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Abstract A family of time-varying hyperbolic systems of balance laws is consid-
ered. The partial differential equations of this family can be stabilized by selecting
suitable boundary conditions. For the stabilized systems, the classical technique of
construction of Lyapunov functions provides a function which is a weak Lyapunov
function in some cases, but is not in others. We transform this function through a
strictification approach to obtain a time-varying strict Lyapunov function. It allows
us to establish asymptotic stability in the general case and a robustness property with
respect to additive disturbances of input-to-state stability (ISS) type. Two examples
illustrate the results.

Keywords Strictification · Lyapunov function · Hyperbolic PDE ·
System of balance laws

1 Introduction

Lyapunov function-based techniques are central in the study of dynamical systems.
This is especially true for those having an infinite number of dynamics. These systems

Work supported by HYCON2 Network of Excellence “Highly-Complex and Networked Control
Systems”, grant agreement 257462.

C. Prieur (B)
Department of Automatic Control, Gipsa-lab,
961 rue de la Houille Blanche, BP 46,
38402 Grenoble Cedex, France
e-mail: christophe.prieur@gipsa-lab.grenoble-inp.fr

F. Mazenc
Team INRIA DISCO, L2S, CNRS-Supelec, 3 rue Joliot Curie,
91192 Gif-sur-Yvette, France
e-mail: Frederic.MAZENC@lss.supelec.fr

123



112 C. Prieur, F. Mazenc

are usually modelled by time-delay systems or partial differential equations (PDEs).
For the latter family of systems, Lyapunov functions are useful for the analysis of
many different types of problems, such as the existence of solutions for the heat equa-
tion [3], or the controllability of the semilinear wave equation [8]. The present paper
focuses on a class of one-dimensional hyperbolic equations like those written as a
system of conservation laws. The study of this class of PDEs is crucial when consid-
ering a wide range of physical networks having an engineering relevance. Among the
potential applications we have in mind, there are hydraulic networks (for irrigation or
navigation), electric line networks, road traffic networks [17] or gas flow in pipeline
networks [1,11]. The importance of these applications motivates a lot of theoretical
questions on hyperbolic systems which for instance pertain to optimal control and
controllability as considered in [4,15,16].

The stabilizability of such systems is often proved by means of a Lyapunov func-
tion as illustrated by the contributions [11,21,32] where different control problems
are solved for particular hyperbolic equations. For more general nonlinear hyperbolic
equations, the knowledge of Lyapunov functions can be useful for the stability analysis
of a system of conservation laws (see [7]), or even for the design for these systems of
stabilizing boundary controls (see the recent work [6]).

To demonstrate asymptotic stability through the knowledge of a weak Lyapunov
function i.e. a Lyapunov function whose derivative, along the trajectories of the sys-
tem which is considered, is nonpositive, the celebrated LaSalle invariance principle
has to be invoked (see e.g. [3,24,36]). It requires to state a precompactness prop-
erty for the solutions, which may be difficult to prove (and is not even always satis-
fied, as illustrated by the hyperbolic systems considered in [7]). This technical step
is not needed when is available a strict Lyapunov function i.e. a Lyapunov func-
tion whose derivative, along the trajectories of the system which is considered, is
negative definite. Thus, designing such a strict Lyapunov function is a way to over-
come this technical difficulty, as done for example in [7]. These remarks motivate
the present paper which is devoted to new Lyapunov techniques for the study of
stability and robustness properties of input-to-state-stable (ISS) type for a family of
time-varying linear hyperbolic PDEs with disturbances. By first applying the classi-
cal technique of construction of Lyapunov functions available in the literature, we
will obtain a function which is a weak Lyapunov function for some of the systems
we consider, but not for the others. Next, we will transform this function through a
strictification approach, which owes a great deal to the one presented in [26], (see
also [27,29]) and obtain that way a strict Lyapunov function that makes it possible
to estimate the robustness of the stability of the systems with respect to the presence
of uncertainties and/or external disturbances. This function is given by an explicit
expression.

It is worth mentioning that although the ISS notion is very popular in the area
of the dynamical systems of finite dimension (see e.g. the recent surveys [19,37]),
or for systems with delay (see for instance [28]), the present work is, to the best
of our knowledge, the first one which uses it to characterize a robustness prop-
erty for hyperbolic PDEs. This work parallels what has been done in [30] where
ISS-Lyapunov functions for semilinear time-invariant parabolic PDEs are derived
using strictification techniques (see also [9] where ISS properties are compared for a
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reaction-diffusion system with its finite dimensional counterpart without diffusion).
On the other hand, the construction we shall present is significantly different from the
one in [30] because the family of systems we will study is very different. In particular,
the systems studied in [30] are time-invariant whereas the systems considered in the
present work are time-varying. Moreover, an existence result for the stability when
the perturbations are vanishing is given in [33] by studying the Riemann coordinates.
The present paper gives a constructive estimation even when the perturbations are not
vanishing.

The main result of the present paper is applied to the problem of the regu-
lation of the flow in a channel. This problem has been considered for a long
time in the literature, as reported in the survey paper [25] which involves a com-
prehensive bibliography, and is still an active field of research, as illustrated for
instance in [31] where a predictive control is computed using a Lyapunov func-
tion. We will consider the linearized Saint-Venant–Exner equations which model
the dynamics of the flow in an open channel coupled with the moving sediment
bed, see [13,18] (see also [10]). For this hyperbolic system of balance laws, we
will construct a strict Lyapunov function from which an ISS property can be
derived.

The paper is organized as follows: Basic definitions and notions are introduced in
Sect. 2. In Sect. 3, the analysis of the robustness of a linear time-varying hyperbolic
PDE with uncertainties is carried out by means of the design of an ISS-Lyapunov
function. In Sect. 4, the main result is illustrated by an academic example. Section 5
is devoted to an other application, that is the design of stabilizing boundary con-
trols for the Saint-Venant–Exner equations. Concluding remarks in Sect. 6 end the
work.

Notation

Throughout the paper, the argument of the functions will be omitted or simplified when
no confusion can arise from the context. A continuous function α : [0,∞) → [0,∞)

belongs to class K provided it is increasing and α(0) = 0. It belongs to class K∞ if,
in addition, α(r) → ∞ as r → ∞. For any integer n, we let I d denote the identity
matrix of dimension n. Given a vector ξ in R

n, the components of ξ are denoted ξi for
each i = 1, . . . , n. Given a continuously differentiable function A : R

n → R, ∂ A
∂�

(�)

stands for the vector ( ∂ A
∂ξ1

(�), . . . , ∂ A
∂ξn

(�)) ∈ R
n . The norm induced from the Euclid-

ean inner product of two vectors will be denoted by | · |. Given a matrix A, its induced
matrix norm will be denoted by ||A||, and

Sym(A) = 1

2
(A + A�)

stands for the symmetric part of A. Moreover, given a vector (a1, . . . , an) in
R

n,Diag(a1, . . . , an) is the diagonal matrix with the vector (a1, . . . , an) on its diag-
onal. We denote the set of diagonal positive definite matrices in R

n×n by Dn,+.
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The norm | • |L2(0,L) is defined by: |φ|L2(0,L) =
√∫ L

0 |φ(z)|2dz, for any function

φ : (0, L) → R
n such that

∫ L
0 |φ(z)|2dz < +∞. Finally, given two topological

spaces X and Y, we denote by C0(X; Y ) (resp. C1(X; Y )) the set of the continuous
(resp. continuously differentiable) functions from X to Y. Following [6], we introduce
the notation, for all matrices M ∈ R

n×n,

ρ1(M) = inf{‖�M�−1‖,� ∈ Dn,+}. (1)

2 Basic definitions and notions

Throughout our work, we will consider linear partial differential equations of the
form

∂ X

∂t
(z, t) + 	(z, t)

∂ X

∂z
(z, t) = F(z, t)X (z, t) + δ(z, t), (2)

where z ∈ [0, L], t ∈ [0,+∞), and 	(z, t) = Diag(λ1(z, t), . . . , λn(z, t)) is a diag-
onal matrix in R

n×n whose m first diagonal terms are nonnegative and the n − m last
diagonal terms are nonpositive (we will say that the hyperbolicity assumption holds,
when additionally the λi ’s are never vanishing). We assume that the function δ is a
disturbance of class C1, F is a periodic function with respect to t of period T and of
class C1,	 is a function of class C1, periodic with respect to t of period T .

The boundary conditions are written as

(
X+(0, t)
X−(L , t)

)
= K

(
X+(L , t)
X−(0, t)

)
, (3)

where X =
(

X+
X−

)
, X+ ∈ R

m, X− ∈ R
n−m, and K ∈ R

n×n is a constant matrix.

The initial condition is

X (z, 0) = X0(z), ∀z ∈ (0, L), (4)

where X0 is a function [0, L] :→ R
n of class C1 satisfying the following zero-order

compatibility condition:

(
X0+(0)

X0−(L)

)
= K

(
X0+(L)

X0−(0)

)
(5)
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and the following first-order compatibility condition:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−λ1(0, 0)
dX0

1
dz (0) + (F(0, 0)X0(0) + δ(0, 0))1

...

−λm(0, 0)
dX0

m
dz (0) + (F(0, 0)X0(0) + δ(0, 0))m

−λm+1(L , 0)
dX0

m+1
dz (L) + (F(L , 0)X0(L) + δ(L , 0))m+1

...

−λn(L , 0)
dX0

n
dz (L) + (F(L , 0)X0(L) + δ(L , 0))n

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= K

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−λ1(L , 0)
dX0

1
dz (L) + (F(L , 0)X0(L) + δ(L , 0))1

...

−λm(L , 0)
dX0

m
dz (L) + (F(L , 0)X0(L) + δ(L , 0))m

−λm+1(0, 0)
dX0

m+1
dz (0) + (F(0, 0)X0(0) + δ(0, 0))m+1

...

−λn(0, 0)
dX0

n
dz (0) + (F(0, 0)X0(0) + δ(0, 0))n

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(6)

As proved in [20], if the function 	 is of class C1 and satisfies the hyperbolicity
assumption, if the function δ is of class C1, and if the initial condition is of class C1

and satisfies the compatibility conditions (5) and (6), there exists an unique classical
solution of the system (2), with the boundary conditions (3) and the initial condition
(4), defined for all t ≥ 0.

Now, we introduce the notions of weak, strict and ISS-Lyapunov functions that we
consider in this paper (see for instance [24, Def. 3.62] for the notion of Lyapunov
function and [30] for the notion of ISS-Lyapunov function in an infinite dimensional
context).

Definition 1 Let ν : L2(0, L) × R → R be a continuously differentiable function,
periodic with respect to its second argument. The function ν is said to be a weak
Lyapunov function for (2) with (3), if there are two functions κS and κM of class K∞
such that, for all functions φ ∈ L2(0, L) and for all t ∈ [0,+∞),

κS
(|φ|L2(0,L)

) ≤ ν(φ, t) ≤
L∫

0

κM (|φ(z)|) dz (7)

and, in the absence of δ, for all solutions of (2) satisfying (3), and all t ≥ 0,

dν(X (·, t), t)

dt
≤ 0.

The function ν is said to be a strict Lyapunov function for (2) with (3) if, in the absence
of δ, there exists a real number λ1 > 0 such that, for all solutions of (2) satisfying (3),
and for all t ≥ 0,

123



116 C. Prieur, F. Mazenc

dν(X (·, t), t)

dt
≤ −λ1ν(X (·, t), t).

The function ν is said to be an ISS-Lyapunov function for (2) with (3) if there exist a
positive real number λ1 > 0 and a function λ2 of class K such that, for all continuous
functions δ, for all solutions of (2) satisfying (3), and for all t ≥ 0,

dν(X (·, t), t)

dt
≤ −λ1ν(X (·, t), t) +

L∫

0

λ2(|δ(z, t)|)dz.

Remark 1 1. For conciseness, we will often use the notation ν̇ instead of dν(X (·,t),t)
dt .

2. Let us recall that, when is known a weak Lyapunov function, asymptotic stability
can be often established via the celebrated LaSalle invariance principle (see [24,
Theorem 3.64] among other references).

3. When a strict Lyapunov function ν exists for (2) with (3) and δ is not present, then
the value of ν along the solutions of (2) satisfying (3) exponentially decays to zero
and therefore each solution X (z, t) satisfies limt→+∞ |X (·, t)|L2(0,L) = 0. When
in addition, there exists a function κL of class K∞, such that, for all functions
φ ∈ L2(0, L) and for all t ≥ 0,

ν(φ, t) ≤ κL
(|φ|L2(0,L)

)
, (8)

then the system (2) is globally asymptotically stable for the topology of the norm
L2.

4. When the system (2) with (3) admits an ISS-Lyapunov function ν, then, one can
check through elementary calculations1 that, for all solutions of (2) satisfying (3)
and for all instants t ≥ t0, the inequality

|X (·, t)|L2(0,L) ≤ κ−1
S (ϕ1(t, t0, X)) + κ−1

S (ϕ2(t, t0))

with

ϕ1(t, t0, X) = 2e−λ1(t−t0)

L∫

0

κM (|X (z, t0)|)dz

1 For instance this inequality follows from the fact that we have, for all κ of class K (that is for all continuous,
zero at zero, and increasing functions κ : [0,+∞) → [0,+∞)), and for all positive values a and b,

κ(a + b) ≤ κ(2a) + κ(2b),

and from the fact that the function κ−1
S is zero at zero and increasing.
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ISS-Lyapunov functions for time-varying hyperbolic systems 117

and

ϕ2(t, t0) = 2

λ1
sup

τ∈[t0,t]

⎛
⎝

L∫

0

λ2(|δ(z, τ )|)dz

⎞
⎠

holds. This inequality is the analogue for the PDEs (2) with (3) of the ISS inequal-
ities for ordinary differential equations. It gives an estimation of the influence of
the disturbance δ on the solutions of the system (2) with (3).

3 ISS-Lyapunov functions for hyperbolic systems

Before stating the main theoretical result of the work, some comments are needed.
Since, in the case where the system (2) is such that m < n, we can replace X (z, t) by(

X+(z, t)
X−(L − z, t)

)
and we may assume without loss of generality that 	 is diagonal

and positive semidefinite. Then the boundary conditions (3) become

X (0, t) = K X (L , t). (9)

Next, we recall an important result given in [6] because it sheds light on the problem we
consider and, more precisely, on the assumptions we introduce below. If 	 is constant,
diagonal and positive definite and if ρ1(K ) < 1, where the ρ1 is the function defined
in (1), then the system (2), when F(z, t) = 0 and δ(z, t) = 0 for all z ∈ [0, L], t ≥ 0,

with the boundary conditions (9) is exponentially stable in H2-norm. Moreover, there
exist a diagonal positive definite matrix 2 Q ∈ R

n×n and a positive constant ε > 0
such that

Sym(Q	 − K �Q	K ) ≥ ε I d. (10)

Furthermore, following what has been assumed for parabolic equations in [30], it might
seem natural to consider the case where F(z, t) possesses some stability properties.
On the other hand, there is no reason to believe that this property is always needed.

These remarks lead us to introduce the following assumption:

Assumption 1 For all t ≥ 0 and for all z ∈ [0, L], all the entries of the diagonal
matrix 	(z, t) are nonnegative. There exist a symmetric positive definite matrix Q, a
real number α ∈ (0, 1), a continuous real-valued function r, periodic of period T > 0
such that the constant

B =
T∫

0

[
max{r(m), 0}

||Q|| + min{r(m), 0}
λQ

]
dm, (11)

2 Such a matrix Q may be obtained by selecting a diagonal positive definite matrix � such that �K�−1 <

I d. Then selecting Q = �2	−1 and ε > 0 sufficiently small we have (10).
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where λQ is the smallest eigenvalue of Q, is positive. Moreover, for all t ≥ 0 and for
all z ∈ [0, L], the following inequalities:

Sym
(
αQ	(L , t) − K �Q	(0, t)K

) ≥ 0, (12)

Sym (Q	(z, t)) ≥ r(t)I d, (13)

Sym
(

Q ∂	
∂z (z, t) + 2QF(z, t)

)
≤ 0 (14)

are satisfied.

Let us introduce the function

q(t) = μ

[
max{r(t), 0}

||Q|| + min{r(t), 0}
λQ

]
− μB

2T
, (15)

where Q and r are the matrix and the function in Assumption 1.
We are ready to state and prove the main result of the paper.

Theorem 1 Assume the system (2) with the boundary conditions (9) satisfies Assump-
tion 1. Let μ be any real number such that

0 < μ ≤ − 1

L
ln(α). (16)

Then the function U : L2(0, L)×R → R defined, for all φ ∈ L2(0, L) and t ∈ R, by

U (φ, t) = exp

⎛
⎝ 1

T

t∫

t−T

t∫

�

q(m)dmd�

⎞
⎠

L∫

0

φ(z)�Qφ(z)e−μzdz, (17)

where q is the function defined in (15), is an ISS-Lyapunov function for the system (2)
with the boundary conditions (9).

Remark 2 1. Assumption 1 does not imply that for all fixed z ∈ [0, L], the ordinary
differential equation Ẋ = F(z, t)X is stable. In Sect. 4, we will study an example
where this system is unstable.

2. The fact that Q is symmetric positive definite and all the entries of 	(z, t) are
nonnegative does not imply that Sym(Q	(z, t)) is positive definite. That is the
reason why we do not assume that r is a nonnegative function.

3. Assumption 1 holds when, in the system (2), 	(z, t) is constant, F(z, t) is con-
stant, δ(z, t) = 0 for all z ∈ [0, L] and t ≥ 0 and the boundary condition (3)
satisfies

Sym
(

Q	 − K �Q	K
)

≥ 0, Sym (QF) ≤ 0

for a suitable symmetric positive definite matrix Q. Therefore Theorem 1 gen-
eralizes the sufficient conditions of [10] for the exponential stability of linear
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hyperbolic systems of balance laws (when F is diagonally marginally stable), to
the time-varying case and to the semilinear perturbed case (without assuming that
F is diagonally marginally stable).

4. The Lyapunov function U defined in (17) is a time-varying function, periodic of
period T . In the case where the system is time-invariant, one can choose a constant
function q, and then it is obtained a time-invariant function (17) which is a quite
usual Lyapunov function candidate in the context of the stability analysis of PDEs
(see e.g., [5,6,39]).

Proof We begin the proof by showing that the function V defined by, for all φ ∈
L2(0, L),

V (φ) =
L∫

0

φ(z)�Qφ(z)e−μzdz

is a weak Lyapunov function for the system (2) with the boundary conditions (9) when
Assumption 1 and (16) are satisfied, r is a nonnegative function, and δ is identically
equal to zero.

We note for later use that, for all φ ∈ L2(0, L),

λQ

L∫

0

|φ(z)|2e−μz dz ≤ V (φ) ≤ ||Q||
L∫

0

|φ(z)|2e−μz dz. (18)

Now, we compute the time-derivative of V along the solutions of (2) with (9):

V̇ = 2

L∫

0

X (z, t)�Q
∂ X

∂t
(z, t)e−μzdz

= 2

L∫

0

X (z, t)�Q

[
−	(z, t)

∂ X

∂z
(z, t) + F(z, t)X (z, t) + δ(z, t)

]
e−μzdz

= −R1(X (·, t), t) + R2(X (·, t), t) + R3(X (·, t), t), (19)

with

R1(φ, t) = 2

L∫

0

φ(z)�Q	(z, t)
∂φ

∂z
(z)e−μzdz,

R2(φ, t) = 2

L∫

0

φ(z)�QF(z, t)φ(z)e−μzdz, (20)

R3(φ, t) = 2

L∫

0

φ(z)�Qδ(z, t)e−μzdz. (21)
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Now, observe that

R1(φ, t) =
L∫

0

∂(φ(z)�Q	(z, t)φ(z))

∂z
e−μz dz

−
L∫

0

φ(z)�Q
∂	

∂z
(z, t)φ(z)e−μz dz.

Performing an integration by parts on the first integral, we obtain

R1(φ, t) = φ(L)�Q	(L , t)φ(L)e−μL − φ(0)�Q	(0, t)φ(0)

+μ

L∫

0

φ(z)�Q	(z, t)φ(z)e−μzdz

−
L∫

0

φ(z)�Q
∂	

∂z
(z, t)φ(z)e−μz dz. (22)

Combining (19) and (22), we obtain

V̇ = −X (L , t)�Q	(L , t)X (L , t)e−μL + X (0, t)�Q	(0, t)X (0, t)

+R4(X (·, t), t) + R3(X (·, t), t),

with

R4(φ, t) = −μ

L∫

0

φ(z)�Q	(z, t)φ(z)e−μzdz

+
L∫

0

φ(z)�Q
∂	

∂z
(z, t)φ(z)e−μzdz + R2(φ, t),

where R2 is the function defined in (20). Using (9), we obtain

V̇ = −X (L , t)�Q	(L , t)X (L , t)e−μL + X (L , t)�K �Q	(0, t)K X (L , t)

+R4(X (·, t), t) + R3(X (·, t), t).

By grouping the terms and using the notation

N (t) = K �Q	(0, t)K
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we obtain

V̇ = X (L , t)�
[

N (t) − e−μL Q	(L , t)
]

X (L , t) + R4(X (·, t), t) + R3(X (·, t), t).

Grouping the terms in R4(X (·, t), t), we obtain

V̇ = X (L , t)�
[

N (t) − e−μL Q	(L , t)
]

X (L , t)

−
L∫

0

X (z, t)�QM(z, t)X (z, t)e−μzdz + R3(X (·, t), t),

with

M(z, t) = μ	(z, t) − ∂	

∂z
(z, t) − 2F(z, t).

The inequalities (12) and (16) imply that

V̇ ≤ −
L∫

0

X (z, t)�QM(z, t)X (z, t)e−μzdz + R3(X (·, t), t).

It follows from (14) that

V̇ ≤ −μ

L∫

0

X (z, t)�Q	(z, t)X (z, t)e−μzdz + R3(X (·, t), t).

Using (13), we deduce that

V̇ ≤ −μr(t)

L∫

0

|X (z, t)|2e−μz dz + R3(X (·, t), t).

From (18) and the definition of R3 in (21), we deduce that

V̇ ≤ −μ

[
max{r(t), 0}

||Q|| + min{r(t), 0}
λQ

]
V (X (·, t))

+2||Q||
L∫

0

|X (z, t)||δ(z, t)|e−μz dz.
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From Cauchy–Schwarz inequality, it follows that, for all κ > 0,

V̇ ≤ −μ

[
max{r(t), 0}

||Q|| + min{r(t), 0}
λQ

]
V (X (·, t))

+2||Q||κ
L∫

0

|X (z, t)|2e−μz dz + ||Q||
2κ

L∫

0

|δ(z, t)|2e−μzdz (23)

≤ −qκ (t)V (X (·, t)) + ||Q||
2κ

L∫

0

|δ(z, t)|2 dz, (24)

with qκ(t) = μ
[

max{r(t),0}
||Q|| + min{r(t),0}

λQ

]
− 2||Q||κ

λQ
.

The inequality (23) implies that when r(t) is nonnegative, δ is identically equal to
zero and κ small enough, the function V is a weak Lyapunov function for the system
(2) with the initial conditions (9). However, we did not assume that the function r is
nonnegative and we aim at establishing that the system is ISS with respect to δ. This
leads us to apply a strictification technique which transforms V into a strict Lyapu-
nov function. The technique of [26, Chapter 11] leads us to consider the time-varying
candidate Lyapunov function

Uκ(φ, t) = esκ (t)V (φ),

with sκ(t) = 1
T

∫ t
t−T

∫ t
�

qκ(m)dmd�. Through elementary calculations, one can prove
the following:

Claim 2 For all t in R, we have d
dt sκ(t) = qκ(t) − 1

T

∫ t
t−T qκ(m)dm.

With (24) and Claim 2, we get that the time-derivative of Uκ along the solutions of
(2) with the initial conditions (9) satisfies:

U̇κ ≤ −esκ (t)qκ(t)V (X (·, t)) + ||Q||
2κ

esκ (t)

L∫

0

|δ(z, t)|2dz

+ esκ (t)

⎡
⎣qκ(t) − 1

T

t∫

t−T

qκ(m)dm

⎤
⎦ V (X (·, t))

≤ ||Q||
2κ

esκ (t)

L∫

0

|δ(z, t)|2dz − esκ (t) 1

T

t∫

t−T

qκ(m)dm V (X (·, t)).

123



ISS-Lyapunov functions for time-varying hyperbolic systems 123

Since r is periodic of period T, we have

t∫

t−T

qκ(m)dm = μ

t∫

t−T

[
max{r(m), 0}

||Q|| + min{r(m), 0}
λQ

]
dm − 2T ||Q||κ

λQ

= μB − 2T ||Q||κ
λQ

,

where B is the constant defined in (11). We deduce that the value

κ = μBλQ

4T ||Q|| , (25)

which is positive because B is positive, gives

U̇ ≤ − μ

2T
BU (X (·, t), t) + ||Q||

2κ
esκ (t)

L∫

0

|δ(z, t)|2 dz

≤ − μ

2T
BU (X (·, t), t) + c1

L∫

0

|δ(z, t)|2dz,

with c1 = 2T ||Q||2
μBλQ

eT
μrM||Q|| , rM = sup{m∈[0,T ]}{r(m)} and U = Uκ for κ defined in

(25). Moreover, (18) ensures that there are two positive constants c2 and c3 such that,
for all t ∈ R and φ ∈ L2(0, L),

c2

L∫

0

|φ(z)|2 dz ≤ U (φ, t) ≤ c3

L∫

0

|φ(z)|2 dz.

Therefore inequalities of the type (7) are satisfied. We deduce that U is an ISS-Lyapu-
nov function, as introduced in Definition 1. This concludes the proof of Theorem 1.

4 Benchmark example

In this section we consider the system (2) and the boundary conditions (3) with the
following data, for all z in [0, L] and for all t ≥ 0,

X (z, t) ∈ R , L = 1,

	(z, t) = sin2(t)
[
cos2(t) + 1 − 1

2 z
]
, F(z, t) = sin2(t)

5 ,

K = 1
2 .

A remarkable feature of this system if that the system ξ̇ = F(z, t)ξ, which rewrites

as ξ̇ = sin2(t)
5 ξ, is exponentially unstable. Now, we show that Theorem 1 applies to
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the PDE we consider. Let Q = 1 and α = 1
2 . Then we have, for all t ≥ 0,

αQ	(1, t) − K �Q	(0, t)K = 1

4
sin2(t) cos2(t)

and thus (12) is satisfied. It is clear that (13) holds with the function r(t) = sin2(t)[
cos2(t) + 1

2

]
, which is periodic of period 2π. Then the corresponding value of B is

positive, and we compute B = 3π
4 . Finally, for all z ∈ [0, 1], t ≥ 0,

Sym

(
Q

∂	

∂z
(z, t) + 2QF(z, t)

)
= − sin2(t)

2
+ 2

sin2(t)

5
≤ − sin2(t)

10
.

Therefore (14) holds and Assumption 1 is satisfied. We conclude that Theorem 1
applies. It follows that the system defined by

∂ X

∂t
(z, t)+sin2(t)

[
cos2(t)+1− 1

2
z

]
∂ X

∂z
(z, t)= sin2(t)

5
X (z, t) + δ(z, t) (26)

for all z in (0, 1) and for all t ≥ 0, with the boundary condition

X (0, t) = 1

2
X (1, t)

is asymptotically stable and, for this system, the function (17) is an ISS-Lyapunov
function (with respect to δ). Let us compute this ISS-Lyapunov function. With (15)
and the choice Q = 1 and μ = 1

2 , we compute

1

2π

t∫

t−2π

t∫

�

q(m)dmd� = 1

2π

t∫

t−2π

t∫

�

(
1

2
sin2(m)[cos2(m) + 1

2
] − 3

32

)
dmd�,

= 1

2π

t∫

t−2π

t∫

�

(
1 − cos(2m)

8
+ 1 − cos(4m)

16
− 3

32

)
dmd�,

= 1

2π

t∫

t−2π

(
3

32
(t − l) − sin(2t)

16
− sin(4t)

64

)
d�,

= 3π

32
− sin(2t)

16
− sin(4t)

64
.

Therefore the ISS-Lyapunov function is given by the expression, for all φ in L2(0, 1)

and for all t ≥ 0,

U (φ, t) = exp

(
3π

32
− 1

16
sin(2t) − 1

64
sin(4t)

) 1∫

0

|φ(z)|2e− 1
2 z dz. (27)
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Fig. 1 Solution of (26) for t ∈ [0, 10] and for z ∈ [0, 1]

To numerically check the stability and the ISS property of the system, let us discret-
ize the hyperbolic equation (26) using a two-step variant of the Lax-Friedrichs (LxF)
method [35] and the solver [34] on Matlab©.3 We select the parameters of the numeri-
cal scheme so that the CFL condition for the stability holds. More precisely, we divide
the space domain [0, 1] into 100 intervals of identical length, and, choosing 10 as final
time, we set a time discretization of 5 × 10−3. For the initial condition, we select the
function X (z, 0) = z + 1, for all z ∈ [0, 1]. For the perturbation, we choose, for all
z ∈ [0, 1],

δ(z, t) = sin2(π t) when t < 5 and δ(z, t) = 0 when t ≥ 5.

The time evolutions of the solution X and of the Lyapunov function U given by (27) are
in Figs. 1 and 2, respectively. We can observe that the solution converges as expected
to the equilibrium.

5 Application on the design of boundary control
for the Saint-Venant–Exner equations

5.1 Dynamics using the physical and Riemann variables

In this section, we apply the main result of Sect. 3 to the Saint-Venant–Exner model
which is an example of nonlinear hyperbolic system of balance laws.

3 The simulation codes can be downloaded from http://www.gipsa-lab.fr/~christophe.prieur/Codes/
2012-Prieur-Mazenc-Ex1.zip.

123

http://www.gipsa-lab.fr/~christophe.prieur/Codes/2012-Prieur-Mazenc-Ex1.zip
http://www.gipsa-lab.fr/~christophe.prieur/Codes/2012-Prieur-Mazenc-Ex1.zip


126 C. Prieur, F. Mazenc

0 1 2 3 4 5 6 7 8 9 10

0.5

1

1.5

2

2.5

3

3.5

4

Fig. 2 Time-evolution of the Lyapunov function U given by (27) along the solution of (26) for t ∈ [0, 10]

We consider a prismatic open channel with a rectangular cross-section, and a unit
width. The dynamics of the height and of the velocity of the water in the pool are usu-
ally described by the shallow water equation (also called the Saint-Venant equation)
as considered in [14]. To take into account the effect of the sediment on the flow, this
system of equations should be modified as described in [13,18] (see also [10]). This
yields the following model

∂H
∂t

+ V ∂H
∂z

+ H∂V
∂z

= δ1,

∂V
∂t

+ V ∂V
∂z

+ g
∂H
∂z

+ g
∂B
∂z

= gSb − C f
V2

H + δ2,

∂B
∂t

+ aV2 ∂V
∂z

= δ3,

(28)

where

– H = H(z, t) is the water height at z in [0, L] (L is the length of the pool), and at
time t ≥ 0;

– V = V(z, t) is the water velocity;
– B = B(z, t) is the bathymetry, i.e. the sediment layer above the channel bottom;
– g is the gravity constant;
– Sb is the slope (which is assumed to be constant);
– C f is the friction coefficient (also assumed to be constant);
– a is a physical parameter to take into account the (constant) effects of the porosity

and of the viscosity;
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– δ = δ(z, t) = (δ1(z, t), δ2(z, t), δ3(z, t))� is a disturbance, e.g. it can be a supply
of water or an evaporation along the channel (see [14]).

In the previous model the disturbance may come from many different phenomena.
The system (28) admits a steady-state H�,V� and B� (i.e. a solution which does not
depend on the time) which is constant with respect to the z-variable. Of course H�,V�

are such that the equality gSbH� = C f V�2 is satisfied. The linearization of (28) at
this equilibrium is carried out in [10] and is:

∂h

∂t
+ V� ∂h

∂z
+ H� ∂v

∂z
= δ1,

∂v

∂t
+ V� ∂v

∂z
+ g

∂h

∂z
+ g

∂b

∂z
= C f

V�2

H�2 h − 2C f
V�

H�
v + δ2, (29)

∂b

∂t
+ aV�2 ∂v

∂z
= δ3.

Now we perform a change of coordinates for system (29). More precisely, we con-
sider the classical characteristic Riemann coordinates (see e.g. [22]) defined for each
k = 1, 2, 3 by 4

Xk = 1

θk(λk −λi )(λk − λ j )

[(
(V�−λi )(V� − λ j ) + gH�

)
h+H�λkv + gH�b

]

(30)

for suitable constant characteristic velocities λk (which are quite complicated but
explicitly computed in [18]), and denote

θk = C f
V�

H�

λk

(λk − λi )(λk − λ j )
. (31)

Using this change of coordinates, we rewrite the system (29) as, for each k = 1, 2, 3,

∂ Xk

∂t
+ λk

∂ Xk

∂z
+

3∑

s=1

(2λs − 3V�)θs Xs = δk . (32)

This system belongs to the family of systems (2), where X = (X1, X2, X3)
�,

	(z, t) = Diag(λ1, λ2, λ3), and, for all z ∈ [0, L], t ≥ 0,

F(z, t) =
⎛
⎝

α1 α2 α3
α1 α2 α3
α1 α2 α3

⎞
⎠ , (33)

4 In (30) (and similarly in other equations of this section), given k = 1, 2, or 3, the index i and j are in
{1, 2, 3} and such that i, j and k are different. In particular the product (λk −λi )(λk −λ j ) does not vanish.
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with αk = (3V� − 2λk)θk for all k = 1, 2, 3. It is proved in [18] that, for all k =
1, 2, 3, αk < 0 (and thus the matrix in (33) is stable) and that the three eigenvalues of
	 satisfy

λ1 < 0 < λ2 < λ3. (34)

Let us explain how Theorem 1 can be applied to design a stabilizing boundary feedback
control for the system (32).

5.2 Boundary conditions

The boundary conditions of (28) [and thus of (29)] are defined by hydraulic control
devices such as pumps and valves. Here it is assumed that the water levels are mea-
sured at both ends of the open channel, and that the control action can be directly
prescribed by the control devices. More precisely, in the present paper, we consider
the following set of boundary conditions (see [2] for the two first boundary conditions
and [10] for the last one):

1. the first boundary condition is made up of the equation that describes the operation
of the gate at outflow of the reach:

H(L , t)V(L , t) = kg

√
[H(L , t) − u1(t)]3, (35)

where kg is a positive constant coefficient and, at each time instant t, u1(t) denotes
the weir elevation which is a control input;

2. the second boundary condition imposes the value of the channel inflow rate that
is controlled. It is denoted u2(t):

H(0, t)V(0, t) = u2(t); (36)

3. the last boundary condition is a physical constraint on the bathymetry:

B(0, t) = B, (37)

where B is a constant value.

By linearizing these boundary conditions, we derive the following boundary con-
ditions for (29):

H�v(L , t) + h(L , t)V� = 3

2
kg(h(L , t) − u1(t) + u�

1)

√
H� − u�

1, (38)

H�v(0, t) + h(0, t)V� = u2(t) − u�
2, (39)

b(0, t) = 0, (40)

where u�
1 and u�

2 are the constant control actions at the equilibrium (H�,V�,B�).
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Due to (30), for all constant values k12, k13 and k21 in R, the following conditions

X1(L , t) = k12 X2(L , t) + k13 X3(L , t), (41)

X2(0, t) = k21 X1(0, t) (42)

are equivalent to (38) and (39) for a suitable choice of the control actions u1(t) and
u2(t). More precisely, assuming H� 
= u�

1, (38) gives the following

u1(t) = u�
1 − 2(H�v(L , t) + h(L , t)V�)

3kg
√H� − u�

1

+ h(L , t). (43)

Before computing v(L , t), note that, by letting

A = −C2
f
V�2

H�2

λ1λ2λ3

(λ1 − λ2)2(λ1 − λ3)2(λ3 − λ3)2

and, for each triplet of different index (i, j, k) in {1, 2, 3}, �k = θi θ j
(λk−λi )(λk−λ j )

, due
to (31), we have

λ1�1 − k12λ2�2 − k13λ3�3 = A(1 − k12 − k13).

Moreover, due to (34), A is positive, thus λ1�1 − k12λ2�2 − k13λ3�3 
= 0, as soon
as k12 + k13 
= 1. Therefore, with a suitable choice of the tuning parameters k12 and
k13, the condition5 λ1�1 − k12λ2�2 − k13λ3�3 
= 0 holds.

Therefore, under the condition k12 + k13 
= 1, we may compute v(L , t) with (30)
and (41), as a function of h(L , t) and b(L , t) as follows:

v(L , t) = h(L , t)

[
gH�(−�1 + k12�2 + k13�3) − �1(V� − λ2)(V� − λ3)

H�(λ1�1 − k12λ2�2 − k13λ3�3)

+ k12�2(V� − λ1)(V� − λ3) + k13�3(V� − λ1)(V� − λ2)

H�(λ1�1 − k12λ2�2 − k13λ3�3)

]

+ b(L , t)
g(−�1 + k12�2 + k13�3)

λ1�1 − k12λ2�2 − k13λ3�3
. (44)

5 The condition k12 + k13 
= 1 will hold with the numerical values that will be chosen in Sect. 5.3 below.
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Combining (43) and (44), the control action depends only on h(L , t) and b(L , t),
that is

u1(t) = u�
1 + h(L , t)

[
1 − 2H�

3kg
√H� − u�

1

×
(

gH�(−�1 + k12�2 + k13�3) − �1(V� − λ2)(V� − λ3)

H�(λ1�1 − k12λ2�2 − k13λ3�3)

+ k12�2(V� − λ1)(V� − λ3) + k13�3(V� − λ1)(V� − λ2)

H�(λ1�1 − k12λ2�2 − k13λ3�3)

)

− 2V�

3kg
√H� − u�

1

]

−b(L , t)
2H�

3kg
√H� − u�

1

gH�(−�1 + k12�2 + k13�3)

H�(λ1�1 − k12λ2�2 − k13λ3�3)
. (45)

Similarly (30), (39), (40), and (42) give the following control

u2(t) = u�
2 + h(0, t)V� + H�v(0, t)

= u�
2 + h(0, t)

[V�

+ gH�(−�2 + k21�1)−�2(V�−λ1)(V�−λ3) + k21�1(V�−λ2)(V�−λ3)

H�(λ2�2 − k21λ1�1)

]
.

(46)

By defining the output of the system (28) as the height at both ends of the channel
and the bathymetry of the water at the outflow, the control (u1, u2) defined in (45) and
(46) is an output feedback law.

The last boundary condition (40) is equivalent, for all t ≥ 0, to

∑

i

[(λi − V�)2 − gH�]Xi (0, t) = 0

and thus, assuming 6 (λ3 − V�)2 − gH� 
= 0, and using (42), we have

X3(0, t) = −[(λ1 − V�)2 − gH�]X1(0, t) + [(λ2 − V�)2 − gH�]X2(0, t)

(λ3 − V�)2 − gH�

= −[(λ1 − V�)2 − gH�] + k21[(λ2 − V�)2 − gH�]
(λ3 − V�)2 − gH�

X1(0, t).

By performing the same change of spatial variables as in the beginning of Sect. 3,
we may assume that, for all i = 1, 2, 3, λi > 0.

6 This will be the case with the numerical values that will be chosen in Sect. 5.3 below.
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To summarize the boundary conditions in the characteristic Riemann coordinates
are (9) with

K =
⎛
⎝

0 k12 k13
k21 0 0
η(k21) 0 0

⎞
⎠ ,

where

η(k21) = −[(λ1 − V�)2 − gH�] + k21[(λ2 − V�)2 − gH�]
(λ3 − V�)2 − gH�

.

5.3 Numerical computation of a stabilizing boundary control and of an
ISS-Lyapunov function

In this section, we show that computing a symmetric positive definite matrix Q such
that Assumption 1 holds can be done by solving a convex optimization problem. This
allows us to compute an output feedback law that is a stabilizing boundary control
for (29), and to make explicit an ISS-Lyapunov for the linearized Saint-Venant–Exner
Eq. (29). Note that [6] cannot be directly used since (29) is a quasilinear hyperbolic
system (due to the presence of the non-zero left-hand side), and that [2,10] cannot be
applied since the effect of the perturbations δ1, δ2 and δ3 is additionally considered in
this paper, and since the boundary conditions are different. Finally, in the paper [12],
only the perturbed Saint-Venant equation is considered (without the dynamics of the
sediment).

With the change of variables explained at the beginning of Sect. 3, we obtain a
diagonal positive definite matrix 	. Therefore, Assumption 1 holds as soon as there
exists a symmetric positive definite matrix Q such that

Sym(Q	 − K �Q	K ) ≥ 0, (47)

Sym(QF) ≤ 0. (48)

Note that conditions (47) are Linear Matrix Inequalities (LMIs) with respect to the
unknown symmetric positive definite matrix Q. Computing this matrix can be done
using standard optimization softwares (see e.g. [38]). Let us solve this optimization
problem and apply Theorem 1 using numerical values of [18] and of [12].7 The equilib-
rium is selected as H� = 0.1365 [m], V� = 14.65[ms−1], and B� = 0 [m]. Next, con-
sider system (32) with λ1 = −10[ms−1], λ2 = 7.72 × 10−4[ms−1], λ3 = 13[ms−1]
and the matrix F defined in (33). We take g = 9.81[ms−1], and we compute k21 such

7 The simulation codes can be downloaded from http://www.gipsa-lab.fr/~christophe.prieur/Codes/
2012-Prieur-Mazenc-Ex2.zip.
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that

K =
⎛
⎝

0 0 0
k21 0 0
0 0 0

⎞
⎠ . (49)

This holds with the following tuning parameters

k12 = 0, k13 = 0, k21 = −0.09517. (50)

Now employing parser YALMIP [23] on Matlab©, we may check that8

Q =
⎛
⎝

8.111 × 107 −2.668 × 103 −7.215 × 107

� 2.927 × 102 2.083 × 103

� � 6.544 × 107

⎞
⎠

ensures that Assumption 1 is satisfied. Thus selecting μ = 1.5 × 10−2, we compute
the following ISS-Lyapunov function, defined by, for all φ in L2(0, 1),

U (φ) =
1∫

0

φ(z)Qφ(z)e−μz dz (51)

for the system (32) with the boundary conditions (9) with K in (49). Therefore we
have proved the following result:

Proposition 3 The boundary control (45) and (46), with the tuning parameters
k12, k13 and k21 given by (50), is an asymptotically stabilizing boundary control for
(29) when the δi are not present. With the height at both ends of the channel and the
bathymetry of the water at the outflow as outputs of the system (28), it is an output
feedback law.

Moreover, performing the inverse of the change of variables (30), the function
U given by (51) is an ISS-Lyapunov function for the linearized Saint-Venant–Exner
equations (29) relative to δ(z, t).

6 Conclusions

For time-varying hyperbolic PDEs, we designed ISS-Lyapunov functions. These func-
tions are time-varying and periodic. They make it possible to derive robustness prop-
erties of ISS type. We applied this result to two problems. The first one pertains to a
benchmark hyperbolic equation, for which some simulations were performed to check
the computation of an ISS-Lyapunov function.

8 In the following equation, the symmetric terms are denoted by �.

123



ISS-Lyapunov functions for time-varying hyperbolic systems 133

The second one is the explicit computation of an ISS-Lyapunov function for the
linear approximation around a steady state of the Saint-Venant–Exner equations that
model the dynamics of the flow and of the sediment in an open channel.

This work leaves many questions open. The problem of designing ISS-Lyapunov
functions for nonlinear hyperbolic equations will be considered in future works, pos-
sibly with the help of Lyapunov functions considered in [6]. In addition, it would be
of interest to use an experimental channel to validate experimentally the prediction of
the offset that is inferred from the proposed ISS-Lyapunov function, in a similar way
as what is done in [12].
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