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Abstract Input-to-state stability (ISS) properties for a class of time-varying hybrid
dynamical systems via averaging method are considered. Two definitions of averages,
strong average and weak average, are used to approximate the time-varying hybrid
systems with time-invariant hybrid systems. Closeness of solutions between the time-
varying system and solutions of its weak or strong average on compact time domains
is given under the assumption of forward completeness for the average system. We
also show that ISS of the strong average implies semi-global practical (SGP)-ISS of
the actual system. In a similar fashion, ISS of the weak average implies semi-global
practical derivative ISS (SGP-DISS) of the actual system. Through a power converter
example, we show that the main results can be used in a framework for a systematic
design of hybrid feedbacks for pulse-width modulated control systems.
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224 W. Wang et al.

1 Introduction

Hybrid systems comprise a rich class of systems with interacting continuous and
discrete dynamics, and they have been used extensively to describe a wide range
of applications including robotics, automotive electronics, manufacturing, automated
highway systems, air traffic management systems, integrated circuit design, and chem-
ical processes [14,24,32]. Recently, a modeling framework was proposed and a range
of analysis tools developed for general hybrid systems, such as conditions for existence
of solutions, Lyapunov stability, robust stability and so on [1,5,7,8,15,16,25].

The averaging method was developed for continuous-time systems, discrete-
time systems, and differential inclusions [3,12,13,31], but there exist only a few
results for special classes of hybrid systems. For example, results on averaging of
switched linear systems and dither systems were considered in [17,18,30]. Note that
all aforementioned results on averaging for hybrid systems approximate the time-
varying hybrid systems by a non-hybrid average system. On the other hand, it is
sometimes appropriate to average the time-varying hybrid system by a time-invari-
ant hybrid system. For instance, systems controlled with hybrid feedback control-
lers that are implemented by pulse-width modulation (PWM) require this type of
results.

Pulse-width modulation is a technique in which the width of a train of voltage (or
current) pulses is adjusted (modulated) by rapidly turning the switch between the sup-
ply and load on and off. This technology is used extensively in power electronics and
finds wide applications in industry [11,19,22,29,33,34]. Robustness of PWM control
systems has been analyzed via the averaging method in [36], where the nonsmooth
nature of PWM systems is accommodated by working with upper semicontinuous
set-valued maps. For PWM hybrid feedback systems, it is desirable to prove that the
PWM implementation produces a closed-loop behavior that is similar to the behavior
that would be achieved by implementing the hybrid feedback directly to the system
without PWM implementation [37].

The present paper extends the averaging results of [37] by analyzing robustness of
PWM systems to exogenous disturbances. In particular, we revisit two kinds of aver-
age definitions (the strong and the weak average) defined in [28] for continuous-time
systems with disturbances. First, we present results on closeness of solutions between
the strong (weak) average and the actual hybrid system on compact time domains
assuming that the average system is forward complete. Second, under the stronger
assumption of input-to-state stability (ISS) of the strong (weak) average, we show that
this condition implies appropriate semi-global practical ISS (derivative ISS) properties
for the actual system. Note that while the class of systems for which strong averages
exist is smaller, we can conclude stronger ISS properties of the actual systems via
strong averages than via weak averages.

The paper is organized as follows: Some definitions in the hybrid system setting are
reviewed in Sect. 2. The class of time-varying hybrid systems with disturbances that
we will consider is introduced in Sect. 3. Section 4 contains the main results and Sect. 5
illustrates how our results can be applied to a PWM control example. Conclusions are
provided in Sect. 6.
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Input-to-state stability for a class of hybrid dynamical systems 225

2 Preliminaries

R≥0 := [0,+∞),Z≥0 := {0, 1, 2, . . .},B is the closed unit ball in an Euclidean
space, the dimension of which should be clear from the context and | · | refers to the
Euclidean norm. We also use |w| for hybrid signalsw and the definition in this case is
given in (4). A set-valued mapping M : R

n ⇒ R
n is outer semi-continuous at x ∈ R

n

if for all sequences xi → x and yi ∈ M(xi ) such that yi → y we have y ∈ M(x), and
M is outer semi-continuous (OSC) if it is outer semi-continuous at each x ∈ R

n . A
set-valued mapping M : R

n ⇒ R
n is locally bounded if for any compact set A ⊂ R

n

there exists r > 0 such that M(A) := ⋃
x∈A M(x) ⊂ rB; if M is OSC and locally

bounded, then M(A) is compact for any compact set A. A function x : R≥0 → R
n

is locally absolutely continuous if its derivative is defined almost everywhere and we
have x(t) − x(t0) = ∫ t

t0
ẋ(s)ds for all t ≥ t0 ≥ 0. Given a compact set A ⊂ R

n, a
function χ : R

n → R≥0 is said to be a proper indicator function for A on R
n if χ is

continuous, χ(x) = 0 if and only if x ∈ A, and χ(x) → ∞ when |x | → ∞. Given a
set S, conS denotes its convex hull. Given a compact set A ⊂ R

n and a x ∈ R
n, define

|x |A := miny∈A |x − y|. Given a measurable function w̃(·),we define its infinity norm
||w̃||∞ := ess supt≥0 |w̃(t)|. If we have ||w̃||∞ < ∞, then we write w̃ ∈ L∞. A con-
tinuous function σ : R≥0 → R≥0 is of class-L if it is non-increasing and converging
to zero as its argument grows unbounded. A continuous function γ : R≥0 → R≥0 is
of class-G if it is zero at zero and non-decreasing. It is of class-K if it is of class-G and
strictly increasing. A continuous function β : R≥0 × R≥0 → R≥0 is of class-KL if it
is of class-K in its first argument and class of L in its second argument.

Consider a time-invariant hybrid system

H ξ̇ = F(ξ, w) (ξ,w) ∈ C
ξ+ ∈ G(ξ, w) (ξ,w) ∈ D,

(1)

with ξ ∈ R
n, w ∈ W ⊂ R

m . For any � ≥ 0, consider a hybrid inclusion

H�
ξ̇ ∈ F�(ξ) ξ ∈ C�
ξ+ ∈ G�(ξ) ξ ∈ D�

(2)

that is extended from system H in (1) with the data (F�,G�,C�, D�) being defined
as

F�(ξ) := {v ∈ R
n : v = F(ξ, w),w ∈ W ∩�B and (ξ, w) ∈ C},

G�(ξ) := {v ∈ R
n : v ∈ G(ξ, w),w ∈ W ∩�B and (ξ, w) ∈ D},

C� := {ξ : ∃w ∈ W ∩�B such that (ξ, w) ∈ C},
D� := {ξ : ∃w ∈ W ∩�B such that (ξ, w) ∈ D}.

(3)

In order to exploit recent results in the literature on robustness for hybrid systems,
we make the following assumptions:

Assumption 1 The sets C ⊂ R
n × R

m, D ⊂ R
n × R

m and W ⊂ R
m are closed;

F : C → R
n is continuous, for each � ≥ 0 and ξ ∈ C�, the set F�(ξ) is convex;
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226 W. Wang et al.

G : R
n × R

m ⇒ R
n is outer semi-continuous and locally bounded, and for each

(ξ, w) ∈ D,G(ξ, w) is nonempty.

The convexity condition in Assumption 1 is used to guarantee robustness to per-
turbations for hybrid systems and our results are based on robustness properties of
the hybrid system. An example mentioned in [5, Remark 3] illustrates that forward
completeness, which is weaker than stability, of a hybrid system without convexity
assumption for the flow mapping F with respect to disturbances may not be preserved
under a small perturbation.

A set S ⊂ R≥0 × Z≥0 is called a compact hybrid time domain if S =
⋃J−1

j=0 ([t j , t j+1], j) for some finite sequence of times 0 = t0 ≤ t1 ≤ t2 ≤ · · · ≤ tJ .
The set S is a hybrid time domain if for all (T, J ) ∈ S, S ∩ ([0, T ] × {0, 1, . . . , J }) is
a compact hybrid time domain. We need the following definitions of solutions defined
on a hybrid time domain [6].

Definition 1 A hybrid signal is a function defined on a hybrid time domain.
w : domw → W is called a hybrid input ifw(·, j) is Lebesgue measurable and locally
essentially bounded for each j . A hybrid signal ξ : dom ξ 
→ R

n is called a hybrid arc
if ξ(·, j) is locally absolutely continuous for each j . A hybrid arc ξ : dom ξ 
→ R

n

is a solution to the hybrid inclusion H� in (2) if ξ(0, 0) ∈ C� ∪ D� and

1. for all j ∈ Z≥0 and almost all t such that (t, j) ∈ dom ξ, ξ(t, j) ∈ C� and
ξ̇ (t, j) ∈ F�(ξ(t, j));

2. for all (t, j) ∈ dom ξ such that (t, j +1) ∈ dom ξ, ξ(t, j) ∈ D� and ξ(t, j +1) ∈
G�(ξ(t, j)).

A hybrid arc ξ : dom ξ 
→ R
n and a hybrid input w : dom w 
→ W form a solution

pair to system H in (1) if dom ξ = dom w, (ξ(0, 0), w(0, 0)) ∈ C ∪ D and

1. for all j ∈ Z≥0 and almost all t such that (t, j) ∈ dom ξ, (ξ(t, j), w(t, j)) ∈ C
and ξ̇ (t, j) = F(ξ(t, j), w(t, j));

2. for all (t, j) ∈ dom ξ such that (t, j + 1) ∈ dom ξ, (ξ(t, j), w(t, j)) ∈ D and
ξ(t, j + 1) ∈ G(ξ(t, j), w(t, j)).

A solution or a solution pair is maximal if it cannot be extended.

Given any hybrid signal w : dom w 
→ W, let �(w) denote the set of (t, j) ∈
dom w such that (t, j + 1) ∈ dom w, and define

|w| := max

{

ess sup
(t, j)∈dom w\�(w)

|w(t, j)|, sup
(t, j)∈�(w)

|w(t, j)|
}

. (4)

Note that for each j, the set of t’s such that (t, j) ∈ �(w) and t ∈ I j := {t ∈
R : (t, j) ∈ dom w} has one-dimensional zero measure and thus we can define
ẇ(t, j) = 0 for all (t, j) ∈ dom w without affecting w. With this convention, the
definition |ẇ(t, j)| reduces to

|ẇ| := ess sup
(t, j)∈dom w

|ẇ(t, j)| .
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Input-to-state stability for a class of hybrid dynamical systems 227

Let LW be a given subset of hybrid signals w : dom w → W . The definitions of
equi-essential boundedness and local equi-uniform Lipschitz continuity for a set of
hybrid signals are given as follows:

Definition 2 The set LW is called equi-essentially bounded if there exists � > 0
such that |w| ≤ � for all w ∈ LW .

Definition 3 The set LW is called locally equi-uniformly Lipschitz continuous if there
exists L > 0 such that, for all w ∈ LW and (t, j), (s, j) ∈ dom w, the following
holds:

|w(t, j)− w(s, j)| ≤ L|t − s|.

A sufficient condition for LW to be locally equi-uniformly Lipschitz continuous is
that there exists a strictly positive real number�1 such that, for eachw ∈ LW , w(·, j)
is locally absolutely continuous for each j and for all (t, j) ∈ dom w such that
|ẇ| ≤ �1.

3 Definitions of strong and weak averages

In this section, the class of time-varying hybrid systems we consider is presented and
definitions of weak and strong average for such systems are given. In addition, we
introduce functions that are used in a coordinate transformation that facilitates estab-
lishing the averaging results. Basic requirements of these functions are established in
claims and lemmas.

Consider a class of time-varying hybrid systems Hε that depends on a small param-
eter ε > 0:

Hε

ẋ = fε(x, w, τ)
τ̇ = 1

ε

}

, ((x, w), τ ) ∈ C × R≥0,

x+ ∈ G(x, w)
τ+ ∈ H(x, w, τ)

}

, ((x, w), τ ) ∈ D × R≥0,

(5)

where x ∈ R
n, w ∈ R

m, fε : R
n × R

m × R≥0 → R
n,G : R

n × R
m ⇒ R

n and
H : R

n × R
m × R≥0 ⇒ R≥0.

Assumption 2 Suppose that (G,C, D) satisfy Assumption 1; τ 
→ fε(x, w, τ) is
measurable for each (x, w) ∈ C; and for each δ > 0 and compact set K ⊂ R

n × R
m

there exist M(K ) > 0 and ε∗(K , δ) > 0 such that

| f0(x, w, τ)| ≤ M, ∀((x, w), τ ) ∈ (C ∩ K )× R≥0,

| fε(x, w, τ)− f0(x, w, τ)| ≤ δ

3
, ∀((x, w), τ, ε) ∈ (C ∩ K )× R≥0 × (0, ε∗]. (6)

We next define weak and strong averages that are taken from [28] for the flow
mapping f0 : C ×R≥0 → R

n on the flow set C . For simplicity, the following average
definitions are defined on the time line t instead of hybrid time domain (t, j).
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228 W. Wang et al.

Definition 4 (Weak Average) For a function f0 : C × R≥0 → R
n, the function fwa :

C → R
n is said to be a weak average on C if for each compact set K ⊂ R

n ×R
m there

exists a class-L function σK such that, for all ((x, w), τ, T ) ∈ (C ∩ K )×R≥0 ×R≥0:

∣
∣
∣
∣
∣
∣

1

T

τ+T∫

τ

[ fwa(x, w)− f0(x, w, s)]ds

∣
∣
∣
∣
∣
∣
≤ σK (T ).

The strong average is defined for a subset of input signals. Noting that the average
definition is based on the time domain t,we need the notation for sets of input signals
defined on t . Let L̃W be a set of input signals w̃ ∈ L∞ : R≥0 → W . We have the
following strong average definition:

Definition 5 (Strong Average) For a function f0 : C1 ×W ×R≥0 → R
n, the function

fsa : C1 × W → R
n is said to be a strong average on C1 × W if for each compact

set K ⊂ R
n × R

m there exists a class-L function σK such that, for all w̃ ∈ L̃W with
((x, w̃(s)), τ, T ) ∈ ((C1 ×W)∩ K )× R≥0 × R≥0 for all s ≥ 0, the following holds:

∣
∣
∣
∣
∣
∣

1

T

τ+T∫

τ

[ fsa(x, w̃(s))− f0(x, w̃(s), s)]ds

∣
∣
∣
∣
∣
∣
≤ σK (T ).

Let fwa come from Definition 4 and (G,C, D) from (5). The weak average Hwa
of system Hε is

Hwa
ξ̇ = fwa(ξ, w), (ξ, w) ∈ C,
ξ+ ∈ G(ξ, w), (ξ, w) ∈ D.

(7)

Similarly, for the case where C = C1 × W, the strong average Hsa of system Hε is

Hsa
ξ̇ = fsa(ξ, w), (ξ, w) ∈ C,
ξ+ ∈ G(ξ, w), (ξ, w) ∈ D,

(8)

where fsa comes from Definition 5. Note that the averaging technique is only applied
to simplify the time-varying flow dynamics and the jump mapping G in the average
systems is identical to the jump mapping G in the actual hybrid system Hε in (5); this
is motivated by systems like PWM hybrid feedback control systems; see Sect. 5.

To employ a coordinate transformation, a continuous function that reflects accu-
mulating errors between the actual system and its average is usually constructed to
facilitate averaging techniques [20,37]. We next define the functions ηwa and ηsa used
in a coordinate transformation to facilitate the averaging results for weak average and
strong average case, respectively. Let fwa and fsa come from the definitions of weak
average and strong average. For each ((x, w), τ, μ) ∈ C ×R≥0 ×R≥0 and τ0 ∈ [0, τ ],
let
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Input-to-state stability for a class of hybrid dynamical systems 229

ηwa(x, w, τ, τ0, μ) :=
τ∫

τ0

exp(μ(s − τ))[ f0(x, w, s)− fwa(x, w)]ds. (9)

Let 0 ≤ τ0 ≤ τ1 and w̃ : [τ0, τ1] → W be given. For each τ ∈ [τ0, τ1] and
(x, μ) ∈ C1 × R≥0, let

ηsa(x, w̃, τ, τ0, μ) :=
τ∫

τ0

exp(μ(s − τ))[ f0(x, w̃(s), s)− fsa(x, w̃(s))]ds. (10)

The following lemmas describing the properties of functions ηwa and ηsa are help-
ful to prove the results of closeness of solutions in Theorems 1 and 2. The proof of
Lemma 2 is given in Appendix A and the proof of Lemma 1 is omitted since it is
nearly identical to the proof of Lemma 2.

Lemma 1 For a function f0 defined on C ×R≥0, suppose fwa is a continuous function
that is a weak average of f0 on C. Then, for each compact set K ⊂ R

n × R
m, there

exists a function αK of class-G such that for all ((x, w), μ, τ) ∈ (C ∩ K )×R≥0 ×R≥0
and τ0 ∈ [0, τ ]:

μ|ηwa(x, w, τ, τ0, μ)| ≤ αK (μ).

Lemma 2 For a function f0 defined on C1 ×W ×R≥0,where C ⊂ C1 ×W, suppose
fsa is a continuous function that is a strong average of f0 on C1 × W . Then, for each
compact set K ⊂ R

n ×R
m, there exists a function αK of class-G such that for all 0 ≤

τ0 ≤ τ1, w̃ : [τ0, τ1] → W and ((x, w̃(s)), μ, τ) ∈ ((C1 ×W)∩ K )×R≥0 ×[τ0, τ1]
for all s ∈ [τ0, τ1], the following holds:

μ|ηsa(x, w̃, τ, τ0, μ)| ≤ αK (μ).

We assume that when μ = 0, ηsa and ηwa are locally Lipschitz, uniformly in τ and
τ0, as stated below in Assumptions 3 and 4. These assumptions may hold even when
f is not periodic in τ nor continuous in (x, w). The pulse-width modulated system in
Sect. 5 illustrates this situation. Let N̄ := {1, . . . , n}. For each i ∈ N̄ , ηi

sa represents
the i th component of ηsa, and similarly for ηi

wa.

Assumption 3 For a function f0 defined on C × R≥0, fwa is a continuous function
that is a weak average of f0 on C and, for each compact set K ⊂ R

n × R
m, there

exists L(K ) such that, for all i ∈ N̄ , ((x1, w1), τa), ((x2, w2), τb) ∈ (C ∩ K )× R≥0
and τ0 ∈ [0,min{τa, τb}]:

∣
∣
∣ηi

wa(x1, w1, τa, τ0, 0)− ηi
wa(x2, w2, τb, τ0, 0)

∣
∣
∣

≤ L(|x1 − x2| + |w1 − w2| + |τa − τb|).
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230 W. Wang et al.

Assumption 4 For a function f0 defined on C1 ×W ×R≥0, where C ⊂ C1 ×W, fsa
is a continuous function that is a strong average of f0 on C1 × W and, for each com-
pact set K ⊂ R

n × R
m, there exists L(K ) such that, for all i ∈ N̄ , 0 ≤ τ0 ≤ τ1, w̃ :

[τ0, τ1] → W and ((x1, w̃(s)), τa), ((x2, w̃(s)), τb) ∈ ((C1 × W)∩ K )× [τ0, τ1] for
all s ∈ [τ0, τ1]:

∣
∣
∣ηi

sa(x1, w̃, τa, τ0, 0)− ηi
sa(x2, w̃, τb, τ0, 0)

∣
∣
∣ ≤ L(|x1 − x2| + |τa − τb|).

The following claims show that the Lipschitz property in Assumptions 3 and 4
implies a similar Lipschitz condition for ηwa and ηsa for values μ > 0. The proof of
Claim 2 is given in the Appendix B and the proof of Claim 1 is omitted due to its
similarity to the proof of Claim 2.

Claim 1 Under Assumption 3, for each compact set K ⊂ R
n ×R

m there exists L(K )
such that, for each i ∈ N̄ , μ > 0, ((x1, w1), τa), ((x2, w2), τb) ∈ (C ∩ K )× R≥0 and
τ0 ∈ [0,min{τa, τb}]:

∣
∣
∣ηi

wa(x1, w1, τa, τ0, μ)− ηi
wa(x2, w2, τb, τ0, μ)

∣
∣
∣

≤ 2L(|x1 − x2| + |w1 − w2| + |τa − τb|).

Claim 2 Under Assumption 4, for each compact set K ⊂ R
n × R

m there exists
L(K ) such that, for each i ∈ N̄ , μ > 0, 0 ≤ τ0 ≤ τ1, w̃ : [τ0, τ1] → W and
((x1, w̃(s)), τa), ((x2, w̃(s)), τb) ∈ ((C1 ×W)∩ K )×[τ0, τ1] for all s ∈ [τ0, τ1], the
following holds:

∣
∣
∣ηi

sa(x1, w̃, τa, τ0, μ)− ηi
sa(x2, w̃, τb, τ0, μ)

∣
∣
∣ ≤ 2L(|x1 − x2| + |τa − τb|).

4 Main results

In this section, we present the results on closeness between solutions of hybrid system
Hε and solutions of its averages systems. We also state results on semiglobal practical
ISS (DISS) properties of Hε assuming ISS of its strong average (weak average). The
following concept of (T, ρ)-closeness that defines graphical convergence of hybrid
arcs, see details in [16, Section 4], is required:

Definition 6 (Closeness of hybrid signals) Two hybrid signals ξ1 : dom ξ1 
→ R
n

and ξ2 : dom ξ2 
→ R
n are said to be (T, ρ)-close if

1. for each (t, j) ∈ dom ξ1 with t + j ≤ T there exists s such that (s, j) ∈ dom ξ2,

with |t − s| ≤ ρ and |ξ1(t, j)− ξ2(s, j)| ≤ ρ,

2. for each (t, j) ∈ dom ξ2 with t + j ≤ T there exists s such that (s, j) ∈ dom ξ1,

with |t − s| ≤ ρ and |ξ2(t, j)− ξ1(s, j)| ≤ ρ.

The results on closeness of solutions are derived under the assumption that the
average system is forward pre-complete.
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Input-to-state stability for a class of hybrid dynamical systems 231

Definition 7 (Forward completeness) A hybrid solution pair is said to be forward
complete if its domain is unbounded. A hybrid solution pair is said to be forward
pre-complete if its domain is compact or unbounded. System H in (1) is said to be
forward pre-complete from a compact set K0 ⊂ R

n with a disturbance bound� ≥ 0 if
all maximal solution pairs (ξ, w) with ξ(0, 0) ∈ K0 and w with |w| ≤ � are forward
pre-complete.

We are now ready to state Theorems 1 and 2 that demonstrate closeness of solutions
for the time-varying system Hε and solutions of its weak and strong average systems.
Proofs of Theorems 1 and 2 are given in Appendices C.2 and C.3, respectively.

Theorem 1 (Weak average) Suppose that the set LW is equi-essentially bounded and
locally equi-uniformly Lipschitz continuous, system Hε in (5) satisfies Assumptions 2
and 3, and its weak average system Hwa satisfies Assumption 1 and is forward pre-
complete from a compact set K0 ⊂ R

n with a disturbance bound � ≥ 0. Then, for
each T ≥ 0 and ρ > 0, there exists ε∗ > 0 such that, for all ε ∈ (0, ε∗] andw ∈ LW ,

each solution pair (x, w) to Hε with x(0, 0) ∈ K0 there exists some solution pair
(ξ, w1) to Hwa with ξ(0, 0) ∈ K0 and |w1| ≤ |w| such that x and ξ are (T, ρ)-close.

Theorem 2 (Strong average) Suppose that the set LW is equi-essentially bounded,
system Hε in (5) satisfies Assumptions 2 and 4, and its strong average system Hsa
satisfies Assumption 1 and is forward pre-complete from a compact set K0 ⊂ R

n with
a disturbance bound � ≥ 0. Then, for each T ≥ 0 and ρ > 0, there exists ε∗ > 0
such that, for all ε ∈ (0, ε∗] and w ∈ LW , each solution pair (x, w) to Hε with
x(0, 0) ∈ K0 there exists some solution pair (ξ, w1) to Hsa with ξ(0, 0) ∈ K0 and
|w1| ≤ |w| such that x and ξ are (T, ρ)-close.

We next study robust stability properties for the class of time-varying hybrid sys-
tems Hε with the assumption that its strong (respectively, weak) average system is
ISS. The definition of input-to-state stability for the time-invariant hybrid system H
in (1), see [6], is first reviewed. Then, the definitions of semi-global practical-ISS
and semi-global practical derivative-ISS for the time-varying hybrid system Hε in (5)
are given, respectively. To study stability concepts with respect to a certain measure
instead of a vector norm, in the following we let A ⊂ R

n be nonempty and compact
and let χ : R

n → R≥0 be a proper indicator for A.

Definition 8 System H in (1) is called ISS with respect to (χ, β, γ ) with β ∈ KL
and γ ∈ G if each solution pair (ξ, w) satisfies

χ(ξ(t, j)) ≤ max{β(χ(ξ0), t + j), γ (|w|)}, ∀(t, j) ∈ domξ. (11)

Definition 9 System Hε in (5) is called semi-globally practically ISS (SGP-ISS) with
respect to (χ, β, γ ) with β ∈ KL and γ ∈ G if, for each compact set K0 ⊂ R

n and
any positive real numbers � and ν there exists ε∗ > 0 such that for each ε ∈ (0, ε∗],
each solution pair (x, w) with x0 := x(0, 0) ∈ K0 and |w| ≤ � satisfies

χ(x(t, j)) ≤ max{β(χ(x0), t + j), γ (|w|)} + ν, ∀(t, j) ∈ dom x .
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232 W. Wang et al.

Definition 10 System Hε in (5) is called semi-globally practically derivative ISS
(SGP-DISS) with respect to (χ, β, γ ) with β ∈ KL and γ ∈ G if, for each compact
set K0 ⊂ R

n and each triple of positive real numbers (�,�1, ν), there exists ε∗ > 0
such that for each ε ∈ (0, ε∗], each solution pair (x, w), where w(·, j) is locally
absolutely continuous, with x0 := x(0, 0) ∈ K0, |w| ≤ � and |ẇ| ≤ �1 satisfies

χ(x(t, j)) ≤ max{β(χ(x0), t + j), γ (|w|)} + ν, ∀(t, j) ∈ dom x .

With the assumption that the weak average system is ISS with functions β ∈ KL
and γ ∈ G for the class of bounded disturbances that have bounded derivatives, we
have Theorem 3 implying that the actual system is SGP-DISS with the same β and γ,
for which the proof is listed in Appendix C.4.

Theorem 3 Suppose that the set LW is equi-essentially bounded and locally equi-
uniformly Lipschitz continuous, system Hε in (5) satisfies Assumptions 2 and 3 and its
weak average system Hwa satisfies Assumption 1 and is ISS with respect to (χ, β, γ ).
Then, system Hε is SGP-DISS with respect to (χ, β, γ ).

We can also obtain similar conclusions for system Hε for bounded input signals if
its strong average system is ISS; see Theorem 4. The proof is omitted due to having
identical steps as the proof of Theorem 3.

Theorem 4 Suppose that the set LW is equi-essentially bounded, system Hε in (5)
satisfies Assumptions 2 and 4 and its strong average system Hsa satisfies Assump-
tion 1 and is ISS with respect to (χ, β, γ ). Then, system Hε is SGP-ISS with respect
to (χ, β, γ ).

Compared with strong averages, weak averages exist for a larger class of systems,
but using them we can only state weaker results; compare Theorems 1 and 3 using
weak averages, to Theorems 2 and 4 for strong averages. The structure of periodic
continuous-time nonlinear systems that allow for strong average is characterized in
[28]. Using the result in [28], for a function f (x, w, τ) that is periodic in τ and for
all measurable disturbances, there exists a strong average fsa(x, w) for f (x, w, τ) if
and only if f has the following form:

f (x, w, τ) = f̃ (x, τ )+ g̃(x, w), (12)

where f̃ (x, τ ) has a well-defined average f̃av in the sense of Definition 4 or 5. More-
over, we have fsa(x, w) = f̃av(x)+ g̃(x, w).

Note that Theorem 4 using the strong average guarantees SGP-ISS to the actual
system Hε,whereas Theorem 3 implies SGP-ISS via a weak average. In the following
example, we can see for bounded disturbances that do not have bounded derivatives,
ISS of the weak average system does not guarantee robustness to disturbances for the
original system.
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Example 1 Consider a hybrid system of the form

ẋ = f (x, w, τ)
τ̇ = 1

ε

}

(x, w, τ) ∈ C × R × R≥0

(13)
x+ = g(x)
τ+ = 0

}

(x, w, τ) ∈ D × R × R≥0

where the constraint sets C := R≥0, D := R≤0, and

f (x, w, τ) := −kx3 + cos(τ )x3w

g(x) := −x
(14)

with the parameter k ∈ (0, 0.5). The flow dynamics of hybrid system (13) agree with
the continuous-time system ẋ = −kx3 + cos

( t
ε

)
x3w for x ∈ C considered in [28,

Example 1]. It is showed in [28, Example 1] that there does not exist a strong average
for the function f : C ×R×R≥0 → R in (14) and its weak average is fwa(x) = −kx3.
Then, from (7), we have that the weak average of system (13) is

ẏ = fwa(y) y ∈ C

y+ = g(y) y ∈ D,
(15)

where sets C, D and g : R → R come from (13) and (14), respectively.
Let A := {0}. Consider a Lyapunov function candidate V (y) = 1

2 y2. Note that this
V : R → R≥0 satisfies

uC (y) < 0 ∀y ∈ C\A
u D(y) = 0 ∀y ∈ D,

(16)

where uC (y) := 〈∇V (y), fwa(y)〉 = −ky4 and u D(y) := V (g(y))− V (y). For any
μ > 0, noting that the set V −1(μ)∩{y ∈ R|uC (y) = u D(y) = 0} is empty and using
the LaSalle’s Principle for hybrid systems [15, Theorem 23], we can get that set A is
globally asymptotically stable. In other words, the weak average system is ISS with
zero disturbance gain. We next show that the actual system (13) is not SGP-ISS. Sim-
ilar calculations were also presented in [28, Exmaple 1]. In fact, the original system
exhibits finite time escapes under the action of bounded signals.

Consider a bounded continuous input signal w(τ) = cos(τ ) that can be rewritten
as wε(t) = cos

( t
ε

)
on the t time domain. Note that |wε| = 1 for any ε, but |ẇε| = 1

ε
that becomes arbitrarily large when ε is sufficiently small. Thus, the signal w is not
locally equi-uniformly Lipschitz continuous. Recall that

T∫

t

cos2(s) = 0.5T + 0.25(sin(2t + 2T )− sin(2t)),
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By direct integration of ẋ = −kx3 + cos
( t
ε

)
x3w with the input signal wε(t) =

cos
( t
ε

)
, we have

x(t)∫

x(t0)

dx

x3 =
t∫

t0

(
cos2

( s

ε

))
ds

and

x2(t) = x2(t0)

1 − 2ψ(ε, t, t0)x2(t0)
, (17)

where

ψ(ε, t, t0) = (0.5 − k)(t − t0)+ 0.25ε

(

sin

(
2t

ε

)

− sin

(
2t0
ε

))

.

Fix t0 ≥ 0, ε > 0 and let x(t0) := x(t0, 0) = 1. Considering (17), we know that
there exists some t1 ≥ t0 such that ψ(ε, t1, t0) = 0.5 since (0.5 − k) ∈ (0, 0.5).
Moreover, we have that (t1, 0) ∈ dom x for the solution x of actual hybrid system
(13) as the solution x(t, 0) with the initial condition x(t0, 0) = 1 will stay in the set C
(x(t, 0) ∈ R≥0) and keep flowing when t0 ≤ t ≤ t1. Then, there are finite escape times
for such a maximal solution x and the actual hybrid system (13) is not semi-globally
practically ISS.

5 Pulse-width modulated control example

Pulse-width-modulated (PWM) control strategy is useful for systems controlled by
on-off switches, which are commonly utilized to model switching power electronic
systems, and find wide application in industry [11,22,29,33,34]. In this section, we
take PWM hybrid feedback control systems as an example to show how to apply the
results presented above.

In particular, Sect. 5.1 illustrates how to model a hybrid feedback controlled PWM
power converter as hybrid systems of the form (5). In Sect. 5.2, we consider strong
and weak averages for the PWM hybrid feedback control system and apply the results
given in Sect. 4 to analyze its ISS properties. Moreover, we revisit the power converter
example to show that we can design a hybrid controller based on the simpler average
model such that the actual converter system can be stabilized using the same controller.

5.1 Models

To illustrate how to apply the main results given in last section, we first consider a
single rate PWM boost power converter example, see Fig. 1. For this PWM power
converter, the open-loop model considered in [21] and closed-loop model with a con-
tinuous feedback controller presented in [22, Section 4] are first given. We also present
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Fig. 1 Continuous-time feedback control boost converter [22]

the closed-loop system when this power converter is controlled by a hybrid controller.
After that, we consider a general continuous-time plant with hybrid feedbacks that
are implemented via multi-rate PWM. We show that the class of hybrid systems (5)
include this general multi-rate PWM hybrid model as a special case.

Example 2 Suppose that the boost converter in Fig. 1 operates in the continuous con-
duction mode; in this case there are two configuration modes for the converter system
corresponding to the on/off state of the switches. Namely, the mode q1 corresponds to
the switch SW1 on and SW2 off and the mode q2 corresponds to SW1 off and SW2 on.

Let ξ1 denote the instantaneous value of the inductor current iL and ξ2 := vC be
the capacitor voltage. Let ξ := (ξ1, ξ2). Considering the circuit in Fig. 1, we have that
dynamics of states ξ agree with ξ̇ = Aqi ξ + Bqi on the qi configuration for i = 1, 2
[22], where

Aq1 :=
[

0 0

0 − 1
RC

]

, Aq2 :=
[

0 − 1
L

1
C − 1

RC

]

, Bq1 = Bq2 :=
[

E
L

0

]

.

Noting that the point of equilibrium of the converter system can be moved to the
origin using a coordinate transformation, one can consider stabilization of the origin
for the closed-loop converter system. For the converter in Fig. 1 that was also consid-
ered in [22], note that the triangle switched signal is denoted by 0.7 + 2.3 p(t),where
p(t) is periodic in t satisfying p(t) = t

T for t ∈ [0, T ) and T > 0. Then, we have the
closed-loop model of this converter from [22]:

ξ̇ = Aq2ξ + Bq1 + (
Aq1ξ − Aq2ξ

)
u(d(ξ)− p(τ )), (18)

where the duty ratio function d(ξ) := g(ξ)−0.7
3−0.7 , with g(ξ) = 1 − 0.4ξ1 + 0.1ξ2 is

scaled using the minimum and the maximum values of the triangle signal so that d(ξ)
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Fig. 2 A typical triangle switching signal p(t) in PWM control systems and u(d − p(t)) for d = 0.75

takes values in [0, 1]; u : R → [0, 1] is the unit step function with u(s) = 1 for s ≥ 0
and u(s) = 0 for s < 0. Figure 2 is an example of u(d − p(t)) for d = 0.75 and
T = 1.

The open-loop model for this converter system is given in [21]:

ξ̇ = Aq2ξ + Bq1 + (
Aq1ξ − Aq2ξ

)
u(d − p(τ )), (19)

where d ∈ [0, 1] is the duty cycle for the open-loop PWM operation.
Note that there are situations when certain closed-loop performance specifications

cannot be achieved with any linear feedback controller whereas they are achiev-
able with a hybrid controller, see [2]. A switched controller designed via Lyapunov
approach in [4] is employed to control a power converter system in [23] and it was
shown to provide better performance on transient and steady dynamics than continuous
PID controllers. More details can be found in the survey of hybrid control techniques
for power converter systems [9,26]. This observation provides a partial motivation
for developing averaging techniques for hybrid systems that can be used to analyze a
class of hybrid PWM systems in general and power converter systems in particular.

We next consider the same converter but instead of the continuous controller d(ξ)
in Fig. 1 we want to apply a hybrid feedback controller, see Fig. 3. Suppose that
hybrid controller h : C̄ × D̄ → [0, 1] that was designed to satisfy given performance
specifications is given as

η̇ = R(η, ξ) (ξ, η) ∈ C̄
η+ ∈ S(η, ξ) (ξ, η) ∈ D̄
h := h(η, ξ),

(20)

where η ∈ R
n ; C̄, D̄ are the constraint sets that allow flows and jumps for η; R : C̄ →

R
n is a flow mapping and S : D̄ ⇒ R

n is a set-valued mapping. Note that states η
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Fig. 3 Hybrid feedback control boost converter

may include physical variables together with logic variables or operation modes that
are used to describe the hybrid feedback control law.

Applying this h(η, ξ) to the open-loop converter system (19), we have that the
closed-loop model of the converter system in Fig. 3 is

[
ξ̇

η̇

]

=
[

Aq2ξ + Bq1

R(η, ξ)

]

+
[

Aq1ξ − Aq2ξ

0

]

· u(h(η, ξ)− p(τ )) (ξ, η) ∈ C̄

[
ξ+
η+

]

∈
[
ξ

S(η, ξ)

]

(ξ, η) ∈ D̄.

(21)

Note that the average model of open-loop converter system (19) is given in [21]:

ξ̇ = Aq2ξ + Bq1 + d
(

Aq1 − Aq2

)
ξ, (22)

where the duty cycle d ∈ [0, 1] can be taken as a control signal. Suppose a controller
h : C̄ ∪ D̄ → [0, 1] is designed to stabilize the open-loop average system (22) by
letting d := h. Then, our results can be used to analyze the stability properties of the
PWM converter system (21) through stability of the closed-loop of system (22) using
the same controller h.

We assume that the controller h and the triangle signal p in Example 2 satisfy
h(η, ξ) : C̄ × D̄ → [0, 1] and p : R≥0 → [0, 1], respectively. The following remark
shows that we may consider h and p only with their images in [0, 1] without loss of
generality.

Remark 1 Suppose that we need a controller Ũ = Ũ (ξ, η) that takes values in [a, b] to
stabilize the plant and achieve appropriate performance. To implement this controller
via PWM we need to get an average ranging from a to b using a step function ũ(·)
that satisfies ũ(s) = a for s < 0 and ũ(s) = b for s ≥ 0. Suppose also that we want
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to use a triangle signal p̂(·) = c + kp(·) ∈ [c, c + k], with k > 0 to implement this
controller, where p(·) is the triangle wave defined earlier. Then, we need a duty cycle
function Û (ξ, η), generated from Ũ (ξ, η), but taking values in [c, c+k]. In particular,

we take Û (ξ, η) := c + k Ũ (ξ,η)−a
b−a . The PWM control that we need to implement is

then

ũ(Û (ξ, η)− p̂(τ )),

which can be written in other ways and it is also equal to

a + (b − a)u(h(ξ, η)− p(τ )),

where

h(ξ, η) := Ũ (ξ, η)− a

b − a
,

u(s) := ũ(s)− a

b − a
,

p(τ ) := p̂(τ )− c

k
.

Note that our results pertain to a more general class of PWM systems that is pre-
sented next. We consider a general continuous-time plant with disturbances controlled
by hybrid feedbacks that are implemented via multi-rate PWM. Consider a continu-
ous-time plant with states ξ ∈ R

n, disturbances w ∈ W ⊂ R
m and outputs y ∈ R

l :

ξ̇ = O(ξ, w)+
k∑

i

Pi (ξ, w)hi ,

y = Q(ξ, w).

(23)

For this continuous-time plant, the hybrid feedback controllers hi are given through
the following auxiliary hybrid system with states η ∈ R

h :

η̇ = R(η, y) (η, y) ∈ C1

η+ ∈ S(η, y) (η, y) ∈ D1

hi = hi (η, y),

where C1, D1 ∈ R
h × R

l are the constraint sets that allow flows and jumps for η;
S : R

h ⇒ R
h is a set-valued mapping that is outer semi-continuous, locally bounded

and for each (η, y) ∈ D1, S(η, y) is nonempty; functions O : R
n × W → R

n and
R : C1 → R

h are continuous while Pi : R
n × W → R

n, Q : R
n × W → R

l and
hi : R

h × R
l → [0, 1] are locally Lipschitz.
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Let C := C1 × W, D := D1 × W, hi (x, w) := hi (η, Q(ξ, w)), x := [ξ, η]T and

ψi (x, w) :=
[

Pi (ξ, w)

0

]

, F0(x, w) :=
[

O(ξ, w)
R(η, Q(ξ, w))

]

,

G(x, w) :=
[
ξ

S(η, Q(ξ, w))

]

.

In the case when feedback controllers hi are implemented by multi-rate PWM, the
closed-loop of system (23) becomes

ẋ = F(x, w, τ)
τ̇ = 1

ε

}

((x, w), τ ) ∈ C × R≥0

x+ ∈ G(x, w)
τ+ = τ

}

((x, w), τ ) ∈ D × R≥0,

(24)

where G : R
n × R

m ⇒ R
n is the jump mapping, C and D ⊂ R

n × R
m are given sets

that allow for flow and jump for the designed hybrid feedback controller and

F(x, w, τ) := F0(x, w)+
m∑

i=1

gi (x, w)u(hi (x, w)− pi (τ )). (25)

The second term of F in (25) is used to model a multi-rate implementation of a PWM
hybrid controller. As pi (τ ) are the only time-varying terms, the small parameter ε > 0
in (24) is used to guarantee that the switching signals pi change fast compared with
state ξ and so the effect of pi can be averaged.

5.2 Averaging analysis

We next consider the PWM hybrid feedback control system with disturbances in (24)
to illustrate how our results can be applied so that the ISS properties of the actual
closed loop of system (24) can be studied through its time-invariant average system.

First, we show that there exists a weak average for function F : C × R≥0 → R
n

in (25) on the set C and Assumption 3 holds for the PWM control system in (24).
Given T > max{T1, . . . , Tn}, let ki = ki (T ) ∈ Z≥0 and T̃i ∈ [0, Ti ) satisfying
T = ki Ti + T̃i . Note that ki (T ) → ∞ when the given T approaches infinity. For all
(x, w) ∈ C, we get

1

T

τ+T∫

τ

{

F0(x, w)+
m∑

i=1

gi (x, w)u(hi (x, w)− pi (s))

}

ds

= F0(x, w)+
m∑

i=1

gi (x, w)
1

T

⎧
⎨

⎩

τ+ki Ti∫

τ

u(hi (x, w)− pi (s))ds
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+
τ+ki Ti +T̃i∫

τ+ki Ti

u(hi (x, w)− pi (s))ds

⎫
⎪⎬

⎪⎭
,

= F0(x, w)+
m∑

i=1

gi (x, w)

(
ki Ti

ki Ti + T̃i
hi (x, w)+ vi (x, w, T̃i )

ki Ti + T̃i

)

,

where vi (x, w, T̃i ) := ∫ τ+T̃i
τ

u(hi (x, w)− pi (s))ds satisfies |vi (x, w, T̃i )| ≤ T̃i . Let
fwa(x, w) := F0(x, w) + ∑m

i=1 gi (x, w)hi (x, w). Note that for any compact set
K ⊂ R

n × R
m, there exists r > 0 such that, for all (x, w) ∈ C ∩ K

∣
∣
∣
∣
∣
∣

fwa(x, w)− 1

T

τ+T∫

τ

{

F0(x, w)+
m∑

i=1

gi (x, w)u(hi (x, w)− pi (s))

}

ds

∣
∣
∣
∣
∣
∣

≤ 1

T

m∑

i=1

|gi (x, w)vi (x, w, T̃i )| ≤ r

T + 1
:= σK (T ) ,

which shows that fwa agrees with Definition 4. Let G,C, D come from (24). Then,
the hybrid system Hwa with data { fwa,G,C, D} formed as (7) is the weak average for
the PWM closed-loop control system.

Next we verify the Assumption 3. Considering the definition of ηwa in (9), it follows
for each τ ∈ (0,mini {Ti }) and τ0 ∈ [0, τ ] that

ηwa(x, w, τ, τ0, 0)

=
τ∫

τ0

(

F0(x, w)+
m∑

i=1

gi (x, w)ui (hi (x, w)− pi (s))− fwa(x, w)

)

ds

=
m∑

i=1

gi (x, w)

τ∫

τ0

[ui (hi (x, w)− pi (s))− hi (x, w)]ds

=
m∑

i=1

gi (x, w)(min{(τ − τ0), hi (x, w)} − (τ − τ0)hi (x, w)), (26)

which is bounded for any (x, w) in a compact set and locally Lipschitz as func-
tions gi and hi are locally Lipschitz. Then, Assumption 3 holds for the function
ηwa(x, w, τ, τ0, 0).

For PWM control system (24), noting the structure of f allows for strong aver-
age in (12), there exists a strong average if gi (x, w) and hi (x, w) are independent
of w, i.e., gi (x, w) := gi (x) and hi (x, w) := hi (x). In this case, following the cal-
culations used to establish the weak average, we get that fsa(x, w) := f0(x, w) +∑m

i=1 gi (x)hi (x) on the set C, at least when C has the form C = C1 × W, and the
strong average of system (24) is system Hsa in (8) with data { fsa,G,C, D}. Using the
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definition of ηsa in (10), we have

ηsa(x, w, τ, τ0, 0) =
τ∫

τ0

(

F0(x, w)+
m∑

i=1

gi (x)ui (hi (x)− pi (s))− fsa(x, w)

)

ds

=
m∑

i=1

gi (x)

τ∫

τ0

(ui (hi (x)− pi (s))− hi (x))ds.

Noting (26), it follows that Assumption 4 holds for the function ηsa(x, w, τ, τ0, 0).
With the above analysis that Assumptions 3 and 4 hold with the assumption that

functions hi and gi are locally Lipschitz, and noting that only local boundedness but
no continuity condition is required for the flow mapping of the actual hybrid systems,
we can get that the main results apply to PWM hybrid feedback control systems under
some mild regular conditions. The following corollaries come directly from Theo-
rems 3–4 and with which we can consider the robust stability of the time-varying
PWM control system (24) based on its weak or strong average system:

Corollary 1 Suppose that the set LW is equi-essentially bounded and locally equi-
uniformly Lipschitz continuous, the PWM hybrid control system in (24) satisfies
Assumptions 2 and its weak average system Hwa satisfies Assumption 1 and is ISS
with respect to (χ, β, γ ). Then, the PWM hybrid control system in (24) is SGP-DISS
with respect to (χ, β, γ ).

Corollary 2 Suppose that the set LW is equi-essentially bounded, the PWM hybrid
control system in (24) satisfies Assumptions 2 and its strong average system Hsa satis-
fies Assumption 1 and is ISS with respect to (χ, β, γ ). Then, the PWM hybrid control
system in (24) is SGP-ISS with respect to (χ, β, γ ).

6 Conclusions

We considered ISS properties for a class of time-varying hybrid dynamical systems via
the averaging method. Using the notions of strong and weak average, the time-varying
hybrid system is approximated by a time-invariant hybrid system. We showed that the
solutions of the actual time-varying hybrid system and its weak or strong average can
be made arbitrarily close on compact time domains by reducing the parameter ε if
the average system is forward pre-complete. Our main results also showed that ISS
of the strong (weak) average implies SGP-ISS (SGP-DISS) of the actual system. An
example in PWM control was used to illustrate our results.

Appendix A: Proof of Lemma 2

The proof uses the same technical method as [37, Lemma 1] and follows the calcula-
tion of [20, p. 415]. Let the compact set K ⊂ R

n × R
m be given. From the definitions
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of the strong average, for any 0 ≤ τ0 ≤ τ1, τ, (τ + T ) ∈ [τ0, τ1], w̃ : [τ0, τ1] → W
and (x, w̃(s)) ∈ (C1 × W) ∩ K for all s ∈ [τ0, τ1], the following holds:

|ηsa(x, w̃, τ + T, τ0, 0)− ηsa(x, w̃, τ, τ0, 0)|

=
∣
∣
∣
∣
∣
∣

τ+T∫

τ

[ f0(x, w̃(s), s)− fsa(x, w̃(s))]ds

∣
∣
∣
∣
∣
∣
≤ TσK (T ). (27)

Integrating by parts in the definition of ηsa, we have

ηsa(x, w̃, τ, τ0, μ)

=
⎡

⎣exp(μ(s − τ))

s∫

τ0

( f0(x, w̃(r), r)− fsa(x, w̃(r)))dr

⎤

⎦

τ

τ0

−μ
τ∫

τ0

exp(μ(s − τ))

s∫

τ0

( f0(x, w̃(r), r)− fsa(x, w̃(r)))drds,

= ηsa(x, w̃, τ, τ0, 0)− μ

τ∫

τ0

exp(μ(s − τ))ηsa(x, w̃, s, τ0, 0)ds. (28)

Then, adding and subtracting μηsa(x, w̃, τ, τ0, 0)
∫ τ
τ0

exp(μ(s − τ))ds to the right-
hand side of (28), we obtain

ηsa(x, w̃, τ, τ0, μ)

= exp(−μ(τ − τ0))ηsa(x, w̃, τ, τ0, 0)

+μ
τ∫

τ0

exp(−μ(τ − s))[ηsa(x, w̃, τ, τ0, 0)− ηsa(x, w̃, s, τ0, 0)]ds.

Let τ̂ := τ − τ0. Using the fact ηsa(x, w̃, τ0, τ0, 0) = 0 and (27), it follows that

μ|ηsa(x, w̃, τ, τ0, μ)| ≤ exp(−μ(τ − τ0))μ(τ − τ0)σK (τ − τ0)

+μ2

τ∫

τ0

exp(−μ(τ − s))(τ − s)σK (τ − s)ds

= exp(−μτ̂)μτ̂σK (τ̂ )+ μ2

τ̂∫

0

exp(−μr)rσK (r)dr

= exp(−μτ̂)μτ̂σK (τ̂ )+
μτ̂∫

0

exp(−z)zσK

(
z

μ

)

dz.
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There are two possibilities for μτ̃ : μτ̃ ≤ √
μ and μτ̃ ≥ √

μ. In the first case, we have

exp(−μτ̂)μτ̂σK (τ̂ )+
μτ̂∫

0

exp(−z)zσK

(
z

μ

)

dz ≤ √
μσK (0)+ μ

2
σK (0).

For the second case, using η exp(−η) ≤ exp(−1) for all η ≥ 0 and
∫∞

0 exp(−z)zdz =
1, and then

exp(−μτ̂)μτ̂σK (τ̂ )+
μτ̂∫

0

exp(−z)zσK

(
z

μ

)

dz

≤ exp(−1)σK

(
1√
μ

)

+ σK (0)

√
μ∫

0

zdz + σK

(
1√
μ

) ∞∫

√
μ

z exp(−z)dz

≤ (exp(−1)+ 1)σK

(
1√
μ

)

+ μ

2
σK (0).

Then, let

αK (μ) := μ

2
σK (0)+ max

{√
μσK (0), σK

(
1√
μ

)

(exp(−1)+ 1)

}

.

Since σK is of class-L, it follows that αK is of class-G. ��

Appendix B: Proof of Claim 2

Let the compact K ⊂ R
n×R

m be given. Similarly, like the proof of Lemma 2, integrate
by parts in the definition of ηsa to get (28). Then, for each i ∈ N̄ , 0 ≤ τ0 ≤ τ1, w̃ :
[τ0, τ1] → W and ((x1, w̃(s)), τa), ((x2, w̃(s)), τb) ∈ ((C1 × W)∩ K )× [τ0, τ1] for
all s ∈ [τ0, τ1] (without loss of generality, let τb ≥ τa), it follows from Assumption 4
that

∣
∣
∣ηi

sa(x1, w̃, τa, τ0, μ)− ηi
sa(x2, w̃, τb, τ0, μ)

∣
∣
∣

≤
∣
∣
∣ηi

sa(x1, w̃, τa, τ0, 0)− ηi
sa(x2, w̃, τb, τ0, 0)

∣
∣
∣

+μ
τa∫

τ0

exp(μ(s − τa))|ηi
sa(x1, w̃, s, τ0, 0)− ηi

sa(x2, w̃, s + τb − τa, τ0, 0)|ds,
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≤ L(|x1 − x2| + |τa − τb|)
⎛

⎝1 + μ

τa∫

τ0

exp(μ(s − τa))ds

⎞

⎠ ,

≤ 2L(|x1 − x2| + |τa − τb|), (29)

where the last inequality in (29) follows from the fact μ
∫ τa
τ0

exp(μ(s − τa))ds ≤ 1 for
any μ, τ0, τa ≥ 0. ��

Appendix C: Proofs of Theorems 1–3

We need some technical results considering the robust properties to small perturba-
tions for general hybrid systems H in (1) to show Theorems 1 and 2. To present these
technical results in Sect. C.1, consider the following hybrid system Hδ inflated from
system H:

Hδ

˙̄x ∈ Fδ(x̄, w) (x̄, w) ∈ Cδ
x̄+ ∈ Gδ(x̄, w) (x̄, w) ∈ Dδ,

(30)

with x̄ ∈ R
n, w ∈ W ⊂ R

m . For a parameter δ > 0, the data {Fδ,Gδ,Cδ, Dδ} are
defined as

Fδ(x̄, w) := conF((x̄ + δB, w) ∩ C)+ δB

Gδ(x̄, w) := G((x̄ + δB, w) ∩ D)+ δB

Cδ := {(x̄, w) : (x̄ + δB, w) ∩ C �= ∅}
Dδ := {(x̄, w) : (x̄ + δB, w) ∩ D �= ∅}.

C.1 Technical results

Before we give Propositions 1–3 on properties of system Hδ based on the assumption
of system H, we need the following claim; also see [6, Claim 3.7].

Claim 3 The hybrid arc ξ is a solution to the hybrid inclusion

H�
ξ̇ ∈ F�(ξ) ξ ∈ C�
ξ+ ∈ G�(ξ) ξ ∈ D�

(31)

that is extended from system H in (1) for some� ≥ 0 with the data (F�,G�,C�, D�)
being defined as

F�(ξ) := {v ∈ R
n : v = F(ξ, w),w ∈ W ∩�B and (ξ, w) ∈ C}

G�(ξ) := {v ∈ R
n : v ∈ G(ξ, w),w ∈ W ∩�B and (ξ, w) ∈ D}

C� := {ξ : ∃w ∈ W ∩�B such that (ξ, w) ∈ C}
D� := {ξ : ∃w ∈ W ∩�B such that (ξ, w) ∈ D},

(32)
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if and only if there exists a hybrid input w1 such that (ξ, w1) is a solution pair to
system H in (1) with |w1| ≤ �.

Proposition 1 Suppose that system H in (1) satisfies Assumption 1, and it is forward
pre-complete from a compact set K0 ⊂ R

n with a disturbance bound� ≥ 0. Then, for
each ρ > 0 and T ≥ 0 there exists δ∗ > 0 such that for all δ ∈ (0, δ∗], each solution
pair (x̄, w) of system Hδ in (30) with x̄(0, 0) ∈ (K0 + δB) and |w| ≤ � there exists a
solution pair (ξ, w1) to system H with ξ(0, 0) ∈ K0 and |w1| ≤ |w| such that x̄ and
ξ are (T, ρ)-close.

Proof of Proposition 1 Let the compact set K0 and � ≥ 0 be given. For some
δ > 0, let (x̄, w) be a solution pair to system Hδ with x̄(0, 0) ∈ (K0 + δB)

and w with |w| ≤ �. Let �1 := |w| ∈ [0,�]. Consider a hybrid inclusion
H(�1,δ) := {F(�1,δ),G(�1,δ),C(�1,δ), D(�1,δ)} formed as (31) with its data being
constructed from the system Hδ := {Fδ,Gδ,Cδ, Dδ} in (30):

F(�1,δ)(x̄) := {v ∈ R
n : v ∈ Fδ(x̄, w),w ∈ W ∩�1B and (x̄, w) ∈ Cδ}

G(�1,δ)(x̄) := {v ∈ R
n : v ∈ Gδ(x̄, w),w ∈ W ∩�1B and (x̄, w) ∈ Dδ}

C(�1,δ) := {x̄ : ∃w ∈ W ∩�1B such that (x̄, w) ∈ Cδ}
D(�1,δ) := {x̄ : ∃w ∈ W ∩�1B such that (x̄, w) ∈ Dδ}.

(33)

Note that the data {F(�1,δ),G(�1,δ),C(�1,δ), D(�1,δ)} in (33) satisfies

F(�1,δ)(x̄) = conF�1((x̄ + δB) ∩ C�1))+ δB

G(�1,δ)(x̄) = G�1((x̄ + δB) ∩ D�1)+ δB

C(�1,δ) = {x̄ : (x̄ + δB) ∩ C�1 �= ∅}
D(�1,δ) = {x̄ : (x̄ + δB) ∩ D�1 �= ∅},

(34)

with {F�1,G�1 ,C�1 , D�1} defined as (32). From (34), it is straightforward that
H(�1,δ) is an inclusion inflated from H�1 := {F�1,G�1 ,C�1 , D�1}.

Consider arbitrary ρ > 0 and T ≥ 0. Note that forward pre-completeness of H�1

on the set K0 comes from Claim 3 and the assumption that H is forward pre-complete
from K0. Noting that for each ξ ∈ C�1 , F�1(ξ) is convex in Assumption 1, we have
F�1(ξ) = con F�1(ξ) for each ξ ∈ C�1 . Using the results of [16, Corollary 5.2] and
[16, Theorem 5.4], we have that there exists a δ∗ > 0 such that for all δ ∈ (0, δ∗] and
for each solution x̄ of H(�1,δ) with x̄(0, 0) ∈ K0 + δB there exists a solution ξ to H�1

with ξ(0, 0) ∈ K0 such that x̄ and ξ are (T, ρ)-close. Consider Hδ in (30) and H(�1,δ)

in (33) with δ ∈ (0, δ∗]. Note that for each solution pair (x̄, w) of system Hδ there
exists a solution x̄ to the inclusion H(�1,δ). Considering any solution pair (x̄, w) of sys-
tem Hδ with x̄(0, 0) ∈ (K0 +δB) andw with |w| = �1 ∈ [0,�], noting the closeness
of solutions x̄ to H(�1,δ) and ξ to H�1 and applying Claim 3 completes the proof.

Proposition 2 Suppose that system H in (1) satisfies Assumption 1 and it is forward
pre-complete from a compact set K0 ⊂ R

n with a disturbance bound � ≥ 0. Then,
for each T ≥ 0 the reachable set
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RT (K0,�) := {ξ(t, j) : (ξ, w) ∈ S(K0), t + j ≤ T, |w| ≤ �} (35)

is compact, where S(K0) denotes the set of maximal solution pairs (ξ, w) to system
H in (1) with ξ(0, 0) ∈ K0.

Proof of Proposition 2 The result follows using Claim 3 and the result of [16, Corol-
lary 4.7].

Proposition 3 Suppose that system H in (1) satisfies Assumption 1, and it is ISS with
respect to (χ, β, γ ). Then, for each compact set K0 ⊂ R

n and each pair of (�, ν) ≥ 0
there exists δ > 0 such that for each solution pair (x̄, w) of system Hδ in (30) with
x̄0 := x̄(0, 0) ∈ (K0 + δB) and |w| ≤ �, the following holds:

χ(x̄(t, j)) ≤ max{β(χ(x̄0), t + j), γ (|w|)} + ν ∀(t, j) ∈ dom x̄ . (36)

Proof of Proposition 3 The proof is based on the trajectory method used in [35]. Let
the compact set K0 be given. Let �, ν ≥ 0 be arbitrary. Due to the compactness of
K0 and continuity of γ, there exist m > ν + γ (�) such that K0 + B is contained in a
compact set {x̄ ∈ R

n : χ(x̄) ≤ m}. Pick large enough T ≥ 0 so that β(m, r) ≤ ν
2 for

r ≥ T .
For the compact set K0 and�, let K be the reachable set defined as (35) for system

H for any (t, j) ∈ dom ξ with t + j ≤ 2T,which is compact from Proposition 2 with
forward pre-completeness of system H on K0, thanks to the assumed ISS property.
Let M ≥ 0 be such that maxξ∈K0 χ(ξ) ≤ M . Using the continuity of χ and β, and the
fact that β(s, l) approaches zero as l ≥ 0 tends to infinity, let ρ∗

1 > 0 be small enough
such that

β(s, l − ρ∗
1 )− β(s, l) ≤ ν

6
∀s ≤ M, l ≥ 0. (37)

Let ρ∗
2 be sufficiently small such that, for all ξ ∈ K and x̄ ∈ (K + ρ∗

2 B) satisfying
|ξ − x̄ | ≤ ρ∗

2 , we have

χ(x̄) ≤ χ(ξ)+ ν

6

β(χ(ξ), l) ≤ β(χ(x̄), l)+ ν

6
, ∀ l ≥ 0.

(38)

Let ρ = min{ρ∗
1 , ρ

∗
2 } and ξ0 := ξ(0, 0). Let Proposition 1 with (2T, ρ,�) and the

set K0 generate a δ∗ > 0. Consider δ ∈ (0, δ∗] and without loss of generality assume
that δ < 1. From Proposition 1, we know that for each solution pair (x̄, w) of system
Hδ with x̄0 ∈ (K0 + δB) there exists some solution pair (ξ, w1) of system H with
ξ0 ∈ K0 and |w1| ≤ |w| such that x̄ and ξ are (2T, ρ)-close. Then, with ISS property
of H and the definitions of ρ∗ in (37) and (38), we have for all (t, j) ∈ dom x̄ with
0 ≤ t + j ≤ 2T, all solution pairs (x̄, w) of system Hδ with x̄0 ∈ (K0 + δB) satisfy
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χ(x̄(t, j)) ≤ χ(ξ(s, j))+ ν

6

≤ max{β(χ(ξ0), t + j − ρ), γ (|w1|)} + ν

6

≤ max{β(χ(ξ0), t + j), γ (|w1|)} + ν

3

≤ max{β(χ(x̄0), t + j), γ (|w|)} + ν

2

≤ max{β(m, t + j), γ (|w|)} + ν

2
. (39)

In particular, from the choice of T, (39) shows that χ(x̄(t, j)) ≤ max
{
ν
2 , γ (|w|)}+

ν
2 ≤ γ (|w|)+ ν for all (t, j) ∈ dom x̄ with T ≤ t + j ≤ 2T .

Let x̄T := x̄(s, i) and inputs w̄(·, ·) := w(s + ·, i + ·) for each (s, i) such that
(s, i) ∈ dom x̄ and s + i = T . For (t, j) ∈ dom x̄ satisfying 2T ≤ t + j ≤ 3T, using
m > γ (�)+ ν, (39) implies

χ(x̄(t, j)) ≤ max{β(χ(x̄T ), t + j), γ (|w̄|)} + ν

2
,

≤ max {β(γ (|w|)+ ν, t + j), γ (|w|)} + ν

2
≤ γ (|w|)+ ν.

Using this fact recursively shows that χ(x̄(t, j)) ≤ γ (|w|)+ ν for all (t, j) ∈ dom x̄
with t + j ≥ T . This bound and (39) establish the bound in (36). ��

We also require the following claim, a Lipschitz extension theorem based on [27,
Theorem 1], that is useful in proving Theorems 1 and 2.

Claim 4 Let J ⊂ R
n be compact, L > 0, and M > 0. For a vector-valued function

f := ( f1, . . . , fn) where fi : J × R≥0 → R are real-valued functions, define

g̃i (x, τ ) := sup
z∈J

{ fi (z, τ )− L|x − z|}. (40)

Let

sat(s) := Ms

max{M, |s|} , (41)

and g(x, τ ) := sat(g̃(x, τ )) with g̃ := (g̃1, . . . , g̃n). If, for all i ∈ {1, . . . , n}, x, y ∈
J, τ, τ1 ∈ R≥0, | f (x, τ )| ≤ M and | fi (x, τ ) − fi (y, τ1)| ≤ L(|x − y| + |τ − τ1|),
then g(x, τ ) = f (x, τ ) for all x ∈ J, τ ∈ R≥0, and satisfies the following properties:

1. |g(x, τ )| ≤ M for all x ∈ R
n and τ ∈ R≥0,

2. |g(x, τ )− g(y, τ1)| ≤ √
nL(|x − y| + |τ − τ1|) for all x, y ∈ R

n, τ, τ1 ∈ R≥0.
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Proof of Claim 4 Let M > 0 and L > 0 be such that

| f (x, τ )| ≤ M ∀ x ∈ J and τ ∈ R≥0, (42)

| fi (x, τ )− fi (y, τ )| ≤ L(|x − y| + |τ − τ1|) ∀ i ∈ N̄ , x, y ∈ J, and τ, τ1 ∈ R≥0.

(43)

Using (43), for all τ ∈ R≥0 and for x ∈ J, we have

fi (x, τ ) ≤ sup
z∈J

{ fi (z, τ )− L|x − z|}
= g̃i (x, τ ) = sup

z∈J
{ fi (z, τ )− fi (x, τ )+ fi (x, τ )− L|x − z|} ≤ fi (x, τ ) .

Noting the construction of gi in (40), we have that gi (x, τ ) ≥ sat ( fi (x, τ )) with
letting z = x for all x ∈ J . With (42) and the fact that

sat

(

sup
z∈J

{ fi (z, τ )− fi (x, τ )+ fi (x, τ )− L|x − z|}
)

≤ sat ( fi (x, τ )) = fi (x, τ ) ,

it follows that g(x, τ ) = sat( f (x, τ )) = f (x, τ ) when x ∈ J and τ ∈ R≥0.
From g(x, τ ) = sat(g̃(x, τ )) and (41), it is straightforward that the first property is

satisfied. Noting (40), (43) and the fact that for each y and z ∈ R
n :

sup
z∈J

{ fi (z, τ )− L|y − z|} − sup
z∈J

{ fi (z, τ1)− L|y − z|} ≤ sup
z∈J

{ fi (z, τ )− fi (z, τ1)},

we have

g̃i (y, τ )− g̃i (y, τ1) ≤ supz∈J { fi (z, τ )− fi (z, τ1)} ≤ L|τ − τ1|.

Since this inequality holds for arbitrarily τ and τ1 ∈ R≥0, one gets g̃i (y, τ1) −
g̃i (y, τ ) ≤ L|τ − τ1|, which gives

|g̃i (y, τ )− g̃i (y, τ1)| ≤ L|τ − τ1| ∀y ∈ R
n (44)

Let N̄ = {1, . . . , n}. Let k ∈ N̄ satisfy |g̃k(x, τ )− g̃k(y, τ )| = maxi∈N̄ |g̃i (x, τ )−
g̃i (y, τ )|. Without loss of generality, assume g̃k(x, τ ) ≥ g̃k(y, τ ). With (44), the fact
|sat(ξ)− sat(ψ)| ≤ |ξ − ψ | for all ξ, ψ ∈ R

n, the extended function g satisfies
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|g(x, τ )− g(y, τ1)|
= |sat(g̃(x, τ ))− sat(g̃(y, τ1))|
≤ |g̃(x, τ )− g̃(y, τ )| + |g̃(y, τ )− g̃(y, τ1)|

=
(

n∑

i=1

|g̃i (x, τ )− g̃i (y, τ )|2
) 1

2

+
(

n∑

i=1

|g̃i (y, τ )− g̃i (y, τ1)|2
) 1

2

≤
(

n · |g̃k(x, τ )− g̃k(y, τ )|2
) 1

2 +
(

n∑

i=1

L2|τ − τ1|2
) 1

2

≤
(

n · sup
a∈J

|L|a − x | − L|a − y||2
) 1

2 + √
nL|τ − τ1|

≤
(

nL2 · sup
a∈J

|a − x − a + y|2
) 1

2 + √
nL|τ − τ1| = √

nL(|x − y| + |τ − τ1|)

for all x, y ∈ R
n and τ, τ1 ∈ R≥0. ��

C.2 Proof of Theorem 1

Let �,�1 > 0 come from the definitions of equi-essential boundedness and local
equi-uniform Lipschitz continuity respectively. Let the compact set K0 be given. Let
T ≥ 0 and ρ > 0 be given. Apply Proposition 1 with the set K0 and (T, ρ,�) to gen-
erate a δ∗ > 0 such that for all δ ∈ (0, δ∗] and the system Hδ inflated from the weak
average system Hwa, for each solution pair (x̄, w) to Hδ with x̄(0, 0) ∈ (K0 + δB)

there exists a solution pair (ξ, w1) to system Hwa with ξ(0, 0) ∈ K0 and |w1| ≤ |w|
such that the solutions x̄ and ξ are (T, ρ2 )-close. Without loss of generality, assume
that δ < 1 and ρ < 1.

Let Swa(K0) denote the set of maximum solution pairs to the weak average system
Hwa with ξ(0, 0) ∈ K0 and define the set K as

RT (K0,�) := {ξ(t, j) : (ξ, w) ∈ Swa(K0), t + j ≤ T, |w| ≤ �},
K1 := RT (K0)+ B, (45)

K := K1 ∪ G((K1 ×�B) ∩ D),

where K1 is compact from Proposition 2. The set K is also compact as G is outer
semi-continuous and locally bounded.

Set K̄ := K ×�B ⊂ R
n ×R

m . Let ηwa(x, w, τ, τ0, μ) be defined as (9). Let K̄ gen-
erate L

(
K̄
) ≥ 1 such that Assumption 3 holds for all ((x1, w1), τa), ((x2, w2), τb) ∈

(C ∩ K̄ )×R≥0 and τ0 ∈ [0,min{τa, τb}] with L := L
(
K̄
)
. Let K̄ and Lemma 1 gen-

erate αK̄ and pick μ > 0 such that αK̄ (μ) ≤ δ
3 . Then, for this μ, for all ((x, w), τ ) ∈

(
C ∩ K̄

)× R≥0 and τ0 ∈ [0, τ ], we have |ηwa(x, w, τ, τ0, μ)| ≤ δ
3μ .

123



250 W. Wang et al.

Let J := (
C ∩ K̄

)
. Claim 4 gives us a new function η̃wa that defined on R

n ×R
m ×

R≥0 → R
n . For the picked μ, the following properties are satisfied for η̃wa:

1. for all (x, w, τ) ∈ R
n × R

m × R≥0 and τ0 ∈ [0, τ ]:

|η̃wa(x, w, τ, τ0, μ)| ≤ δ

3μ
, (46)

2. |η̃wa(x1, w1, τa, τ0, μ) − η̃wa(x2, w2, τb, τ0, μ)| ≤ 2
√

nL(|x1 − x2| + |w1 −
w2| + |τa − τb|) for each (x1, w1, τa), (x2, w2, τb) ∈ R

n × R
m × R≥0 and τ0 ∈

[0,min{τa, τb}],
3. η̃wa(x, w, τ, τ0, μ) = ηwa(x, w, τ, τ0, μ) for all ((x, w), τ ) ∈ (C ∩ K̄ ) × R≥0

and τ0 ∈ [0, τ ].
Let Assumption 2, δ and the set K̄ generate M

(
K̄
) ≥ 1 and ε∗1 such that the bounds (6)

hold with M := M
(
K̄
)

and ε ∈ (0, ε∗1]. Let ε∗2 = δ
6
√

nL(M+1+�1)
, ε∗3 = 3ρμ

2δ , ε
∗
4 = 3μ

and ε∗ = min{ε∗1, ε∗2, ε∗3, ε∗4}. Consider ε ∈ (0, ε∗].
Let (x, w, τ) be a solution to the system

HK

ẋ = fε(x, w, τ)
τ̇ = 1

ε

}

((x, w), τ ) ∈ (C ∩ K̄ )× R≥0,

x+ ∈ G(x, w) ∩ K
τ+ ∈ H(x, w, τ)

}

((x, w), τ ) ∈ (D ∩ K̄ )× R≥0.

(47)

Note that the system HK agrees with system Hε but with G intersected with K and
C, D intersected with K × �B. By construction, for each (t, j) ∈ dom (x, w, τ),
we have (x(t, j), w(t, j)) ∈ K̄ . With (46) and the definitions of ε, we have for all
(t, j) ∈ dom (x, w, τ):

|εη̃wa(x(t, j), w(t, j), τ (t, j), τ0, μ)| ≤ εδ

3μ
≤ δ (48)

holds for all τ0 ∈ [0, τ (t, j)]. For each (t, j) ∈ dom (x, w, τ), define

x̄(t, j) = x(t, j)− εη̃wa(x(t, j), w(t, j), τ (t, j), τ0, μ), (49)

with τ0 := τ(t j , j) and t j := min{t : (t, j) ∈ dom (x, w, τ)}. It follows that x̄ is a
hybrid arc. For each (t, j) ∈ dom x̄ such that for all (t, j + 1) ∈ dom x̄,

(x(t, j), w(t, j))= (x̄(t, j)+ εη̃wa(x(t, j), w(t, j), τ (t, j), τ0, μ),w(t, j))∈ D ∩ K̄ ,

which with (48) implies that (x̄(t, j), w(t, j)) ∈ Dδ and

x̄(t, j + 1) = x(t, j + 1)− εη̃wa(x(t, j + 1), w(t, j + 1), τ (t, j + 1), τ0, μ)

∈ (G((x(t, j), w(t, j)) ∩ D)+ δB) ∩ K

⊂ G((x(t, j), w(t, j)) ∩ D)+ δB
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= G((x̄(t, j)+ εη̃wa(x(t, j), w(t, j), τ (t, j), τ0, μ),w(t, j))∩ D)+ δB
⊂ G((x̄(t, j)+ δB, w(t, j)) ∩ D)+ δB

= Gδ(x̄(t, j), w(t, j)).

Moreover, for each j such that the set I j := {t : (t, j) ∈ dom x̄} has nonempty
interior and for all t ∈ I j ,

(x(t, j), w(t, j))= (x̄(t, j)+ εη̃wa(x(t, j), w(t, j), τ (t, j), τ0, μ),w(t, j))∈ C ∩ K̄

implies that (x̄(t, j), w(t, j)) ∈ Cδ . Noting η̃wa is globally Lipschitz continuous,
x̄(·, j) is locally absolutely continuous and the set LW is locally equi-uniformly
Lipschitz continuous, and for almost all t ∈ I j we have

˙̄x(t, j)

∈ ẋ(t, j)− ε
∂η̃wa(x(t, j), w(t, j), τ (t, j), τ0, μ)

∂x
ẋ(t, j)

−ε ∂η̃wa(x(t, j), w(t, j), τ (t, j), τ0, μ)

∂w
ẇ(t, j)

−∂η̃wa(x(t, j), w(t, j), τ (t, j), τ0, μ)

∂τ

= fε(x(t, j), w(t, j), τ (t, j))− ε
∂η̃wa(x(t, j), w(t, j), τ (t, j), τ0, μ)

∂x
ẋ(t, j)

−ε ∂η̃wa(x(t, j), w(t, j), τ (t, j), τ0, μ)

∂w
ẇ(t, j)− f0(x(t, j), w(t, j), τ (t, j))

+ fwa(x(t, j), w(t, j))− μη̃wa(x(t, j), w(t, j), τ (t, j), τ0, μ)

∈ fwa(x̄(t, j)+ εη̃wa(x(t, j), w(t, j), τ (t, j), τ0, μ),w(t, j))+ δB

3
+ε2√

nL(M + 1 +�1)B + αK (μ)B

∈ F(x̄(t, j)+ δB, w(t, j))+ δB

⊂ Fδ(x̄(t, j), w(t, j)), (50)

where

[
∂η̃wa(x, w, τ, τ0, μ)

∂x
,
∂η̃wa(x, w, τ, τ0, μ)

∂w
,
∂η̃wa(x, w, τ, τ0, μ)

∂τ

]

can be considered as generalized Jacobian of η̃wa. The sequence of equalities and
inclusions in (50) hold from the results in (Section 2.6, [10]) with Assumption 2, def-
initions of ε∗ and μ. Then, it follows that (x̄, w) is the solution pair of system Hδ,

and we can conclude that for each (x̄, w) there exists some solution pair (ξ, w1) to
system Hwa such that x̄ and ξ are (T, ρ2 ) close. Moreover, from the definition of x̄ in
(49) and definition of ε∗, we know that for the solution pair (x, w) to system HK , x
is (T, ρ2 ) close to x̄ and then it is (T, ρ)-close to ξ .
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Next, consider solution pairs of system Hε that start in K0. Let (x̃, w) be a solution
pair to system Hε with x̃(0, 0) ∈ K0 and |w| ≤ �. If x̃ ∈ K for all (t, j) ∈ dom x̃
with t + j ≤ T, then for each solution pair (x̃, w) of Hε, there exists some solution
pair (ξ, w1) of system Hwa such that x̃ is also (T, ρ) close to ξ . Now, suppose that
there exists (t, j) ∈ dom x̃ such that x̃(s, i) ∈ K satisfying s + i ≤ t + j and either

1. (t, j + 1) ∈ dom x̃ and x̃(t, j + 1) �∈ K or else,
2. there exist a monotonically decreasing sequences ri with the limit limi→∞ ri = t

such that (ri , j) ∈ dom x̃ and x̃(ri , j) �∈ K for each i .

The solution pair (x̃, w) must agree with a solution pair of system HK up to time
(t, j), and thus must satisfy x̃ ∈ RT (K0) + ρB. If this follows, by the definition of
K in (45) and ρ < 1, which implies that RT (K0)+ ρB is contained inside of K , that
neither of these two case can occur. This establishes the result. ��

C.3 Proof of Theorem 2

The proof of Theorem 2 follows exactly the same steps in the proof of Theorem 1 with
following changes. Let� ≥ 0 come from the definition of equi-essential boundedness
and δ be same as the proof of Theorem 1. Let K be defined as (45) for strong average
system Hsa. Let the set K̄ := K × �B and δ generate M

(
K̄
) ≥ 1 and ε∗1 such that

bounds (6) hold with M := M
(
K̄
)

and ε ∈ (0, ε∗1].
Let ηsa(x, w̃, τ, τ0, μ) be defined as (10). Let K̄ generate L

(
K̄
) ≥ 1 such that

Assumption 4 holds with L := L
(
K̄
)
. Let the set K̄ and Lemma 2 generate αK̄

and pick μ > 0 such that αK̄ (μ) ≤ δ
3 . Then, for this μ, for all 0 ≤ τ0 ≤ τ1, w̃ :

[τ0, τ1] → W and ((x, w̃(s)), τ ) ∈ ((C1 × W) ∩ K̄
) × [τ0, τ1] for all s ∈ [τ0, τ1],

we have |ηsa(x, w̃, τ, τ0, μ)| ≤ δ
3μ .

Let J := ((C1 × W) ∩ K̄ ). Using the result in Claim 4, we have the function η̃sa
such that, for the picked μ and for all 0 ≤ τ0 ≤ τ1, w̃ : [τ0, τ1] → W, the following
properties are satisfied:

1. for each (x, w̃(s), τ ) ∈ R
n × R

m × [τ0, τ1] for all s ∈ [τ0, τ1]:

|η̃sa(x, w̃, τ, τ0, μ)| ≤ δ

3μ
, (51)

2. |η̃sa(x1, w̃, τa, τ0, μ)− η̃sa(x2, w̃, τb, τ0, μ)| ≤ 2
√

nL(|x1 − x2| + |τa − τb|) for
all (x1, w̃(s), τa), (x2, w̃(s), τb) ∈ R

n × R
m × [τ0, τ1] for all s ∈ [τ0, τ1],

3. η̃sa(x, w̃, τ, τ0, μ) = ηsa(x, w̃, τ, τ0, μ) for all ((x, w̃(s)), τ ) ∈ ((C1×W)∩K̄ )×
[τ0, τ1] for all s ∈ [τ0, τ1].

Let Assumption 2, δ and the set K̄ generate M
(
K̄
) ≥ 1 and ε∗1 such that the bounds

(6) hold with M := M
(
K̄
)

and ε ∈ (0, ε∗1]. Let ε∗2 = δ
6
√

nL(M+1)
, ε∗3 = 3ρμ

2δ , ε
∗
4 = 3μ

and ε∗ = min{ε∗1, ε∗2, ε∗3, ε∗4}. Consider ε ∈ (0, ε∗].
Letting (x, w, τ) be a solution to the system HK in (47), it follows from the con-

struction of HK that (x(t, j), w(t, j)) ∈ K̄ for all (t, j) ∈ dom (x, w, τ). Let τ0 :=
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τ
(

t0
j , j
)

and τ1 := τ
(

t1
j , j
)

with t0
j := min{t : (t, j) ∈ dom (x, w, τ)} and t1

j :=
max{t : (t, j) ∈ dom (x, w, τ)}. Let w̃ : [τ0, τ1] → W be defined as w̃(τ (s, j)) :=
w(s, j) for each s ∈ {t : (t, j) ∈ dom (x, w, τ)}. With (51) and the definition of ε, it
follows that for all (t, j) ∈ dom (x, w, τ),

|εη̃sa(x(t, j), w̃, τ (t, j), τ0, μ)| ≤ εδ

3μ
≤ δ. (52)

For each (t, j) ∈ dom (x, w, τ), define

x̄(t, j) = x(t, j)− εη̃sa(x(t, j), w̃, τ (t, j), τ0, μ).

For each (t, j) ∈ dom x̄ such that for all (t, j + 1) ∈ dom x̄,

(x(t, j), w(t, j)) = (x̄(t, j)+ εη̃sa(x(t, j), w̃, τ (t, j), τ0, μ),w(t, j)) ∈ D ∩ K̄

with (52) implies that (x̄(t, j), w(t, j)) ∈ Dδ and

x̄(t, j + 1) = x(t, j + 1)− εη̃sa(x(t, j + 1), w̃, τ (t, j + 1), τ0, μ)

∈ (G((x(t, j), w(t, j)) ∩ D)+ δB) ∩ K

⊂ G((x(t, j), w(t, j)) ∩ D)+ δB

= G((x̄(t, j)+ εη̃sa(x(t, j), w̃, τ (t, j), τ0, μ),w(t, j)) ∩ D)+ δB

⊂ G((x̄(t, j)+ δB, w(t, j)) ∩ D)+ δB

= Gδ(x̄(t, j), w(t, j)).

Moreover, for each j such that the set I j := {t : (t, j) ∈ dom x̄} has nonempty
interior and for all t ∈ I j ,

(x(t, j), w(t, j)) = (x̄(t, j)+ εη̃sa(x(t, j), w̃, τ (t, j), τ0, μ),w(t, j)) ∈ C ∩ K̄

implies that (x̄(t, j), w(t, j)) ∈ Cδ . Noting the definition of w̃, instead of (50), we
have

˙̄x(t, j) ∈ ẋ(t, j)− ε
∂η̃sa(x(t, j), w̃, τ (t, j), τ0, μ)

∂x
ẋ(t, j)

−∂η̃sa(x(t, j), w̃, τ (t, j), τ0, μ)

∂τ

= fε(x(t, j), w(t, j), τ (t, j))− f0(x(t, j), w̃(τ (t, j)), τ (t, j))

−μη̃sa(x(t, j), w̃, τ (t, j), τ0, μ)− ε
∂η̃sa(x(t, j), w̃, τ (t, j), τ0, μ)

∂x
ẋ(t, j)

+ fsa(x(t, j), w̃(τ (t, j))
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= fε(x(t, j), w(t, j), τ (t, j))− f0(x(t, j), w(t, j), τ (t, j))

−μη̃sa(x(t, j), w̃, τ (t, j), τ0, μ)− ε
∂η̃sa(x(t, j), w̃, τ (t, j), τ0, μ)

∂x
ẋ(t, j)

+ fsa(x(t, j), w(t, j))

∈ fsa(x̄(t, j)+ εη̃sa(x(t, j), w̃, τ (t, j), τ0, μ),w(t, j))+ δB

3
+ε2√

nL(M + 1)B + αK (μ)

∈ F(x̄(t, j)+ δB, w(t, j))+ δB ⊂ Fδ(x̄(t, j), w(t, j)). (53)

Then, it follows that (x̄, w) is the solution pair to system Hδ, and we can conclude
that for any solution pair (x̄, w) there exists some solution pair (ξ, w1) to system Hsa
such that x̄ and ξ are (T, ρ2 )-close. Then, using the same steps in proof of Theorem 1,
we can complete the proof. ��

C.4 Proof of Theorem 3

Let �,�1 > 0 come from the definitions of equi-essential boundedness and local
equi-uniform Lipschitz continuity respectively. Let functions (χ, β, γ ) come from
the definition of ISS in Def. 8 for system Hwa. Let the compact set K0 ⊂ R

n be given,
and define

K1 :=
{

x ∈ R
n : χ(x) ≤ max

{

β

(

max
x̄∈K0

χ(x̄), 0

)

, γ (�)

}

+ 1

}

K := K1 ∪ G((K1 × W) ∩ D).

(54)

The set K is a compact because of continuity of the proper indicator χ and outer
semi-continuity of the set mapping G : R

n × R
m → R

n .
Let ν ∈ (0, 1). From the Proposition 3, the ν,� and the compact set K generate

a δ > 0 such that each solution pair (x̄, w) of system Hδ inflated from Hwa with
x̄0 := x̄(0, 0) ∈ K + δB satisfies

χ(x̄(t, j)) ≤ max{β(χ(x̄0), t + j), γ (|w|)} + ν

3
∀(t, j) ∈ dom x̄ . (55)

Without loss of generality, assume that δ < 1. Let K̄ := K ×�B ⊂ R
n × R

m . Let K̄
and Lemma 1 generate αK̄ and pick μ > 0 such that αK̄ ≤ δ

3 . Let K̄ , δ and Assump-
tion 2 generate M

(
K̄
)
> 1 and ε∗1 > 0 such that bounds (6) hold with M := M

(
K̄
)

and ε ∈ (0, ε∗1]. Let Assumption 3 and the set K̄ generate L := L
(
K̄
) ≥ 1 so

that Assumption 3 holds for all ((x1, w1), τa), ((x2, w2), τb) ∈ (C ∩ K̄ ) × R≥0. Let
ε∗2 = δ

6
√

nL(M+1+�1)
, ε∗3 = 3μ.

System HK defined in (47) is introduced. With the continuity of the proper indi-
cator χ and class-KL function β and the fact that β(m, s) converges to zero as s ≥ 0
approaches infinity for all m ≥ 0, let ε∗4 > 0 be such that for all x ∈ K and x̄ ∈
K + ε∗4 LB satisfying |x − x̄ | ≤ ε∗4 L , the following holds:
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χ(x) ≤ χ(x̄)+ ν

3

β(χ(x̄), s) ≤ β(χ(x), s)+ ν

3
, ∀s ∈ R≥0.

(56)

Letting ε∗ = min{ε∗1, ε∗2, ε∗3, ε∗4}, for each ε ∈ (0, ε∗], define x̄ as (49) with
the same construction method in the proof of Theorem 1. Then, we can show that
(x̄(t, j), w(t, j)) is a solution pair to the inflated system Hδ, and then (55) holds.
Letting x0 := x(0, 0) and using (56), for all solution pairs (x, w) ∈ K to system HK

and (t, j) ∈ dom x, we have

χ(x(t, j)) ≤ χ(x̄(t, j))+ ν

3
,

≤ max{β(χ(x̄0), t + j), γ (|w|)} + 2ν

3
≤ max{β(χ(x0), t + j), γ (|w|)} + ν. (57)

In particular, since ν < 1, each solution pair to system HK starting in K0 remains in
the compact set

Kν :=
{

x ∈ R
n : χ(x) ≤ max

{

β

(

max
x̄∈K0

χ(x̄), 0

)

, γ (�)

}

+ ν

}

.

With ν < 1 and continuity of χ, Kν is contained in K1 defined in (54). Finally, using
the same steps in the proof of Theorem 1, and the bound (57) on the solution pairs of
system HK to get conclusions about the solutions of system Hε with x0 ∈ K0, which
establishes the result. ��
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35. Teel AR, Moreau L, Nešić D (2003) A unified framework for input-to-state stability in systems with
two time scales. IEEE Trans Autom Control 48:1526–1544
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