed-loop quantized system. Interestingly, it is shown that, under some
realistic assumptions, any n-dimensional dynamically perturbed strict-feedback non-
linear system can be globally practically stabilized by a quantized control law using
2n three-level dynamic quantizers.
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1 Introduction

The quantized stabilization problem is motivated by the practical requirement that the
signals of the control devices, including controller, actuators and sensors, are quan-
tized before transmission through digital communication channels to other devices
in the closed-loop control system. Here, a quantizer can be mathematically modeled
as a discontinuous function from a continuous region to a discrete set of numbers.
A practical quantizer has a finite number of quantization levels, and the quantized
signal is saturated if the original signal is outside the range of the quantizer. This moti-
vates the dynamic quantization [1], by which the quantization levels are appropriately
scaled in the process of quantized control to achieve global stabilization with finite-
level quantizers. In this paper, we propose a new design tool for quantized feedback
stabilization of dynamically perturbed strict-feedback systems, an important class of
nonlinear systems widely studied in the nonlinear control literature.

Quantization errors cause major problems for quantized stabilization; see, for in-
stance, [1–5] for linear systems and [6–12] for nonlinear systems. In particular, the
book [10] discussed the relation between space discretization and perturbation. The
recent papers [4,6,7,12] characterize the quantization error as a sector bounded per-
turbation. Reference [6] studied the conditions under which the quantization error
does not cancel the stabilizing effect of a dissipativity-based control law. Reference
[7] achieved semi-global quantized stabilization for nonlinear systems based on the
semi-global stabilization approach in [13]. In [14], the problem caused by the finite-
level quantizers was addressed for feedforward (upper-triangular) systems. Using the
idea of scaling quantization levels, the authors of [1,9,11,15] studied dynamically
quantized control with finite-level quantizers.

Quantized stabilization is closely related to robust stabilization by treating the state
quantization errors as measurement errors. Despite its importance and relevance to
many practical control problems, robust nonlinear stabilization with measurement
errors has not been paid enough attention. In [16], it was discovered that if a system
can be stabilized, then it can also be stabilized insensitively to small measurement
errors. The authors of [17] introduced a robust nonlinear control design approach
based on backstepping methodology (see e.g., [18]) and flattened Lyapunov functions
to deal with bounded measurement errors. But with the method in [17], the influence
of the measurement errors grows with the order of the system, which is daunting for
high-order systems and for its further application to quantized stabilization.

The concept of input-to-state stability (ISS) invented by Sontag (see [19] for an
excellent tutorial on ISS), appears to be fundamental to describe the robust stability of
closed-loop quantized systems with respect to quantization errors in several results;
see e.g., Liberzon and Nešić’s dynamically quantized control results [9,11,20,21].
With the ISS small-gain theorem in [22] as a tool, reference [23] established a unified
framework for control design of nonlinear systems with quantization and time sched-
uling via an emulation-like approach. Based on the small-gain theorem, the quantized
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controller should usually be designed to make the control error caused by quantiza-
tion error smaller than the range of the quantizer, to ascertain global stabilization with
finite-level quantization [11,23].

The objective of this paper is to propose a design tool for global stabilization of
strict-feedback nonlinear systems with both state quantization and actuator quantiza-
tion, by means of the recent developments in cyclic-small-gain theorems (see, e.g.,
[24,25]). Our recent contributions to quantized control [12,26] demonstrate the useful-
ness of the cyclic-small-gain theorem. For other related network small-gain theorems,
the reader should consult [22,27–32]. In our novel controller design procedure, we
will introduce a new set-valued map method to overcome the problems caused by the
nonlinearity and discontinuity of the quantizers as well as the presence of dynamic
uncertainty. Consequently, differential inclusions will be adopted to represent the
closed-loop quantized system, and the motion of the closed-loop quantized system
will be described with the extended Filippov solution introduced in [33,34]; see also
[35] for the concept of Filippov solution. The gain assignment technique originally
proposed in [22] will have to be further modified to adapt to the specifically designed
set-valued maps such that the closed-loop quantized system can be transformed into
a large-scale system composed of ISS subsystems. Moreover, the ISS gains of each
subsystem will be assigned appropriately to satisfy the cyclic-small-gain condition and
to guarantee the ISS of the closed-loop quantized system with respect to quantization
errors. An ISS-Lyapunov function will also be constructed to evaluate the influence of
the quantization error. Differently from the previously known results, the adjustment
of the quantization levels will result in jumps of the state of the closed-loop quantized
system. The dynamic quantization design method introduced in [11] will be modified
for global quantized stabilization based on the ISS analysis of a specific discrete-time
nonlinear system.

The rest of this paper is organized as follows. Section 2 presents some mathemati-
cal preliminaries. Section 3 describes the problem formulation and gives an expected
quantized controller structure. In Sect. 4, we recursively design set-valued maps for
the class of strict-feedback systems with quantized signals. Section 5 is devoted to the
synthesis of dynamic quantization. Section 6 presents a remark on measurement feed-
back control as a by-product of the main result. Section 7 presents some conclusions
and discusses some future directions. The proofs of some technical lemmas are in the
Appendix.

2 Mathematical preliminaries

To make the paper self-contained, recall that a function γ : R+ → R+ is positive
definite if γ (s) > 0 for all s > 0 and γ (0) = 0. γ : R+ → R+ is a K function
(denoted by γ ∈ K ) if it is continuous, strictly increasing and γ (0) = 0; it is a K∞
function (denoted by γ ∈ K∞) if it is a K function and also satisfies γ (s) → ∞
as s → ∞. A function β : R+ × R+ → R+ is a K L (denoted by β ∈ K L ) if
β(·, t) is a K function for each fixed t and β(s, t) is decreasing to zero as t → ∞ for
each s ∈ R+. Id represents the identity function. For γ1, γ2 ∈ K , inequality γ1 < γ2
means γ1(s) < γ2(s) for all s > 0.
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The ISS cyclic-small-gain theorem proposed in [24,25,28] is a tool to analyze the
ISS property of large-scale nonlinear systems in the following form:

ẋi = fi (x, ui ) , i = 1, . . . , N (1)

where xi ∈ R
ni , x = [xT

1 , . . . , xT
N ]T, ui ∈ R

mi and fi : R
n+mi → R

ni with n =
�N

j=1n j is a locally Lipschitz map.
Although smooth ISS-Lyapunov functions have usually been used in the literature,

for large-scale system (1) with locally Lipschitz dynamics, the smoothness require-
ment on the ISS-Lyapunov function can be reduced to locally Lipschitz continuity
[34,31]. According to Rademacher’s theorem (see, e.g., [36, p. 216]), locally Lips-
chitz continuity implies continuous differentiability almost everywhere.

It is assumed that each xi -subsystem (i = 1, . . . , N ) in (1) admits a locally Lips-
chitz ISS-Lyapunov function Vi : R

ni → R satisfying

1. There exist αi , αi ∈ K∞ such that

αi (|xi |) ≤ Vi (xi ) ≤ αi (|xi |), ∀xi ∈ R
ni ; (2)

2. There exist γi j ∈ K ∪ {0} ( j �= i) and γ u
i ∈ K ∪ {0} such that

Vi (xi ) ≥ max
j=1,...,N ; j �=i

{
γi j

(
Vj

(
x j

))
, γ u

i (|ui |)
}

⇒ ∇Vi (xi ) fi (x, ui ) ≤ −αi (Vi (xi )) (3)

wherever ∇Vi exists, where αi is continuous and positive definite.

The functions γi j , γ
u
i are known as the ISS gains of the subsystems. The following

theorem presents a cyclic-small-gain condition to guarantee the ISS property of the
large-scale system (1) with state x and input u = [uT

1 , . . . , uT
N ]T.

Theorem 1 [24] Consider the large-scale nonlinear system (1). Assume each xi -sub-
system admits an ISS-Lyapunov function Vi satisfying (2) and (3). Then, the large-scale
nonlinear system (1) is ISS if for r = 2, . . . , N,

γi1i2 ◦ γi2i3 ◦ · · · ◦ γir i1 < Id (4)

where 1 ≤ ik ≤ N and ik �= ik′ if k �= k′ for 1 ≤ k ≤ r .

By considering the subsystems (1) as vertices and the gains as the weights of
directed arcs (i.e., connections between subsystems), the interconnection structure of
the large-scale nonlinear system can be represented with a system digraph. Condition
(4) is called cyclic-small-gain condition and means that the composition of the ISS
gains along every simple cycle in the large-scale nonlinear system is less than the
identity function Id.

For the ISS gains γi j ’s (1 ≤ i ≤ N , j �= i) satisfying condition (4), according
to Lemma A.1 of [27], we can find K∞ functions γ̂i j ’s (1 ≤ i ≤ N , j �= i) which
are continuously differentiable on (0,∞) and slightly larger than the corresponding
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γi j ’s such that condition (4) still holds by replacing the γi j ’s with the γ̂i j ’s. Motivated
by the ISS-Lyapunov function construction in [27], a locally Lipschitz ISS-Lyapunov
function can be constructed for the large-scale system (1) as

V (x) = max
i=1,...,n

{σi (Vi (xi ))} (5)

where σi ’s are specific compositions of the γ̂(·)’s.
The influence of the external input u can be represented as

θ(u) = max
i=1,...,n

{σi ◦ γ u
i (|ui |)}. (6)

Denote f (x, u) = [ f T
1 (x, u1), . . . , f T

N (x, uN )]T. With the Lyapunov-based ISS
cyclic-small-gain theorem presented in [25], we have

V (x) ≥ θ(u) ⇒ ∇V (x) f (x, u) ≤ −α(V (x)) (7)

wherever ∇V exists, with α being a continuous and positive definite function.
The type of ISS-Lyapunov functions (5) was used by [31] for the construction of

an ISS-Lyapunov function for the matrix-small-gain theorem. Also notice that (5) was
utilized in [25] in the construction of ISS-Lyapunov function for the ISS cyclic-small-
gain theorem.

Recently, the authors of [33,34] extended the concepts of ISS and ISS-Lyapunov
function to discontinuous systems and also proposed an extended Filippov solution
for interconnected discontinuous systems described by differential inclusions. Based
on the concept of extended Filippov solution, a discontinuous version of the ISS
small-gain theorem was developed. Motivated by the results in [33,34], a discontin-
uous version of the cyclic-small-gain theorem can also be developed for large-scale
discontinuous systems:

ẋi ∈ Fi (x, ui ), i = 1, . . . , N (8)

where Fi : R
n+mi � R

ni is a convex, compact and upper semi-continuous set-valued
map and the variables are defined in the same way as for (1).

References [33,34] considered the case of multiple Lyapunov functions to carry
out a general ISS theory for discontinuous nonlinear systems. Here we just consider a
simplified case where each xi -subsystem in (8) admits a common Lyapunov function
Vi satisfying (2) and

Vi (xi ) ≥ max
j=1,...,N ; j �=i

{γi j (Vj (x j )), γ
u
i (|ui |)}

⇒ max
fi ∈Fi (x,ui )

∇Vi (xi ) fi ≤ −αi (Vi (xi )) (9)

wherever ∇Vi exists, which is a modification of (3).
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With the cyclic-small-gain condition (4) satisfied by the large-scale discontinuous
system, an ISS-Lyapunov function V can be constructed in a quite similar way as in
(5), and property (7) should be modified as

V (x) ≥ θ(u) ⇒ max
f ∈F(x,u)

∇V (x) f ≤ −α(V (x)) (10)

wherever ∇V exists, with F(x, u) = [FT
1 (x, u1), . . . , FT

N (x, uN )]T.
As we will show in this paper, the above discontinuous variant plays a central role

in the recursive quantized control design for dynamic networks or high-dimensional
nonlinear systems transformable into a dynamic network.

3 Problem formulation

3.1 System description

In this paper, we study quantized control of the following dynamically perturbed
strict-feedback nonlinear system:

ż = g(z, x1) (11)

ẋi = xi+1 +�i (x̄i , z), i = 1, . . . , n (12)

xn+1
def= u (13)

where [x1, . . . , xn]T := x ∈ R
n is the measurable state, z ∈ R

nz represents the
state of the inverse dynamics and is not measurable, u ∈ R is the control input,
x̄i = [x1, . . . , xi ]T, and �i ’s (i = 1, . . . , n) are unknown locally Lipschitz continu-
ous functions. We study the general case in which both the measurement x and the
control input u are quantized.

Throughout the paper, the following assumptions are made on system (11)–(13).

Assumption 1 System (11)–(13) with u = 0 is forward complete and small-time
final-state norm-observable with x as the output, i.e., for u = 0,

∀td > 0 ∃ϕ ∈ K∞ such that

|X (td)| ≤ ϕ(‖x‖[0,td ]), ∀X (0) ∈ R
n+nz (14)

where X := [zT , xT ]T .

Remark 1 Reference [37] discussed the equivalent characterizations of initial-state
norm-observability, final-state norm-observability and K L norm-observability for
forward complete (or unboundedness observable) nonlinear systems with external
inputs. In Assumption 1, we just use the concept of small-time final-state norm-observ-
ability for nonlinear systems with no external inputs.

Remark 2 Assumption 1 is needed for global quantized stabilization; see [21]. How-
ever, it is important to mention that Assumption 1 is not needed if a bound is known
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on the initial state of system (11)–(13). In this case, only semi-global quantized sta-
bilization can be achieved. Also, see [15,23].

Assumption 2 For each �i with i = 1, . . . , n, there exists a known λ�i ∈ K∞ such
that for all x̄i , z,

|�i (x̄i , z)| ≤ λ�i (|(x̄i , z)|). (15)

Assumption 3 The z-subsystem (11) with x1 as the input admits a locally Lipschitz
ISS-Lyapunov function V0 : R

nz → R+ satisfying

1. There exist α0, α0 ∈ K∞ such that

α0(|z|) ≤ V0(z) ≤ α0(|z|), ∀z ∈ R
nz ; (16)

2. There exist a χ x1
z ∈ K and a continuous and positive definite α0 such that

V0(z) ≥ χ x1
z (|x1|) ⇒ ∇V0(z)g(z, x1) ≤ −α0(V0(z)) (17)

wherever ∇V0 exists.

Remark 3 Under Assumption 3, system (11)–(13) represents an important class of
minimum-phase nonlinear systems, which have been studied extensively by many
authors in the context of (non-quantized) robust and adaptive nonlinear control. The
reader may consult [13,18,38,39] and references therein for the details.

3.2 Quantization

In this paper, a quantizer q(r, μ) with original signal r ∈ R and variable μ > 0
is defined as q(r, μ) = μqo(r/μ), where qo : R → R is a piecewise constant
function for which there exists a constant M > 0 such that |qo(a) − M | ≤ 1 if
a > M; |qo(a)− a| ≤ 1 if |a| ≤ M; |qo(a)+ M | ≤ 1 if a < −M; qo(0) = 0.

Then, quantizer q(r, μ) satisfies:

|q(r, μ)− Mμ| ≤ μ, if r > Mμ; (18)

|q(r, μ)− r | ≤ μ, if |r | ≤ Mμ; (19)

|q(r, μ)+ Mμ| ≤ μ, if r < −Mμ; (20)

q(0, μ) = 0. (21)

Mμ is the quantization range of quantizer q(r, μ) and μ represents the quantization
error bound (i.e., the maximum of |q(r, μ) − r | when |r | ≤ Mμ). In dynamic quan-
tization design, μ is known as the “zooming” variable. Given fixed M , the basic idea
of dynamic quantization is to dynamically update μ (and thus Mμ) in discrete-time
to improve the control performance in the existence of the quantization error. Increas-
ing μ, referred to as “zooming-out”, enlarges the quantization error bound μ and
the quantization range Mμ. Decreasing μ, referred to as “zooming-in”, reduces the
quantization error bound μ and the quantization range Mμ.
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Remark 4 In several previously known quantized control results (see e.g., [15]), two
positive parameters, say M ′, δ′, are used to formulate a quantizer q ′ as: |q ′(r, μ′)−r | ≤
δ′μ′ if |r | ≤ M ′μ′; |q ′(r, μ′)| > (M ′ − δ′)μ′ if |r | > M ′μ′. Indeed, if we define
M = M ′/δ′, μ = δ′μ′ and a new quantizer q(r, μ) = q ′(r, μ/δ′), then we can see
properties (18)–(20) hold for the new quantizer q. Moreover, properties (18) and (20)
explicitly represent the saturation property of the quantizer. It will be demonstrated
that the explicit description of saturation in (18) and (20) is necessary in our recursive
control design later, in which we try to take the saturation property into account.

Remark 5 It is shown in [40] that the simplest three-level quantizer satisfies the prop-
erties (18)–(20) with M = 3, and a larger number of levels means a larger M .

3.3 Quantized controller structure and control objective

In this paper, we introduce a new quantized control structure following an ISS small-
gain design approach. Based on the ISS small-gain design method proposed in [41],
we can recursively design a non-quantized controller for system (11)–(13) as

vi = κ̆i (xi − vi−1), i = 1, . . . , n − 1 (22)

u = κ̆n(xn − vn−1) (23)

where v0 = 0 and κ̆i ’s are appropriately designed continuous functions for i =
1, . . . , n. The maps defined in (22) are usually known as virtual control laws.

Our solution to the quantized control problem of system (11)–(13) is to add quan-
tizers before and after each (virtual) control law defined in (22) through a recursive
design approach.

Following this idea, the quantized controller would be in the following form:

vi = qi2(κi (qi1(xi − vi−1, μi1)), μi2), i = 1, . . . , n − 1 (24)

u = qn2(κn(qn1(xn − vn−1, μn1)), μn2) (25)

where v0 = 0, the qi j ’s are quantizers with zooming variables μi j ’s for i = 1, . . . , n,
j = 1, 2, and the κi ’s for i = 1, . . . , n are nonlinear functions. The κi in (24)–(25) is
not necessarily the same as the κ̆i in (22)–(23) because of the implementation of the
quantizers.

Remark 6 The new quantized controller structure (24)–(25) leads to no restrictive-
ness in practical applications. Indeed, the quantized control structure making use of
adjustable centers of the quantizers can also be found in the very recent work [42].

We make the following assumption on all the employed quantizers in (24)–(25).
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Assumption 4 Each quantizer qi j for i = 1, . . . , n, j = 1, 2 with zooming variable
μi j satisfies

|qi j (r, μi j )− Mi jμi j | ≤ μi j , if r > Mi jμi j ; (26)

|qi j (r, μi j )− r | ≤ μi j , if |r | ≤ Mi jμi j ; (27)

|qi j (r, μi j )+ Mi jμi j | ≤ μi j , if r < −Mi jμi j ; (28)

qi j (0, μi j ) = 0. (29)

where Mi1 > 2 and Mi2 > 1.

In dynamic quantization, each zooming variableμi j > 0 for i = 1, . . . , n, j = 1, 2
is a piecewise constant signal and updated in discrete-time. Without loss of generality,
we assume that the piecewise constant zooming variables are right-continuous on the
time-line. Motivated by Liberzon [15], we will still design a dynamic quantization
composed of two stages, zooming-out stage and zooming-in stage. In this paper, we
consider the case where the update time sequences for all the zooming variables are
the same and denoted by {t0, t1, t2, . . .}, in which tk+1 − tk = td with constant td > 0
for k ∈ Z+.

The update dynamics of each μi j is expected to be in the following form:

μi j (tk+1) = Qi j (μi j (tk)), k ∈ Z+. (30)

In the zooming-out stage, Qi j = Qout
i j ; in the zooming-in stage, Qi j = Qin

i j .
The objective of this paper is to design a quantized controller in the form of (24)–

(25) with dynamic quantization (30) to globally stabilize system (11)–(13) such that
all the signals including the state x in the closed-loop quantized system are bounded,
and moreover, to steer x1 to an arbitrarily small neighborhood of the origin.

The configuration of the total quantized control system is shown in Fig. 1.

4 Recursive control design with set-valued maps–static quantization

A technical obstacle for quantized feedback control design is that the quantized control
system in question must be made robust with respect to the quantization errors. The
nonlinearity and dimensionality of system (11)–(13) and the saturation and disconti-
nuity of quantization cause the major difficulties.

The objective of this section is to develop a recursive design procedure for κi in
(24)–(25) by taking into account the effects of static quantization, such that the closed-
loop quantized system admits nested invariant sets for further dynamic quantization
designs. In Sect. 4.1, we introduce set-valued maps Si depending on κi (1 ≤ i ≤ n) to
a recursive design to deal with the quantization errors and the closed-loop system will
be transformed into a large-scale system composed of ei -subsystems represented by
differential inclusions. Section 4.2 presents a modified gain assignment technique to
render the ei -subsystems ISS with any specified ISS gains by appropriately choosing
the set-valued maps. In Sect. 4.3, we show that we can find quantized control laws
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Fig. 1 The quantized control structure

in the form of (24)–(25) belonging to the chosen set-valued maps. The cyclic-small-
gain theorem is employed to guarantee the ISS property and the existence of nested
invariant sets for the closed-loop quantized system in Sect. 4.4.

In this section, we make the following assumption on the zooming variables.

Assumption 5 For i = 1, . . . , n, j = 1, 2, the zooming variable μi j is constant with
respect to time.

4.1 Main steps of the recursive design

4.1.1 Initial step: the e1-subsystem

Let e1 = x1. The e1-subsystem is in the following form:

ė1 = x2 +�1(x̄1, z). (31)

Define a set-valued map S1 as

S1(x̄1, μ11, μ12) = {κ1(x1 + b11)+ b12 : |b11| ≤ max{c11|e1|, μ11}, |b12| ≤ μ12}
(32)

where κ1 is a continuously differentiable, odd, strictly decreasing and radially un-
bounded function and 0 < c11 < 1 is a constant, both of which will be determined
later. It should be noted that b11, b12 defined in (32) are used as auxiliary variables to
define set-valued map S1.
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Define

e2 = d(x2, S1(x̄1, μ11, μ12)) (33)

where d represents the directed distance from a point to an interval and is defined as

d(ξ,�) =

⎧
⎪⎨

⎪⎩

ξ − max�, if ξ > max�;
ξ − min�, if ξ < min�;
0, otherwise.

(34)

where ξ ∈ R and � ⊂ R is an interval.
We rewrite the e1-subsystem (31) as

ė1 = x2 − e2 +�1(x̄1, z)+ e2 (35)

where we have x2 − e2 ∈ S1(x̄1, μ11, μ12) from (34).

Remark 7 It is necessary to give a more detailed description of the set-valued map
S1. Consider the first-order nonlinear system ė1 = x2 + �1(x̄1, z). Note that e1 =
x1. With the gain assignment technique in [22,41,43], we can design a control law
x2 = κ1(x1) to stabilize the e1-system. In the existence of quantization errors, control
law x2 = κ1(x1) should be modified as x2 = q12(κ1(q11(x1, μ11)), μ12). Clearly, the
set-valued map S1 takes into account the quantization errors of both quantizers q11 and
q12. In the control design procedure below, we will recursively design new set-valued
maps and define new subsystems based on a similar idea.

Remark 8 In our recent paper [12], we employed set-valued maps to cover the sec-
tor-bounded uncertainties caused by logarithmic quantizers. In [12], the saturation
property of the quantizers was not taken into account and the quantization levels are
fixed. Moreover, in [12], the quantizers are directly connected to the state measure-
ments, which is different from the quantized control structure (24)–(25).

4.1.2 Recursive step: the ei -subsystems

Denote μ̄i1 = [μ11, . . . , μi1]T and μ̄i2 = [μ12, . . . , μi2]T for i = 1, . . . , n. For each
i = 2, . . . , n, define a set-valued map Si as

Si (x̄i , μ̄i1, μ̄i2) = {κi (xi − ςi−1 + bi1)+ bi2 : ςi−1 ∈ Si−1(x̄i−1, μ̄(i−1)1, μ̄(i−1)2),

|bi1| ≤ max{ci1|ei |, μi1}, |bi2| ≤ μi2} (36)

where κi is a continuously differentiable, odd, strictly decreasing and radially
unbounded function and 0 < ci1 < 1 is a constant, both of which will be determined
later. The definition of Si guarantees its convexity, compactness and upper semi-
continuity of the set-valued map Si . Here, bi1, bi2 are auxiliary variables used to
define the set-valued map Si .
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Remark 9 It can be observed that S1(x̄1, μ̄11, μ̄12) defined in (32) is in the form of
(36) with S0(x̄0, μ̄01, μ̄02) := {0}.

For each i = 2, . . . , n, define ei+1 as

ei+1 = d(xi+1, Si (x̄i , μ̄i1, μ̄i2)). (37)

Lemma 1 shows that with the recursive construction of set-valued maps and new
state variables in (36) and (37), we can represent the ei -subsystems for i = 1, . . . , n
with differential inclusions.

Lemma 1 Consider the (x1, . . . , xn)-system in (12)–(13). Under Assumptions 2 and
5, with the definitions in (32), (33), (36) and (37), each ei -subsystem for 1 ≤ i ≤ n
can be represented with the differential inclusion:

ėi ∈ Si (x̄i , μ̄i1, μ̄i2)+�∗
i (ei+1, x̄i , μ̄(i−1)1, μ̄(i−1)2, z) (38)

where �∗
i is a convex, compact and upper semi-continuous set-valued map, and

there exists a λ�∗
i

∈ K∞ such that for all (ei+1, x̄i , μ̄(i−1)1, μ̄(i−1)2, z), any φ∗
i ∈

�∗
i (ei+1, x̄i , μ̄(i−1)1, μ̄(i−1)2, z) satisfies

|φ∗
i | ≤ λ�∗

i
(|(ēi+1, μ̄(i−1)1, μ̄(i−1)2, z)|) (39)

where ēi := [e1, . . . , ei ]T.

The proof of Lemma 1 is in Appendix A.
With Lemma 1, through the recursive design approach, we have transformed the

(x1, . . . , xn)-system into the new (e1, . . . , en)-system with each ei -subsystem (i =
1, . . . , n) of form (38). The extended Filippov solution of each ei -subsystem can be
defined with differential inclusion (38) because both set-valued maps Si and �∗

i are
convex, compact and upper semi-continuous; see [33,34].

4.2 ISS of the subsystems

For each ei -subsystem with i = 1, . . . , n, we define the following ISS-Lyapunov
function candidate

Vi (ei ) = αV (|ei |) (40)

where αV (s) = 1
2 s2 for s ∈ R+. For convenience of notations, define Vn+1(en+1) =

αV (|en+1|). We simply use Vi instead of Vi (ei ) in the following discussions.
Denote e0 = z. Then, we have

ė0 = g(e0, e1). (41)
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Define γ e1
e0 (s) = χ

x1
z ◦ α−1

V (s) for s ∈ R+. With Assumption 3 satisfied, we have

V0 ≥ γ e1
e0
(V1) ⇒ ∇V0g(e0, e1) ≤ −α0(V0). (42)

Lemma 2 is a modification of the gain assignment technique employed in the pre-
vious ISS small-gain design results [22,41,43], and states that, for i = 1, . . . , n,
by appropriately designing κi , each ei -subsystem can be rendered to be ISS with Vi

defined in (40) as ISS-Lyapunov function.

Lemma 2 Consider the ei -subsystem (i = 1, . . . , n) in the form of (38) with Si

defined in (32) and (36). Under Assumptions 2 and 5, for any specified constants
εi > 0, ιi > 0, 0 < ci1, ci2 < 1, γ ek

ei ∈ K∞ for k = 0, . . . , i − 1, i + 1, and
γ
μk1
ei , γ

μk2
ei ∈ K∞ for k = 1, . . . , i − 1, one can find a continuously differentiable,

odd, strictly decreasing and radially unbounded κi for the set-valued map Si such that
the ei -subsystem is ISS with Vi (ei ) = αV (|ei |) = 1

2 e2
i as an ISS-Lyapunov function

satisfying

Vi ≥ max
k=1,...,i−1

{
γ

e0
ei (V0), γ

ek
ei (Vk), γ

ei+1
ei (Vi+1),

γ
μk1
ei (μk1), γ

μk2
ei (μk2), γ

μi1
ei (μi1), γ

μi2
ei (μi2), εi

}

⇒ max
ψi ∈�i (ei+1,x̄i ,μ̄i1,μ̄i2,z)

∇Viψi ≤ −ιi Vi (ei ) (43)

where

γ μi1
ei
(s) = αV

(
1

ci1
s

)
(44)

γ μi2
ei
(s) = αV

(
1

1 − ci1
κ̄−1

i

(
1

ci2
s

))
(45)

�i (ei+1, x̄i , μ̄i1, μ̄i2, z) := Si (x̄i , μ̄i1, μ̄i2)+�∗
i (ei+1, x̄i , μ̄(i−1)1, μ̄(i−1)2, z)

(46)

with κ̄i (s) = |κi (s)| for s ∈ R+.

The proof of Lemma 2 is in Appendix B.

Remark 10 The gain assignment lemmas in the earlier papers [22,41,43] deal with
nonlinear systems represented with differential equations but not differential inclu-
sions. Furthermore, in our control design for the ei -subsystem, we deal with the effects
of the set-valued map Si−1, the control error ci1|ei | and the quantization errors μi1
and μi2. Also, it is worth noting that (43) yields a common Lyapunov function for
each ei -subsystem, while the general result on ISS discontinuous systems in [33,34]
relies upon multiple Lyapunov functions.

4.3 Quantized controller

In the subsections above, we designed set-valued maps to derive a large-scale system
composed of ISS subsystems described by differential inclusions. In this subsection,
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we show that the quantized control law u in the form of (24)–(25) with the κi ’s defined
above belongs to the set-valued map Sn under realizable conditions. In this way, the
closed-loop quantized system with the designed quantized control law u can be rep-
resented with a large-scale system composed of ISS subsystems.

Recall κ̄i (s) = |κi (s)| for s ∈ R+. Lemma 3 provides conditions under which the
quantized control law u in the form of (24)–(25) belongs to the set-valued map Sn .

Lemma 3 Under Assumption 4, if

1

Mi1
< ci1 ≤ 0.5,

1

Mi2
< ci2 < 1 (47)

for all i = 1, . . . , n and if

|ei | ≤ Mi1μi1, (48)

κ̄i ((1 − ci1)|ei |) ≤ Mi2μi2 (49)

for all i = 1, . . . , n, then vi for i = 1, . . . , n − 1 and u defined in (24)–(25) satisfy

vi ∈ Si (x̄i , μ̄i1, μ̄i2), i = 1, . . . , n − 1, (50)

u ∈ Sn(x̄n, μ̄n1, μ̄n2). (51)

The proof of Lemma 3 is given in Appendix C by fully using the properties of the
quantizers and the set-valued maps.

Remark 11 Conditions (48) and (49) imply that the signals |ei | and |κ̄i ((1 − ci )|ei |)|
should be covered by the quantization ranges Mi1μi1 and Mi2μi2, respectively, such
that the quantized control law u belongs to the set-valued map Sn . This is caused by
the saturation property of the quantizers.

4.4 Small-gain based synthesis and nested invariant sets of the closed-loop quantized
system

Recall e = [eT
0 , e1, . . . , en]T. By considering the ei -subsystems as vertices and the

gain interconnections between them as directed arcs, the interconnection structure of
the (e0, e1, . . . , en)-system can be represented with a digraph, as shown in Fig. 2.
The purpose of this subsection is to fine tune the ISS gains to yield ISS property of
the closed-loop quantized system with e as the state by using the cyclic-small-gain
theorem.

Fig. 2 The interconnection
digraph of the
(e0, e1, . . . , en)-system
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Recall ēi = [e1, . . . , ei ]T. For each (e0, ēi )-subsystem (i = 1, . . . , n), given the
(e0, ēi−1)-subsystem, by designing the set-valued map Si for the ei -subsystem, we can
assign the ISS gains from states e0, . . . , ei−1 to state ei . According to the recursive
design, we assign the ISS gains γ ek

ei for k = 0, . . . , i − 1 such that

γ
e1
e0 ◦ γ e2

e1 ◦ γ e3
e2 ◦ · · · ◦ γ ei

ei−1 ◦ γ e0
ei < Id

γ
e2
e1 ◦ γ e3

e2 ◦ · · · ◦ γ ei
ei−1 ◦ γ e1

ei < Id
...

γ
ei
ei−1 ◦ γ ei−1

ei < Id

(52)

where Id represents the identity function. Applying this reasoning repeatedly, we can
guarantee (52) for all i = 1, . . . , n. In this way, the e-system satisfies the cyclic-small-
gain condition.

In the digraph of the e-system shown in Fig. 2, the e1-subsystem is reachable from
the subsystems of e0, e2, . . . , en , i.e., there are sequences of directed arcs from the
subsystems of e0, e2, . . . , en to the e1-subsystem.

Motivated by the ISS-Lyapunov function construction in [27], we construct an
ISS-Lyapunov function candidate for the e-system as

V (e) = max
i=0,...,n

{σi (Vi (ei ))} (53)

withσ1(s) = s, σi (s) = γ̂
e2
e1 ◦· · ·◦γ̂ ei

ei−1(s) (i = 2, . . . , n) andσ0(s) = maxi=1,...,n{σi◦
γ̂

e0
ei (s)} for s ∈ R+, where the γ̂ (·)(·) ’s are K∞ functions continuously differentiable on

(0,∞) and slightly larger than the corresponding γ (·)(·) ’s, and still satisfy the cyclic-
small-gain condition.

The following lemma states that we can appropriately choose the κi ’s for the set-
valued maps Si ’s such that the cyclic-small-gain condition (52) is satisfied and the
closed-loop quantized system with state e admits specific ISS properties.

Lemma 4 Consider the e-system composed of the ei -subsystems in the form of (41)
and (38) satisfying (42) and (43). If the ISS gains defined in (42) and (43) satisfy
(52) for all i = 1, . . . , n and if u ∈ Sn(x̄n, μ̄n1, μ̄n2), then the ISS-Lyapunov function
candidate V defined in (53) for the e-system satisfies

V (e) ≥ θ(μ̄n1, μ̄n2, ε̄n) ⇒ max
ψ∈�(e,x,μ̄n1,μ̄n2)

∇V (e)ψ ≤ −α(V (e)) (54)

wherever ∇V exists, where α is a continuous and positive definite function, and

θ(μ̄n1, μ̄n2, ε̄n) := max
i=1,...,n

{
σi

(
max

k=1,...,i
{γ μk1

ei
(μk1), γ

μk2
ei
(μk2), εi }

)}
(55)

�(e, x, μ̄n1, μ̄n2) :=[{gT(e0, e1)}, �1(e2, x̄1, μ̄11, μ̄12), . . . , �n(0, x̄n, μ̄n1, μ̄n2)]T

(56)

with ε̄n := [ε1, . . . , εn]T.
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Proof In the case of u ∈ Sn(x̄n, μ̄n1, μ̄n2), we have en+1 = 0 and Vn+1(en+1) = 0.
With the cyclic-small-gain condition (52) satisfied for all i = 1, . . . , n, by directly
combining the methods in [33,34] and the cyclic-small-gain theorem in [25], as re-
viewed in Sect. 2, (54) can be proved. This ends the proof.

For specified σi for i = 1, . . . , n, if we can design the γ μk1
ei ’s (k = 1, . . . , i − 1)

and the γ μk2
ei ’s (k = 1, . . . , i − 1) small enough, we can achieve

θ(μ̄n1, μ̄n2, ε̄n) = max
i=1,...,n

{
σi ◦ γ μi1

ei
(μi1), σi ◦ γ μi2

ei
(μi2), σi (εi )

}
(57)

for all μi1, μi2, εi > 0 for i = 1, . . . , n.
As pointed out in [15], nested invariant sets with sizes determined by the zoom-

ing variables μ̄n1 and μ̄n2 are vital for the implementation of dynamic quantization.
Lemma 5 summarizes this section by showing the existence of the nested invariant
sets for the closed-loop quantized system designed based on Lemmas 1–4.

Define

B1(μ̄n1, μ̄n2) = max
i=1,...,n

{
σi ◦ αV (Mi1μi1),

σi ◦ αV

(
1

1−ci1
κ̄−1

i (Mi2μi2)
)

}

, (58)

B2(μ̄n1, μ̄n2) = max
i=1,...,n

⎧
⎨

⎩

σi ◦ αV

(
1

ci1
μi1

)
,

σi ◦ αV

(
1

1−ci1
κ̄−1

i

(
1

ci2
μi2

))

⎫
⎬

⎭
. (59)

Lemma 5 Consider the quantized control system consisting of the plant (11)–(13)
and the quantized control law (24)–(25). Under Assumptions 2, 3, 4 and 5, the closed-
loop quantized system can be transformed into a large-scale system composed of
ei -subsystems in the form of (41) and (38), and for specified constants ci1, ci2 sat-
isfying (47) for i = 1, . . . , n, specified ISS gains γ

ek′
ek (k �= k′) satisfying the cyclic-

small-gain condition (52) for all i = 1, . . . , n, specified ISS gains γ μk1
ei , γ

μk2
ei for

i = 1, . . . , n, k = 1, . . . , i −1 satisfying (57) and specified arbitrarily small constants
εi for i = 1, . . . , n, we can find continuously differentiable, odd, strictly decreas-
ing and radially unbounded functions κi for i = 1, . . . , n such that (43) holds for
i = 1, . . . , n. Moreover, if

σi ◦ αV (Mi1μi1) = σi ◦ αV

(
1

1 − ci1
κ̄−1

i (Mi2μi2)

)

= σ j ◦ αV (M j1μ j1) = σ j ◦ αV

(
1

1 − c j1
κ̄−1

j (M j2μ j2)

)
(60)

for all i, j = 1, . . . , n and if

B1(μ̄n1, μ̄n2) ≥ θ0 (61)
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with θ0 = maxi=1,...,n{σi (εi )}, then the ISS-Lyapunov function candidate V defined
in (53) satisfies

B1(μ̄n1, μ̄n2) ≥ V (e) ≥ max{B2(μ̄n1, μ̄n2), θ0} (62)

⇒ max
ψ∈�(e,x,μ̄n1,μ̄n2)

∇V (e)ψ ≤ −α(V (e)) (63)

where � is defined in (56).

Proof Under Assumptions 2 and 5, with Lemma 1, we can transform the closed-loop
quantized system into a large-scale system with state e composed of ei -subsystems in
the form of (41) and (38).

Under Assumptions 2, 3, 4 and 5, by directly using Lemma 2, for any specified
constants ci1, ci2 satisfying (47) for i = 1, . . . , n, any ISS gains γ

ek′
ek (k �= k′) satisfy-

ing the cyclic-small-gain condition (52) for all i = 1, . . . , n, any specified ISS gains
γ
μk1
ei , γ

μk2
ei for i = 1, . . . , n, k = 1, . . . , i − 1 satisfying (57) and specified arbitrarily

small constants εi for i = 1, . . . , n, we can find continuously differentiable, odd,
strictly decreasing and radially unbounded functions κi for i = 1, . . . , n such that
(43) holds for i = 1, . . . , n.

The satisfaction of (47) by appropriately choosing the κi for i = 1, . . . , n guar-
antees B1(μ̄n1, μ̄n2) > B2(μ̄n1, μ̄n2) for all positive zooming variables μi1, μi2. By
using (61), we have B1(μ̄n1, μ̄n2) ≥ max{B2(μ̄n1, μ̄n2), θ0}. Recall the definitions
of Vi (ei ) in (40) and V (e) in (53). The equalities in (60) and the left inequality in
(62) guarantee (48)–(49). Under Assumption 4, with (47) satisfied, using Lemma 3,
we have u ∈ Sn(x̄n, μ̄n1, μ̄n2).

Note that (57) is satisfied by appropriately choosing κi for i = 1, . . . , n. In virtue of
(44), (45), (57) and (59), θ(μ̄n1, μ̄n2, ε̄n) = max{B2(μ̄n1, μ̄n2), θ0}. With the cyclic-
small-gain condition (52) satisfied by appropriately choosing κi for i = 1, . . . , n and
u ∈ Sn(x̄n, μ̄n1, μ̄n2), Lemma 4 guarantees the implication in (62) and (63). This ends
the proof.

Remark 12 Based on Lemma 5, we can appropriately adjust the zooming variables
to make conditions (60) and (61) always satisfied such that the sets represented by
functions B1 and B2 are nested invariant sets. In the next section, we will use the
invariant sets to design dynamic quantization logic.

4.5 A guideline for quantized control law design

In this subsection, we provide a guideline to choosing the functions κi for the quantized
control law (24)–(25) such that the closed-loop quantized system satisfies property
(62)–(63). The guideline includes two major steps:

1. Choose the ISS parameters of the ei -subsystems.
(a) Choose constants ci1, ci2 to satisfy (47) for i = 1, . . . , n;
(b) Choose ISS gains γ

e j
ei ∈ K∞ ( j �= i) and the corresponding functions

γ̂
e j
ei > γ

e j
ei to satisfy the cyclic-small-gain condition (52) for all i = 1, . . . , n,

and calculate the σi for i = 1, . . . , n in (53);
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(c) Choose ISS gains γ μk1
ei , γ

μk2
ei for i = 1, . . . , n, k = 1, . . . , i − 1 such that

(57) holds for all μi1, μi2, εi > 0 for i = 1, . . . , n;
(d) Choose specified εi , ιi > 0 for i = 1, . . . , n.

2. Choose the κi for i = 1, . . . , n based on Lemma 2 with the ISS parameters chosen
in Step 1.

Remark 13 In Step 1, it is only required that Step (c) is after Step (b), because condi-
tion (60) in Step (c) depends on the σi calculated in Step (b). Under Assumptions 2–5,
if the ISS parameters and the κi are chosen according to the guideline and if conditions
(60) and (61) are satisfied, then from Lemma 5, the nested invariant sets exist.

5 Dynamic quantization

Because of the saturation property of the quantizers, the quantized control law designed
in Sect. 4 can only guarantee local stabilization; see (62)–(63). In this section, based
on the invariant sets given in Lemma 5, we design a dynamic quantization logic in the
form of (30), composed of zooming-in stage and zooming-out stage, to dynamically
adjust the zooming variables μi j (i = 1, . . . , n, j = 1, 2) such that the closed-loop
quantized system is globally stabilized. Recall that in dynamic quantization, the zoom-
ing variables μi j (t) are piecewise constant signals, and are adjusted on a discrete time
sequence {t0, t1, t2, . . .} where tk+1 − tk = td with constant td > 0.

To satisfy condition (60) in Lemma 5, we design dynamic quantization such that
for all t ∈ R+

σi ◦ αV (Mi1μi1(t)) = σi ◦ αV

(
1

1 − ci1
κ̄−1

i (Mi2μi2(t))

)
:= �(t) (64)

for i = 1, . . . , n. Equivalently, we have

μi1(t) = 1

Mi1
α−1

V ◦ σ−1
i (�(t)) := ϒi1(�(t)), (65)

μi2(t) = 1

Mi2
κ̄i

(
(1 − ci1)α

−1
V ◦ σ−1

i (�(t))
)

:= ϒi2(�(t)) (66)

for i = 1, . . . , n. Note that ϒi1 and ϒi2 are invertible for i = 1, . . . , n. Thus, the
dynamic quantization logic (30) can be designed by choosing an appropriate update
law for �, which can largely reduce the design complexity for all the zooming vari-
ables μi j (i = 1, . . . , n, j = 1, 2). The update law for � is expected to be in the
following form:

�(tk+1) = Q(�(tk)), k ∈ Z+ (67)

where tk+1 − tk = td with constant td > 0. In the zooming-out stage, Q = Qout;
in the zooming-in stage, Q = Qin. With Qout and Qin designed, we can design the
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dynamic quantization logic (30) for μi j by choosing

Qout
i j = ϒi j ◦ Qout ◦ϒ−1

i j , Qin
i j = ϒi j ◦ Qin ◦ϒ−1

i j . (68)

Using the definition of B1 in (58), we also have

�(t) = B1(μ̄n1(t), μ̄n2(t)). (69)

Before designing dynamic quantization, the relation between zooming variables
μ̄n1, μ̄n2 and control error e should be clarified. For i = 1, . . . , n, using the defini-
tions of Si in (36), the strictly decreasing property of κi implies

max Si (x̄i , μ̄i1, μ̄i2) = κi (xi − max Si−1(x̄i−1, μ̄(i−1)1, μ̄(i−1)2)

− max{ci1|ei |, μi1})+ μi2, (70)

and

min Si (x̄i , μ̄i1, μ̄i2) = κi (xi − min Si−1(x̄i−1, μ̄(i−1)1, μ̄(i−1)2)

+ max{ci1|ei |, μi1})− μi2. (71)

Recall e = [eT
0 , e1, . . . , en]T. Given the definitions of ei for i = 2, . . . , n in (37),

we can denote

e = e(X, μ̄n1, μ̄n2) (72)

with X = [zT, xT]T ∈ R
n+nz . It can be observed that e is a continuous function of

X, μ̄n1, μ̄n2. Clearly, the piecewise constant adjustment of μ̄n1, μ̄n2 causes jumps of
e on the time-line. This makes a difference from the previously known results.

5.1 Zooming-out stage

The design of the zooming-out stage is motivated by [21]. The purpose of the zooming-
out stage in this subsection is to increase the zooming variables μi j such that at some
finite time tk∗ , the state of the closed-loop quantized system is in the larger invariant
set corresponding to B1 in (62). In this stage, the components κi for i = 1, . . . , n of
the controller are set to be zero. Thus, u = 0.

The small-time norm-observability assumed in Assumption 1 guarantees that for
td > 0, there exists a ϕ ∈ K∞ such that

|X (tk + td)| ≤ ϕ(‖x‖[tk ,tk+td ]) (73)

for any k ∈ Z+. Considering the definitions of V and e in (53) and (72), for td > 0,
property (73) can be represented with the Lyapunov function V as

|V (e(X (tk + td), 0, 0))| ≤ ϕ̄(‖x‖[tk ,tk+td ]) (74)
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for any k ∈ Z+, where ϕ̄ ∈ K∞.
With the forward completeness property assumed in Assumption 1, we design a

zooming-out logic Qout : R+ → R+ to increase� fast enough to dominate the growth
rate of ϕ̄(|x |) such that at some finite time tk∗ > 0 with k∗ ∈ Z+, it holds:

Mi1μi1(tk∗) ≥ |xi (tk∗)|, i = 1, . . . , n, (75)

�(tk∗) ≥ ϕ̄(‖x‖[tk∗−td ,tk∗ ]). (76)

Remark 14 Due to the saturation of the quantizer, if the input signal of a quantizer is
outside the range of the quantizer, then we cannot estimate the bound of the signal. In
the zooming-out stage, the κi ’s are set to be zero, and the input of the quantizer qi1 is
xi ; see control law (24)–(25). Inequality (75) means that at some finite time tk∗ , xi is
in the quantization range of qi1. Then, we can estimate the bound of |xi (tk∗)|.

Using (74) and (76), we have

�(tk∗) ≥ max{V (e(X (tk∗), 0, 0)), θ0}. (77)

From the definitions of max Si (x̄i , μ̄i1, μ̄i2),min Si (x̄i , μ̄i1, μ̄i2) and ei+1, one
observes that increase of μ̄n1, μ̄n2 leads to increase of max Si (x̄i , μ̄i1, μ̄i2), decrease
of min Si (x̄i , μ̄i1, μ̄i2) and thus decrease or hold of |ei+1| for i = 1, . . . , n − 1. Thus,
with the zooming-out logic Qout, we achieve that, at time tk∗ > 0 with k∗ ∈ Z+, it
holds that

�(tk∗) ≥ max{V (e(X (tk∗), μ̄n1(tk∗), μ̄n2(tk∗))), θ0}. (78)

With Qout designed, we can design the zooming-out logic Qout
i j for i = 1, . . . , n,

j = 1, 2 according to (68).

Remark 15 As mentioned in Remark 2, if a bound of the initial state X (0) is known,
we can directly set �(0) to satisfy (77) with tk∗ = 0. In this case, the zooming-out
stage is not necessary and Assumption 1 is not required.

5.2 Zooming-in stage

The zooming-out stage achieves (78) at time tk∗ with k∗ ∈ Z+. Suppose that at some
tk > 0 with k ≥ k∗,

�(tk) ≥ max{V (e(X (tk), μ̄n1(tk), μ̄n2(tk))), θ0}. (79)

In this subsection, first we design a Qin : R+ → R+ for the zooming-in stage such
that

�(tk+1) = Qin(�(tk)) ≥ max{V (e(X (tk+1), μ̄n1(tk+1), μ̄n2(tk+1))), θ0}. (80)

This objective will be achieved by Lemmas 6 and 7. Then we show the convergence
property of the update law (67) for � in the zooming-in stage by Lemma 8.

123



Quantized nonlinear stabilization 95

Remark 16 If (80) is achieved based on (79), we can recursively guarantee that the
state e of the closed-loop quantized system is always in the larger invariant set repre-
sented by B1 in spite of the update of �; see (62) and (69).

The following lemma describes the decreasing property of V during the time inter-
val [tk, tk+1), based on which we will design the zooming-in update law Qin for �.

Lemma 6 Consider the closed-loop quantized system with V satisfying property (62)–
(63). If (79) holds at time tk with k ∈ Z+, then there exists a continuous and positive
definite function ρ̄ such that

(Id − ρ̄) ∈ K∞, (81)

V (e(X (tk+1), μ̄n1(tk), μ̄n2(tk))) ≤ max{(Id − ρ̄)(�(tk)), θ0}. (82)

The proof of Lemma 6 is in Appendix D.
From the definition in (72), the piece-wise constant update of the zooming vari-

ables μ̄n1, μ̄n2 causes jumps of e and thus jumps of V . Based on (82), we design the
zooming-in logic Qin to achieve (80) in spite of the jumps.

To clearly represent the relation between Lyapunov function V and X,�, define

W (ξ, s) = V (e(ξ, ϒ̄n1(s), ϒ̄n2(s))) (83)

for ξ ∈ R
n+nz and s ∈ R+, where

ϒ̄n1(s) = [ϒ11(s), . . . , ϒn1(s)]T, (84)

ϒ̄n1(s) = [ϒ12(s), . . . , ϒn2(s)]T. (85)

Then, W (ξ, s) is a continuous function of (ξ, s).
Consider (ξ, s) satisfying

0 ≤ s ≤ �(tk∗) (86)

W (ξ, s) ≤ �(tk∗). (87)

From the definitions of V and W in (53) and (83), we can find a compact set �o ⊂
R

n+nz × R+ such that all the (ξ, s) satisfying (86)–(87) belong to �o. By using the
property of continuous functions, we can find a continuous and positive definite func-
tion ρo < Id such that for all (ξ, s) ∈ �o and all h ≥ 0, it holds that

|W (ξ, s − ρo(h))− W (ξ, s)| ≤ h. (88)

We propose the following update law for � in the zooming-in stage:

Qin(�) = �− ρo
(
�− max{�(�), θ0}

2

)
. (89)
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where � = (Id − ρ̄). In the following procedure, we employ Lemma 7 to guarantee
objective (80) and employ Lemma 8 to show the convergence property of � with
update law defined in (89).

Lemma 7 shows that property (80) can be achieved with the zooming-in update law
(89) for �, given (78) and (79) satisfied.

Lemma 7 Consider the closed-loop quantized system with V satisfying property (62)–
(63). Suppose that condition (78) holds at some finite time tk∗ and condition (79) holds
at some time tk with k ≥ k∗. Then, property (80) is satisfied at time tk+1 with the update
law �(tk+1) = Qin(�(tk)) with Qin defined in (89).

Proof With 0 < ρo < Id, it can be guaranteed that

�(tk+1) ≤ �(tk) (90)

and

�(tk+1) = �(tk)− ρo
(
�(tk)− max{�(�(tk)), θ0}

2

)

≥ �(tk)+ max{�(�(tk)), θ0}
2

(91)

for k ≥ k∗. Thus, 0 < �(tk) ≤ �(tk∗) for k ≥ k∗.
From Lemma 6, (82) holds. Using (78), (82) and (83), we have

W (X (tk+1),�(tk)) ≤ max{�(�(tk)), θ0} ≤ �(tk∗) (92)

for k ≥ k∗. Hence, (X (tk+1),�(tk)) ∈ �o for k ≥ k∗. Given (X (tk+1),�(tk)) ∈ �o,
from (89) and (92), we obtain

W (X (tk+1),�(tk+1))

≤ W (X (tk+1),�(tk))+ |W (X (tk+1),�(tk+1))− W (X (tk+1),�(tk))|
≤ W (X (tk+1),�(tk))+ |W (X (tk+1), Qin(�(tk))− W (X (tk+1),�(tk))|
≤ max{�(�(tk)), θ0} + �(tk)− max{�(�(tk)), θ0}

2

= �(tk)+ max{�(�(tk)), θ0}
2

. (93)

From (79), we have θ0 ≤ �(tk), which implies

θ0 ≤ �(tk)+ max{�(�(tk)), θ0}
2

. (94)

Properties (91), (93) and (94) together with the definition of W in (83) guarantee
(80). This ends the proof of Lemma 7.
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Lemma 8 shows the convergence property of the update law (67) for � with Q =
Qin defined in (89). The proof of Lemma 8 can be found in [44, Section IV.C].

Lemma 8 Suppose that at some tk∗ > 0 with k∗ ∈ Z+,�(tk∗) ≥ θ0. Then with Qin

defined in (89), update law �(tk+1) = Qin(�(tk)) achieves

lim
k→∞�(tk) = θ0. (95)

Remark 17 The zooming-in update law for � can be designed by finding the ρ̄ with
Lemma 6 and ρo by using the continuity of W . Lemmas 7 and 8 are used to prove the
effectiveness of the the zooming-in update law Qin defined in (89). With Qin designed,
we can design the zooming-in logic Qin

i j for i = 1, . . . , n, j = 1, 2 according to (68).

5.3 Main result

The main result of quantized control is summarized in Theorem 2.

Theorem 2 For the system (11)–(13), under Assumptions 1–4, by choosing con-
stants ci1, ci2 satisfying (47) for i = 1, . . . , n, ISS gains γ

ek′
ek (k �= k′) satisfying

the cyclic-small-gain condition (52) for all i = 1, . . . , n, ISS gains γ μk1
ei , γ

μk2
ei for

i = 1, . . . , n, k = 1, . . . , i − 1 satisfying (57) and constants εi > 0 for i = 1, . . . , n,
we can design the functions κi for i = 1, . . . , n in (24)–(25) and the dynamic quan-
tization logic Qi j for i = 1, . . . , n, j = 1, 2 in (30) such that the closed-loop solu-
tions z and x are globally bounded. Moreover, by choosing the constants εi > 0 for
i = 1, . . . , n arbitrarily small, the output x1(t) can be steered to within an arbitrarily
small neighborhood of origin.

Proof With Assumption 1 satisfied, at some time tk∗ > 0 with k∗ ∈ Z+, (78) can be
achieved by the zooming-out logic Qout

i j designed in Sect. 5.1.
With Assumptions 2–4 satisfied, using Lemma 5, by appropriately designing the

functions κi for i = 1, . . . , n such that the ISS parameters satisfy the conditions (47),
(52) and (57), the closed-loop quantized system has the nested invariant sets defined
in (63).

Using Lemmas 6 and 7, (80) can be guaranteed with the zooming-in logic designed
in Sect. 5.2, and it holds that V (e(X (tk), μ̄n1(tk), μ̄n2(tk))) ≤ �(tk) for k ≥ k∗.
Moreover, Lemma 8 implies that limk→∞V (e(X (tk), μ̄n1(tk), μ̄n2(tk))) ≤ θ0. Recall
the definition of V in (53). The closed-loop signal x1 is driven to within the region
|x1| ≤ α−1

V (θ0). Recall the definition of θ0 in Lemma 5. By designing εi (i = 1, . . . , n)
arbitrarily small, the state x1 can be steered to within an arbitrarily small neighborhood
of the origin. This ends the proof.

Remark 18 The main result of the paper is still new when there is no inverse dynamics
(i.e., the z-subsystem) in system (11)–(13). In this case, the assumption on small-time
norm-observability in Assumption 1 is not needed.
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6 A remark on robust measurement feedback control

Consider system (11)–(13) under additive state measurement disturbances without
quantization. For i = 1, . . . , n, denote xm

i as the measurement of xi and wi as the
corresponding measurement disturbance, that is, xm

i = xi + wi . We show that the
above designed procedure can be adopted to solve the robust measurement feedback
control problem.

Assumption 6 For each i = 1, . . . , n, there exists a constant μi1 ≥ 0 such that

‖wi‖ ≤ μi1. (96)

Under Assumptions 2, 3 and 6, robust control with disturbed measurements can
be addressed in a similar way to the quantized control case. In the constructive con-
trol design, let μi2 = 0 for i = 1, . . . , n. The measurement feedback control law is
designed recursively as

vi = κi (x
m
i − vi−1) = κi (xi − vi−1 + wi ), i = 1, . . . , n (97)

u = vn (98)

with v0 = 0. It can be directly checked that

v1 ∈ S1(x̄1, μ̄11, μ̄12) ⇒· · ·⇒ vi ∈ Si (x̄i , μ̄i1, μ̄i2) ⇒· · ·⇒ vn ∈ Sn(x̄n, μ̄n1, μ̄n2).

(99)

An ISS-Lyapunov function V (e) constructed as in (53) with θ defined as in (57)
satisfies

V (e) ≥ θ(μ̄n1, μ̄n2, ε̄n) ⇒ max
ψ∈�(e,x,μ̄n1,μ̄n2)

∇V (e)ψ ≤ −α(V (e)) (100)

wherever ∇V exists, where α is continuous and positive definite, and � is defined
in (56). Note that σ1 = Id. We can then achieve θ(μ̄n1, μ̄n2, ε̄n) = γ

μ11
e1 (μ11) =

αV (μ11/c11) by designing σi (i = 2, . . . , n) and εi (i = 1, . . . , n) small enough in
the recursive design procedure. This together with (100) means that V (e) ultimately
converges to a region V (e) ≤ αV (μ11/c11). It can be derived that x1 ultimately con-
verges to the region |x1| ≤ μ11/c11. With c11 chosen close to one in the constructive
design procedure, the state x1 ultimately converges to the region close to |x1| ≤ μ11.

Without a detailed proof, we present a theorem on the robust measurement feedback
control for system (11)–(13).

Theorem 3 Consider system (11)–(13). Under Assumptions 2, 3 and 6, the closed-
loop signals are bounded, and in particular, the state x1 can be steered to within a
region arbitrarily close to |x1| ≤ μ11 with the measurement feedback control law in
(97)–(98).
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7 Summary and future work

This paper has developed a new tool for quantized nonlinear control design. The essen-
tial strategy is to introduce a change of coordinates so that the closed-loop quantized
system is a large-scale system of ISS subsystems described by differential inclusions.
The recently developed cyclic-small-gain theorem is employed to guarantee the sta-
bility property of the closed-loop quantized system and to construct an ISS-Lyapunov
function to evaluate the influence of quantization errors. One significance of this
result is that an n-dimensional strict-feedback nonlinear system with measurement
and actuator quantization can be globally stabilized by a quantized controller with 2n
three-level dynamic quantizers.

In spite of the obtained results, several related problems should be addressed in the
future research:

– Quantized control is closely related to other network control problems such as
sampled-data control, control with time-delays. How to deal with more complex
network behaviors in a systematic way, in particular those hybrid/switching sys-
tems satisfying only a weak semigroup property (see [45]), should be studied in
greater details.

– The cyclic-small-gain theorem was originally developed for large-scale systems.
It is thus very natural to ask whether decentralized quantized controllers can be
developed for a class of large-scale nonlinear systems.

– Controllers are expected to possess adaptive capabilities to cope with “large” sys-
tem uncertainties. A further extension of the presented methodology to quantized
adaptive control is of practical interest for engineering applications.

Appendix: Proofs of technical Lemmas

A Proof of Lemma 1

We simply use Sk instead of Sk(x̄k, μ̄k1, μ̄k2) for k = 1, . . . , i − 1.
We only consider the case of ei > 0.
Consider the recursive definition of Sk’s in (36). For k = 1, . . . , i − 1, the strictly

decreasing property of the κk’s implies

max Sk = κk(xk − max Sk−1 − max{ck1|ek |, μk1})+ μk2, (101)

min Sk = κk(xk − min Sk−1 + max{ck1|ek |, μk1})− μk2. (102)

From the iteration type definition of ek’s for k = 1, . . . , i − 1, ei−1 is continuous
and differentiable almost everywhere with respect to x̄i−1, μ̄(i−2)1, μ̄(i−2)2.

Since κk’s are continuously differentiable for k = 1, . . . , i − 1, using (101), we
can see max Si−1 is continuously differentiable almost everywhere with respect to
x̄i−1, μ̄(i−1)1, μ̄(i−1)2.
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Considering the definition of ei in (37), when ei > 0, we can represent the
ei -subsystem with a differential equation

ėi = xi+1 +�i (x̄i , z)− ∇ max Si−1[ ˙̄xi−1, 0(i−1), 0(i−1)]T (103)

with 0(i−1) being the vector composed of i − 1 zero elements, wherever max Si−1
is continuously differentiable, or equivalently, ∇ max Si−1 exists. Because max Si−1
is continuously differentiable almost everywhere, ∇ max Si−1 is discontinuous and
thus the ei -subsystem is a discontinuous system. We represent the ei -subsystem with
a differential inclusion by embedding the discontinuous ∇ max Si−1 into a set-valued
map

∂ max Si−1 =
⋂

ε>0

⋂

τ(M̃ )=0

co
{
∇ max Si−1(Bε(ζi−1)\M̃ )

}
(104)

where Bε(ζi−1) is an open ball of radius ε around ζi−1 := [x̄T
i−1, μ̄

T
(i−1)1, μ̄

T
(i−1)2]T,

and M̃ represents all sets of zero measure (i.e., τ(M̃ ) = 0). Then, ∂ max Si−1 is
convex, compact and upper semi-continuous (see [46, Chapter 1] for a tutorial and
[33,34] for recent results on such properties of discontinuous systems).

Then, in the case of ei > 0, the ei -subsystem can be represented with a differential
inclusion as

ėi ∈ {xi+1 +�i (x̄i , z)− ϕi : ϕi ∈ ∂ max Si−1[ ˙̄xT
i−1, 0(i−1), 0(i−1)]T}

:= {xi+1 + φi : φi ∈ �i (x̄i , μ̄(i−1)1, μ̄(i−1)2, z)} (105)

where

�i (x̄i , μ̄(i−1)1, μ̄(i−1)2, z)

= {�i (x̄i , z)− ϕi : ϕi ∈ ∂ max Si−1[ ˙̄xT
i−1, 0(i−1), 0(i−1)]T}. (106)

Because �i and ˙̄xi are locally Lipschitz and ∂ max Si−1 is convex, compact and
upper semi-continuous,�i is convex, compact and upper semi-continuous. Consider-
ing the definition of ∂ max Si−1, one can find a continuous function s̄i−1 such that for
all x̄i−1, μ̄(i−1)1, μ̄(i−1)2, any si−1 ∈ ∂ max Si−1 satisfies |si−1| ≤ s̄i−1(x̄i−1, μ̄(i−1)1,

μ̄(i−1)2). Thus, for all x̄i−1, μ̄(i−1)1, μ̄(i−1)2, z, any φi ∈ �i (x̄i , μ̄(i−1)1, μ̄(i−1)2, z)
satisfies

|φi | ≤ |�i (x̄i , z)| + s̄i−1(x̄i−1, μ̄(i−1)1, μ̄(i−1)2)| ˙̄xi−1|. (107)

From (12)–(13) and Assumption 2,�i (x̄i , z) is bounded by a K∞ function of (x̄i , z)
and ˙̄xi−1 is bounded by a K∞ function of (x̄i , z). Thus, there exists a λ0

�i
∈ K∞ such

that for any φi ∈ �i (x̄i , μ̄(i−1)1, μ̄(i−1)2, z), it holds that

|φi | ≤ λ0
�i
(|(x̄i , μ̄(i−1)1, μ̄(i−1)2, z)|). (108)
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For the purpose of (39), for each k = 1, . . . , i − 1, we find a λxk+1 ∈ K∞ such
that |xk+1| ≤ λxk+1(|(ēk+1, μ̄k1, μ̄k2)|). For k = 1, . . . , i − 1, from the definitions of
xk+1 in (37), we have min Sk ≤ xk+1 − ek+1 ≤ max Sk and thus

|xk+1| ≤ max{| max Sk |, | min Sk |} + |ek+1|. (109)

For each k = 1, . . . , i − 1, define κo
k (s) = κk(|s|) for s ∈ R+. Because κk is odd,

strictly decreasing and radially unbounded, κo
k ∈ K∞. From (101), we have

| max Sk | ≤ κo
k (|xk − max Sk−1 − max{ck1|ek |, μk1}|)+ μk2

≤ κo
k (|xk − max Sk−1| + max{ck1|ek |, μk1})+ μk2

≤ κo
k (| max Sk−1| + | min Sk−1| + |ek | + max{ck1|ek |, μk1})+ μk2.

(110)

In (110), we used the fact that min Sk−1 ≤ xk − ek ≤ max Sk−1 and thus min Sk−1 −
max Sk−1 + ek ≤ xk − max Sk−1 ≤ ek , to arrive at |xk − max Sk−1| ≤ | max Sk−1| +
| min Sk−1| + |ek |. Similarly, we obtain:

| min Sk | ≤ κo
k (| max Sk−1| + | min Sk−1| + |ek | + max{ck1|ek |, μk1})+ μk2.

(111)

For each xk+1 (k = 1, . . . , i − 1), using (109), (110) and (111), one can find a
λxk+1 ∈ K∞ such that |xk+1| ≤ λxk+1(|(ēk+1, μ̄k1, μ̄k2)|). This together with (108)
guarantees that there exists a λ�i ∈ K∞ such that for all (x̄i , μ̄(i−1)1, μ̄(i−1)2, z), any
φi ∈ �i (x̄i , μ̄(i−1)1, μ̄(i−1)2, z) satisfies

|φi | ≤ λ�i (|(ēi , z, μ̄(i−1)1, μ̄(i−1)2)|) (112)

where ēi := [e1, . . . , ei ]T.
Define

�∗
i (ei+1, x̄i , μ̄(i−1)1, μ̄(i−1)2, z) = {φi + ei+1 : φi ∈ �i (x̄i , μ̄(i−1)1, μ̄(i−1)2, z)}.

(113)

From (37), xi+1 − ei+1 ∈ Si (x̄i , μ̄i1, μ̄i2). Then, equation (105) can be rewritten as
(38).

From (112), we can find aλ�∗
i

∈ K∞ such that for all (ei+1, x̄i , μ̄(i−1)1, μ̄(i−1)2, z),
any φ∗

i ∈ �∗
i (ei+1, x̄i , μ̄(i−1)1, μ̄(i−1)2, z) satisfies (39).

By also considering the cases of ei = 0 and ei < 0, Lemma 1 can be proved. This
ends the proof.
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B Proof of Lemma 2

Note that e0 = z. With (39) satisfied, one can find λek
�∗

i
∈ K∞ for k = 0, . . . , i +1 and

λ
μk1
�∗

i
, λ
μk2
�∗

i
∈ K∞ for k = 1, . . . , i − 1 such that for any φ∗

i ∈ �∗
i (ei+1, x̄i , μ̄(i−1)1,

μ̄(i−1)2, z), it holds that

|φ∗
i | ≤

i+1∑

k=1

λ
ek
�∗

i
(|ek |)+

i−1∑

k=1

(
λ
μk1
�∗

i
(μk1)+ λ

μk2
�∗

i
(μk2)

)
(114)

By convenience, let γ ei
ei = Id. Define

�i (s) = λ
e0
�∗

i
◦ α−1

0 ◦ (
γ e0

ei

)−1 ◦ αV (s)+
i+1∑

k=1

λ
ek
�∗

i
◦ α−1

V ◦ (
γ ek

ei

)−1 ◦ αV (s)

+
i−1∑

k=1

λ
μk1
�∗

i
◦ (
γ μk1

ei

)−1 ◦ αV (s)+
i−1∑

k=1

λ
μk2
�∗

i
◦ (
γ μk2

ei

)−1 ◦ αV (s)+ ιi

2
s

(115)

for s ∈ R+. Then, �i ∈ K∞.
From Lemma 1 in [41], for any 0 < ci1, ci2 < 1, εi > 0, one can find a νi : R+ →

R+ positive, nondecreasing and continuously differentiable on (0,∞) and satisfying

(1 − ci2)(1 − ci1)νi ((1 − ci1)s) s ≥ �i (s) (116)

for s ≥ √
2εi . With the νi satisfying (116), define κi (r) = −νi (|r |)r for r ∈ R.

Noticing that limt→0+ dκi (r)
dr = limt→0− dκi (r)

dr , κi is continuously differentiable, odd,
strictly decreasing and radially unbounded.

Recall Vk(ek) = αV (|ek |) = 1
2 e2

k for k = 1, . . . , n. We use Vk instead of Vk(ek)

for k = 1, . . . , n. Consider the case of

Vi ≥ max
k=1,...,i−1

{
γ

e0
ei (V0), γ

ek
ei (Vk), γ

ei+1
ei (Vi+1),

γ
μk1
ei (μk1), γ

μk2
ei (μk2), γ

μi1
ei (μi1), γ

μi2
ei (μi2), εi

}
. (117)

In this case, we have

�i (|ei |)− ιi

2
|ei | ≥ φ∗

i (118)

for all φ∗
i ∈ �∗

i (ei+1, x̄i , μ̄(i−1)1, μ̄(i−1)2, z). And it also holds that

μi1 ≤ ci1|ei |; μi2 ≤ ci2κ̄i ((1 − ci1)|ei |) |ei |; |ei | ≥ √
2εi . (119)
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When ei �= 0, with 0 < ci1 < 1, for ςi−1 ∈ Si−1 and |bi1| ≤ max{ci1|ei |, μi1} =
ci1|ei |, we have

|xi − ςi−1 + bi1| ≥ (1 − ci1)|ei | (120)

sgn(xi − ςi−1 + bi1) = sgn(ei ) (121)

and thus

νi (|xi − ςi−1 + bi1|)|xi − ςi−1 + bi1| ≥ (1 − ci1)νi ((1 − ci1)|ei |)|ei |. (122)

In the case of (117), for any φ∗
i ∈ �∗

i (ei+1, x̄i , μ̄(i−1)1, μ̄(i−1)2, z), with ςi−1 ∈
Si−1, |bi1| ≤ max{ci1|ei |, μi1} and |bi2| ≤ μi2, using (118)–(122), we have

∇Vi
(
κi (xi − ςi−1 + bi1)+ bi2 + φ∗

i

)

= ei
(−νi (|xi − ςi−1 + bi1|)(xi − ςi−1 + bi1)+ bi2 + φ∗

i

)

≤ −νi (|xi − ςi−1 + bi1|)|xi − ςi−1 + bi1||ei | + |bi2||ei | + |φ∗
i ||ei |

≤ −(1 − ci2)(1 − ci1)νi ((1 − ci1)|ei |)|ei |2 +�i (|ei |)|ei | − ιi

2
|ei |2

≤ − ιi
2

|ei |2 = −ιiαV (|ei |) (123)

which implies (43). This ends the proof.

C Proof of Lemma 3

For convenience of notations, define vn = u. Following the discussions in Remark 9,
we have v0 ∈ S0(x̄0, μ̄01, μ̄02). Suppose that vi−1 ∈ Si−1(x̄i−1, μ̄(i−1)1, μ̄(i−1)2).
We will find ςi−1, bi1 and bi2 satisfying ςi−1 ∈ Si−1(x̄i−1, μ̄(i−1)1, μ̄(i−1)2), |bi1| ≤
max{ci1|ei |, μi1} and |bi2| ≤ μi2, respectively, such that

vi = κi (xi − ςi−1 + bi1)+ bi2 ∈ Si (x̄i , μ̄i1, μ̄i2). (124)

By applying this reasoning repeatedly, property (50) can be proved. We consider only
the case of ei ≥ 0. The proof for the case of ei < 0 is similar. We study the following
cases (A) and (B).

(A) |κi (qi1(xi − vi−1, μi1))| ≤ Mi2μi2.

With Assumption 4 satisfied, one can find a |bi2| ≤ μi2 such that

qi2(κi (qi1(xi − vi−1, μi1)), μi2) = κi (qi1(xi − vi−1, μi1))+ bi2. (125)
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(A1) |xi − vi−1| ≤ Mi1μi1.

In this case, Assumption 4 implies that there exists a |bi1| ≤ μi1 such that

qi1(xi − vi−1, μi1) = xi − vi−1 + bi1 (126)

Choose ςi−1 = vi−1. Then, ςi−1 ∈ Si−1(x̄i−1, μ̄(i−1)1, μ̄(i−1)2) and

qi1(xi − vi−1, μi1) = xi − ςi−1 + bi1. (127)

(A2) |xi − vi−1| > Mi1μi1.

In this case, Assumption 4 implies that there exists a |bi1| ≤ μi1 such that

qi1(xi − vi−1, μi1) = sgn(xi − vi−1)Mi1μi1 + bi1 (128)

We study the following two cases.

– ei > 0. Recall (37) and (48). In this case, we have xi > vi−1 and

xi − vi−1 > Mi1μi1 ≥ ei = xi − max Si−1(x̄i−1, μ̄(i−1)1, μ̄(i−1)2). (129)

One can find a ςi−1 ∈ [vi−1,max Si−1(x̄i−1, μ̄(i−1)1, μ̄(i−1)2)] such that xi −
ςi−1 = Mi1μi1 and thus

qi1(xi − vi−1, μi1) = xi − ςi−1 + bi1. (130)

– ei = 0. In this case, using (37), we have xi ∈ Si−1(x̄i−1, μ̄(i−1)1, μ̄(i−1)2) and can
directly find a ςi−1 ∈ Si−1(x̄i−1, μ̄(i−1)1, μ̄(i−1)2), which is closer to xi than vi−1
such that xi − ςi−1 = sgn(xi − vi−1)Mi1μi1 and thus

qi1(xi − vi−1, μi1) = xi − ςi−1 + bi1. (131)

From (127) and (131), in the case of |κi (qi1(xi − vi−1))| ≤ Mi2μi2, we can find
ςi−1 ∈ Si−1(x̄i−1), |bi1| ≤ μi1 and |bi2| ≤ μi2 such that

vi = qi2(κi (qi1(xi − vi−1))) = κi (xi − ςi−1 + bi1)+ bi2. (132)

(B) |κi (qi1(xi − vi−1, μi1))| > Mi2μi2.

Before the discussions, we give the following lemma.

Lemma 9 Under the conditions of Lemma 3, if |κi (qi1(xi − vi−1, μi1))| > Mi2μi2,
then

sgn(xi − vi−1) = sgn(qi1(xi − vi−1, μi1)). (133)

123



Quantized nonlinear stabilization 105

The proof of Lemma 9 is in Appendix C.1
Note that κi is an odd and strictly decreasing function. We have

sgn(κi (qi1(xi − vi−1, μi1))) = −sgn(qi1(xi − vi−1, μi1)) = −sgn(xi − vi−1).

(134)

Under Assumption 4, using Lemma 9 one can find a |bi2| ≤ μi2 such that

qi2(κi (qi1(xi − vi−1, μi1)), μi2)

= sgn(κi (qi1(xi − vi−1, μi1)))Mi2μi2 + bi2

= −sgn(xi − vi−1)Mi2μi2 + bi2. (135)

(B1) ei > 0.

In this case, using (37), we have xi > vi−1 and thus

κi (qi1(xi − vi−1, μi1)) < 0, (136)

qi2(κi (qi1(xi − vi−1, μi1))) = −Mi2μi2 + bi2. (137)

With |κi (qi1(xi − vi−1, μi1))| > Mi2μi2, property (136) implies

κi (qi1(xi − vi−1, μi1)) < −Mi2μi2. (138)

Consider the following two cases.

– xi − vi−1 ≤ Mi1μi1. In this case, under Assumption 4, one can find a |b′
i1| ≤ μi1

such that

κi (xi − vi−1 + b′
i1) = κi (qi1(xi − vi−1, μi1)) < −Mi2μi2. (139)

– x1 − vi−1 > Mi1μi1. In this case, under Assumption 4, one can find a |b′
i1| ≤ μi1

such that

κi (Mi1μi1 + b′
i1) = κi (qi1(xi − vi−1, μi1)) < −Mi2μi2. (140)

Using the strictly decreasing property of κi , we have

κi (xi − vi−1 + b′
i1) < κi (Mi1μi1 + b′

i1) < −Mi2μi2. (141)

Thus, in both the cases above, one can find a |b′
i1| ≤ μi1 such that

κi (xi − vi−1 + b′
i1) < κi (Mi1μi1 + b′

i1) < −Mi2μi2. (142)

From (49), we have

κ̄i ((1 − ci1)|ei |) < Mi2μi2. (143)
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From the definition of ei , using ei > 0, we have

κi (xi − max Si−1(x̄i−1, μ̄(i−1)1, μ̄(i−1)2)− ci1ei ) > −Mi2μi2. (144)

From (142) and (144), using the continuity of κi , one can find a ςi−1 ∈ [vi−1,max
Si−1(x̄i−1, μ̄(i−1)1, μ̄(i−1)2)] and a bi1 ∈ [−ci1ei , b′

i1] such that

κi (xi − ςi−1 + bi1) = −Mi2μi2. (145)

Recall (137). We have

vi = qi2(κi (qi1(xi − vi−1, μi1))) = κi (xi − ςi−1 + bi1)+ bi2. (146)

(B2) ei = 0.

In this case, xi ∈ Si−1(x̄i−1, μ̄(i−1)1, μ̄(i−1)2). From Lemma 9, we have xi −vi−1 �= 0.
Consider the following two cases.

– |xi − vi−1| ≤ Mi1μi1. In this case, define ς ′
i−1 = vi−1. With Assumption 4, one

can find a |b′
i1| ≤ μi1 such that

κi (xi − ς ′
i−1 + b′

i1) = κi (qi1(xi − vi−1, μi1))

{
> Mi2μi2, if xi < ς ′

i−1

< −Mi2μi2, if xi > ς ′
i−1.

(147)

We used |κi (qi1(xi − vi−1, μi1))| > Mi2μi2 and (134) for the last part of (147).
– |xi −vi−1| > Mi1μi1. In this case, under Assumption 4, one can find a |b′

i1| ≤ μi1
such that

κi (sgn(xi − vi−1)Mi1μi1 + b′
i1)

= κi (qi1(xi − vi−1, μi1))

{
> Mi2μi2, if xi < vi−1

< −Mi2μi2, if xi > vi−1.
(148)

In the case of |xi − vi−1| > Mi1μi1, one can find a ς ′
i−1 ∈ [xi , vi−1] satisfying

sgn(xi − ς ′
i−1) = sgn(xi − vi−1) and sgn(xi − vi−1)Mi1μi1 = xi − ς ′

i−1. In this
way, we achieve

κi (xi − ς ′
i−1 + b′

i1)

{
> Mi2μi2, if xi < ς ′

i−1

< −Mi2μi2, if xi > ς ′
i−1.

(149)

Note that κi (xi − xi + 0) = κi (0) = 0. By using the continuity of κi , one can find a
ςi−1 ∈ [xi , ς

′
i−1] and a bi1 ∈ [0, b′

i1] such that

sgn(xi − ςi−1) = sgn(xi − ς ′
i−1) = sgn(xi − vi−1) (150)

κi (xi − ςi−1 + bi1) = −sgn(xi − vi−1)Mi2μi2. (151)
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Clearly, ςi−1 ∈ Si−1(x̄i−1, μ̄(i−1)1, μ̄(i−1)2) and |bi1| ≤ μi1. Recall (135). We
have

vi = qi2(κi (qi1(xi − vi−1, μi1))) = κi (xi − ςi−1 + bi1)+ bi2. (152)

Considering both cases (A) and (B), the proof of Lemma 3 is concluded.

C.1 Proof of Lemma 9

Consider the following two cases.

– |xi −vi−1| > Mi1μi1. In this case, under Assumption 4, one can find a |bi1| ≤ μi1
such that

qi1(xi − vi−1, μi1) = sgn(xi − vi−1)Mi1μi1 + bi1 (153)

Note that Mi1 > 2. Thus,

sgn(xi − vi−1) = sgn(qi1(xi − vi−1, μi1)). (154)

– |xi −vi−1| ≤ Mi1μi1. In this case, under Assumption 4, one can find a |bi1| ≤ μi1
such that

qi1(xi − vi−1, μi1) = xi − vi−1 + bi1. (155)

Condition |κi (qi1(xi − vi−1, μi1))| > Mi2μi2 implies qi1(xi − vi−1, μi1) �= 0.
If sgn(xi − vi−1) �= sgn(qi1(xi − vi−1, μi1)), then sgn(bi1) = sgn(qi1(xi −
vi−1, μi1)) and |bi1| > |xi − vi−1|. Thus, |xi − vi−1 + bi1| ≤ |bi1| ≤ μi1. Note
that 1

Mi1
< ci1 < 0.5. Then, we can derive

|κi (qi1(xi − vi−1, μi1))| ≤ κ̄i (μi1) ≤ κ̄i

(
1 − ci1

ci1
μi1

)
< κ̄i ((1 − ci1)Mi1μi1)

= Mi2μi2 (156)

which leads to a contradiction with |κi (qi1(xi − vi−1))| > Mi2μi2. We used (60)
for the last equality in (156). This ends the proof of Lemma 9.

D Proof of Lemma 6

Recall that ifχ1, χ2 ∈ K∞ satisfiesχ1(s) > χ2(s) for s ∈ R+, then (Id−χ̃ )◦χ1(s) ≥
χ2(s) for s ∈ R+ with χ̃ := Id − χ2 ◦ χ−1

1 being continuous and positive definite.
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For each i = 1, . . . , n, with (47) satisfied, we can find a continuous and positive
definite ρi such that

σi ◦ αV

(
1

ci1
s

)
≤ (Id − ρi ) ◦ σi ◦ αV (Mi1s) (157)

σi ◦ αV

(
1

1 − ci1
κ̄−1

i

(
1

ci2
s

))
≤ (Id − ρi ) ◦ σi ◦ αV

(
1

1 − ci1
κ̄−1

i (Mi2s)

)

(158)

for all s ∈ R+. Define ρ(s) = mini=1,...,n{ρi (s)} for s ∈ R+. Then, ρ is continuous
and positive definite. Using (58), (59), (64) and (69), we have

B2(μ̄n1(t), μ̄n2(t)) ≤ (Id − ρ)(�(t)) (159)

for any t ∈ R+.
Note that the zooming variables μn1(t) and μn2(t) are constant on [tk, tk+1), that

is, μn1(t) = μn1(tk) and μn2(t) = μn2(tk) for t ∈ [tk, tk+1).
Suppose (79) holds. We study the following two cases:

(a) V (e(X (tk+1), μ̄n1(tk), μ̄n2(tk))) < max{(Id − ρ)(�(tk)), θ0}.
(b) V (e(X (tk+1), μ̄n1(tk), μ̄n2(tk))) ≥ max{(Id − ρ)(�(tk)), θ0}. In this case, from

(63), (79) and (159), it follows that V (e(X (t), μ̄n1(t), μ̄n2(t))) is strictly decreas-
ing for t ∈ [tk, tk+1) and

max{(Id − ρ)(�(tk)), θ0} ≤ V (e(X (t), μ̄n1(t), μ̄n2(t))) ≤ �(tk) (160)

for all t ∈ [tk, tk+1). Using (63), we have

V (e(X (tk+1), μ̄n1(tk), μ̄n2(tk)))

≤ V (e(X (tk), μ̄n1(tk), μ̄n2(tk)))−
tk+1∫

tk

α(V (e(X (τ ), μ̄n1(τ ), μ̄n2(τ ))))dτ

≤ �(tk)− td · min
max{(Id−ρ)(�(tk)),θ0}≤v≤�(tk )

α(v)

≤ �(tk)− td · min
(Id−ρ)(�(tk))≤v≤�(tk)

α(v) (161)

where td = tk+1 − tk . Define ρ′(s) = td ·min(Id−ρ)(s)≤v≤s α(v) for s ∈ R+. Then,
it can be directly verified that ρ′ is continuous and positive definite and that

V (e(X (tk+1), μ̄n1(tk), μ̄n2(tk))) ≤ (Id − ρ′)(�(tk)). (162)

Lemma 6 is proved by finding a continuous and positive definite function ρ̄ such
that (Id − ρ̄) ∈ K∞ and (Id − ρ̄)(s) ≥ max{(Id − ρ)(s), (Id − ρ′)(s)} for s ∈ R+.
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